xref: /openbmc/linux/arch/powerpc/kvm/e500_mmu_host.c (revision 09bae3b6)
1 /*
2  * Copyright (C) 2008-2013 Freescale Semiconductor, Inc. All rights reserved.
3  *
4  * Author: Yu Liu, yu.liu@freescale.com
5  *         Scott Wood, scottwood@freescale.com
6  *         Ashish Kalra, ashish.kalra@freescale.com
7  *         Varun Sethi, varun.sethi@freescale.com
8  *         Alexander Graf, agraf@suse.de
9  *
10  * Description:
11  * This file is based on arch/powerpc/kvm/44x_tlb.c,
12  * by Hollis Blanchard <hollisb@us.ibm.com>.
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License, version 2, as
16  * published by the Free Software Foundation.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/slab.h>
22 #include <linux/string.h>
23 #include <linux/kvm.h>
24 #include <linux/kvm_host.h>
25 #include <linux/highmem.h>
26 #include <linux/log2.h>
27 #include <linux/uaccess.h>
28 #include <linux/sched/mm.h>
29 #include <linux/rwsem.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hugetlb.h>
32 #include <asm/kvm_ppc.h>
33 #include <asm/pte-walk.h>
34 
35 #include "e500.h"
36 #include "timing.h"
37 #include "e500_mmu_host.h"
38 
39 #include "trace_booke.h"
40 
41 #define to_htlb1_esel(esel) (host_tlb_params[1].entries - (esel) - 1)
42 
43 static struct kvmppc_e500_tlb_params host_tlb_params[E500_TLB_NUM];
44 
45 static inline unsigned int tlb1_max_shadow_size(void)
46 {
47 	/* reserve one entry for magic page */
48 	return host_tlb_params[1].entries - tlbcam_index - 1;
49 }
50 
51 static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode)
52 {
53 	/* Mask off reserved bits. */
54 	mas3 &= MAS3_ATTRIB_MASK;
55 
56 #ifndef CONFIG_KVM_BOOKE_HV
57 	if (!usermode) {
58 		/* Guest is in supervisor mode,
59 		 * so we need to translate guest
60 		 * supervisor permissions into user permissions. */
61 		mas3 &= ~E500_TLB_USER_PERM_MASK;
62 		mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1;
63 	}
64 	mas3 |= E500_TLB_SUPER_PERM_MASK;
65 #endif
66 	return mas3;
67 }
68 
69 /*
70  * writing shadow tlb entry to host TLB
71  */
72 static inline void __write_host_tlbe(struct kvm_book3e_206_tlb_entry *stlbe,
73 				     uint32_t mas0,
74 				     uint32_t lpid)
75 {
76 	unsigned long flags;
77 
78 	local_irq_save(flags);
79 	mtspr(SPRN_MAS0, mas0);
80 	mtspr(SPRN_MAS1, stlbe->mas1);
81 	mtspr(SPRN_MAS2, (unsigned long)stlbe->mas2);
82 	mtspr(SPRN_MAS3, (u32)stlbe->mas7_3);
83 	mtspr(SPRN_MAS7, (u32)(stlbe->mas7_3 >> 32));
84 #ifdef CONFIG_KVM_BOOKE_HV
85 	mtspr(SPRN_MAS8, MAS8_TGS | get_thread_specific_lpid(lpid));
86 #endif
87 	asm volatile("isync; tlbwe" : : : "memory");
88 
89 #ifdef CONFIG_KVM_BOOKE_HV
90 	/* Must clear mas8 for other host tlbwe's */
91 	mtspr(SPRN_MAS8, 0);
92 	isync();
93 #endif
94 	local_irq_restore(flags);
95 
96 	trace_kvm_booke206_stlb_write(mas0, stlbe->mas8, stlbe->mas1,
97 	                              stlbe->mas2, stlbe->mas7_3);
98 }
99 
100 /*
101  * Acquire a mas0 with victim hint, as if we just took a TLB miss.
102  *
103  * We don't care about the address we're searching for, other than that it's
104  * in the right set and is not present in the TLB.  Using a zero PID and a
105  * userspace address means we don't have to set and then restore MAS5, or
106  * calculate a proper MAS6 value.
