xref: /openbmc/linux/arch/powerpc/kvm/e500.c (revision f8e17c17)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. All rights reserved.
4  *
5  * Author: Yu Liu, <yu.liu@freescale.com>
6  *
7  * Description:
8  * This file is derived from arch/powerpc/kvm/44x.c,
9  * by Hollis Blanchard <hollisb@us.ibm.com>.
10  */
11 
12 #include <linux/kvm_host.h>
13 #include <linux/slab.h>
14 #include <linux/err.h>
15 #include <linux/export.h>
16 #include <linux/module.h>
17 #include <linux/miscdevice.h>
18 
19 #include <asm/reg.h>
20 #include <asm/cputable.h>
21 #include <asm/kvm_ppc.h>
22 
23 #include "../mm/mmu_decl.h"
24 #include "booke.h"
25 #include "e500.h"
26 
27 struct id {
28 	unsigned long val;
29 	struct id **pentry;
30 };
31 
32 #define NUM_TIDS 256
33 
34 /*
35  * This table provide mappings from:
36  * (guestAS,guestTID,guestPR) --> ID of physical cpu
37  * guestAS	[0..1]
38  * guestTID	[0..255]
39  * guestPR	[0..1]
40  * ID		[1..255]
41  * Each vcpu keeps one vcpu_id_table.
42  */
43 struct vcpu_id_table {
44 	struct id id[2][NUM_TIDS][2];
45 };
46 
47 /*
48  * This table provide reversed mappings of vcpu_id_table:
49  * ID --> address of vcpu_id_table item.
50  * Each physical core has one pcpu_id_table.
51  */
52 struct pcpu_id_table {
53 	struct id *entry[NUM_TIDS];
54 };
55 
56 static DEFINE_PER_CPU(struct pcpu_id_table, pcpu_sids);
57 
58 /* This variable keeps last used shadow ID on local core.
59  * The valid range of shadow ID is [1..255] */
60 static DEFINE_PER_CPU(unsigned long, pcpu_last_used_sid);
61 
62 /*
63  * Allocate a free shadow id and setup a valid sid mapping in given entry.
64  * A mapping is only valid when vcpu_id_table and pcpu_id_table are match.
65  *
66  * The caller must have preemption disabled, and keep it that way until
67  * it has finished with the returned shadow id (either written into the
68  * TLB or arch.shadow_pid, or discarded).
69  */
70 static inline int local_sid_setup_one(struct id *entry)
71 {
72 	unsigned long sid;
73 	int ret = -1;
74 
75 	sid = __this_cpu_inc_return(pcpu_last_used_sid);
76 	if (sid < NUM_TIDS) {
77 		__this_cpu_write(pcpu_sids.entry[sid], entry);
78 		entry->val = sid;
79 		entry->pentry = this_cpu_ptr(&pcpu_sids.entry[sid]);
80 		ret = sid;
81 	}
82 
83 	/*
84 	 * If sid == NUM_TIDS, we've run out of sids.  We return -1, and
85 	 * the caller will invalidate everything and start over.
86 	 *
87 	 * sid > NUM_TIDS indicates a race, which we disable preemption to
88 	 * avoid.
89 	 */
90 	WARN_ON(sid > NUM_TIDS);
91 
92 	return ret;
93 }
94 
95 /*
96  * Check if given entry contain a valid shadow id mapping.
97  * An ID mapping is considered valid only if
98  * both vcpu and pcpu know this mapping.
99  *
100  * The caller must have preemption disabled, and keep it that way until
101  * it has finished with the returned shadow id (either written into the
102  * TLB or arch.shadow_pid, or discarded).
103  */
104 static inline int local_sid_lookup(struct id *entry)
105 {
106 	if (entry && entry->val != 0 &&
107 	    __this_cpu_read(pcpu_sids.entry[entry->val]) == entry &&
108 	    entry->pentry == this_cpu_ptr(&pcpu_sids.entry[entry->val]))
109 		return entry->val;
110 	return -1;
111 }
112 
113 /* Invalidate all id mappings on local core -- call with preempt disabled */
114 static inline void local_sid_destroy_all(void)
115 {
116 	__this_cpu_write(pcpu_last_used_sid, 0);
117 	memset(this_cpu_ptr(&pcpu_sids), 0, sizeof(pcpu_sids));
118 }
119 
120 static void *kvmppc_e500_id_table_alloc(struct kvmppc_vcpu_e500 *vcpu_e500)
121 {
122 	vcpu_e500->idt = kzalloc(sizeof(struct vcpu_id_table), GFP_KERNEL);
123 	return vcpu_e500->idt;
124 }
125 
126 static void kvmppc_e500_id_table_free(struct kvmppc_vcpu_e500 *vcpu_e500)
127 {
128 	kfree(vcpu_e500->idt);
129 	vcpu_e500->idt = NULL;
130 }
131 
132 /* Map guest pid to shadow.
