xref: /openbmc/linux/arch/powerpc/kvm/e500_mmu_host.c (revision 161f4089)
1 /*
2  * Copyright (C) 2008-2013 Freescale Semiconductor, Inc. All rights reserved.
3  *
4  * Author: Yu Liu, yu.liu@freescale.com
5  *         Scott Wood, scottwood@freescale.com
6  *         Ashish Kalra, ashish.kalra@freescale.com
7  *         Varun Sethi, varun.sethi@freescale.com
8  *         Alexander Graf, agraf@suse.de
9  *
10  * Description:
11  * This file is based on arch/powerpc/kvm/44x_tlb.c,
12  * by Hollis Blanchard <hollisb@us.ibm.com>.
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License, version 2, as
16  * published by the Free Software Foundation.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/slab.h>
22 #include <linux/string.h>
23 #include <linux/kvm.h>
24 #include <linux/kvm_host.h>
25 #include <linux/highmem.h>
26 #include <linux/log2.h>
27 #include <linux/uaccess.h>
28 #include <linux/sched.h>
29 #include <linux/rwsem.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hugetlb.h>
32 #include <asm/kvm_ppc.h>
33 
34 #include "e500.h"
35 #include "trace.h"
36 #include "timing.h"
37 #include "e500_mmu_host.h"
38 
39 #define to_htlb1_esel(esel) (host_tlb_params[1].entries - (esel) - 1)
40 
41 static struct kvmppc_e500_tlb_params host_tlb_params[E500_TLB_NUM];
42 
43 static inline unsigned int tlb1_max_shadow_size(void)
44 {
45 	/* reserve one entry for magic page */
46 	return host_tlb_params[1].entries - tlbcam_index - 1;
47 }
48 
49 static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode)
50 {
51 	/* Mask off reserved bits. */
52 	mas3 &= MAS3_ATTRIB_MASK;
53 
54 #ifndef CONFIG_KVM_BOOKE_HV
55 	if (!usermode) {
56 		/* Guest is in supervisor mode,
57 		 * so we need to translate guest
58 		 * supervisor permissions into user permissions. */
59 		mas3 &= ~E500_TLB_USER_PERM_MASK;
60 		mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1;
61 	}
62 	mas3 |= E500_TLB_SUPER_PERM_MASK;
63 #endif
64 	return mas3;
65 }
66 
67 static inline u32 e500_shadow_mas2_attrib(u32 mas2, int usermode)
68 {
69 #ifdef CONFIG_SMP
70 	return (mas2 & MAS2_ATTRIB_MASK) | MAS2_M;
71 #else
72 	return mas2 & MAS2_ATTRIB_MASK;
73 #endif
74 }
75 
76 /*
77  * writing shadow tlb entry to host TLB
78  */
79 static inline void __write_host_tlbe(struct kvm_book3e_206_tlb_entry *stlbe,
80 				     uint32_t mas0)
81 {
82 	unsigned long flags;
83 
84 	local_irq_save(flags);
85 	mtspr(SPRN_MAS0, mas0);
86 	mtspr(SPRN_MAS1, stlbe->mas1);
87 	mtspr(SPRN_MAS2, (unsigned long)stlbe->mas2);
88 	mtspr(SPRN_MAS3, (u32)stlbe->mas7_3);
89 	mtspr(SPRN_MAS7, (u32)(stlbe->mas7_3 >> 32));
90 #ifdef CONFIG_KVM_BOOKE_HV
91 	mtspr(SPRN_MAS8, stlbe->mas8);
92 #endif
93 	asm volatile("isync; tlbwe" : : : "memory");
94 
95 #ifdef CONFIG_KVM_BOOKE_HV
96 	/* Must clear mas8 for other host tlbwe's */
97 	mtspr(SPRN_MAS8, 0);
98 	isync();
99 #endif
100 	local_irq_restore(flags);
101 
102 	trace_kvm_booke206_stlb_write(mas0, stlbe->mas8, stlbe->mas1,
103 	                              stlbe->mas2, stlbe->mas7_3);
104 }
105 
106 /*
107  * Acquire a mas0 with victim hint, as if we just took a TLB miss.
