xref: /openbmc/linux/arch/powerpc/kvm/e500_mmu_host.c (revision 62e7ca52)
1 /*
2  * Copyright (C) 2008-2013 Freescale Semiconductor, Inc. All rights reserved.
3  *
4  * Author: Yu Liu, yu.liu@freescale.com
5  *         Scott Wood, scottwood@freescale.com
6  *         Ashish Kalra, ashish.kalra@freescale.com
7  *         Varun Sethi, varun.sethi@freescale.com
8  *         Alexander Graf, agraf@suse.de
9  *
10  * Description:
11  * This file is based on arch/powerpc/kvm/44x_tlb.c,
12  * by Hollis Blanchard <hollisb@us.ibm.com>.
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License, version 2, as
16  * published by the Free Software Foundation.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/slab.h>
22 #include <linux/string.h>
23 #include <linux/kvm.h>
24 #include <linux/kvm_host.h>
25 #include <linux/highmem.h>
26 #include <linux/log2.h>
27 #include <linux/uaccess.h>
28 #include <linux/sched.h>
29 #include <linux/rwsem.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hugetlb.h>
32 #include <asm/kvm_ppc.h>
33 
34 #include "e500.h"
35 #include "timing.h"
36 #include "e500_mmu_host.h"
37 
38 #include "trace_booke.h"
39 
40 #define to_htlb1_esel(esel) (host_tlb_params[1].entries - (esel) - 1)
41 
42 static struct kvmppc_e500_tlb_params host_tlb_params[E500_TLB_NUM];
43 
44 static inline unsigned int tlb1_max_shadow_size(void)
45 {
46 	/* reserve one entry for magic page */
47 	return host_tlb_params[1].entries - tlbcam_index - 1;
48 }
49 
50 static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode)
51 {
52 	/* Mask off reserved bits. */
53 	mas3 &= MAS3_ATTRIB_MASK;
54 
55 #ifndef CONFIG_KVM_BOOKE_HV
56 	if (!usermode) {
57 		/* Guest is in supervisor mode,
58 		 * so we need to translate guest
59 		 * supervisor permissions into user permissions. */
60 		mas3 &= ~E500_TLB_USER_PERM_MASK;
61 		mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1;
62 	}
63 	mas3 |= E500_TLB_SUPER_PERM_MASK;
64 #endif
65 	return mas3;
66 }
67 
68 /*
69  * writing shadow tlb entry to host TLB
70  */
71 static inline void __write_host_tlbe(struct kvm_book3e_206_tlb_entry *stlbe,
72 				     uint32_t mas0)
73 {
74 	unsigned long flags;
75 
76 	local_irq_save(flags);
77 	mtspr(SPRN_MAS0, mas0);
78 	mtspr(SPRN_MAS1, stlbe->mas1);
79 	mtspr(SPRN_MAS2, (unsigned long)stlbe->mas2);
80 	mtspr(SPRN_MAS3, (u32)stlbe->mas7_3);
81 	mtspr(SPRN_MAS7, (u32)(stlbe->mas7_3 >> 32));
82 #ifdef CONFIG_KVM_BOOKE_HV
83 	mtspr(SPRN_MAS8, stlbe->mas8);
84 #endif
85 	asm volatile("isync; tlbwe" : : : "memory");
86 
87 #ifdef CONFIG_KVM_BOOKE_HV
88 	/* Must clear mas8 for other host tlbwe's */
89 	mtspr(SPRN_MAS8, 0);
90 	isync();
91 #endif
92 	local_irq_restore(flags);
93 
94 	trace_kvm_booke206_stlb_write(mas0, stlbe->mas8, stlbe->mas1,
95 	                              stlbe->mas2, stlbe->mas7_3);
96 }
97 
98 /*
99  * Acquire a mas0 with victim hint, as if we just took a TLB miss.
100  *
101  * We don't care about the address we're searching for, other than that it's
102  * in the right set and is not present in the TLB.  Using a zero PID and a
103  * userspace address means we don't have to set and then restore MAS5, or
104  * calculate a proper MAS6 value.
