xref: /openbmc/linux/arch/powerpc/kvm/e500.c (revision 8bd1369b)
1 /*
2  * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. All rights reserved.
3  *
4  * Author: Yu Liu, <yu.liu@freescale.com>
5  *
6  * Description:
7  * This file is derived from arch/powerpc/kvm/44x.c,
8  * by Hollis Blanchard <hollisb@us.ibm.com>.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License, version 2, as
12  * published by the Free Software Foundation.
13  */
14 
15 #include <linux/kvm_host.h>
16 #include <linux/slab.h>
17 #include <linux/err.h>
18 #include <linux/export.h>
19 #include <linux/module.h>
20 #include <linux/miscdevice.h>
21 
22 #include <asm/reg.h>
23 #include <asm/cputable.h>
24 #include <asm/tlbflush.h>
25 #include <asm/kvm_ppc.h>
26 
27 #include "../mm/mmu_decl.h"
28 #include "booke.h"
29 #include "e500.h"
30 
31 struct id {
32 	unsigned long val;
33 	struct id **pentry;
34 };
35 
36 #define NUM_TIDS 256
37 
38 /*
39  * This table provide mappings from:
40  * (guestAS,guestTID,guestPR) --> ID of physical cpu
41  * guestAS	[0..1]
42  * guestTID	[0..255]
43  * guestPR	[0..1]
44  * ID		[1..255]
45  * Each vcpu keeps one vcpu_id_table.
46  */
47 struct vcpu_id_table {
48 	struct id id[2][NUM_TIDS][2];
49 };
50 
51 /*
52  * This table provide reversed mappings of vcpu_id_table:
53  * ID --> address of vcpu_id_table item.
54  * Each physical core has one pcpu_id_table.
55  */
56 struct pcpu_id_table {
57 	struct id *entry[NUM_TIDS];
58 };
59 
60 static DEFINE_PER_CPU(struct pcpu_id_table, pcpu_sids);
61 
62 /* This variable keeps last used shadow ID on local core.
63  * The valid range of shadow ID is [1..255] */
64 static DEFINE_PER_CPU(unsigned long, pcpu_last_used_sid);
65 
66 /*
67  * Allocate a free shadow id and setup a valid sid mapping in given entry.
68  * A mapping is only valid when vcpu_id_table and pcpu_id_table are match.
69  *
70  * The caller must have preemption disabled, and keep it that way until
71  * it has finished with the returned shadow id (either written into the
72  * TLB or arch.shadow_pid, or discarded).
73  */
74 static inline int local_sid_setup_one(struct id *entry)
75 {
76 	unsigned long sid;
77 	int ret = -1;
78 
79 	sid = __this_cpu_inc_return(pcpu_last_used_sid);
80 	if (sid < NUM_TIDS) {
81 		__this_cpu_write(pcpu_sids.entry[sid], entry);
82 		entry->val = sid;
83 		entry->pentry = this_cpu_ptr(&pcpu_sids.entry[sid]);
84 		ret = sid;
85 	}
86 
87 	/*
88 	 * If sid == NUM_TIDS, we've run out of sids.  We return -1, and
89 	 * the caller will invalidate everything and start over.
90 	 *
91 	 * sid > NUM_TIDS indicates a race, which we disable preemption to
92 	 * avoid.
93 	 */
94 	WARN_ON(sid > NUM_TIDS);
95 
96 	return ret;
97 }
98 
99 /*
100  * Check if given entry contain a valid shadow id mapping.
101  * An ID mapping is considered valid only if
102  * both vcpu and pcpu know this mapping.
103  *
104  * The caller must have preemption disabled, and keep it that way until
105  * it has finished with the returned shadow id (either written into the
106  * TLB or arch.shadow_pid, or discarded).
107  */
108 static inline int local_sid_lookup(struct id *entry)
109 {
110 	if (entry && entry->val != 0 &&
111 	    __this_cpu_read(pcpu_sids.entry[entry->val]) == entry &&
112 	    entry->pentry == this_cpu_ptr(&pcpu_sids.entry[entry->val]))
113 		return entry->val;
114 	return -1;
115 }
116 
117 /* Invalidate all id mappings on local core -- call with preempt disabled */
118 static inline void local_sid_destroy_all(void)
119 {
120 	__this_cpu_write(pcpu_last_used_sid, 0);
121 	memset(this_cpu_ptr(&pcpu_sids), 0, sizeof(pcpu_sids));
122 }
123 
124 static void *kvmppc_e500_id_table_alloc(struct kvmppc_vcpu_e500 *vcpu_e500)
125 {
126 	vcpu_e500->idt = kzalloc(sizeof(struct vcpu_id_table), GFP_KERNEL);
127 	return vcpu_e500->idt;
128 }
129 
130 static void kvmppc_e500_id_table_free(struct kvmppc_vcpu_e500 *vcpu_e500)
131 {
132 	kfree(vcpu_e500->idt);
133 	vcpu_e500->idt = NULL;
134 }
135 
136 /* Map guest pid to shadow.