108  *
109  * We don't care about the address we're searching for, other than that it's
110  * in the right set and is not present in the TLB.  Using a zero PID and a
111  * userspace address means we don't have to set and then restore MAS5, or
112  * calculate a proper MAS6 value.
113  */
114 static u32 get_host_mas0(unsigned long eaddr)
115 {
116 	unsigned long flags;
117 	u32 mas0;
118 
119 	local_irq_save(flags);
120 	mtspr(SPRN_MAS6, 0);
121 	asm volatile("tlbsx 0, %0" : : "b" (eaddr & ~CONFIG_PAGE_OFFSET));
122 	mas0 = mfspr(SPRN_MAS0);
123 	local_irq_restore(flags);
124 
125 	return mas0;
126 }
127 
128 /* sesel is for tlb1 only */
129 static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
130 		int tlbsel, int sesel, struct kvm_book3e_206_tlb_entry *stlbe)
131 {
132 	u32 mas0;
133 
134 	if (tlbsel == 0) {
135 		mas0 = get_host_mas0(stlbe->mas2);
136 		__write_host_tlbe(stlbe, mas0);
137 	} else {
138 		__write_host_tlbe(stlbe,
139 				  MAS0_TLBSEL(1) |
140 				  MAS0_ESEL(to_htlb1_esel(sesel)));
141 	}
142 }
143 
144 /* sesel is for tlb1 only */
145 static void write_stlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
146 			struct kvm_book3e_206_tlb_entry *gtlbe,
147 			struct kvm_book3e_206_tlb_entry *stlbe,
148 			int stlbsel, int sesel)
149 {
150 	int stid;
151 
152 	preempt_disable();
153 	stid = kvmppc_e500_get_tlb_stid(&vcpu_e500->vcpu, gtlbe);
154 
155 	stlbe->mas1 |= MAS1_TID(stid);
156 	write_host_tlbe(vcpu_e500, stlbsel, sesel, stlbe);
157 	preempt_enable();
158 }
159 
160 #ifdef CONFIG_KVM_E500V2
161 /* XXX should be a hook in the gva2hpa translation */
162 void kvmppc_map_magic(struct kvm_vcpu *vcpu)
163 {
164 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
165 	struct kvm_book3e_206_tlb_entry magic;
166 	ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK;
167 	unsigned int stid;
168 	pfn_t pfn;
169 
170 	pfn = (pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT;
171 	get_page(pfn_to_page(pfn));
172 
173 	preempt_disable();
174 	stid = kvmppc_e500_get_sid(vcpu_e500, 0, 0, 0, 0);
175 
176 	magic.mas1 = MAS1_VALID | MAS1_TS | MAS1_TID(stid) |
177 		     MAS1_TSIZE(BOOK3E_PAGESZ_4K);
178 	magic.mas2 = vcpu->arch.magic_page_ea | MAS2_M;
179 	magic.mas7_3 = ((u64)pfn << PAGE_SHIFT) |
180 		       MAS3_SW | MAS3_SR | MAS3_UW | MAS3_UR;
181 	magic.mas8 = 0;
182 
183 	__write_host_tlbe(&magic, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index));
184 	preempt_enable();
185 }
186 #endif
187 
188 void inval_gtlbe_on_host(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel,
189 			 int esel)
190 {
191 	struct kvm_book3e_206_tlb_entry *gtlbe =
192 		get_entry(vcpu_e500, tlbsel, esel);
193 	struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[tlbsel][esel].ref;
