1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2008-2013 Freescale Semiconductor, Inc. All rights reserved. 4 * 5 * Author: Yu Liu, yu.liu@freescale.com 6 * Scott Wood, scottwood@freescale.com 7 * Ashish Kalra, ashish.kalra@freescale.com 8 * Varun Sethi, varun.sethi@freescale.com 9 * Alexander Graf, agraf@suse.de 10 * 11 * Description: 12 * This file is based on arch/powerpc/kvm/44x_tlb.c, 13 * by Hollis Blanchard <hollisb@us.ibm.com>. 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/types.h> 18 #include <linux/slab.h> 19 #include <linux/string.h> 20 #include <linux/kvm.h> 21 #include <linux/kvm_host.h> 22 #include <linux/highmem.h> 23 #include <linux/log2.h> 24 #include <linux/uaccess.h> 25 #include <linux/sched/mm.h> 26 #include <linux/rwsem.h> 27 #include <linux/vmalloc.h> 28 #include <linux/hugetlb.h> 29 #include <asm/kvm_ppc.h> 30 #include <asm/pte-walk.h> 31 32 #include "e500.h" 33 #include "timing.h" 34 #include "e500_mmu_host.h" 35 36 #include "trace_booke.h" 37 38 #define to_htlb1_esel(esel) (host_tlb_params[1].entries - (esel) - 1) 39 40 static struct kvmppc_e500_tlb_params host_tlb_params[E500_TLB_NUM]; 41 42 static inline unsigned int tlb1_max_shadow_size(void) 43 { 44 /* reserve one entry for magic page */ 45 return host_tlb_params[1].entries - tlbcam_index - 1; 46 } 47 48 static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode) 49 { 50 /* Mask off reserved bits. */ 51 mas3 &= MAS3_ATTRIB_MASK; 52 53 #ifndef CONFIG_KVM_BOOKE_HV 54 if (!usermode) { 55 /* Guest is in supervisor mode, 56 * so we need to translate guest 57 * supervisor permissions into user permissions. */ 58 mas3 &= ~E500_TLB_USER_PERM_MASK; 59 mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1; 60 } 61 mas3 |= E500_TLB_SUPER_PERM_MASK; 62 #endif 63 return mas3; 64 } 65 66 /* 67 * writing shadow tlb entry to host TLB 68 */ 69 static inline void __write_host_tlbe(struct kvm_book3e_206_tlb_entry *stlbe, 70 uint32_t mas0, 71 uint32_t lpid) 72 { 73 unsigned long flags; 74 75 local_irq_save(flags); 76 mtspr(SPRN_MAS0, mas0); 77 mtspr(SPRN_MAS1, stlbe->mas1); 78 mtspr(SPRN_MAS2, (unsigned long)stlbe->mas2); 79 mtspr(SPRN_MAS3, (u32)stlbe->mas7_3); 80 mtspr(SPRN_MAS7, (u32)(stlbe->mas7_3 >> 32)); 81 #ifdef CONFIG_KVM_BOOKE_HV 82 mtspr(SPRN_MAS8, MAS8_TGS | get_thread_specific_lpid(lpid)); 83 #endif 84 asm volatile("isync; tlbwe" : : : "memory"); 85 86 #ifdef CONFIG_KVM_BOOKE_HV 87 /* Must clear mas8 for other host tlbwe's */ 88 mtspr(SPRN_MAS8, 0); 89 isync(); 90 #endif 91 local_irq_restore(flags); 92 93 trace_kvm_booke206_stlb_write(mas0, stlbe->mas8, stlbe->mas1, 94 stlbe->mas2, stlbe->mas7_3); 95 } 96 97 /* 98 * Acquire a mas0 with victim hint, as if we just took a TLB miss. 99 * 100 * We don't care about the address we're searching for, other than that it's 101 * in the right set and is not present in the TLB. Using a zero PID and a 102 * userspace address means we don't have to set and then restore MAS5, or 103 * calculate a proper MAS6 value. 