107  */
108 static u32 get_host_mas0(unsigned long eaddr)
109 {
110 	unsigned long flags;
111 	u32 mas0;
112 	u32 mas4;
113 
114 	local_irq_save(flags);
115 	mtspr(SPRN_MAS6, 0);
116 	mas4 = mfspr(SPRN_MAS4);
117 	mtspr(SPRN_MAS4, mas4 & ~MAS4_TLBSEL_MASK);
118 	asm volatile("tlbsx 0, %0" : : "b" (eaddr & ~CONFIG_PAGE_OFFSET));
119 	mas0 = mfspr(SPRN_MAS0);
120 	mtspr(SPRN_MAS4, mas4);
121 	local_irq_restore(flags);
122 
123 	return mas0;
124 }
125 
126 /* sesel is for tlb1 only */
127 static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
128 		int tlbsel, int sesel, struct kvm_book3e_206_tlb_entry *stlbe)
129 {
130 	u32 mas0;
131 
132 	if (tlbsel == 0) {
133 		mas0 = get_host_mas0(stlbe->mas2);
134 		__write_host_tlbe(stlbe, mas0, vcpu_e500->vcpu.kvm->arch.lpid);
135 	} else {
136 		__write_host_tlbe(stlbe,
137 				  MAS0_TLBSEL(1) |
138 				  MAS0_ESEL(to_htlb1_esel(sesel)),
139 				  vcpu_e500->vcpu.kvm->arch.lpid);
140 	}
141 }
142 
143 /* sesel is for tlb1 only */
144 static void write_stlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
145 			struct kvm_book3e_206_tlb_entry *gtlbe,
146 			struct kvm_book3e_206_tlb_entry *stlbe,
147 			int stlbsel, int sesel)
148 {
149 	int stid;
150 
151 	preempt_disable();
152 	stid = kvmppc_e500_get_tlb_stid(&vcpu_e500->vcpu, gtlbe);
153 
154 	stlbe->mas1 |= MAS1_TID(stid);
155 	write_host_tlbe(vcpu_e500, stlbsel, sesel, stlbe);
156 	preempt_enable();
157 }
158 
159 #ifdef CONFIG_KVM_E500V2
160 /* XXX should be a hook in the gva2hpa translation */
161 void kvmppc_map_magic(struct kvm_vcpu *vcpu)
162 {
163 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
164 	struct kvm_book3e_206_tlb_entry magic;
165 	ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK;
166 	unsigned int stid;
167 	kvm_pfn_t pfn;
168 
169 	pfn = (kvm_pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT;
170 	get_page(pfn_to_page(pfn));
171 
172 	preempt_disable();
173 	stid = kvmppc_e500_get_sid(vcpu_e500, 0, 0, 0, 0);
174 
175 	magic.mas1 = MAS1_VALID | MAS1_TS | MAS1_TID(stid) |
176 		     MAS1_TSIZE(BOOK3E_PAGESZ_4K);
177 	magic.mas2 = vcpu->arch.magic_page_ea | MAS2_M;
178 	magic.mas7_3 = ((u64)pfn << PAGE_SHIFT) |
179 		       MAS3_SW | MAS3_SR | MAS3_UW | MAS3_UR;
180 	magic.mas8 = 0;
181 
182 	__write_host_tlbe(&magic, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index), 0);
183 	preempt_enable();
184 }
185 #endif
186 
187 void inval_gtlbe_on_host(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel,
188 			 int esel)
189 {
190 	struct kvm_book3e_206_tlb_entry *gtlbe =
191 		get_entry(vcpu_e500, tlbsel, esel);
192 	struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[tlbsel][esel].ref;
193 
194 	/* Don't bother with unmapped entries */
195 	if (!(ref->flags & E500_TLB_VALID)) {
196 		WARN(ref->flags & (E500_TLB_BITMAP | E500_TLB_TLB0),
197 		     "%s: flags %x\n", __func__, ref->flags);
198 		WARN_ON(tlbsel == 1 && vcpu_e500->g2h_tlb1_map[esel]);
199 	}
200 
201 	if (tlbsel == 1 && ref->flags & E500_TLB_BITMAP) {
202 		u64 tmp = vcpu_e500->g2h_tlb1_map[esel];
203 		int hw_tlb_indx;
204 		unsigned long flags;
205 
206 		local_irq_save(flags);
207 		while (tmp) {
208 			hw_tlb_indx = __ilog2_u64(tmp & -tmp);
209 			mtspr(SPRN_MAS0,
210 			      MAS0_TLBSEL(1) |
211 			      MAS0_ESEL(to_htlb1_esel(hw_tlb_indx)));
212 			mtspr(SPRN_MAS1, 0);
213 			asm volatile("tlbwe");
214 			vcpu_e500->h2g_tlb1_rmap[hw_tlb_indx] = 0;
215 			tmp &= tmp - 1;
216 		}
217 		mb();
218 		vcpu_e500->g2h_tlb1_map[esel] = 0;
219 		ref->flags &= ~(E500_TLB_BITMAP | E500_TLB_VALID);
220 		local_irq_restore(flags);
221 	}
222 
223 	if (tlbsel == 1 && ref->flags & E500_TLB_TLB0) {
224 		/*
225 		 * TLB1 entry is backed by 4k pages. This should happen
226 		 * rarely and is not worth optimizing. Invalidate everything.