194 
195 	/* Don't bother with unmapped entries */
196 	if (!(ref->flags & E500_TLB_VALID)) {
197 		WARN(ref->flags & (E500_TLB_BITMAP | E500_TLB_TLB0),
198 		     "%s: flags %x\n", __func__, ref->flags);
199 		WARN_ON(tlbsel == 1 && vcpu_e500->g2h_tlb1_map[esel]);
200 	}
201 
202 	if (tlbsel == 1 && ref->flags & E500_TLB_BITMAP) {
203 		u64 tmp = vcpu_e500->g2h_tlb1_map[esel];
204 		int hw_tlb_indx;
205 		unsigned long flags;
206 
207 		local_irq_save(flags);
208 		while (tmp) {
209 			hw_tlb_indx = __ilog2_u64(tmp & -tmp);
210 			mtspr(SPRN_MAS0,
211 			      MAS0_TLBSEL(1) |
212 			      MAS0_ESEL(to_htlb1_esel(hw_tlb_indx)));
213 			mtspr(SPRN_MAS1, 0);
214 			asm volatile("tlbwe");
215 			vcpu_e500->h2g_tlb1_rmap[hw_tlb_indx] = 0;
216 			tmp &= tmp - 1;
217 		}
218 		mb();
219 		vcpu_e500->g2h_tlb1_map[esel] = 0;
220 		ref->flags &= ~(E500_TLB_BITMAP | E500_TLB_VALID);
221 		local_irq_restore(flags);
222 	}
223 
224 	if (tlbsel == 1 && ref->flags & E500_TLB_TLB0) {
225 		/*
226 		 * TLB1 entry is backed by 4k pages. This should happen
227 		 * rarely and is not worth optimizing. Invalidate everything.
228 		 */
229 		kvmppc_e500_tlbil_all(vcpu_e500);
230 		ref->flags &= ~(E500_TLB_TLB0 | E500_TLB_VALID);
231 	}
232 
233 	/* Already invalidated in between */
234 	if (!(ref->flags & E500_TLB_VALID))
235 		return;
236 
237 	/* Guest tlbe is backed by at most one host tlbe per shadow pid. */
238 	kvmppc_e500_tlbil_one(vcpu_e500, gtlbe);
239 
240 	/* Mark the TLB as not backed by the host anymore */
241 	ref->flags &= ~E500_TLB_VALID;
242 }
243 
244 static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry *tlbe)
245 {
246 	return tlbe->mas7_3 & (MAS3_SW|MAS3_UW);
247 }
248 
249 static inline void kvmppc_e500_ref_setup(struct tlbe_ref *ref,
250 					 struct kvm_book3e_206_tlb_entry *gtlbe,
251 					 pfn_t pfn)
252 {
253 	ref->pfn = pfn;
254 	ref->flags |= E500_TLB_VALID;
255 
256 	if (tlbe_is_writable(gtlbe))
257 		kvm_set_pfn_dirty(pfn);
258 }
259 
260 static inline void kvmppc_e500_ref_release(struct tlbe_ref *ref)
261 {
262 	if (ref->flags & E500_TLB_VALID) {
263 		/* FIXME: don't log bogus pfn for TLB1 */
264 		trace_kvm_booke206_ref_release(ref->pfn, ref->flags);
265 		ref->flags = 0;
266 	}
267 }
268 
269 static void clear_tlb1_bitmap(struct kvmppc_vcpu_e500 *vcpu_e500)
270 {
271 	if (vcpu_e500->g2h_tlb1_map)
272 		memset(vcpu_e500->g2h_tlb1_map, 0,
273 		       sizeof(u64) * vcpu_e500->gtlb_params[1].entries);
274 	if (vcpu_e500->h2g_tlb1_rmap)
275 		memset(vcpu_e500->h2g_tlb1_rmap, 0,
276 		       sizeof(unsigned int) * host_tlb_params[1].entries);
277 }
278 
279 static void clear_tlb_privs(struct kvmppc_vcpu_e500 *vcpu_e500)
280 {
281 	int tlbsel;
282 	int i;
283 
284 	for (tlbsel = 0; tlbsel <= 1; tlbsel++) {