104 */ 105 static u32 get_host_mas0(unsigned long eaddr) 106 { 107 unsigned long flags; 108 u32 mas0; 109 u32 mas4; 110 111 local_irq_save(flags); 112 mtspr(SPRN_MAS6, 0); 113 mas4 = mfspr(SPRN_MAS4); 114 mtspr(SPRN_MAS4, mas4 & ~MAS4_TLBSEL_MASK); 115 asm volatile("tlbsx 0, %0" : : "b" (eaddr & ~CONFIG_PAGE_OFFSET)); 116 mas0 = mfspr(SPRN_MAS0); 117 mtspr(SPRN_MAS4, mas4); 118 local_irq_restore(flags); 119 120 return mas0; 121 } 122 123 /* sesel is for tlb1 only */ 124 static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500, 125 int tlbsel, int sesel, struct kvm_book3e_206_tlb_entry *stlbe) 126 { 127 u32 mas0; 128 129 if (tlbsel == 0) { 130 mas0 = get_host_mas0(stlbe->mas2); 131 __write_host_tlbe(stlbe, mas0, vcpu_e500->vcpu.kvm->arch.lpid); 132 } else { 133 __write_host_tlbe(stlbe, 134 MAS0_TLBSEL(1) | 135 MAS0_ESEL(to_htlb1_esel(sesel)), 136 vcpu_e500->vcpu.kvm->arch.lpid); 137 } 138 } 139 140 /* sesel is for tlb1 only */ 141 static void write_stlbe(struct kvmppc_vcpu_e500 *vcpu_e500, 142 struct kvm_book3e_206_tlb_entry *gtlbe, 143 struct kvm_book3e_206_tlb_entry *stlbe, 144 int stlbsel, int sesel) 145 { 146 int stid; 147 148 preempt_disable(); 149 stid = kvmppc_e500_get_tlb_stid(&vcpu_e500->vcpu, gtlbe); 150 151 stlbe->mas1 |= MAS1_TID(stid); 152 write_host_tlbe(vcpu_e500, stlbsel, sesel, stlbe); 153 preempt_enable(); 154 } 155 156 #ifdef CONFIG_KVM_E500V2 157 /* XXX should be a hook in the gva2hpa translation */ 158 void kvmppc_map_magic(struct kvm_vcpu *vcpu) 159 { 160 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); 161 struct kvm_book3e_206_tlb_entry magic; 162 ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK; 163 unsigned int stid; 164 kvm_pfn_t pfn; 165 166 pfn = (kvm_pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT; 167 get_page(pfn_to_page(pfn)); 168 169 preempt_disable(); 170 stid = kvmppc_e500_get_sid(vcpu_e500, 0, 0, 0, 0); 171 172 magic.mas1 = MAS1_VALID | MAS1_TS | MAS1_TID(stid) | 173 MAS1_TSIZE(BOOK3E_PAGESZ_4K); 174 magic.mas2 = vcpu->arch.magic_page_ea | MAS2_M; 175 magic.mas7_3 = ((u64)pfn << PAGE_SHIFT) | 176 MAS3_SW | MAS3_SR | MAS3_UW | MAS3_UR; 177 magic.mas8 = 0; 178 179 __write_host_tlbe(&magic, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index), 0); 180 preempt_enable(); 181 } 182 #endif 183 184 void inval_gtlbe_on_host(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel, 185 int esel) 186 { 187 struct kvm_book3e_206_tlb_entry *gtlbe = 188 get_entry(vcpu_e500, tlbsel, esel); 189 struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[tlbsel][esel].ref; 190 191 /* Don't bother with unmapped entries */ 192 if (!