xref: /openbmc/linux/arch/powerpc/kvm/e500.c (revision ca79522c)
1 /*
2  * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. All rights reserved.
3  *
4  * Author: Yu Liu, <yu.liu@freescale.com>
5  *
6  * Description:
7  * This file is derived from arch/powerpc/kvm/44x.c,
8  * by Hollis Blanchard <hollisb@us.ibm.com>.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License, version 2, as
12  * published by the Free Software Foundation.
13  */
14 
15 #include <linux/kvm_host.h>
16 #include <linux/slab.h>
17 #include <linux/err.h>
18 #include <linux/export.h>
19 
20 #include <asm/reg.h>
21 #include <asm/cputable.h>
22 #include <asm/tlbflush.h>
23 #include <asm/kvm_ppc.h>
24 
25 #include "../mm/mmu_decl.h"
26 #include "booke.h"
27 #include "e500.h"
28 
29 struct id {
30 	unsigned long val;
31 	struct id **pentry;
32 };
33 
34 #define NUM_TIDS 256
35 
36 /*
37  * This table provide mappings from:
38  * (guestAS,guestTID,guestPR) --> ID of physical cpu
39  * guestAS	[0..1]
40  * guestTID	[0..255]
41  * guestPR	[0..1]
42  * ID		[1..255]
43  * Each vcpu keeps one vcpu_id_table.
44  */
45 struct vcpu_id_table {
46 	struct id id[2][NUM_TIDS][2];
47 };
48 
49 /*
50  * This table provide reversed mappings of vcpu_id_table:
51  * ID --> address of vcpu_id_table item.
52  * Each physical core has one pcpu_id_table.
53  */
54 struct pcpu_id_table {
55 	struct id *entry[NUM_TIDS];
56 };
57 
58 static DEFINE_PER_CPU(struct pcpu_id_table, pcpu_sids);
59 
60 /* This variable keeps last used shadow ID on local core.
61  * The valid range of shadow ID is [1..255] */
62 static DEFINE_PER_CPU(unsigned long, pcpu_last_used_sid);
63 
64 /*
65  * Allocate a free shadow id and setup a valid sid mapping in given entry.
66  * A mapping is only valid when vcpu_id_table and pcpu_id_table are match.
67  *
68  * The caller must have preemption disabled, and keep it that way until
69  * it has finished with the returned shadow id (either written into the
70  * TLB or arch.shadow_pid, or discarded).
71  */
72 static inline int local_sid_setup_one(struct id *entry)
73 {
74 	unsigned long sid;
75 	int ret = -1;
76 
77 	sid = ++(__get_cpu_var(pcpu_last_used_sid));
78 	if (sid < NUM_TIDS) {
79 		__get_cpu_var(pcpu_sids).entry[sid] = entry;
80 		entry->val = sid;
81 		entry->pentry = &__get_cpu_var(pcpu_sids).entry[sid];
82 		ret = sid;
83 	}
84 
85 	/*
86 	 * If sid == NUM_TIDS, we've run out of sids.  We return -1, and
87 	 * the caller will invalidate everything and start over.
88 	 *
89 	 * sid > NUM_TIDS indicates a race, which we disable preemption to
90 	 * avoid.
91 	 */
92 	WARN_ON(sid > NUM_TIDS);
93 
94 	return ret;
95 }
96 
97 /*
98  * Check if given entry contain a valid shadow id mapping.
99  * An ID mapping is considered valid only if
100  * both vcpu and pcpu know this mapping.
101  *
102  * The caller must have preemption disabled, and keep it that way until
103  * it has finished with the returned shadow id (either written into the
104  * TLB or arch.shadow_pid, or discarded).