285 		for (i = 0; i < vcpu_e500->gtlb_params[tlbsel].entries; i++) {
286 			struct tlbe_ref *ref =
287 				&vcpu_e500->gtlb_priv[tlbsel][i].ref;
288 			kvmppc_e500_ref_release(ref);
289 		}
290 	}
291 }
292 
293 void kvmppc_core_flush_tlb(struct kvm_vcpu *vcpu)
294 {
295 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
296 	kvmppc_e500_tlbil_all(vcpu_e500);
297 	clear_tlb_privs(vcpu_e500);
298 	clear_tlb1_bitmap(vcpu_e500);
299 }
300 
301 /* TID must be supplied by the caller */
302 static void kvmppc_e500_setup_stlbe(
303 	struct kvm_vcpu *vcpu,
304 	struct kvm_book3e_206_tlb_entry *gtlbe,
305 	int tsize, struct tlbe_ref *ref, u64 gvaddr,
306 	struct kvm_book3e_206_tlb_entry *stlbe)
307 {
308 	pfn_t pfn = ref->pfn;
309 	u32 pr = vcpu->arch.shared->msr & MSR_PR;
310 
311 	BUG_ON(!(ref->flags & E500_TLB_VALID));
312 
313 	/* Force IPROT=0 for all guest mappings. */
314 	stlbe->mas1 = MAS1_TSIZE(tsize) | get_tlb_sts(gtlbe) | MAS1_VALID;
315 	stlbe->mas2 = (gvaddr & MAS2_EPN) |
316 		      e500_shadow_mas2_attrib(gtlbe->mas2, pr);
317 	stlbe->mas7_3 = ((u64)pfn << PAGE_SHIFT) |
318 			e500_shadow_mas3_attrib(gtlbe->mas7_3, pr);
319 
320 #ifdef CONFIG_KVM_BOOKE_HV
321 	stlbe->mas8 = MAS8_TGS | vcpu->kvm->arch.lpid;
322 #endif
323 }
324 
325 static inline int kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500,
326 	u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
327 	int tlbsel, struct kvm_book3e_206_tlb_entry *stlbe,
328 	struct tlbe_ref *ref)
329 {
330 	struct kvm_memory_slot *slot;
331 	unsigned long pfn = 0; /* silence GCC warning */
332 	unsigned long hva;
333 	int pfnmap = 0;
334 	int tsize = BOOK3E_PAGESZ_4K;
335 	int ret = 0;
336 	unsigned long mmu_seq;
337 	struct kvm *kvm = vcpu_e500->vcpu.kvm;
338 
339 	/* used to check for invalidations in progress */
340 	mmu_seq = kvm->mmu_notifier_seq;
341 	smp_rmb();
342 
343 	/*
344 	 * Translate guest physical to true physical, acquiring
345 	 * a page reference if it is normal, non-reserved memory.
346 	 *
347 	 * gfn_to_memslot() must succeed because otherwise we wouldn't
348 	 * have gotten this far.  Eventually we should just pass the slot
349 	 * pointer through from the first lookup.
350 	 */
351 	slot = gfn_to_memslot(vcpu_e500->vcpu.kvm, gfn);
352 	hva = gfn_to_hva_memslot(slot, gfn);
353 
354 	if (tlbsel == 1) {
355 		struct vm_area_struct *vma;
356 		down_read(&current->mm->mmap_sem);
357 
358 		vma = find_vma(current->mm, hva);
359 		if (vma && hva >= vma->vm_start &&
360 		    (vma->vm_flags & VM_PFNMAP)) {
361 			/*
362 			 * This VMA is a physically contiguous region (e.g.
363 			 * /dev/mem) that bypasses normal Linux page
364 			 * management.  Find the overlap between the
365 			 * vma and the memslot.