133  * We use PID to keep shadow of current guest non-zero PID,
134  * and use PID1 to keep shadow of guest zero PID.
135  * So that guest tlbe with TID=0 can be accessed at any time */
136 static void kvmppc_e500_recalc_shadow_pid(struct kvmppc_vcpu_e500 *vcpu_e500)
137 {
138 	preempt_disable();
139 	vcpu_e500->vcpu.arch.shadow_pid = kvmppc_e500_get_sid(vcpu_e500,
140 			get_cur_as(&vcpu_e500->vcpu),
141 			get_cur_pid(&vcpu_e500->vcpu),
142 			get_cur_pr(&vcpu_e500->vcpu), 1);
143 	vcpu_e500->vcpu.arch.shadow_pid1 = kvmppc_e500_get_sid(vcpu_e500,
144 			get_cur_as(&vcpu_e500->vcpu), 0,
145 			get_cur_pr(&vcpu_e500->vcpu), 1);
146 	preempt_enable();
147 }
148 
149 /* Invalidate all mappings on vcpu */
150 static void kvmppc_e500_id_table_reset_all(struct kvmppc_vcpu_e500 *vcpu_e500)
151 {
152 	memset(vcpu_e500->idt, 0, sizeof(struct vcpu_id_table));
153 
154 	/* Update shadow pid when mappings are changed */
155 	kvmppc_e500_recalc_shadow_pid(vcpu_e500);
156 }
157 
158 /* Invalidate one ID mapping on vcpu */
159 static inline void kvmppc_e500_id_table_reset_one(
160 			       struct kvmppc_vcpu_e500 *vcpu_e500,
161 			       int as, int pid, int pr)
162 {
163 	struct vcpu_id_table *idt = vcpu_e500->idt;
164 
165 	BUG_ON(as >= 2);
166 	BUG_ON(pid >= NUM_TIDS);
167 	BUG_ON(pr >= 2);
168 
169 	idt->id[as][pid][pr].val = 0;
170 	idt->id[as][pid][pr].pentry = NULL;
171 
172 	/* Update shadow pid when mappings are changed */
173 	kvmppc_e500_recalc_shadow_pid(vcpu_e500);
174 }
175 
176 /*
177  * Map guest (vcpu,AS,ID,PR) to physical core shadow id.
178  * This function first lookup if a valid mapping exists,
179  * if not, then creates a new one.
180  *
181  * The caller must have preemption disabled, and keep it that way until
182  * it has finished with the returned shadow id (either written into the
183  * TLB or arch.shadow_pid, or discarded).
184  */
185 unsigned int kvmppc_e500_get_sid(struct kvmppc_vcpu_e500 *vcpu_e500,
186 				 unsigned int as, unsigned int gid,
187 				 unsigned int pr, int avoid_recursion)
188 {
189 	struct vcpu_id_table *idt = vcpu_e500->idt;
190 	int sid;
191 
192 	BUG_ON(as >= 2);
193 	BUG_ON(gid >= NUM_TIDS);
194 	BUG_ON(pr >= 2);
195 
196 	sid = local_sid_lookup(&idt->id[as][gid][pr]);
197 
198 	while (sid <= 0) {
199 		/* No mapping yet */
200 		sid = local_sid_setup_one(&idt->id[as][gid][pr]);
201 		if (sid <= 0) {
202 			_tlbil_all();
203 			local_sid_destroy_all();
204 		}
205 
206 		/* Update shadow pid when mappings are changed */
207 		if (!avoid_recursion)
208 			kvmppc_e500_recalc_shadow_pid(vcpu_e500);
209 	}
210 
211 	return sid;
212 }
213 
214 unsigned int kvmppc_e500_get_tlb_stid(struct kvm_vcpu *vcpu,
215 				      struct kvm_book3e_206_tlb_entry *gtlbe)
216 {
217 	return kvmppc_e500_get_sid(to_e500(vcpu), get_tlb_ts(gtlbe),
218 				   get_tlb_tid(gtlbe), get_cur_pr(vcpu), 0);
219 }
220 
221 void kvmppc_set_pid(struct kvm_vcpu *vcpu, u32 pid)
222 {
223 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
224 
225 	if (vcpu->arch.pid != pid) {
226 		vcpu_e500->pid[0] = vcpu->arch.pid = pid;
227 		kvmppc_e500_recalc_shadow_pid(vcpu_e500);
228 	}
229 }
230 
231 /* gtlbe must not be mapped by more than one host tlbe */
232 void kvmppc_e500_tlbil_one(struct kvmppc_vcpu_e500 *vcpu_e500,
233                            struct kvm_book3e_206_tlb_entry *gtlbe)
234 {
235 	struct vcpu_id_table *idt = vcpu_e500->idt;
236 	unsigned int pr, tid, ts;
237 	int pid;
238 	u32 val, eaddr;
239 	unsigned long flags;
240 
241 	ts = get_tlb_ts(gtlbe);
242 	tid = get_tlb_tid(gtlbe);
243 
244 	preempt_disable();
245 
246 	/* One guest ID may be mapped to two shadow IDs */
247 	for (pr = 0; pr < 2; pr++) {
248 		/*
249 		 * The shadow PID can have a valid mapping on at most one
250 		 * host CPU.  In the common case, it will be valid on this
251 		 * CPU, in which case we do a local invalidation of the
252 		 * specific address.