227 		 */
228 		kvmppc_e500_tlbil_all(vcpu_e500);
229 		ref->flags &= ~(E500_TLB_TLB0 | E500_TLB_VALID);
230 	}
231 
232 	/*
233 	 * If TLB entry is still valid then it's a TLB0 entry, and thus
234 	 * backed by at most one host tlbe per shadow pid
235 	 */
236 	if (ref->flags & E500_TLB_VALID)
237 		kvmppc_e500_tlbil_one(vcpu_e500, gtlbe);
238 
239 	/* Mark the TLB as not backed by the host anymore */
240 	ref->flags = 0;
241 }
242 
243 static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry *tlbe)
244 {
245 	return tlbe->mas7_3 & (MAS3_SW|MAS3_UW);
246 }
247 
248 static inline void kvmppc_e500_ref_setup(struct tlbe_ref *ref,
249 					 struct kvm_book3e_206_tlb_entry *gtlbe,
250 					 kvm_pfn_t pfn, unsigned int wimg)
251 {
252 	ref->pfn = pfn;
253 	ref->flags = E500_TLB_VALID;
254 
255 	/* Use guest supplied MAS2_G and MAS2_E */
256 	ref->flags |= (gtlbe->mas2 & MAS2_ATTRIB_MASK) | wimg;
257 
258 	/* Mark the page accessed */
259 	kvm_set_pfn_accessed(pfn);
260 
261 	if (tlbe_is_writable(gtlbe))
262 		kvm_set_pfn_dirty(pfn);
263 }
264 
265 static inline void kvmppc_e500_ref_release(struct tlbe_ref *ref)
266 {
267 	if (ref->flags & E500_TLB_VALID) {
268 		/* FIXME: don't log bogus pfn for TLB1 */
269 		trace_kvm_booke206_ref_release(ref->pfn, ref->flags);
270 		ref->flags = 0;
271 	}
272 }
273 
274 static void clear_tlb1_bitmap(struct kvmppc_vcpu_e500 *vcpu_e500)
275 {
276 	if (vcpu_e500->g2h_tlb1_map)
277 		memset(vcpu_e500->g2h_tlb1_map, 0,
278 		       sizeof(u64) * vcpu_e500->gtlb_params[1].entries);
279 	if (vcpu_e500->h2g_tlb1_rmap)
280 		memset(vcpu_e500->h2g_tlb1_rmap, 0,
281 		       sizeof(unsigned int) * host_tlb_params[1].entries);
282 }
283 
284 static void clear_tlb_privs(struct kvmppc_vcpu_e500 *vcpu_e500)
285 {
286 	int tlbsel;
287 	int i;
288 
289 	for (tlbsel = 0; tlbsel <= 1; tlbsel++) {
290 		for (i = 0; i < vcpu_e500->gtlb_params[tlbsel].entries; i++) {
291 			struct tlbe_ref *ref =
292 				&vcpu_e500->gtlb_priv[tlbsel][i].ref;
293 			kvmppc_e500_ref_release(ref);
294 		}
295 	}
296 }
297 
298 void kvmppc_core_flush_tlb(struct kvm_vcpu *vcpu)
299 {
300 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
301 	kvmppc_e500_tlbil_all(vcpu_e500);
302 	clear_tlb_privs(vcpu_e500);
303 	clear_tlb1_bitmap(vcpu_e500);
304 }
305 
306 /* TID must be supplied by the caller */
307 static void kvmppc_e500_setup_stlbe(
308 	struct kvm_vcpu *vcpu,
309 	struct kvm_book3e_206_tlb_entry *gtlbe,
310 	int tsize, struct tlbe_ref *ref, u64 gvaddr,
311 	struct kvm_book3e_206_tlb_entry *stlbe)
312 {
313 	kvm_pfn_t pfn = ref->pfn;
314 	u32 pr = vcpu->arch.shared->msr & MSR_PR;