105  */
106 static inline int local_sid_lookup(struct id *entry)
107 {
108 	if (entry && entry->val != 0 &&
109 	    __get_cpu_var(pcpu_sids).entry[entry->val] == entry &&
110 	    entry->pentry == &__get_cpu_var(pcpu_sids).entry[entry->val])
111 		return entry->val;
112 	return -1;
113 }
114 
115 /* Invalidate all id mappings on local core -- call with preempt disabled */
116 static inline void local_sid_destroy_all(void)
117 {
118 	__get_cpu_var(pcpu_last_used_sid) = 0;
119 	memset(&__get_cpu_var(pcpu_sids), 0, sizeof(__get_cpu_var(pcpu_sids)));
120 }
121 
122 static void *kvmppc_e500_id_table_alloc(struct kvmppc_vcpu_e500 *vcpu_e500)
123 {
124 	vcpu_e500->idt = kzalloc(sizeof(struct vcpu_id_table), GFP_KERNEL);
125 	return vcpu_e500->idt;
126 }
127 
128 static void kvmppc_e500_id_table_free(struct kvmppc_vcpu_e500 *vcpu_e500)
129 {
130 	kfree(vcpu_e500->idt);
131 	vcpu_e500->idt = NULL;
132 }
133 
134 /* Map guest pid to shadow.
135  * We use PID to keep shadow of current guest non-zero PID,
136  * and use PID1 to keep shadow of guest zero PID.
137  * So that guest tlbe with TID=0 can be accessed at any time */
138 static void kvmppc_e500_recalc_shadow_pid(struct kvmppc_vcpu_e500 *vcpu_e500)
139 {
140 	preempt_disable();
141 	vcpu_e500->vcpu.arch.shadow_pid = kvmppc_e500_get_sid(vcpu_e500,
142 			get_cur_as(&vcpu_e500->vcpu),
143 			get_cur_pid(&vcpu_e500->vcpu),
144 			get_cur_pr(&vcpu_e500->vcpu), 1);
145 	vcpu_e500->vcpu.arch.shadow_pid1 = kvmppc_e500_get_sid(vcpu_e500,
146 			get_cur_as(&vcpu_e500->vcpu), 0,
147 			get_cur_pr(&vcpu_e500->vcpu), 1);
148 	preempt_enable();
149 }
150 
151 /* Invalidate all mappings on vcpu */
152 static void kvmppc_e500_id_table_reset_all(struct kvmppc_vcpu_e500 *vcpu_e500)
153 {
154 	memset(vcpu_e500->idt, 0, sizeof(struct vcpu_id_table));
155 
156 	/* Update shadow pid when mappings are changed */
157 	kvmppc_e500_recalc_shadow_pid(vcpu_e500);
158 }
159 
160 /* Invalidate one ID mapping on vcpu */
161 static inline void kvmppc_e500_id_table_reset_one(
162 			       struct kvmppc_vcpu_e500 *vcpu_e500,
163 			       int as, int pid, int pr)
164 {
165 	struct vcpu_id_table *idt = vcpu_e500->idt;
166 
167 	BUG_ON(as >= 2);
168 	BUG_ON(pid >= NUM_TIDS);
169 	BUG_ON(pr >= 2);
170 
171 	idt->id[as][pid][pr].val = 0;
172 	idt->id[as][pid][pr].pentry = NULL;
173 
174 	/* Update shadow pid when mappings are changed */
175 	kvmppc_e500_recalc_shadow_pid(vcpu_e500);
176 }
177 
178 /*
179  * Map guest (vcpu,AS,ID,PR) to physical core shadow id.
180  * This function first lookup if a valid mapping exists,
181  * if not, then creates a new one.
182  *
183  * The caller must have preemption disabled, and keep it that way until
184  * it has finished with the returned shadow id (either written into the
185  * TLB or arch.shadow_pid, or discarded).