105  */
106 static u32 get_host_mas0(unsigned long eaddr)
107 {
108 	unsigned long flags;
109 	u32 mas0;
110 
111 	local_irq_save(flags);
112 	mtspr(SPRN_MAS6, 0);
113 	asm volatile("tlbsx 0, %0" : : "b" (eaddr & ~CONFIG_PAGE_OFFSET));
114 	mas0 = mfspr(SPRN_MAS0);
115 	local_irq_restore(flags);
116 
117 	return mas0;
118 }
119 
120 /* sesel is for tlb1 only */
121 static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
122 		int tlbsel, int sesel, struct kvm_book3e_206_tlb_entry *stlbe)
123 {
124 	u32 mas0;
125 
126 	if (tlbsel == 0) {
127 		mas0 = get_host_mas0(stlbe->mas2);
128 		__write_host_tlbe(stlbe, mas0);
129 	} else {
130 		__write_host_tlbe(stlbe,
131 				  MAS0_TLBSEL(1) |
132 				  MAS0_ESEL(to_htlb1_esel(sesel)));
133 	}
134 }
135 
136 /* sesel is for tlb1 only */
137 static void write_stlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
138 			struct kvm_book3e_206_tlb_entry *gtlbe,
139 			struct kvm_book3e_206_tlb_entry *stlbe,
140 			int stlbsel, int sesel)
141 {
142 	int stid;
143 
144 	preempt_disable();
145 	stid = kvmppc_e500_get_tlb_stid(&vcpu_e500->vcpu, gtlbe);
146 
147 	stlbe->mas1 |= MAS1_TID(stid);
148 	write_host_tlbe(vcpu_e500, stlbsel, sesel, stlbe);
149 	preempt_enable();
150 }
151 
152 #ifdef CONFIG_KVM_E500V2
153 /* XXX should be a hook in the gva2hpa translation */
154 void kvmppc_map_magic(struct kvm_vcpu *vcpu)
155 {
156 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
157 	struct kvm_book3e_206_tlb_entry magic;
158 	ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK;
159 	unsigned int stid;
160 	pfn_t pfn;
161 
162 	pfn = (pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT;
163 	get_page(pfn_to_page(pfn));
164 
165 	preempt_disable();
166 	stid = kvmppc_e500_get_sid(vcpu_e500, 0, 0, 0, 0);
167 
168 	magic.mas1 = MAS1_VALID | MAS1_TS | MAS1_TID(stid) |
169 		     MAS1_TSIZE(BOOK3E_PAGESZ_4K);
170 	magic.mas2 = vcpu->arch.magic_page_ea | MAS2_M;
171 	magic.mas7_3 = ((u64)pfn << PAGE_SHIFT) |
172 		       MAS3_SW | MAS3_SR | MAS3_UW | MAS3_UR;
173 	magic.mas8 = 0;
174 
175 	__write_host_tlbe(&magic, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index));
176 	preempt_enable();
177 }
178 #endif
179 
180 void inval_gtlbe_on_host(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel,
181 			 int esel)
182 {
183 	struct kvm_book3e_206_tlb_entry *gtlbe =
184 		get_entry(vcpu_e500, tlbsel, esel);
185 	struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[tlbsel][esel].ref;
186 
187 	/* Don't bother with unmapped entries */
188 	if (!(ref->flags & E500_TLB_VALID)) {
189 		WARN(ref->flags & (E500_TLB_BITMAP | E500_TLB_TLB0),
190 		     "%s: flags %x\n", __func__, ref->flags);
191 		WARN_ON(tlbsel == 1 && vcpu_e500->g2h_tlb1_map[esel]);
192 	}
193 
194 	if (tlbsel == 1 && ref->flags & E500_TLB_BITMAP) {
195 		u64 tmp = vcpu_e500->g2h_tlb1_map[esel];
196 		int hw_tlb_indx;
197 		unsigned long flags;
198 
199 		local_irq_save(flags);
200 		while (tmp) {
201 			hw_tlb_indx = __ilog2_u64(tmp & -tmp);
202 			mtspr(SPRN_MAS0,
203 			      MAS0_TLBSEL(1) |
204 			      MAS0_ESEL(to_htlb1_esel(hw_tlb_indx)));
205 			mtspr(SPRN_MAS1, 0);
206 			asm volatile("tlbwe");
207 			vcpu_e500->h2g_tlb1_rmap[hw_tlb_indx] = 0;
208 			tmp &= tmp - 1;
209 		}
210 		mb();
211 		vcpu_e500->g2h_tlb1_map[esel] = 0;
212 		ref->flags &= ~(E500_TLB_BITMAP | E500_TLB_VALID);
213 		local_irq_restore(flags);
214 	}
215 
216 	if (tlbsel == 1 && ref->flags & E500_TLB_TLB0) {
217 		/*
218 		 * TLB1 entry is backed by 4k pages. This should happen
219 		 * rarely and is not worth optimizing. Invalidate everything.