366 			 */
367 
368 			unsigned long start, end;
369 			unsigned long slot_start, slot_end;
370 
371 			pfnmap = 1;
372 
373 			start = vma->vm_pgoff;
374 			end = start +
375 			      ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT);
376 
377 			pfn = start + ((hva - vma->vm_start) >> PAGE_SHIFT);
378 
379 			slot_start = pfn - (gfn - slot->base_gfn);
380 			slot_end = slot_start + slot->npages;
381 
382 			if (start < slot_start)
383 				start = slot_start;
384 			if (end > slot_end)
385 				end = slot_end;
386 
387 			tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
388 				MAS1_TSIZE_SHIFT;
389 
390 			/*
391 			 * e500 doesn't implement the lowest tsize bit,
392 			 * or 1K pages.
393 			 */
394 			tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
395 
396 			/*
397 			 * Now find the largest tsize (up to what the guest
398 			 * requested) that will cover gfn, stay within the
399 			 * range, and for which gfn and pfn are mutually
400 			 * aligned.
401 			 */
402 
403 			for (; tsize > BOOK3E_PAGESZ_4K; tsize -= 2) {
404 				unsigned long gfn_start, gfn_end, tsize_pages;
405 				tsize_pages = 1 << (tsize - 2);
406 
407 				gfn_start = gfn & ~(tsize_pages - 1);
408 				gfn_end = gfn_start + tsize_pages;
409 
410 				if (gfn_start + pfn - gfn < start)
411 					continue;
412 				if (gfn_end + pfn - gfn > end)
413 					continue;
414 				if ((gfn & (tsize_pages - 1)) !=
415 				    (pfn & (tsize_pages - 1)))
416 					continue;
417 
418 				gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
419 				pfn &= ~(tsize_pages - 1);
420 				break;
421 			}
422 		} else if (vma && hva >= vma->vm_start &&
423 			   (vma->vm_flags & VM_HUGETLB)) {
424 			unsigned long psize = vma_kernel_pagesize(vma);
425 
426 			tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
427 				MAS1_TSIZE_SHIFT;
428 
429 			/*
430 			 * Take the largest page size that satisfies both host
431 			 * and guest mapping
432 			 */
433 			tsize = min(__ilog2(psize) - 10, tsize);
434 
435 			/*
436 			 * e500 doesn't implement the lowest tsize bit,
437 			 * or 1K pages.
438 			 */
439 			tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
440 		}
441 
442 		up_read(&current->mm->mmap_sem);
443 	}
444 
445 	if (likely(!pfnmap)) {
446 		unsigned long tsize_pages = 1 << (tsize + 10 - PAGE_SHIFT);
447 		pfn = gfn_to_pfn_memslot(slot, gfn);
448 		if (is_error_noslot_pfn(pfn)) {
449 			printk(KERN_ERR "Couldn't get real page for gfn %lx!\n",
450 					(long)gfn);
451 			return -EINVAL;
452 		}
453 
454 		/* Align guest and physical address to page map boundaries */
455 		pfn &= ~(tsize_pages - 1);
456 		gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
457 	}
458 
459 	spin_lock(&kvm->mmu_lock);
460 	if (mmu_notifier_retry(kvm, mmu_seq)) {
461 		ret = -EAGAIN;
462 		goto out;
463 	}
464 
465 	kvmppc_e500_ref_setup(ref, gtlbe, pfn);
466 
467 	kvmppc_e500_setup_stlbe(&vcpu_e500->vcpu, gtlbe, tsize,
468 				ref, gvaddr, stlbe);
469 
470 	/* Clear i-cache for new pages */
471 	kvmppc_mmu_flush_icache(pfn);
472 
473 out:
474 	spin_unlock(&kvm->mmu_lock);
475 