186  */
187 unsigned int kvmppc_e500_get_sid(struct kvmppc_vcpu_e500 *vcpu_e500,
188 				 unsigned int as, unsigned int gid,
189 				 unsigned int pr, int avoid_recursion)
190 {
191 	struct vcpu_id_table *idt = vcpu_e500->idt;
192 	int sid;
193 
194 	BUG_ON(as >= 2);
195 	BUG_ON(gid >= NUM_TIDS);
196 	BUG_ON(pr >= 2);
197 
198 	sid = local_sid_lookup(&idt->id[as][gid][pr]);
199 
200 	while (sid <= 0) {
201 		/* No mapping yet */
202 		sid = local_sid_setup_one(&idt->id[as][gid][pr]);
203 		if (sid <= 0) {
204 			_tlbil_all();
205 			local_sid_destroy_all();
206 		}
207 
208 		/* Update shadow pid when mappings are changed */
209 		if (!avoid_recursion)
210 			kvmppc_e500_recalc_shadow_pid(vcpu_e500);
211 	}
212 
213 	return sid;
214 }
215 
216 unsigned int kvmppc_e500_get_tlb_stid(struct kvm_vcpu *vcpu,
217 				      struct kvm_book3e_206_tlb_entry *gtlbe)
218 {
219 	return kvmppc_e500_get_sid(to_e500(vcpu), get_tlb_ts(gtlbe),
220 				   get_tlb_tid(gtlbe), get_cur_pr(vcpu), 0);
221 }
222 
223 void kvmppc_set_pid(struct kvm_vcpu *vcpu, u32 pid)
224 {
225 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
226 
227 	if (vcpu->arch.pid != pid) {
228 		vcpu_e500->pid[0] = vcpu->arch.pid = pid;
229 		kvmppc_e500_recalc_shadow_pid(vcpu_e500);
230 	}
231 }
232 
233 /* gtlbe must not be mapped by more than one host tlbe */
234 void kvmppc_e500_tlbil_one(struct kvmppc_vcpu_e500 *vcpu_e500,
235                            struct kvm_book3e_206_tlb_entry *gtlbe)
236 {
237 	struct vcpu_id_table *idt = vcpu_e500->idt;
238 	unsigned int pr, tid, ts, pid;
239 	u32 val, eaddr;
240 	unsigned long flags;
241 
242 	ts = get_tlb_ts(gtlbe);
243 	tid = get_tlb_tid(gtlbe);
244 
245 	preempt_disable();
246 
247 	/* One guest ID may be mapped to two shadow IDs */
248 	for (pr = 0; pr < 2; pr++) {
249 		/*
250 		 * The shadow PID can have a valid mapping on at most one
251 		 * host CPU.  In the common case, it will be valid on this
252 		 * CPU, in which case we do a local invalidation of the
253 		 * specific address.
254 		 *
255 		 * If the shadow PID is not valid on the current host CPU,
256 		 * we invalidate the entire shadow PID.
257 		 */
258 		pid = local_sid_lookup(&idt->id[ts][tid][pr]);
259 		if (pid <= 0) {
260 			kvmppc_e500_id_table_reset_one(vcpu_e500, ts, tid, pr);
261 			continue;
262 		}
263 
264 		/*
265 		 * The guest is invalidating a 4K entry which is in a PID
266 		 * that has a valid shadow mapping on this host CPU.  We
267 		 * search host TLB to invalidate it's shadow TLB entry,
268 		 * similar to __tlbil_va except that we need to look in AS1.
269 		 */
270 		val = (pid << MAS6_SPID_SHIFT) | MAS6_SAS;
271 		eaddr = get_tlb_eaddr(gtlbe);
272 
273 		local_irq_save(flags);
274 
275 		mtspr(SPRN_MAS6, val);
276 		asm volatile("tlbsx 0, %[eaddr]" : : [eaddr] "r" (eaddr));
277 		val = mfspr(SPRN_MAS1);
278 		if (val & MAS1_VALID) {
279 			mtspr(SPRN_MAS1, val & ~MAS1_VALID);
280 			asm volatile("tlbwe");
281 		}
282 
283 		local_irq_restore(flags);
284 	}
285 
286 	preempt_enable();
287 }
288 
289 void kvmppc_e500_tlbil_all(struct kvmppc_vcpu_e500 *vcpu_e500)
290 {
291 	kvmppc_e500_id_table_reset_all(vcpu_e500);
292 }
293 
294 void kvmppc_mmu_msr_notify(struct kvm_vcpu *vcpu, u32 old_msr)
295 {
296 	/* Recalc shadow pid since MSR changes */
297 	kvmppc_e500_recalc_shadow_pid(to_e500(vcpu));
298 }
299 
300 void kvmppc_core_load_host_debugstate(struct kvm_vcpu *vcpu)
301 {
302 }
303 