137  * We use PID to keep shadow of current guest non-zero PID,
138  * and use PID1 to keep shadow of guest zero PID.
139  * So that guest tlbe with TID=0 can be accessed at any time */
140 static void kvmppc_e500_recalc_shadow_pid(struct kvmppc_vcpu_e500 *vcpu_e500)
141 {
142 	preempt_disable();
143 	vcpu_e500->vcpu.arch.shadow_pid = kvmppc_e500_get_sid(vcpu_e500,
144 			get_cur_as(&vcpu_e500->vcpu),
145 			get_cur_pid(&vcpu_e500->vcpu),
146 			get_cur_pr(&vcpu_e500->vcpu), 1);
147 	vcpu_e500->vcpu.arch.shadow_pid1 = kvmppc_e500_get_sid(vcpu_e500,
148 			get_cur_as(&vcpu_e500->vcpu), 0,
149 			get_cur_pr(&vcpu_e500->vcpu), 1);
150 	preempt_enable();
151 }
152 
153 /* Invalidate all mappings on vcpu */
154 static void kvmppc_e500_id_table_reset_all(struct kvmppc_vcpu_e500 *vcpu_e500)
155 {
156 	memset(vcpu_e500->idt, 0, sizeof(struct vcpu_id_table));
157 
158 	/* Update shadow pid when mappings are changed */
159 	kvmppc_e500_recalc_shadow_pid(vcpu_e500);
160 }
161 
162 /* Invalidate one ID mapping on vcpu */
163 static inline void kvmppc_e500_id_table_reset_one(
164 			       struct kvmppc_vcpu_e500 *vcpu_e500,
165 			       int as, int pid, int pr)
166 {
167 	struct vcpu_id_table *idt = vcpu_e500->idt;
168 
169 	BUG_ON(as >= 2);
170 	BUG_ON(pid >= NUM_TIDS);
171 	BUG_ON(pr >= 2);
172 
173 	idt->id[as][pid][pr].val = 0;
174 	idt->id[as][pid][pr].pentry = NULL;
175 
176 	/* Update shadow pid when mappings are changed */
177 	kvmppc_e500_recalc_shadow_pid(vcpu_e500);
178 }
179 
180 /*
181  * Map guest (vcpu,AS,ID,PR) to physical core shadow id.
182  * This function first lookup if a valid mapping exists,
183  * if not, then creates a new one.
184  *
185  * The caller must have preemption disabled, and keep it that way until
186  * it has finished with the returned shadow id (either written into the
187  * TLB or arch.shadow_pid, or discarded).
188  */
189 unsigned int kvmppc_e500_get_sid(struct kvmppc_vcpu_e500 *vcpu_e500,
190 				 unsigned int as, unsigned int gid,
191 				 unsigned int pr, int avoid_recursion)
192 {
193 	struct vcpu_id_table *idt = vcpu_e500->idt;
194 	int sid;
195 
196 	BUG_ON(as >= 2);
197 	BUG_ON(gid >= NUM_TIDS);
198 	BUG_ON(pr >= 2);
199 
200 	sid = local_sid_lookup(&idt->id[as][gid][pr]);
201 
202 	while (sid <= 0) {
203 		/* No mapping yet */
204 		sid = local_sid_setup_one(&idt->id[as][gid][pr]);
205 		if (sid <= 0) {
206 			_tlbil_all();
207 			local_sid_destroy_all();
208 		}
209 
210 		/* Update shadow pid when mappings are changed */
211 		if (!avoid_recursion)
212 			kvmppc_e500_recalc_shadow_pid(vcpu_e500);
213 	}
214 
215 	return sid;
216 }
217 
218 unsigned int kvmppc_e500_get_tlb_stid(struct kvm_vcpu *vcpu,
219 				      struct kvm_book3e_206_tlb_entry *gtlbe)
220 {
221 	return kvmppc_e500_get_sid(to_e500(vcpu), get_tlb_ts(gtlbe),
222 				   get_tlb_tid(gtlbe), get_cur_pr(vcpu), 0);
223 }
224 
225 void kvmppc_set_pid(struct kvm_vcpu *vcpu, u32 pid)
226 {
227 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
228 
229 	if (vcpu->arch.pid != pid) {
230 		vcpu_e500->pid[0] = vcpu->arch.pid = pid;
231 		kvmppc_e500_recalc_shadow_pid(vcpu_e500);
232 	}
233 }
234 
235 /* gtlbe must not be mapped by more than one host tlbe */
236 void kvmppc_e500_tlbil_one(struct kvmppc_vcpu_e500 *vcpu_e500,
237                            struct kvm_book3e_206_tlb_entry *gtlbe)
238 {
239 	struct vcpu_id_table *idt = vcpu_e500->idt;
240 	unsigned int pr, tid, ts;
241 	int pid;
242 	u32 val, eaddr;
243 	unsigned long flags;
244 
245 	ts = get_tlb_ts(gtlbe);
246 	tid = get_tlb_tid(gtlbe);
247 
248 	preempt_disable();
249 
250 	/* One guest ID may be mapped to two shadow IDs */
251 	for (pr = 0; pr < 2; pr++) {
252 		/*
253 		 * The shadow PID can have a valid mapping on at most one
254 		 * host CPU.  In the common case, it will be valid on this
255 		 * CPU, in which case we do a local invalidation of the
256 		 * specific address.