(ref->flags & E500_TLB_VALID)) { 193 WARN(ref->flags & (E500_TLB_BITMAP | E500_TLB_TLB0), 194 "%s: flags %x\n", __func__, ref->flags); 195 WARN_ON(tlbsel == 1 && vcpu_e500->g2h_tlb1_map[esel]); 196 } 197 198 if (tlbsel == 1 && ref->flags & E500_TLB_BITMAP) { 199 u64 tmp = vcpu_e500->g2h_tlb1_map[esel]; 200 int hw_tlb_indx; 201 unsigned long flags; 202 203 local_irq_save(flags); 204 while (tmp) { 205 hw_tlb_indx = __ilog2_u64(tmp & -tmp); 206 mtspr(SPRN_MAS0, 207 MAS0_TLBSEL(1) | 208 MAS0_ESEL(to_htlb1_esel(hw_tlb_indx))); 209 mtspr(SPRN_MAS1, 0); 210 asm volatile("tlbwe"); 211 vcpu_e500->h2g_tlb1_rmap[hw_tlb_indx] = 0; 212 tmp &= tmp - 1; 213 } 214 mb(); 215 vcpu_e500->g2h_tlb1_map[esel] = 0; 216 ref->flags &= ~(E500_TLB_BITMAP | E500_TLB_VALID); 217 local_irq_restore(flags); 218 } 219 220 if (tlbsel == 1 && ref->flags & E500_TLB_TLB0) { 221 /* 222 * TLB1 entry is backed by 4k pages. This should happen 223 * rarely and is not worth optimizing. Invalidate everything. 224 */ 225 kvmppc_e500_tlbil_all(vcpu_e500); 226 ref->flags &= ~(E500_TLB_TLB0 | E500_TLB_VALID); 227 } 228 229 /* 230 * If TLB entry is still valid then it's a TLB0 entry, and thus 231 * backed by at most one host tlbe per shadow pid 232 */ 233 if (ref->flags & E500_TLB_VALID) 234 kvmppc_e500_tlbil_one(vcpu_e500, gtlbe); 235 236 /* Mark the TLB as not backed by the host anymore */ 237 ref->flags = 0; 238 } 239 240 static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry *tlbe) 241 { 242 return tlbe->mas7_3 & (MAS3_SW|MAS3_UW); 243 } 244 245 static inline void kvmppc_e500_ref_setup(struct tlbe_ref *ref, 246 struct kvm_book3e_206_tlb_entry *gtlbe, 247 kvm_pfn_t pfn, unsigned int wimg) 248 { 249 ref->pfn = pfn; 250 ref->flags = E500_TLB_VALID; 251 252 /* Use guest supplied MAS2_G and MAS2_E */ 253 ref->flags |= (gtlbe->mas2 & MAS2_ATTRIB_MASK) | wimg; 254 255 /* Mark the page accessed */ 256 kvm_set_pfn_accessed(pfn); 257 258 if (tlbe_is_writable(gtlbe)) 259 kvm_set_pfn_dirty(pfn); 260 } 261 262 static inline void kvmppc_e500_ref_release(struct tlbe_ref *ref) 263 { 264 if (ref->flags & E500_TLB_VALID) { 265 /* FIXME: don't log bogus pfn for TLB1 */ 266 trace_kvm_booke206_ref_release(ref->pfn, ref->flags); 267 ref->flags = 0; 268 } 269 } 270 271 static void clear_tlb1_bitmap(struct kvmppc_vcpu_e500 *vcpu_e500) 272 { 273 if (vcpu_e500->g2h_tlb1_map) 274 memset(vcpu_e500->g2h_tlb1_map, 0, 275 sizeof(u64) * vcpu_e500->gtlb_params[1].entries); 276 if (vcpu_e500->h2g_tlb1_rmap) 277 memset(vcpu_e500->h2g_tlb1_rmap, 0, 278 sizeof(unsigned int) * host_tlb_params[1].entries); 279 } 280 281 static void clear_tlb_privs(struct kvmppc_vcpu_e500 *vcpu_e500) 282 { 283 int tlbsel; 284 int i; 285 286 for (tlbsel = 0; tlbsel <= 1; tlbsel++) { 287 for (i = 0; i < vcpu_e500->gtlb_params[tlbsel].entries; i++) { 288 struct tlbe_ref *ref = 289 &vcpu_e500->gtlb_priv[tlbsel][i].ref; 290 kvmppc_e500_ref_release(ref); 291 } 292 } 293 } 294 295 void kvmppc_core_flush_tlb(struct kvm_vcpu *vcpu) 296 { 297 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); 298 kvmppc_e500_tlbil_all(vcpu_e500); 299 clear_tlb_privs(vcpu_e500); 300 clear_tlb1_bitmap(vcpu_e500); 301 } 302 303 /* TID must be supplied by the caller */ 304 static void kvmppc_e500_setup_stlbe( 305 struct kvm_vcpu *vcpu, 306 struct kvm_book3e_206_tlb_entry *gtlbe, 307 int tsize, struct tlbe_ref *ref, u64 gvaddr, 308 struct kvm_book3e_206_tlb_entry *stlbe) 309 { 310 kvm_pfn_t pfn = ref->pfn; 311 u32 pr = vcpu->arch.shared->msr & MSR_PR; 312 313 BUG_ON(!