220 		 */
221 		kvmppc_e500_tlbil_all(vcpu_e500);
222 		ref->flags &= ~(E500_TLB_TLB0 | E500_TLB_VALID);
223 	}
224 
225 	/*
226 	 * If TLB entry is still valid then it's a TLB0 entry, and thus
227 	 * backed by at most one host tlbe per shadow pid
228 	 */
229 	if (ref->flags & E500_TLB_VALID)
230 		kvmppc_e500_tlbil_one(vcpu_e500, gtlbe);
231 
232 	/* Mark the TLB as not backed by the host anymore */
233 	ref->flags = 0;
234 }
235 
236 static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry *tlbe)
237 {
238 	return tlbe->mas7_3 & (MAS3_SW|MAS3_UW);
239 }
240 
241 static inline void kvmppc_e500_ref_setup(struct tlbe_ref *ref,
242 					 struct kvm_book3e_206_tlb_entry *gtlbe,
243 					 pfn_t pfn, unsigned int wimg)
244 {
245 	ref->pfn = pfn;
246 	ref->flags = E500_TLB_VALID;
247 
248 	/* Use guest supplied MAS2_G and MAS2_E */
249 	ref->flags |= (gtlbe->mas2 & MAS2_ATTRIB_MASK) | wimg;
250 
251 	/* Mark the page accessed */
252 	kvm_set_pfn_accessed(pfn);
253 
254 	if (tlbe_is_writable(gtlbe))
255 		kvm_set_pfn_dirty(pfn);
256 }
257 
258 static inline void kvmppc_e500_ref_release(struct tlbe_ref *ref)
259 {
260 	if (ref->flags & E500_TLB_VALID) {
261 		/* FIXME: don't log bogus pfn for TLB1 */
262 		trace_kvm_booke206_ref_release(ref->pfn, ref->flags);
263 		ref->flags = 0;
264 	}
265 }
266 
267 static void clear_tlb1_bitmap(struct kvmppc_vcpu_e500 *vcpu_e500)
268 {
269 	if (vcpu_e500->g2h_tlb1_map)
270 		memset(vcpu_e500->g2h_tlb1_map, 0,
271 		       sizeof(u64) * vcpu_e500->gtlb_params[1].entries);
272 	if (vcpu_e500->h2g_tlb1_rmap)
273 		memset(vcpu_e500->h2g_tlb1_rmap, 0,
274 		       sizeof(unsigned int) * host_tlb_params[1].entries);
275 }
276 
277 static void clear_tlb_privs(struct kvmppc_vcpu_e500 *vcpu_e500)
278 {
279 	int tlbsel;
280 	int i;
281 
282 	for (tlbsel = 0; tlbsel <= 1; tlbsel++) {
283 		for (i = 0; i < vcpu_e500->gtlb_params[tlbsel].entries; i++) {
284 			struct tlbe_ref *ref =
285 				&vcpu_e500->gtlb_priv[tlbsel][i].ref;
286 			kvmppc_e500_ref_release(ref);
287 		}
288 	}
289 }
290 
291 void kvmppc_core_flush_tlb(struct kvm_vcpu *vcpu)
292 {
293 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
294 	kvmppc_e500_tlbil_all(vcpu_e500);
295 	clear_tlb_privs(vcpu_e500);
296 	clear_tlb1_bitmap(vcpu_e500);
297 }
298 
299 /* TID must be supplied by the caller */