476 	/* Drop refcount on page, so that mmu notifiers can clear it */
477 	kvm_release_pfn_clean(pfn);
478 
479 	return ret;
480 }
481 
482 /* XXX only map the one-one case, for now use TLB0 */
483 static int kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 *vcpu_e500, int esel,
484 				struct kvm_book3e_206_tlb_entry *stlbe)
485 {
486 	struct kvm_book3e_206_tlb_entry *gtlbe;
487 	struct tlbe_ref *ref;
488 	int stlbsel = 0;
489 	int sesel = 0;
490 	int r;
491 
492 	gtlbe = get_entry(vcpu_e500, 0, esel);
493 	ref = &vcpu_e500->gtlb_priv[0][esel].ref;
494 
495 	r = kvmppc_e500_shadow_map(vcpu_e500, get_tlb_eaddr(gtlbe),
496 			get_tlb_raddr(gtlbe) >> PAGE_SHIFT,
497 			gtlbe, 0, stlbe, ref);
498 	if (r)
499 		return r;
500 
501 	write_stlbe(vcpu_e500, gtlbe, stlbe, stlbsel, sesel);
502 
503 	return 0;
504 }
505 
506 static int kvmppc_e500_tlb1_map_tlb1(struct kvmppc_vcpu_e500 *vcpu_e500,
507 				     struct tlbe_ref *ref,
508 				     int esel)
509 {
510 	unsigned int sesel = vcpu_e500->host_tlb1_nv++;
511 
512 	if (unlikely(vcpu_e500->host_tlb1_nv >= tlb1_max_shadow_size()))
513 		vcpu_e500->host_tlb1_nv = 0;
514 
515 	if (vcpu_e500->h2g_tlb1_rmap[sesel]) {
516 		unsigned int idx = vcpu_e500->h2g_tlb1_rmap[sesel] - 1;
517 		vcpu_e500->g2h_tlb1_map[idx] &= ~(1ULL << sesel);
518 	}
519 
520 	vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_BITMAP;
521 	vcpu_e500->g2h_tlb1_map[esel] |= (u64)1 << sesel;
522 	vcpu_e500->h2g_tlb1_rmap[sesel] = esel + 1;
523 	WARN_ON(!(ref->flags & E500_TLB_VALID));
524 
525 	return sesel;
526 }
527 
528 /* Caller must ensure that the specified guest TLB entry is safe to insert into
529  * the shadow TLB. */
530 /* For both one-one and one-to-many */
531 static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500,
532 		u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
533 		struct kvm_book3e_206_tlb_entry *stlbe, int esel)
534 {
535 	struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[1][esel].ref;
536 	int sesel;
537 	int r;
538 
539 	r = kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, 1, stlbe,
540 				   ref);
541 	if (r)
542 		return r;
543 
544 	/* Use TLB0 when we can only map a page with 4k */
545 	if (get_tlb_tsize(stlbe) == BOOK3E_PAGESZ_4K) {
546 		vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_TLB0;
547 		write_stlbe(vcpu_e500, gtlbe, stlbe, 0, 0);
548 		return 0;
549 	}
550 
551 	/* Otherwise map into TLB1 */
552 	sesel = kvmppc_e500_tlb1_map_tlb1(vcpu_e500, ref, esel);
553 	write_stlbe(vcpu_e500, gtlbe, stlbe, 1, sesel);
554 
555 	return 0;
556 }
557 
558 void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr,
559 		    unsigned int index)
560 {
561 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
562 	struct tlbe_priv *priv;
563 	struct kvm_book3e_206_tlb_entry *gtlbe, stlbe;
564 	int tlbsel = tlbsel_of(index);
565 	int esel = esel_of(index);
566 
567 	gtlbe = get_entry(vcpu_e500, tlbsel, esel);
568 
569 	switch (tlbsel) {
570 	case 0:
571 		priv = &vcpu_e500->gtlb_priv[tlbsel][esel];
572 
573 		/* Triggers after clear_tlb_privs or on initial mapping */
574 		if (!(priv->ref.flags & E500_TLB_VALID)) {