253 		 *
254 		 * If the shadow PID is not valid on the current host CPU,
255 		 * we invalidate the entire shadow PID.
256 		 */
257 		pid = local_sid_lookup(&idt->id[ts][tid][pr]);
258 		if (pid <= 0) {
259 			kvmppc_e500_id_table_reset_one(vcpu_e500, ts, tid, pr);
260 			continue;
261 		}
262 
263 		/*
264 		 * The guest is invalidating a 4K entry which is in a PID
265 		 * that has a valid shadow mapping on this host CPU.  We
266 		 * search host TLB to invalidate it's shadow TLB entry,
267 		 * similar to __tlbil_va except that we need to look in AS1.
268 		 */
269 		val = (pid << MAS6_SPID_SHIFT) | MAS6_SAS;
270 		eaddr = get_tlb_eaddr(gtlbe);
271 
272 		local_irq_save(flags);
273 
274 		mtspr(SPRN_MAS6, val);
275 		asm volatile("tlbsx 0, %[eaddr]" : : [eaddr] "r" (eaddr));
276 		val = mfspr(SPRN_MAS1);
277 		if (val & MAS1_VALID) {
278 			mtspr(SPRN_MAS1, val & ~MAS1_VALID);
279 			asm volatile("tlbwe");
280 		}
281 
282 		local_irq_restore(flags);
283 	}
284 
285 	preempt_enable();
286 }
287 
288 void kvmppc_e500_tlbil_all(struct kvmppc_vcpu_e500 *vcpu_e500)
289 {
290 	kvmppc_e500_id_table_reset_all(vcpu_e500);
291 }
292 
293 void kvmppc_mmu_msr_notify(struct kvm_vcpu *vcpu, u32 old_msr)
294 {
295 	/* Recalc shadow pid since MSR changes */
296 	kvmppc_e500_recalc_shadow_pid(to_e500(vcpu));
297 }
298 
299 static void kvmppc_core_vcpu_load_e500(struct kvm_vcpu *vcpu, int cpu)
300 {
301 	kvmppc_booke_vcpu_load(vcpu, cpu);
302 
303 	/* Shadow PID may be expired on local core */
304 	kvmppc_e500_recalc_shadow_pid(to_e500(vcpu));
305 }
306 
307 static void kvmppc_core_vcpu_put_e500(struct kvm_vcpu *vcpu)
308 {
309 #ifdef CONFIG_SPE
310 	if (vcpu->arch.shadow_msr & MSR_SPE)
311 		kvmppc_vcpu_disable_spe(vcpu);
312 #endif
313 
314 	kvmppc_booke_vcpu_put(vcpu);
315 }
316 
317 int kvmppc_core_check_processor_compat(void)
318 {
319 	int r;
320 
321 	if (strcmp(cur_cpu_spec->cpu_name, "e500v2") == 0)
322 		r = 0;
323 	else
324 		r = -ENOTSUPP;
325 
326 	return r;
327 }
328 
329 static void kvmppc_e500_tlb_setup(struct kvmppc_vcpu_e500 *vcpu_e500)
330 {
331 	struct kvm_book3e_206_tlb_entry *tlbe;
332 
333 	/* Insert large initial mapping for guest. */
334 	tlbe = get_entry(vcpu_e500, 1, 0);
335 	tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_256M);
336 	tlbe->mas2 = 0;
337 	tlbe->mas7_3 = E500_TLB_SUPER_PERM_MASK;
338 
339 	/* 4K map for serial output. Used by kernel wrapper. */
340 	tlbe = get_entry(vcpu_e500, 1, 1);
341 	tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_4K);
342 	tlbe->mas2 = (0xe0004500 & 0xFFFFF000) | MAS2_I | MAS2_G;
343 	tlbe->mas7_3 = (0xe0004500 & 0xFFFFF000) | E500_TLB_SUPER_PERM_MASK;
344 }
345 
346 int kvmppc_core_vcpu_setup(struct kvm_vcpu *vcpu)
347 {
348 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
349 
350 	kvmppc_e500_tlb_setup(vcpu_e500);
351 
352 	/* Registers init */
353 	vcpu->arch.pvr = mfspr(SPRN_PVR);
354 	vcpu_e500->svr = mfspr(SPRN_SVR);
355 
356 	vcpu->arch.cpu_type = KVM_CPU_E500V2;