300 static void kvmppc_e500_setup_stlbe(
301 	struct kvm_vcpu *vcpu,
302 	struct kvm_book3e_206_tlb_entry *gtlbe,
303 	int tsize, struct tlbe_ref *ref, u64 gvaddr,
304 	struct kvm_book3e_206_tlb_entry *stlbe)
305 {
306 	pfn_t pfn = ref->pfn;
307 	u32 pr = vcpu->arch.shared->msr & MSR_PR;
308 
309 	BUG_ON(!(ref->flags & E500_TLB_VALID));
310 
311 	/* Force IPROT=0 for all guest mappings. */
312 	stlbe->mas1 = MAS1_TSIZE(tsize) | get_tlb_sts(gtlbe) | MAS1_VALID;
313 	stlbe->mas2 = (gvaddr & MAS2_EPN) | (ref->flags & E500_TLB_MAS2_ATTR);
314 	stlbe->mas7_3 = ((u64)pfn << PAGE_SHIFT) |
315 			e500_shadow_mas3_attrib(gtlbe->mas7_3, pr);
316 
317 #ifdef CONFIG_KVM_BOOKE_HV
318 	stlbe->mas8 = MAS8_TGS | vcpu->kvm->arch.lpid;
319 #endif
320 }
321 
322 static inline int kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500,
323 	u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
324 	int tlbsel, struct kvm_book3e_206_tlb_entry *stlbe,
325 	struct tlbe_ref *ref)
326 {
327 	struct kvm_memory_slot *slot;
328 	unsigned long pfn = 0; /* silence GCC warning */
329 	unsigned long hva;
330 	int pfnmap = 0;
331 	int tsize = BOOK3E_PAGESZ_4K;
332 	int ret = 0;
333 	unsigned long mmu_seq;
334 	struct kvm *kvm = vcpu_e500->vcpu.kvm;
335 	unsigned long tsize_pages = 0;
336 	pte_t *ptep;
337 	unsigned int wimg = 0;
338 	pgd_t *pgdir;
339 
340 	/* used to check for invalidations in progress */
341 	mmu_seq = kvm->mmu_notifier_seq;
342 	smp_rmb();
343 
344 	/*
345 	 * Translate guest physical to true physical, acquiring
346 	 * a page reference if it is normal, non-reserved memory.
347 	 *
348 	 * gfn_to_memslot() must succeed because otherwise we wouldn't
349 	 * have gotten this far.  Eventually we should just pass the slot
350 	 * pointer through from the first lookup.
351 	 */
352 	slot = gfn_to_memslot(vcpu_e500->vcpu.kvm, gfn);
353 	hva = gfn_to_hva_memslot(slot, gfn);
354 
355 	if (tlbsel == 1) {
356 		struct vm_area_struct *vma;
357 		down_read(&current->mm->mmap_sem);
358 
359 		vma = find_vma(current->mm, hva);
360 		if (vma && hva >= vma->vm_start &&
361 		    (vma->vm_flags & VM_PFNMAP)) {
362 			/*
363 			 * This VMA is a physically contiguous region (e.g.
364 			 * /dev/mem) that bypasses normal Linux page
365 			 * management.  Find the overlap between the
366 			 * vma and the memslot.