315 
316 	BUG_ON(!(ref->flags & E500_TLB_VALID));
317 
318 	/* Force IPROT=0 for all guest mappings. */
319 	stlbe->mas1 = MAS1_TSIZE(tsize) | get_tlb_sts(gtlbe) | MAS1_VALID;
320 	stlbe->mas2 = (gvaddr & MAS2_EPN) | (ref->flags & E500_TLB_MAS2_ATTR);
321 	stlbe->mas7_3 = ((u64)pfn << PAGE_SHIFT) |
322 			e500_shadow_mas3_attrib(gtlbe->mas7_3, pr);
323 }
324 
325 static inline int kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500,
326 	u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
327 	int tlbsel, struct kvm_book3e_206_tlb_entry *stlbe,
328 	struct tlbe_ref *ref)
329 {
330 	struct kvm_memory_slot *slot;
331 	unsigned long pfn = 0; /* silence GCC warning */
332 	unsigned long hva;
333 	int pfnmap = 0;
334 	int tsize = BOOK3E_PAGESZ_4K;
335 	int ret = 0;
336 	unsigned long mmu_seq;
337 	struct kvm *kvm = vcpu_e500->vcpu.kvm;
338 	unsigned long tsize_pages = 0;
339 	pte_t *ptep;
340 	unsigned int wimg = 0;
341 	pgd_t *pgdir;
342 	unsigned long flags;
343 
344 	/* used to check for invalidations in progress */
345 	mmu_seq = kvm->mmu_notifier_seq;
346 	smp_rmb();
347 
348 	/*
349 	 * Translate guest physical to true physical, acquiring
350 	 * a page reference if it is normal, non-reserved memory.
351 	 *
352 	 * gfn_to_memslot() must succeed because otherwise we wouldn't
353 	 * have gotten this far.  Eventually we should just pass the slot
354 	 * pointer through from the first lookup.
355 	 */
356 	slot = gfn_to_memslot(vcpu_e500->vcpu.kvm, gfn);
357 	hva = gfn_to_hva_memslot(slot, gfn);
358 
359 	if (tlbsel == 1) {
360 		struct vm_area_struct *vma;
361 		down_read(&current->mm->mmap_sem);
362 
363 		vma = find_vma(current->mm, hva);
364 		if (vma && hva >= vma->vm_start &&
365 		    (vma->vm_flags & VM_PFNMAP)) {
366 			/*
367 			 * This VMA is a physically contiguous region (e.g.
368 			 * /dev/mem) that bypasses normal Linux page
369 			 * management.  Find the overlap between the
370 			 * vma and the memslot.
371 			 */
372 
373 			unsigned long start, end;
374 			unsigned long slot_start, slot_end;
375 
376 			pfnmap = 1;
377 
378 			start = vma->vm_pgoff;
379 			end = start +
380 			      vma_pages(vma);
381 
382 			pfn = start + ((hva - vma->vm_start) >> PAGE_SHIFT);
383 
384 			slot_start = pfn - (gfn - slot->base_gfn);
385 			slot_end = slot_start + slot->npages;
386 
387 			if (start < slot_start)
388 				start = slot_start;
389 			if (end > slot_end)
390 				end = slot_end;
391 
392 			tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
393 				MAS1_TSIZE_SHIFT;
394 
395 			/*
396 			 * e500 doesn't implement the lowest tsize bit,
397 			 * or 1K pages.