(ref->flags & E500_TLB_VALID)); 314 315 /* Force IPROT=0 for all guest mappings. */ 316 stlbe->mas1 = MAS1_TSIZE(tsize) | get_tlb_sts(gtlbe) | MAS1_VALID; 317 stlbe->mas2 = (gvaddr & MAS2_EPN) | (ref->flags & E500_TLB_MAS2_ATTR); 318 stlbe->mas7_3 = ((u64)pfn << PAGE_SHIFT) | 319 e500_shadow_mas3_attrib(gtlbe->mas7_3, pr); 320 } 321 322 static inline int kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500, 323 u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe, 324 int tlbsel, struct kvm_book3e_206_tlb_entry *stlbe, 325 struct tlbe_ref *ref) 326 { 327 struct kvm_memory_slot *slot; 328 unsigned long pfn = 0; /* silence GCC warning */ 329 unsigned long hva; 330 int pfnmap = 0; 331 int tsize = BOOK3E_PAGESZ_4K; 332 int ret = 0; 333 unsigned long mmu_seq; 334 struct kvm *kvm = vcpu_e500->vcpu.kvm; 335 unsigned long tsize_pages = 0; 336 pte_t *ptep; 337 unsigned int wimg = 0; 338 pgd_t *pgdir; 339 unsigned long flags; 340 341 /* used to check for invalidations in progress */ 342 mmu_seq = kvm->mmu_notifier_seq; 343 smp_rmb(); 344 345 /* 346 * Translate guest physical to true physical, acquiring 347 * a page reference if it is normal, non-reserved memory. 348 * 349 * gfn_to_memslot() must succeed because otherwise we wouldn't 350 * have gotten this far. Eventually we should just pass the slot 351 * pointer through from the first lookup. 352 */ 353 slot = gfn_to_memslot(vcpu_e500->vcpu.kvm, gfn); 354 hva = gfn_to_hva_memslot(slot, gfn); 355 356 if (tlbsel == 1) { 357 struct vm_area_struct *vma; 358 mmap_read_lock(kvm->mm); 359 360 vma = find_vma(kvm->mm, hva); 361 if (vma && hva >= vma->vm_start && 362 (vma->vm_flags & VM_PFNMAP)) { 363 /* 364 * This VMA is a physically contiguous region (e.g. 365 * /dev/mem) that bypasses normal Linux page 366 * management. Find the overlap between the 367 * vma and the memslot. 368 */ 369 370 unsigned long start, end; 371 unsigned long slot_start, slot_end; 372 373 pfnmap = 1; 374 375 start = vma->vm_pgoff; 376 end = start + 377 vma_pages(vma); 378 379 pfn = start + ((hva - vma->vm_start) >> PAGE_SHIFT); 380 381 slot_start = pfn - (gfn - slot->base_gfn); 382 slot_end = slot_start + slot->npages; 383 384 if (start < slot_start) 385 start = slot_start; 386 if (end > slot_end) 387 end = slot_end; 388 389 tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >> 390 MAS1_TSIZE_SHIFT; 391 392 /* 393 * e500 doesn't implement the lowest tsize bit, 394 * or 1K pages. 395 */ 396 tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1); 397 398 /* 399 * Now find the largest tsize (up to what the guest 400 * requested) that will cover gfn, stay within the 401 * range, and for which gfn and pfn are mutually 402 * aligned. 