367 			 */
368 
369 			unsigned long start, end;
370 			unsigned long slot_start, slot_end;
371 
372 			pfnmap = 1;
373 
374 			start = vma->vm_pgoff;
375 			end = start +
376 			      ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT);
377 
378 			pfn = start + ((hva - vma->vm_start) >> PAGE_SHIFT);
379 
380 			slot_start = pfn - (gfn - slot->base_gfn);
381 			slot_end = slot_start + slot->npages;
382 
383 			if (start < slot_start)
384 				start = slot_start;
385 			if (end > slot_end)
386 				end = slot_end;
387 
388 			tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
389 				MAS1_TSIZE_SHIFT;
390 
391 			/*
392 			 * e500 doesn't implement the lowest tsize bit,
393 			 * or 1K pages.
394 			 */
395 			tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
396 
397 			/*
398 			 * Now find the largest tsize (up to what the guest
399 			 * requested) that will cover gfn, stay within the
400 			 * range, and for which gfn and pfn are mutually
401 			 * aligned.
402 			 */
403 
404 			for (; tsize > BOOK3E_PAGESZ_4K; tsize -= 2) {
405 				unsigned long gfn_start, gfn_end;
406 				tsize_pages = 1 << (tsize - 2);
407 
408 				gfn_start = gfn & ~(tsize_pages - 1);
409 				gfn_end = gfn_start + tsize_pages;
410 
411 				if (gfn_start + pfn - gfn < start)
412 					continue;
413 				if (gfn_end + pfn - gfn > end)
414 					continue;
415 				if ((gfn & (tsize_pages - 1)) !=
416 				    (pfn & (tsize_pages - 1)))
417 					continue;
418 
419 				gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
420 				pfn &= ~(tsize_pages - 1);
421 				break;
422 			}
423 		} else if (vma && hva >= vma->vm_start &&
424 			   (vma->vm_flags & VM_HUGETLB)) {
425 			unsigned long psize = vma_kernel_pagesize(vma);
426 
427 			tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
428 				MAS1_TSIZE_SHIFT;
429 
430 			/*
431 			 * Take the largest page size that satisfies both host
432 			 * and guest mapping
433 			 */
434 			tsize = min(__ilog2(psize) - 10, tsize);
435 
436 			/*
437 			 * e500 doesn't implement the lowest tsize bit,
438 			 * or 1K pages.
439 			 */
440 			tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
441 		}
442 
443 		up_read(&current->mm->mmap_sem);
444 	}
445 
446 	if (likely(!pfnmap)) {
447 		tsize_pages = 1 << (tsize + 10 - PAGE_SHIFT);
448 		pfn = gfn_to_pfn_memslot(slot, gfn);
449 		if (is_error_noslot_pfn(pfn)) {
450 			if (printk_ratelimit())
451 				pr_err("%s: real page not found for gfn %lx\n",
452 				       __func__, (long)gfn);
453 			return -EINVAL;
454 		}
455 
456 		/* Align guest and physical address to page map boundaries */
457 		pfn &= ~(tsize_pages - 1);
458 		gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
459 	}
460 
461 	spin_lock(&kvm->mmu_lock);
462 	if (mmu_notifier_retry(kvm, mmu_seq)) {
463 		ret = -EAGAIN;
464 		goto out;
465 	}
466 
467 
468 	pgdir = vcpu_e500->vcpu.arch.pgdir;
469 	ptep = lookup_linux_ptep(pgdir, hva, &tsize_pages);
470 	if (pte_present(*ptep))
471 		wimg = (*ptep >> PTE_WIMGE_SHIFT) & MAS2_WIMGE_MASK;
472 	else {
473 		if (printk_ratelimit())
474 			pr_err("%s: pte not present: gfn %lx, pfn %lx\n",
475 				__func__, (long)gfn, pfn);
476 		ret = -EINVAL;
477 		goto out;
478 	}
479 	kvmppc_e500_ref_setup(ref, gtlbe, pfn, wimg);