357 
358 	return 0;
359 }
360 
361 static int kvmppc_core_get_sregs_e500(struct kvm_vcpu *vcpu,
362 				      struct kvm_sregs *sregs)
363 {
364 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
365 
366 	sregs->u.e.features |= KVM_SREGS_E_ARCH206_MMU | KVM_SREGS_E_SPE |
367 	                       KVM_SREGS_E_PM;
368 	sregs->u.e.impl_id = KVM_SREGS_E_IMPL_FSL;
369 
370 	sregs->u.e.impl.fsl.features = 0;
371 	sregs->u.e.impl.fsl.svr = vcpu_e500->svr;
372 	sregs->u.e.impl.fsl.hid0 = vcpu_e500->hid0;
373 	sregs->u.e.impl.fsl.mcar = vcpu_e500->mcar;
374 
375 	sregs->u.e.ivor_high[0] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL];
376 	sregs->u.e.ivor_high[1] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA];
377 	sregs->u.e.ivor_high[2] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND];
378 	sregs->u.e.ivor_high[3] =
379 		vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR];
380 
381 	kvmppc_get_sregs_ivor(vcpu, sregs);
382 	kvmppc_get_sregs_e500_tlb(vcpu, sregs);
383 	return 0;
384 }
385 
386 static int kvmppc_core_set_sregs_e500(struct kvm_vcpu *vcpu,
387 				      struct kvm_sregs *sregs)
388 {
389 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
390 	int ret;
391 
392 	if (sregs->u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
393 		vcpu_e500->svr = sregs->u.e.impl.fsl.svr;
394 		vcpu_e500->hid0 = sregs->u.e.impl.fsl.hid0;
395 		vcpu_e500->mcar = sregs->u.e.impl.fsl.mcar;
396 	}
397 
398 	ret = kvmppc_set_sregs_e500_tlb(vcpu, sregs);
399 	if (ret < 0)
400 		return ret;
401 
402 	if (!(sregs->u.e.features & KVM_SREGS_E_IVOR))
403 		return 0;
404 
405 	if (sregs->u.e.features & KVM_SREGS_E_SPE) {
406 		vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL] =
407 			sregs->u.e.ivor_high[0];
408 		vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA] =
409 			sregs->u.e.ivor_high[1];
410 		vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND] =
411 			sregs->u.e.ivor_high[2];
412 	}
413 
414 	if (sregs->u.e.features & KVM_SREGS_E_PM) {
415 		vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR] =
416 			sregs->u.e.ivor_high[3];
417 	}
418 
419 	return kvmppc_set_sregs_ivor(vcpu, sregs);
420 }
421 
422 static int kvmppc_get_one_reg_e500(struct kvm_vcpu *vcpu, u64 id,
423 				   union kvmppc_one_reg *val)
424 {
425 	int r = kvmppc_get_one_reg_e500_tlb(vcpu, id, val);
426 	return r;
427 }
428 
429 static int kvmppc_set_one_reg_e500(struct kvm_vcpu *vcpu, u64 id,
430 				   union kvmppc_one_reg *val)
431 {
432 	int r = kvmppc_get_one_reg_e500_tlb(vcpu, id, val);
433 	return r;
434 }
435 
436 static int kvmppc_core_vcpu_create_e500(struct kvm_vcpu *vcpu)
437 {
438 	struct kvmppc_vcpu_e500 *vcpu_e500;
439 	int err;
440 
441 	BUILD_BUG_ON(offsetof(struct kvmppc_vcpu_e500, vcpu) != 0);
442 	vcpu_e500 = to_e500(vcpu);
443 
444 	if (kvmppc_e500_id_table_alloc(vcpu_e500) == NULL)
445 		return -ENOMEM;
446 
447 	err = kvmppc_e500_tlb_init(vcpu_e500);
448 	if (err)
449 		goto uninit_id;
450 