304 void kvmppc_core_load_guest_debugstate(struct kvm_vcpu *vcpu)
305 {
306 }
307 
308 void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
309 {
310 	kvmppc_booke_vcpu_load(vcpu, cpu);
311 
312 	/* Shadow PID may be expired on local core */
313 	kvmppc_e500_recalc_shadow_pid(to_e500(vcpu));
314 }
315 
316 void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
317 {
318 #ifdef CONFIG_SPE
319 	if (vcpu->arch.shadow_msr & MSR_SPE)
320 		kvmppc_vcpu_disable_spe(vcpu);
321 #endif
322 
323 	kvmppc_booke_vcpu_put(vcpu);
324 }
325 
326 int kvmppc_core_check_processor_compat(void)
327 {
328 	int r;
329 
330 	if (strcmp(cur_cpu_spec->cpu_name, "e500v2") == 0)
331 		r = 0;
332 	else
333 		r = -ENOTSUPP;
334 
335 	return r;
336 }
337 
338 static void kvmppc_e500_tlb_setup(struct kvmppc_vcpu_e500 *vcpu_e500)
339 {
340 	struct kvm_book3e_206_tlb_entry *tlbe;
341 
342 	/* Insert large initial mapping for guest. */
343 	tlbe = get_entry(vcpu_e500, 1, 0);
344 	tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_256M);
345 	tlbe->mas2 = 0;
346 	tlbe->mas7_3 = E500_TLB_SUPER_PERM_MASK;
347 
348 	/* 4K map for serial output. Used by kernel wrapper. */
349 	tlbe = get_entry(vcpu_e500, 1, 1);
350 	tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_4K);
351 	tlbe->mas2 = (0xe0004500 & 0xFFFFF000) | MAS2_I | MAS2_G;
352 	tlbe->mas7_3 = (0xe0004500 & 0xFFFFF000) | E500_TLB_SUPER_PERM_MASK;
353 }
354 
355 int kvmppc_core_vcpu_setup(struct kvm_vcpu *vcpu)
356 {
357 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
358 
359 	kvmppc_e500_tlb_setup(vcpu_e500);
360 
361 	/* Registers init */
362 	vcpu->arch.pvr = mfspr(SPRN_PVR);
363 	vcpu_e500->svr = mfspr(SPRN_SVR);
364 
365 	vcpu->arch.cpu_type = KVM_CPU_E500V2;
366 
367 	return 0;
368 }
369 
370 void kvmppc_core_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
371 {
372 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
373 
374 	sregs->u.e.features |= KVM_SREGS_E_ARCH206_MMU | KVM_SREGS_E_SPE |
375 	                       KVM_SREGS_E_PM;
376 	sregs->u.e.impl_id = KVM_SREGS_E_IMPL_FSL;
377 
378 	sregs->u.e.impl.fsl.features = 0;
379 	sregs->u.e.impl.fsl.svr = vcpu_e500->svr;
380 	sregs->u.e.impl.fsl.hid0 = vcpu_e500->hid0;
381 	sregs->u.e.impl.fsl.mcar = vcpu_e500->mcar;
382 
383 	sregs->u.e.ivor_high[0] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL];
384 	sregs->u.e.ivor_high[1] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA];
385 	sregs->u.e.ivor_high[2] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND];
386 	sregs->u.e.ivor_high[3] =
387 		vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR];
388 
389 	kvmppc_get_sregs_ivor(vcpu, sregs);
390 	kvmppc_get_sregs_e500_tlb(vcpu, sregs);
391 }
392 
393 int kvmppc_core_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
394 {
395 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
396 	int ret;
397 
398 	if (sregs->u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
399 		vcpu_e500->svr = sregs->u.e.impl.fsl.svr;
400 		vcpu_e500->hid0 = sregs->u.e.impl.fsl.hid0;
401 		vcpu_e500->mcar = sregs->u.e.impl.fsl.mcar;
402 	}
403 
404 	ret = kvmppc_set_sregs_e500_tlb(vcpu, sregs);
405 	if (ret < 0)
406 		return ret;
407 
408 	if (!(sregs->u.e.features & KVM_SREGS_E_IVOR))
409 		return 0;
410 
411 	if (sregs->u.e.features & KVM_SREGS_E_SPE) {
412 		vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL] =
413 			sregs->u.e.ivor_high[0];
414 		vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA] =