480 
481 	kvmppc_e500_setup_stlbe(&vcpu_e500->vcpu, gtlbe, tsize,
482 				ref, gvaddr, stlbe);
483 
484 	/* Clear i-cache for new pages */
485 	kvmppc_mmu_flush_icache(pfn);
486 
487 out:
488 	spin_unlock(&kvm->mmu_lock);
489 
490 	/* Drop refcount on page, so that mmu notifiers can clear it */
491 	kvm_release_pfn_clean(pfn);
492 
493 	return ret;
494 }
495 
496 /* XXX only map the one-one case, for now use TLB0 */
497 static int kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 *vcpu_e500, int esel,
498 				struct kvm_book3e_206_tlb_entry *stlbe)
499 {
500 	struct kvm_book3e_206_tlb_entry *gtlbe;
501 	struct tlbe_ref *ref;
502 	int stlbsel = 0;
503 	int sesel = 0;
504 	int r;
505 
506 	gtlbe = get_entry(vcpu_e500, 0, esel);
507 	ref = &vcpu_e500->gtlb_priv[0][esel].ref;
508 
509 	r = kvmppc_e500_shadow_map(vcpu_e500, get_tlb_eaddr(gtlbe),
510 			get_tlb_raddr(gtlbe) >> PAGE_SHIFT,
511 			gtlbe, 0, stlbe, ref);
512 	if (r)
513 		return r;
514 
515 	write_stlbe(vcpu_e500, gtlbe, stlbe, stlbsel, sesel);
516 
517 	return 0;
518 }
519 
520 static int kvmppc_e500_tlb1_map_tlb1(struct kvmppc_vcpu_e500 *vcpu_e500,
521 				     struct tlbe_ref *ref,
522 				     int esel)
523 {
524 	unsigned int sesel = vcpu_e500->host_tlb1_nv++;
525 
526 	if (unlikely(vcpu_e500->host_tlb1_nv >= tlb1_max_shadow_size()))
527 		vcpu_e500->host_tlb1_nv = 0;
528 
529 	if (vcpu_e500->h2g_tlb1_rmap[sesel]) {
530 		unsigned int idx = vcpu_e500->h2g_tlb1_rmap[sesel] - 1;
531 		vcpu_e500->g2h_tlb1_map[idx] &= ~(1ULL << sesel);
532 	}
533 
534 	vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_BITMAP;
535 	vcpu_e500->g2h_tlb1_map[esel] |= (u64)1 << sesel;
536 	vcpu_e500->h2g_tlb1_rmap[sesel] = esel + 1;
537 	WARN_ON(!(ref->flags & E500_TLB_VALID));
538 
539 	return sesel;
540 }
541 
542 /* Caller must ensure that the specified guest TLB entry is safe to insert into
543  * the shadow TLB. */
544 /* For both one-one and one-to-many */
545 static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500,
546 		u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
547 		struct kvm_book3e_206_tlb_entry *stlbe, int esel)
548 {
549 	struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[1][esel].ref;
550 	int sesel;
551 	int r;
552 
553 	r = kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, 1, stlbe,
554 				   ref);
555 	if (r)
556 		return r;
557 
558 	/* Use TLB0 when we can only map a page with 4k */
559 	if (get_tlb_tsize(stlbe) == BOOK3E_PAGESZ_4K) {
560 		vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_TLB0;
561 		write_stlbe(vcpu_e500, gtlbe, stlbe, 0, 0);
562 		return 0;
563 	}
564 
565 	/* Otherwise map into TLB1 */
566 	sesel = kvmppc_e500_tlb1_map_tlb1(vcpu_e500, ref, esel);
567 	write_stlbe(vcpu_e500, gtlbe, stlbe, 1, sesel);
568 
569 	return 0;
570 }
571 
572 void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr,
573 		    unsigned int index)
574 {
575 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
576 	struct tlbe_priv *priv;
577 	struct kvm_book3e_206_tlb_entry *gtlbe, stlbe;
578 	int tlbsel = tlbsel_of(index);
579 	int esel = esel_of(index);
580 
581 	gtlbe = get_entry(vcpu_e500, tlbsel, esel);
582 
583 	switch (tlbsel) {
584 	case 0:
585 		priv = &vcpu_e500->gtlb_priv[tlbsel][esel];