398 			 */
399 			tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
400 
401 			/*
402 			 * Now find the largest tsize (up to what the guest
403 			 * requested) that will cover gfn, stay within the
404 			 * range, and for which gfn and pfn are mutually
405 			 * aligned.
406 			 */
407 
408 			for (; tsize > BOOK3E_PAGESZ_4K; tsize -= 2) {
409 				unsigned long gfn_start, gfn_end;
410 				tsize_pages = 1UL << (tsize - 2);
411 
412 				gfn_start = gfn & ~(tsize_pages - 1);
413 				gfn_end = gfn_start + tsize_pages;
414 
415 				if (gfn_start + pfn - gfn < start)
416 					continue;
417 				if (gfn_end + pfn - gfn > end)
418 					continue;
419 				if ((gfn & (tsize_pages - 1)) !=
420 				    (pfn & (tsize_pages - 1)))
421 					continue;
422 
423 				gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
424 				pfn &= ~(tsize_pages - 1);
425 				break;
426 			}
427 		} else if (vma && hva >= vma->vm_start &&
428 			   (vma->vm_flags & VM_HUGETLB)) {
429 			unsigned long psize = vma_kernel_pagesize(vma);
430 
431 			tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
432 				MAS1_TSIZE_SHIFT;
433 
434 			/*
435 			 * Take the largest page size that satisfies both host
436 			 * and guest mapping
437 			 */
438 			tsize = min(__ilog2(psize) - 10, tsize);
439 
440 			/*
441 			 * e500 doesn't implement the lowest tsize bit,
442 			 * or 1K pages.
443 			 */
444 			tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
445 		}
446 
447 		up_read(&current->mm->mmap_sem);
448 	}
449 
450 	if (likely(!pfnmap)) {
451 		tsize_pages = 1UL << (tsize + 10 - PAGE_SHIFT);
452 		pfn = gfn_to_pfn_memslot(slot, gfn);
453 		if (is_error_noslot_pfn(pfn)) {
454 			if (printk_ratelimit())
455 				pr_err("%s: real page not found for gfn %lx\n",
456 				       __func__, (long)gfn);
457 			return -EINVAL;
458 		}
459 
460 		/* Align guest and physical address to page map boundaries */
461 		pfn &= ~(tsize_pages - 1);
462 		gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
463 	}
464 
465 	spin_lock(&kvm->mmu_lock);
466 	if (mmu_notifier_retry(kvm, mmu_seq)) {
467 		ret = -EAGAIN;
468 		goto out;
469 	}
470 
471 
472 	pgdir = vcpu_e500->vcpu.arch.pgdir;
473 	/*
474 	 * We are just looking at the wimg bits, so we don't
475 	 * care much about the trans splitting bit.
476 	 * We are holding kvm->mmu_lock so a notifier invalidate
477 	 * can't run hence pfn won't change.