257 		 *
258 		 * If the shadow PID is not valid on the current host CPU,
259 		 * we invalidate the entire shadow PID.
260 		 */
261 		pid = local_sid_lookup(&idt->id[ts][tid][pr]);
262 		if (pid <= 0) {
263 			kvmppc_e500_id_table_reset_one(vcpu_e500, ts, tid, pr);
264 			continue;
265 		}
266 
267 		/*
268 		 * The guest is invalidating a 4K entry which is in a PID
269 		 * that has a valid shadow mapping on this host CPU.  We
270 		 * search host TLB to invalidate it's shadow TLB entry,
271 		 * similar to __tlbil_va except that we need to look in AS1.
272 		 */
273 		val = (pid << MAS6_SPID_SHIFT) | MAS6_SAS;
274 		eaddr = get_tlb_eaddr(gtlbe);
275 
276 		local_irq_save(flags);
277 
278 		mtspr(SPRN_MAS6, val);
279 		asm volatile("tlbsx 0, %[eaddr]" : : [eaddr] "r" (eaddr));
280 		val = mfspr(SPRN_MAS1);
281 		if (val & MAS1_VALID) {
282 			mtspr(SPRN_MAS1, val & ~MAS1_VALID);
283 			asm volatile("tlbwe");
284 		}
285 
286 		local_irq_restore(flags);
287 	}
288 
289 	preempt_enable();
290 }
291 
292 void kvmppc_e500_tlbil_all(struct kvmppc_vcpu_e500 *vcpu_e500)
293 {
294 	kvmppc_e500_id_table_reset_all(vcpu_e500);
295 }
296 
297 void kvmppc_mmu_msr_notify(struct kvm_vcpu *vcpu, u32 old_msr)
298 {
299 	/* Recalc shadow pid since MSR changes */
300 	kvmppc_e500_recalc_shadow_pid(to_e500(vcpu));
301 }
302 
303 static void kvmppc_core_vcpu_load_e500(struct kvm_vcpu *vcpu, int cpu)
304 {
305 	kvmppc_booke_vcpu_load(vcpu, cpu);
306 
307 	/* Shadow PID may be expired on local core */
308 	kvmppc_e500_recalc_shadow_pid(to_e500(vcpu));
309 }
310 
311 static void kvmppc_core_vcpu_put_e500(struct kvm_vcpu *vcpu)
312 {
313 #ifdef CONFIG_SPE
314 	if (vcpu->arch.shadow_msr & MSR_SPE)
315 		kvmppc_vcpu_disable_spe(vcpu);
316 #endif
317 
318 	kvmppc_booke_vcpu_put(vcpu);
319 }
320 
321 int kvmppc_core_check_processor_compat(void)
322 {
323 	int r;
324 
325 	if (strcmp(cur_cpu_spec->cpu_name, "e500v2") == 0)
326 		r = 0;
327 	else
328 		r = -ENOTSUPP;
329 
330 	return r;
331 }
332 
333 static void kvmppc_e500_tlb_setup(struct kvmppc_vcpu_e500 *vcpu_e500)
334 {
335 	struct kvm_book3e_206_tlb_entry *tlbe;
336 
337 	/* Insert large initial mapping for guest. */
338 	tlbe = get_entry(vcpu_e500, 1, 0);
339 	tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_256M);
340 	tlbe->mas2 = 0;
341 	tlbe->mas7_3 = E500_TLB_SUPER_PERM_MASK;
342 
343 	/* 4K map for serial output. Used by kernel wrapper. */
344 	tlbe = get_entry(vcpu_e500, 1, 1);
345 	tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_4K);
346 	tlbe->mas2 = (0xe0004500 & 0xFFFFF000) | MAS2_I | MAS2_G;
347 	tlbe->mas7_3 = (0xe0004500 & 0xFFFFF000) | E500_TLB_SUPER_PERM_MASK;
348 }
349 
350 int kvmppc_core_vcpu_setup(struct kvm_vcpu *vcpu)
351 {
352 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
353 
354 	kvmppc_e500_tlb_setup(vcpu_e500);
355 
356 	/* Registers init */
357 	vcpu->arch.pvr = mfspr(SPRN_PVR);
358 	vcpu_e500->svr = mfspr(SPRN_SVR);
359 
360 	vcpu->arch.cpu_type = KVM_CPU_E500V2;
361 
362 	return 0;
363 }
364 
365 static int kvmppc_core_get_sregs_e500(struct kvm_vcpu *vcpu,
366 				      struct kvm_sregs *sregs)
367 {
368 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
369 