586 
587 		/* Triggers after clear_tlb_privs or on initial mapping */
588 		if (!(priv->ref.flags & E500_TLB_VALID)) {
589 			kvmppc_e500_tlb0_map(vcpu_e500, esel, &stlbe);
590 		} else {
591 			kvmppc_e500_setup_stlbe(vcpu, gtlbe, BOOK3E_PAGESZ_4K,
592 						&priv->ref, eaddr, &stlbe);
593 			write_stlbe(vcpu_e500, gtlbe, &stlbe, 0, 0);
594 		}
595 		break;
596 
597 	case 1: {
598 		gfn_t gfn = gpaddr >> PAGE_SHIFT;
599 		kvmppc_e500_tlb1_map(vcpu_e500, eaddr, gfn, gtlbe, &stlbe,
600 				     esel);
601 		break;
602 	}
603 
604 	default:
605 		BUG();
606 		break;
607 	}
608 }
609 
610 /************* MMU Notifiers *************/
611 
612 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
613 {
614 	trace_kvm_unmap_hva(hva);
615 
616 	/*
617 	 * Flush all shadow tlb entries everywhere. This is slow, but
618 	 * we are 100% sure that we catch the to be unmapped page
619 	 */
620 	kvm_flush_remote_tlbs(kvm);
621 
622 	return 0;
623 }
624 
625 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
626 {
627 	/* kvm_unmap_hva flushes everything anyways */
628 	kvm_unmap_hva(kvm, start);
629 
630 	return 0;
631 }
632 
633 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
634 {
635 	/* XXX could be more clever ;) */
636 	return 0;
637 }
638 
639 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
640 {
641 	/* XXX could be more clever ;) */
642 	return 0;
643 }
644 
645 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
646 {
647 	/* The page will get remapped properly on its next fault */
648 	kvm_unmap_hva(kvm, hva);
649 }
650 
651 /*****************************************/
652 
653 int e500_mmu_host_init(struct kvmppc_vcpu_e500 *vcpu_e500)
654 {
655 	host_tlb_params[0].entries = mfspr(SPRN_TLB0CFG) & TLBnCFG_N_ENTRY;
656 	host_tlb_params[1].entries = mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY;
657 
658 	/*
659 	 * This should never happen on real e500 hardware, but is
660 	 * architecturally possible -- e.g. in some weird nested
661 	 * virtualization case.
662 	 */
663 	if (host_tlb_params[0].entries == 0 ||
664 	    host_tlb_params[1].entries == 0) {
665 		pr_err("%s: need to know host tlb size\n", __func__);
666 		return -ENODEV;
667 	}
668 
669 	host_tlb_params[0].ways = (mfspr(SPRN_TLB0CFG) & TLBnCFG_ASSOC) >>
670 				  TLBnCFG_ASSOC_SHIFT;
671 	host_tlb_params[1].ways = host_tlb_params[1].entries;
672 
673 	if (!is_power_of_2(host_tlb_params[0].entries) ||
674 	    !is_power_of_2(host_tlb_params[0].ways) ||
675 	    host_tlb_params[0].entries < host_tlb_params[0].ways ||
676 	    host_tlb_params[0].ways == 0) {
677 		pr_err("%s: bad tlb0 host config: %u entries %u ways\n",
678 		       __func__, host_tlb_params[0].entries,
679 		       host_tlb_params[0].ways);
680 		return -ENODEV;
681 	}
682 
683 	host_tlb_params[0].sets =
684 		host_tlb_params[0].entries / host_tlb_params[0].ways;
685 	host_tlb_params[1].sets = 1;
686 
687 	vcpu_e500->h2g_tlb1_rmap = kzalloc(sizeof(unsigned int) *
688 					   host_tlb_params[1].entries,
689 					   GFP_KERNEL);
690 	if (!vcpu_e500->h2g_tlb1_rmap)
691 		return -EINVAL;
692 
693 	return 0;
694 }
695 
696 void e500_mmu_host_uninit(struct kvmppc_vcpu_e500 *vcpu_e500)
697 {
698 	kfree(vcpu_e500->h2g_tlb1_rmap);
699 }
700