478 	 */
479 	local_irq_save(flags);
480 	ptep = find_linux_pte(pgdir, hva, NULL, NULL);
481 	if (ptep) {
482 		pte_t pte = READ_ONCE(*ptep);
483 
484 		if (pte_present(pte)) {
485 			wimg = (pte_val(pte) >> PTE_WIMGE_SHIFT) &
486 				MAS2_WIMGE_MASK;
487 			local_irq_restore(flags);
488 		} else {
489 			local_irq_restore(flags);
490 			pr_err_ratelimited("%s: pte not present: gfn %lx,pfn %lx\n",
491 					   __func__, (long)gfn, pfn);
492 			ret = -EINVAL;
493 			goto out;
494 		}
495 	}
496 	kvmppc_e500_ref_setup(ref, gtlbe, pfn, wimg);
497 
498 	kvmppc_e500_setup_stlbe(&vcpu_e500->vcpu, gtlbe, tsize,
499 				ref, gvaddr, stlbe);
500 
501 	/* Clear i-cache for new pages */
502 	kvmppc_mmu_flush_icache(pfn);
503 
504 out:
505 	spin_unlock(&kvm->mmu_lock);
506 
507 	/* Drop refcount on page, so that mmu notifiers can clear it */
508 	kvm_release_pfn_clean(pfn);
509 
510 	return ret;
511 }
512 
513 /* XXX only map the one-one case, for now use TLB0 */
514 static int kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 *vcpu_e500, int esel,
515 				struct kvm_book3e_206_tlb_entry *stlbe)
516 {
517 	struct kvm_book3e_206_tlb_entry *gtlbe;
518 	struct tlbe_ref *ref;
519 	int stlbsel = 0;
520 	int sesel = 0;
521 	int r;
522 
523 	gtlbe = get_entry(vcpu_e500, 0, esel);
524 	ref = &vcpu_e500->gtlb_priv[0][esel].ref;
525 
526 	r = kvmppc_e500_shadow_map(vcpu_e500, get_tlb_eaddr(gtlbe),
527 			get_tlb_raddr(gtlbe) >> PAGE_SHIFT,
528 			gtlbe, 0, stlbe, ref);
529 	if (r)
530 		return r;
531 
532 	write_stlbe(vcpu_e500, gtlbe, stlbe, stlbsel, sesel);
533 
534 	return 0;
535 }
536 
537 static int kvmppc_e500_tlb1_map_tlb1(struct kvmppc_vcpu_e500 *vcpu_e500,
538 				     struct tlbe_ref *ref,
539 				     int esel)
540 {
541 	unsigned int sesel = vcpu_e500->host_tlb1_nv++;
542 
543 	if (unlikely(vcpu_e500->host_tlb1_nv >= tlb1_max_shadow_size()))
544 		vcpu_e500->host_tlb1_nv = 0;
545 
546 	if (vcpu_e500->h2g_tlb1_rmap[sesel]) {
547 		unsigned int idx = vcpu_e500->h2g_tlb1_rmap[sesel] - 1;
548 		vcpu_e500->g2h_tlb1_map[idx] &= ~(1ULL << sesel);
549 	}
550 
551 	vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_BITMAP;
552 	vcpu_e500->g2h_tlb1_map[esel] |= (u64)1 << sesel;
553 	vcpu_e500->h2g_tlb1_rmap[sesel] = esel + 1;
554 	WARN_ON(!(ref->flags & E500_TLB_VALID));
555 
556 	return sesel;
557 }
558 
559 /* Caller must ensure that the specified guest TLB entry is safe to insert into
560  * the shadow TLB. */
561 /* For both one-one and one-to-many */
562 static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500,
563 		u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
564 		struct kvm_book3e_206_tlb_entry *stlbe, int esel)
565 {
566 	struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[1][esel].ref;
567 	int sesel;
568 	int r;
569 
570 	r = kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, 1, stlbe,
571 				   ref);
572 	if (r)
573 		return r;
574 
575 	/* Use TLB0 when we can only map a page with 4k */
576 	if (get_tlb_tsize(stlbe) == BOOK3E_PAGESZ_4K) {
577 		vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_TLB0;
578 		write_stlbe(vcpu_e500, gtlbe, stlbe, 0, 0);
579 		return 0;