575 			kvmppc_e500_tlb0_map(vcpu_e500, esel, &stlbe);
576 		} else {
577 			kvmppc_e500_setup_stlbe(vcpu, gtlbe, BOOK3E_PAGESZ_4K,
578 						&priv->ref, eaddr, &stlbe);
579 			write_stlbe(vcpu_e500, gtlbe, &stlbe, 0, 0);
580 		}
581 		break;
582 
583 	case 1: {
584 		gfn_t gfn = gpaddr >> PAGE_SHIFT;
585 		kvmppc_e500_tlb1_map(vcpu_e500, eaddr, gfn, gtlbe, &stlbe,
586 				     esel);
587 		break;
588 	}
589 
590 	default:
591 		BUG();
592 		break;
593 	}
594 }
595 
596 /************* MMU Notifiers *************/
597 
598 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
599 {
600 	trace_kvm_unmap_hva(hva);
601 
602 	/*
603 	 * Flush all shadow tlb entries everywhere. This is slow, but
604 	 * we are 100% sure that we catch the to be unmapped page
605 	 */
606 	kvm_flush_remote_tlbs(kvm);
607 
608 	return 0;
609 }
610 
611 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
612 {
613 	/* kvm_unmap_hva flushes everything anyways */
614 	kvm_unmap_hva(kvm, start);
615 
616 	return 0;
617 }
618 
619 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
620 {
621 	/* XXX could be more clever ;) */
622 	return 0;
623 }
624 
625 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
626 {
627 	/* XXX could be more clever ;) */
628 	return 0;
629 }
630 
631 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
632 {
633 	/* The page will get remapped properly on its next fault */
634 	kvm_unmap_hva(kvm, hva);
635 }
636 
637 /*****************************************/
638 
639 int e500_mmu_host_init(struct kvmppc_vcpu_e500 *vcpu_e500)
640 {
641 	host_tlb_params[0].entries = mfspr(SPRN_TLB0CFG) & TLBnCFG_N_ENTRY;
642 	host_tlb_params[1].entries = mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY;
643 
644 	/*
645 	 * This should never happen on real e500 hardware, but is
646 	 * architecturally possible -- e.g. in some weird nested
647 	 * virtualization case.
648 	 */
649 	if (host_tlb_params[0].entries == 0 ||
650 	    host_tlb_params[1].entries == 0) {
651 		pr_err("%s: need to know host tlb size\n", __func__);
652 		return -ENODEV;
653 	}
654 
655 	host_tlb_params[0].ways = (mfspr(SPRN_TLB0CFG) & TLBnCFG_ASSOC) >>
656 				  TLBnCFG_ASSOC_SHIFT;
657 	host_tlb_params[1].ways = host_tlb_params[1].entries;
658 
659 	if (!is_power_of_2(host_tlb_params[0].entries) ||
660 	    !is_power_of_2(host_tlb_params[0].ways) ||
661 	    host_tlb_params[0].entries < host_tlb_params[0].ways ||
662 	    host_tlb_params[0].ways == 0) {
663 		pr_err("%s: bad tlb0 host config: %u entries %u ways\n",
664 		       __func__, host_tlb_params[0].entries,
665 		       host_tlb_params[0].ways);
666 		return -ENODEV;
667 	}
668 
669 	host_tlb_params[0].sets =
670 		host_tlb_params[0].entries / host_tlb_params[0].ways;
671 	host_tlb_params[1].sets = 1;
672 
673 	vcpu_e500->h2g_tlb1_rmap = kzalloc(sizeof(unsigned int) *
674 					   host_tlb_params[1].entries,
675 					   GFP_KERNEL);
676 	if (!vcpu_e500->h2g_tlb1_rmap)
677 		return -EINVAL;
678 
679 	return 0;
680 }
681 
682 void e500_mmu_host_uninit(struct kvmppc_vcpu_e500 *vcpu_e500)
683 {
684 	kfree(vcpu_e500->h2g_tlb1_rmap);
685 }
686