415 			sregs->u.e.ivor_high[1];
416 		vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND] =
417 			sregs->u.e.ivor_high[2];
418 	}
419 
420 	if (sregs->u.e.features & KVM_SREGS_E_PM) {
421 		vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR] =
422 			sregs->u.e.ivor_high[3];
423 	}
424 
425 	return kvmppc_set_sregs_ivor(vcpu, sregs);
426 }
427 
428 int kvmppc_get_one_reg(struct kvm_vcpu *vcpu, u64 id,
429 			union kvmppc_one_reg *val)
430 {
431 	int r = kvmppc_get_one_reg_e500_tlb(vcpu, id, val);
432 	return r;
433 }
434 
435 int kvmppc_set_one_reg(struct kvm_vcpu *vcpu, u64 id,
436 		       union kvmppc_one_reg *val)
437 {
438 	int r = kvmppc_get_one_reg_e500_tlb(vcpu, id, val);
439 	return r;
440 }
441 
442 struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
443 {
444 	struct kvmppc_vcpu_e500 *vcpu_e500;
445 	struct kvm_vcpu *vcpu;
446 	int err;
447 
448 	vcpu_e500 = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
449 	if (!vcpu_e500) {
450 		err = -ENOMEM;
451 		goto out;
452 	}
453 
454 	vcpu = &vcpu_e500->vcpu;
455 	err = kvm_vcpu_init(vcpu, kvm, id);
456 	if (err)
457 		goto free_vcpu;
458 
459 	if (kvmppc_e500_id_table_alloc(vcpu_e500) == NULL)
460 		goto uninit_vcpu;
461 
462 	err = kvmppc_e500_tlb_init(vcpu_e500);
463 	if (err)
464 		goto uninit_id;
465 
466 	vcpu->arch.shared = (void*)__get_free_page(GFP_KERNEL|__GFP_ZERO);
467 	if (!vcpu->arch.shared)
468 		goto uninit_tlb;
469 
470 	return vcpu;
471 
472 uninit_tlb:
473 	kvmppc_e500_tlb_uninit(vcpu_e500);
474 uninit_id:
475 	kvmppc_e500_id_table_free(vcpu_e500);
476 uninit_vcpu:
477 	kvm_vcpu_uninit(vcpu);
478 free_vcpu:
479 	kmem_cache_free(kvm_vcpu_cache, vcpu_e500);
480 out:
481 	return ERR_PTR(err);
482 }
483 
484 void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
485 {
486 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
487 
488 	free_page((unsigned long)vcpu->arch.shared);
489 	kvmppc_e500_tlb_uninit(vcpu_e500);
490 	kvmppc_e500_id_table_free(vcpu_e500);
491 	kvm_vcpu_uninit(vcpu);
492 	kmem_cache_free(kvm_vcpu_cache, vcpu_e500);
493 }
494 
495 int kvmppc_core_init_vm(struct kvm *kvm)
496 {
497 	return 0;
498 }
499 
500 void kvmppc_core_destroy_vm(struct kvm *kvm)
501 {
502 }
503 
504 static int __init kvmppc_e500_init(void)
505 {
506 	int r, i;
507 	unsigned long ivor[3];
508 	/* Process remaining handlers above the generic first 16 */
509 	unsigned long *handler = &kvmppc_booke_handler_addr[16];
510 	unsigned long handler_len;
511 	unsigned long max_ivor = 0;
512 
513 	r = kvmppc_core_check_processor_compat();
514 	if (r)
515 		return r;
516 
517 	r = kvmppc_booke_init();
518 	if (r)
519 		return r;
520 
521 	/* copy extra E500 exception handlers */
522 	ivor[0] = mfspr(SPRN_IVOR32);
523 	ivor[1] = mfspr(SPRN_IVOR33);
524 	ivor[2] = mfspr(SPRN_IVOR34);
525 	for (i = 0; i < 3; i++) {
526 		if (ivor[i] > ivor[max_ivor])
527 			max_ivor = i;
528 
529 		handler_len = handler[i + 1] - handler[i];
530 		memcpy((void *)kvmppc_booke_handlers + ivor[i],
531 		       (void *)handler[i], handler_len);
532 	}
533 	handler_len = handler[max_ivor + 1] - handler[max_ivor];
534 	flush_icache_range(kvmppc_booke_handlers, kvmppc_booke_handlers +
535 			   ivor[max_ivor] + handler_len);
536 
537 	return kvm_init(NULL, sizeof(struct kvmppc_vcpu_e500), 0, THIS_MODULE);
538 }
539 
540 static void __exit kvmppc_e500_exit(void)
541 {
542 	kvmppc_booke_exit();
543 }
544 
545 module_init(kvmppc_e500_init);
546 module_exit(kvmppc_e500_exit);
547