580 	}
581 
582 	/* Otherwise map into TLB1 */
583 	sesel = kvmppc_e500_tlb1_map_tlb1(vcpu_e500, ref, esel);
584 	write_stlbe(vcpu_e500, gtlbe, stlbe, 1, sesel);
585 
586 	return 0;
587 }
588 
589 void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr,
590 		    unsigned int index)
591 {
592 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
593 	struct tlbe_priv *priv;
594 	struct kvm_book3e_206_tlb_entry *gtlbe, stlbe;
595 	int tlbsel = tlbsel_of(index);
596 	int esel = esel_of(index);
597 
598 	gtlbe = get_entry(vcpu_e500, tlbsel, esel);
599 
600 	switch (tlbsel) {
601 	case 0:
602 		priv = &vcpu_e500->gtlb_priv[tlbsel][esel];
603 
604 		/* Triggers after clear_tlb_privs or on initial mapping */
605 		if (!(priv->ref.flags & E500_TLB_VALID)) {
606 			kvmppc_e500_tlb0_map(vcpu_e500, esel, &stlbe);
607 		} else {
608 			kvmppc_e500_setup_stlbe(vcpu, gtlbe, BOOK3E_PAGESZ_4K,
609 						&priv->ref, eaddr, &stlbe);
610 			write_stlbe(vcpu_e500, gtlbe, &stlbe, 0, 0);
611 		}
612 		break;
613 
614 	case 1: {
615 		gfn_t gfn = gpaddr >> PAGE_SHIFT;
616 		kvmppc_e500_tlb1_map(vcpu_e500, eaddr, gfn, gtlbe, &stlbe,
617 				     esel);
618 		break;
619 	}
620 
621 	default:
622 		BUG();
623 		break;
624 	}
625 }
626 
627 #ifdef CONFIG_KVM_BOOKE_HV
628 int kvmppc_load_last_inst(struct kvm_vcpu *vcpu,
629 		enum instruction_fetch_type type, u32 *instr)
630 {
631 	gva_t geaddr;
632 	hpa_t addr;
633 	hfn_t pfn;
634 	hva_t eaddr;
635 	u32 mas1, mas2, mas3;
636 	u64 mas7_mas3;
637 	struct page *page;
638 	unsigned int addr_space, psize_shift;
639 	bool pr;
640 	unsigned long flags;
641 
642 	/* Search TLB for guest pc to get the real address */
643 	geaddr = kvmppc_get_pc(vcpu);
644 
645 	addr_space = (vcpu->arch.shared->msr & MSR_IS) >> MSR_IR_LG;
646 
647 	local_irq_save(flags);
648 	mtspr(SPRN_MAS6, (vcpu->arch.pid << MAS6_SPID_SHIFT) | addr_space);
649 	mtspr(SPRN_MAS5, MAS5_SGS | get_lpid(vcpu));
650 	asm volatile("tlbsx 0, %[geaddr]\n" : :
651 		     [geaddr] "r" (geaddr));
652 	mtspr(SPRN_MAS5, 0);
653 	mtspr(SPRN_MAS8, 0);
654 	mas1 = mfspr(SPRN_MAS1);
655 	mas2 = mfspr(SPRN_MAS2);
656 	mas3 = mfspr(SPRN_MAS3);
657 #ifdef CONFIG_64BIT
658 	mas7_mas3 = mfspr(SPRN_MAS7_MAS3);
659 #else
660 	mas7_mas3 = ((u64)mfspr(SPRN_MAS7) << 32) | mas3;
661 #endif
662 	local_irq_restore(flags);
663 
664 	/*
665 	 * If the TLB entry for guest pc was evicted, return to the guest.
666 	 * There are high chances to find a valid TLB entry next time.
667 	 */
668 	if (!(mas1 & MAS1_VALID))
669 		return EMULATE_AGAIN;
670 
671 	/*
672 	 * Another thread may rewrite the TLB entry in parallel, don't
673 	 * execute from the address if the execute permission is not set
674 	 */
675 	pr = vcpu->arch.shared->msr & MSR_PR;
676 	if (unlikely((pr && !(mas3 & MAS3_UX)) ||
677 		     (!pr && !(mas3 & MAS3_SX)))) {
678 		pr_err_ratelimited(
679 			"%s: Instruction emulation from guest address %08lx without execute permission\n",
680 			__func__, geaddr);
681 		return EMULATE_AGAIN;
682 	}
683 
684 	/*
685 	 * The real address will be mapped by a cacheable, memory coherent,
686 	 * write-back page. Check for mismatches when LRAT is used.