403 */ 404 405 for (; tsize > BOOK3E_PAGESZ_4K; tsize -= 2) { 406 unsigned long gfn_start, gfn_end; 407 tsize_pages = 1UL << (tsize - 2); 408 409 gfn_start = gfn & ~(tsize_pages - 1); 410 gfn_end = gfn_start + tsize_pages; 411 412 if (gfn_start + pfn - gfn < start) 413 continue; 414 if (gfn_end + pfn - gfn > end) 415 continue; 416 if ((gfn & (tsize_pages - 1)) != 417 (pfn & (tsize_pages - 1))) 418 continue; 419 420 gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1); 421 pfn &= ~(tsize_pages - 1); 422 break; 423 } 424 } else if (vma && hva >= vma->vm_start && 425 is_vm_hugetlb_page(vma)) { 426 unsigned long psize = vma_kernel_pagesize(vma); 427 428 tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >> 429 MAS1_TSIZE_SHIFT; 430 431 /* 432 * Take the largest page size that satisfies both host 433 * and guest mapping 434 */ 435 tsize = min(__ilog2(psize) - 10, tsize); 436 437 /* 438 * e500 doesn't implement the lowest tsize bit, 439 * or 1K pages. 440 */ 441 tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1); 442 } 443 444 mmap_read_unlock(kvm->mm); 445 } 446 447 if (likely(!pfnmap)) { 448 tsize_pages = 1UL << (tsize + 10 - PAGE_SHIFT); 449 pfn = gfn_to_pfn_memslot(slot, gfn); 450 if (is_error_noslot_pfn(pfn)) { 451 if (printk_ratelimit()) 452 pr_err("%s: real page not found for gfn %lx\n", 453 __func__, (long)gfn); 454 return -EINVAL; 455 } 456 457 /* Align guest and physical address to page map boundaries */ 458 pfn &= ~(tsize_pages - 1); 459 gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1); 460 } 461 462 spin_lock(&kvm->mmu_lock); 463 if (mmu_notifier_retry(kvm, mmu_seq)) { 464 ret = -EAGAIN; 465 goto out; 466 } 467 468 469 pgdir = vcpu_e500->vcpu.arch.pgdir; 470 /* 471 * We are just looking at the wimg bits, so we don't 472 * care much about the trans splitting bit. 473 * We are holding kvm->mmu_lock so a notifier invalidate 474 * can't run hence pfn won't change. 475 */ 476 local_irq_save(flags); 477 ptep = find_linux_pte(pgdir, hva, NULL, NULL); 478 if (ptep) { 479 pte_t pte = READ_ONCE(*ptep); 480 481 if (pte_present(pte)) { 482 wimg = (pte_val(pte) >> PTE_WIMGE_SHIFT) & 483 MAS2_WIMGE_MASK; 484 local_irq_restore(flags); 485 } else { 486 local_irq_restore(flags); 487 pr_err_ratelimited("%s: pte not present: gfn %lx,pfn %lx\n", 488 __func__, (long)gfn, pfn); 489 ret = -EINVAL; 490 goto out; 491 } 492 } 493 kvmppc_e500_ref_setup(ref, gtlbe, pfn, wimg); 494 495 kvmppc_e500_setup_stlbe(&vcpu_e500->vcpu, gtlbe, tsize, 496 ref, gvaddr, stlbe); 497 498 /* Clear i-cache for new pages */ 499 kvmppc_mmu_flush_icache(pfn); 500 501 out: 502 spin_unlock(&kvm->mmu_lock); 503 504 /* Drop refcount on page, so that mmu notifiers can clear it */ 505 kvm_release_pfn_clean(pfn); 506 507 return ret; 508 } 509 510 /* XXX only map the one-one case, for now use TLB0 */ 511 static int kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 *vcpu_e500, int esel, 512 struct kvm_book3e_206_tlb_entry *stlbe) 513 { 514 struct kvm_book3e_206_tlb_entry *gtlbe; 515 struct tlbe_ref *ref; 516 int stlbsel = 0; 517 int sesel = 0; 518 int r; 519 520 gtlbe = get_entry(vcpu_e500, 0, esel); 521 ref = &vcpu_e500->gtlb_priv[0][esel].ref; 522 523 r = kvmppc_e500_shadow_map(vcpu_e500, get_tlb_eaddr(gtlbe), 524 get_tlb_raddr(gtlbe) >> PAGE_SHIFT, 525 gtlbe, 0, stlbe, ref); 526 if (r) 527 return r; 528 529 write_stlbe(vcpu_e500, gtlbe, stlbe, stlbsel, sesel); 530 531 return 0; 532 } 533 534 static int kvmppc_e500_tlb1_map_tlb1(struct kvmppc_vcpu_e500 *vcpu_e500, 535 struct tlbe_ref *ref, 536 int esel) 537 { 538 unsigned int sesel = vcpu_e500->host_tlb1_nv++; 539 540 if (unlikely(vcpu_e500->host_tlb1_nv >= tlb1_max_shadow_size())) 541 vcpu_e500->host_tlb1_nv = 0; 542 543 if (vcpu_e500->h2g_tlb1_rmap[sesel]) { 544 unsigned int idx = vcpu_e500->h2g_tlb1_rmap[sesel] - 1; 545 vcpu_e500->g2h_tlb1_map[idx] &= ~(1ULL << sesel); 546 } 547 548 vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_BITMAP; 549 vcpu_e500->g2h_tlb1_map[esel] |= (u64)1 << sesel; 550 vcpu_e500->h2g_tlb1_rmap[sesel] = esel + 1; 551 WARN_ON(!(ref->flags & E500_TLB_VALID)); 552 553 return sesel; 554 } 555 556 /* Caller must ensure that the specified guest TLB entry is safe to insert into 557 * the shadow TLB. */ 558 /* For both one-one and one-to-many */ 559 static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500, 560 u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe, 561 struct kvm_book3e_206_tlb_entry *stlbe, int esel) 562 { 563 struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[1][esel].ref; 564 int sesel; 565 int r; 566 567 r = kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, 1, stlbe, 568 ref); 569 if (r) 570 return r; 571 572 /* Use TLB0 when we can only map a page with 4k */ 573 if (get_tlb_tsize(stlbe) == BOOK3E_PAGESZ_4K) { 574 vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_TLB0; 575 write_stlbe(vcpu_e500, gtlbe, stlbe, 0, 0); 576 return 0; 577 } 578 579 /* Otherwise map into TLB1 */ 580 sesel = kvmppc_e500_tlb1_map_tlb1(vcpu_e500, ref, esel); 581 write_stlbe(vcpu_e500, gtlbe, stlbe, 1, sesel); 582 583 return 0; 584 } 585 586 void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr, 587 unsigned int index) 588 { 589 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); 590 struct tlbe_priv *priv; 591 struct kvm_book3e_206_tlb_entry *gtlbe, stlbe; 592 int tlbsel = tlbsel_of(index); 593 int esel = esel_of(index); 594 595 gtlbe = get_entry(vcpu_e500, tlbsel, esel); 596 597 switch (tlbsel) { 598 case 0: 599 priv = &vcpu_e500->gtlb_priv[tlbsel][esel]; 600 601 /* Triggers after clear_tlb_privs or on initial mapping */ 602 if (!