451 	vcpu->arch.shared = (void*)__get_free_page(GFP_KERNEL|__GFP_ZERO);
452 	if (!vcpu->arch.shared) {
453 		err = -ENOMEM;
454 		goto uninit_tlb;
455 	}
456 
457 	return 0;
458 
459 uninit_tlb:
460 	kvmppc_e500_tlb_uninit(vcpu_e500);
461 uninit_id:
462 	kvmppc_e500_id_table_free(vcpu_e500);
463 	return err;
464 }
465 
466 static void kvmppc_core_vcpu_free_e500(struct kvm_vcpu *vcpu)
467 {
468 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
469 
470 	free_page((unsigned long)vcpu->arch.shared);
471 	kvmppc_e500_tlb_uninit(vcpu_e500);
472 	kvmppc_e500_id_table_free(vcpu_e500);
473 }
474 
475 static int kvmppc_core_init_vm_e500(struct kvm *kvm)
476 {
477 	return 0;
478 }
479 
480 static void kvmppc_core_destroy_vm_e500(struct kvm *kvm)
481 {
482 }
483 
484 static struct kvmppc_ops kvm_ops_e500 = {
485 	.get_sregs = kvmppc_core_get_sregs_e500,
486 	.set_sregs = kvmppc_core_set_sregs_e500,
487 	.get_one_reg = kvmppc_get_one_reg_e500,
488 	.set_one_reg = kvmppc_set_one_reg_e500,
489 	.vcpu_load   = kvmppc_core_vcpu_load_e500,
490 	.vcpu_put    = kvmppc_core_vcpu_put_e500,
491 	.vcpu_create = kvmppc_core_vcpu_create_e500,
492 	.vcpu_free   = kvmppc_core_vcpu_free_e500,
493 	.mmu_destroy  = kvmppc_mmu_destroy_e500,
494 	.init_vm = kvmppc_core_init_vm_e500,
495 	.destroy_vm = kvmppc_core_destroy_vm_e500,
496 	.emulate_op = kvmppc_core_emulate_op_e500,
497 	.emulate_mtspr = kvmppc_core_emulate_mtspr_e500,
498 	.emulate_mfspr = kvmppc_core_emulate_mfspr_e500,
499 };
500 
501 static int __init kvmppc_e500_init(void)
502 {
503 	int r, i;
504 	unsigned long ivor[3];
505 	/* Process remaining handlers above the generic first 16 */
506 	unsigned long *handler = &kvmppc_booke_handler_addr[16];
507 	unsigned long handler_len;
508 	unsigned long max_ivor = 0;
509 
510 	r = kvmppc_core_check_processor_compat();
511 	if (r)
512 		goto err_out;
513 
514 	r = kvmppc_booke_init();
515 	if (r)
516 		goto err_out;
517 
518 	/* copy extra E500 exception handlers */
519 	ivor[0] = mfspr(SPRN_IVOR32);
520 	ivor[1] = mfspr(SPRN_IVOR33);
521 	ivor[2] = mfspr(SPRN_IVOR34);
522 	for (i = 0; i < 3; i++) {
523 		if (ivor[i] > ivor[max_ivor])
524 			max_ivor = i;
525 
526 		handler_len = handler[i + 1] - handler[i];
527 		memcpy((void *)kvmppc_booke_handlers + ivor[i],
528 		       (void *)handler[i], handler_len);
529 	}
530 	handler_len = handler[max_ivor + 1] - handler[max_ivor];
531 	flush_icache_range(kvmppc_booke_handlers, kvmppc_booke_handlers +
532 			   ivor[max_ivor] + handler_len);
533 
534 	r = kvm_init(NULL, sizeof(struct kvmppc_vcpu_e500), 0, THIS_MODULE);
535 	if (r)
536 		goto err_out;
537 	kvm_ops_e500.owner = THIS_MODULE;
538 	kvmppc_pr_ops = &kvm_ops_e500;
539 
540 err_out:
541 	return r;
542 }
543 
544 static void __exit kvmppc_e500_exit(void)
545 {
546 	kvmppc_pr_ops = NULL;
547 	kvmppc_booke_exit();
548 }
549 
550 module_init(kvmppc_e500_init);
551 module_exit(kvmppc_e500_exit);
552 MODULE_ALIAS_MISCDEV(KVM_MINOR);
553 MODULE_ALIAS("devname:kvm");
554