687 	 */
688 	if (has_feature(vcpu, VCPU_FTR_MMU_V2) &&
689 	    unlikely((mas2 & MAS2_I) || (mas2 & MAS2_W) || !(mas2 & MAS2_M))) {
690 		pr_err_ratelimited(
691 			"%s: Instruction emulation from guest address %08lx mismatches storage attributes\n",
692 			__func__, geaddr);
693 		return EMULATE_AGAIN;
694 	}
695 
696 	/* Get pfn */
697 	psize_shift = MAS1_GET_TSIZE(mas1) + 10;
698 	addr = (mas7_mas3 & (~0ULL << psize_shift)) |
699 	       (geaddr & ((1ULL << psize_shift) - 1ULL));
700 	pfn = addr >> PAGE_SHIFT;
701 
702 	/* Guard against emulation from devices area */
703 	if (unlikely(!page_is_ram(pfn))) {
704 		pr_err_ratelimited("%s: Instruction emulation from non-RAM host address %08llx is not supported\n",
705 			 __func__, addr);
706 		return EMULATE_AGAIN;
707 	}
708 
709 	/* Map a page and get guest's instruction */
710 	page = pfn_to_page(pfn);
711 	eaddr = (unsigned long)kmap_atomic(page);
712 	*instr = *(u32 *)(eaddr | (unsigned long)(addr & ~PAGE_MASK));
713 	kunmap_atomic((u32 *)eaddr);
714 
715 	return EMULATE_DONE;
716 }
717 #else
718 int kvmppc_load_last_inst(struct kvm_vcpu *vcpu,
719 		enum instruction_fetch_type type, u32 *instr)
720 {
721 	return EMULATE_AGAIN;
722 }
723 #endif
724 
725 /************* MMU Notifiers *************/
726 
727 static int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
728 {
729 	trace_kvm_unmap_hva(hva);
730 
731 	/*
732 	 * Flush all shadow tlb entries everywhere. This is slow, but
733 	 * we are 100% sure that we catch the to be unmapped page
734 	 */
735 	kvm_flush_remote_tlbs(kvm);
736 
737 	return 0;
738 }
739 
740 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
741 {
742 	/* kvm_unmap_hva flushes everything anyways */
743 	kvm_unmap_hva(kvm, start);
744 
745 	return 0;
746 }
747 
748 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
749 {
750 	/* XXX could be more clever ;) */
751 	return 0;
752 }
753 
754 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
755 {
756 	/* XXX could be more clever ;) */
757 	return 0;
758 }
759 
760 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
761 {
762 	/* The page will get remapped properly on its next fault */
763 	kvm_unmap_hva(kvm, hva);
764 }
765 
766 /*****************************************/
767 
768 int e500_mmu_host_init(struct kvmppc_vcpu_e500 *vcpu_e500)
769 {
770 	host_tlb_params[0].entries = mfspr(SPRN_TLB0CFG) & TLBnCFG_N_ENTRY;
771 	host_tlb_params[1].entries = mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY;
772 
773 	/*
774 	 * This should never happen on real e500 hardware, but is
775 	 * architecturally possible -- e.g. in some weird nested
776 	 * virtualization case.
777 	 */
778 	if (host_tlb_params[0].entries == 0 ||
779 	    host_tlb_params[1].entries == 0) {
780 		pr_err("%s: need to know host tlb size\n", __func__);
781 		return -ENODEV;
782 	}
783 
784 	host_tlb_params[0].ways = (mfspr(SPRN_TLB0CFG) & TLBnCFG_ASSOC) >>
785 				  TLBnCFG_ASSOC_SHIFT;
786 	host_tlb_params[1].ways = host_tlb_params[1].entries;
787 
788 	if (!is_power_of_2(host_tlb_params[0].entries) ||
789 	    !is_power_of_2(host_tlb_params[0].ways) ||
790 	    host_tlb_params[0].entries < host_tlb_params[0].ways ||
791 	    host_tlb_params[0].ways == 0) {
792 		pr_err("%s: bad tlb0 host config: %u entries %u ways\n",
793 		       __func__, host_tlb_params[0].entries,
794 		       host_tlb_params[0].ways);
795 		return -ENODEV;
796 	}
797 
798 	host_tlb_params[0].sets =
799 		host_tlb_params[0].entries / host_tlb_params[0].ways;
800 	host_tlb_params[1].sets = 1;
801 	vcpu_e500->h2g_tlb1_rmap = kcalloc(host_tlb_params[1].entries,
802 					   sizeof(*vcpu_e500->h2g_tlb1_rmap),
803 					   GFP_KERNEL);
804 	if (!vcpu_e500->h2g_tlb1_rmap)
805 		return -EINVAL;
806 
807 	return 0;
808 }
809 
810 void e500_mmu_host_uninit(struct kvmppc_vcpu_e500 *vcpu_e500)
811 {
812 	kfree(vcpu_e500->h2g_tlb1_rmap);
813 }
814