(priv->ref.flags & E500_TLB_VALID)) { 603 kvmppc_e500_tlb0_map(vcpu_e500, esel, &stlbe); 604 } else { 605 kvmppc_e500_setup_stlbe(vcpu, gtlbe, BOOK3E_PAGESZ_4K, 606 &priv->ref, eaddr, &stlbe); 607 write_stlbe(vcpu_e500, gtlbe, &stlbe, 0, 0); 608 } 609 break; 610 611 case 1: { 612 gfn_t gfn = gpaddr >> PAGE_SHIFT; 613 kvmppc_e500_tlb1_map(vcpu_e500, eaddr, gfn, gtlbe, &stlbe, 614 esel); 615 break; 616 } 617 618 default: 619 BUG(); 620 break; 621 } 622 } 623 624 #ifdef CONFIG_KVM_BOOKE_HV 625 int kvmppc_load_last_inst(struct kvm_vcpu *vcpu, 626 enum instruction_fetch_type type, u32 *instr) 627 { 628 gva_t geaddr; 629 hpa_t addr; 630 hfn_t pfn; 631 hva_t eaddr; 632 u32 mas1, mas2, mas3; 633 u64 mas7_mas3; 634 struct page *page; 635 unsigned int addr_space, psize_shift; 636 bool pr; 637 unsigned long flags; 638 639 /* Search TLB for guest pc to get the real address */ 640 geaddr = kvmppc_get_pc(vcpu); 641 642 addr_space = (vcpu->arch.shared->msr & MSR_IS) >> MSR_IR_LG; 643 644 local_irq_save(flags); 645 mtspr(SPRN_MAS6, (vcpu->arch.pid << MAS6_SPID_SHIFT) | addr_space); 646 mtspr(SPRN_MAS5, MAS5_SGS | get_lpid(vcpu)); 647 asm volatile("tlbsx 0, %[geaddr]\n" : : 648 [geaddr] "r" (geaddr)); 649 mtspr(SPRN_MAS5, 0); 650 mtspr(SPRN_MAS8, 0); 651 mas1 = mfspr(SPRN_MAS1); 652 mas2 = mfspr(SPRN_MAS2); 653 mas3 = mfspr(SPRN_MAS3); 654 #ifdef CONFIG_64BIT 655 mas7_mas3 = mfspr(SPRN_MAS7_MAS3); 656 #else 657 mas7_mas3 = ((u64)mfspr(SPRN_MAS7) << 32) | mas3; 658 #endif 659 local_irq_restore(flags); 660 661 /* 662 * If the TLB entry for guest pc was evicted, return to the guest. 663 * There are high chances to find a valid TLB entry next time. 664 */ 665 if (!(mas1 & MAS1_VALID)) 666 return EMULATE_AGAIN; 667 668 /* 669 * Another thread may rewrite the TLB entry in parallel, don't 670 * execute from the address if the execute permission is not set 671 */ 672 pr = vcpu->arch.shared->msr & MSR_PR; 673 if (unlikely((pr && !(mas3 & MAS3_UX)) || 674 (!pr && !(mas3 & MAS3_SX)))) { 675 pr_err_ratelimited( 676 "%s: Instruction emulation from guest address %08lx without execute permission\n", 677 __func__, geaddr); 678 return EMULATE_AGAIN; 679 } 680 681 /* 682 * The real address will be mapped by a cacheable, memory coherent, 683 * write-back page. Check for mismatches when LRAT is used. 684 */ 685 if (has_feature(vcpu, VCPU_FTR_MMU_V2) && 686 unlikely((mas2 & MAS2_I) || (mas2 & MAS2_W) || !(mas2 & MAS2_M))) { 687 pr_err_ratelimited( 688 "%s: Instruction emulation from guest address %08lx mismatches storage attributes\n", 689 __func__, geaddr); 690 return EMULATE_AGAIN; 691 } 692 693 /* Get pfn */ 694 psize_shift = MAS1_GET_TSIZE(mas1) + 10; 695 addr = (mas7_mas3 & (~0ULL << psize_shift)) | 696 (geaddr & ((1ULL << psize_shift) - 1ULL)); 697 pfn = addr >> PAGE_SHIFT; 698 699 /* Guard against emulation from devices area */ 700 if (unlikely(!page_is_ram(pfn))) { 701 pr_err_ratelimited("%s: Instruction emulation from non-RAM host address %08llx is not supported\n", 702 __func__, addr); 703 return EMULATE_AGAIN; 704 } 705 706 /* Map a page and get guest's instruction */ 707 page = pfn_to_page(pfn); 708 eaddr = (unsigned long)kmap_atomic(page); 709 *instr = *(u32 *)(eaddr | (unsigned long)(addr & ~PAGE_MASK)); 710 kunmap_atomic((u32 *)eaddr); 711 712 return EMULATE_DONE; 713 } 714 #else 715 int kvmppc_load_last_inst(struct kvm_vcpu *vcpu, 716 enum instruction_fetch_type type, u32 *instr) 717 { 718 return EMULATE_AGAIN; 719 } 720 #endif 721 722 /************* MMU Notifiers *************/ 723 724 static int kvm_unmap_hva(struct kvm *kvm, unsigned long hva) 725 { 726 trace_kvm_unmap_hva(hva); 727 728 /* 729 * Flush all shadow tlb entries everywhere. This is slow, but 730 * we are 100% sure that we catch the to be unmapped page 731 */ 732 kvm_flush_remote_tlbs(kvm); 733 734 return 0; 735 } 736 737 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end) 738 { 739 /* kvm_unmap_hva flushes everything anyways */ 740 kvm_unmap_hva(kvm, start); 741 742 return 0; 743 } 744 745 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end) 746 { 747 /* XXX could be more clever ;) */ 748 return 0; 749 } 750 751 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) 752 { 753 /* XXX could be more clever ;) */ 754 return 0; 755 } 756 757 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) 758 { 759 /* The page will get remapped properly on its next fault */ 760 kvm_unmap_hva(kvm, hva); 761 return 0; 762 } 763 764 /*****************************************/ 765 766 int e500_mmu_host_init(struct kvmppc_vcpu_e500 *vcpu_e500) 767 { 768 host_tlb_params[0].entries = mfspr(SPRN_TLB0CFG) & TLBnCFG_N_ENTRY; 769 host_tlb_params[1].entries = mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY; 770 771 /* 772 * This should never happen on real e500 hardware, but is 773 * architecturally possible -- e.g. in some weird nested 774 * virtualization case. 775 */ 776 if (host_tlb_params[0].entries == 0 || 777 host_tlb_params[1].entries == 0) { 778 pr_err("%s: need to know host tlb size\n", __func__); 779 return -ENODEV; 780 } 781 782 host_tlb_params[0].ways = (mfspr(SPRN_TLB0CFG) & TLBnCFG_ASSOC) >> 783 TLBnCFG_ASSOC_SHIFT; 784 host_tlb_params[1].ways = host_tlb_params[1].entries; 785 786 if (!is_power_of_2(host_tlb_params[0].entries) || 787 !is_power_of_2(host_tlb_params[0].ways) || 788 host_tlb_params[0].entries < host_tlb_params[0].ways || 789 host_tlb_params[0].ways == 0) { 790 pr_err("%s: bad tlb0 host config: %u entries %u ways\n", 791 __func__, host_tlb_params[0].entries, 792 host_tlb_params[0].ways); 793 return -ENODEV; 794 } 795 796 host_tlb_params[0].sets = 797 host_tlb_params[0].entries / host_tlb_params[0].ways; 798 host_tlb_params[1].sets = 1; 799 vcpu_e500->h2g_tlb1_rmap = kcalloc(host_tlb_params[1].entries, 800 sizeof(*vcpu_e500->h2g_tlb1_rmap), 801 GFP_KERNEL); 802 if (!vcpu_e500->h2g_tlb1_rmap) 803 return -EINVAL; 804 805 return 0; 806 } 807 808 void e500_mmu_host_uninit(struct kvmppc_vcpu_e500 *vcpu_e500) 809 { 810 kfree(vcpu_e500->h2g_tlb1_rmap); 811 } 812