370 	sregs->u.e.features |= KVM_SREGS_E_ARCH206_MMU | KVM_SREGS_E_SPE |
371 	                       KVM_SREGS_E_PM;
372 	sregs->u.e.impl_id = KVM_SREGS_E_IMPL_FSL;
373 
374 	sregs->u.e.impl.fsl.features = 0;
375 	sregs->u.e.impl.fsl.svr = vcpu_e500->svr;
376 	sregs->u.e.impl.fsl.hid0 = vcpu_e500->hid0;
377 	sregs->u.e.impl.fsl.mcar = vcpu_e500->mcar;
378 
379 	sregs->u.e.ivor_high[0] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL];
380 	sregs->u.e.ivor_high[1] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA];
381 	sregs->u.e.ivor_high[2] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND];
382 	sregs->u.e.ivor_high[3] =
383 		vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR];
384 
385 	kvmppc_get_sregs_ivor(vcpu, sregs);
386 	kvmppc_get_sregs_e500_tlb(vcpu, sregs);
387 	return 0;
388 }
389 
390 static int kvmppc_core_set_sregs_e500(struct kvm_vcpu *vcpu,
391 				      struct kvm_sregs *sregs)
392 {
393 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
394 	int ret;
395 
396 	if (sregs->u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
397 		vcpu_e500->svr = sregs->u.e.impl.fsl.svr;
398 		vcpu_e500->hid0 = sregs->u.e.impl.fsl.hid0;
399 		vcpu_e500->mcar = sregs->u.e.impl.fsl.mcar;
400 	}
401 
402 	ret = kvmppc_set_sregs_e500_tlb(vcpu, sregs);
403 	if (ret < 0)
404 		return ret;
405 
406 	if (!(sregs->u.e.features & KVM_SREGS_E_IVOR))
407 		return 0;
408 
409 	if (sregs->u.e.features & KVM_SREGS_E_SPE) {
410 		vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL] =
411 			sregs->u.e.ivor_high[0];
412 		vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA] =
413 			sregs->u.e.ivor_high[1];
414 		vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND] =
415 			sregs->u.e.ivor_high[2];
416 	}
417 
418 	if (sregs->u.e.features & KVM_SREGS_E_PM) {
419 		vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR] =
420 			sregs->u.e.ivor_high[3];
421 	}
422 
423 	return kvmppc_set_sregs_ivor(vcpu, sregs);
424 }
425 
426 static int kvmppc_get_one_reg_e500(struct kvm_vcpu *vcpu, u64 id,
427 				   union kvmppc_one_reg *val)
428 {
429 	int r = kvmppc_get_one_reg_e500_tlb(vcpu, id, val);
430 	return r;
431 }
432 
433 static int kvmppc_set_one_reg_e500(struct kvm_vcpu *vcpu, u64 id,
434 				   union kvmppc_one_reg *val)
435 {
436 	int r = kvmppc_get_one_reg_e500_tlb(vcpu, id, val);
437 	return r;
438 }
439 
440 static struct kvm_vcpu *kvmppc_core_vcpu_create_e500(struct kvm *kvm,
441 						     unsigned int id)
442 {
443 	struct kvmppc_vcpu_e500 *vcpu_e500;
444 	struct kvm_vcpu *vcpu;
445 	int err;
446 
447 	vcpu_e500 = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
448 	if (!vcpu_e500) {
449 		err = -ENOMEM;
450 		goto out;
451 	}
452 
453 	vcpu = &vcpu_e500->vcpu;
454 	err = kvm_vcpu_init(vcpu, kvm, id);
455 	if (err)
456 		goto free_vcpu;
457 
458 	if (kvmppc_e500_id_table_alloc(vcpu_e500) == NULL) {
459 		err = -ENOMEM;
460 		goto uninit_vcpu;
461 	}
462 
463 	err = kvmppc_e500_tlb_init(vcpu_e500);
464 	if (err)
465 		goto uninit_id;
466 
467 	vcpu->arch.shared = (void*)__get_free_page(GFP_KERNEL|__GFP_ZERO);
468 	if (!vcpu->arch.shared) {
469 		err = -ENOMEM;
470 		goto uninit_tlb;
471 	}
472 
473 	return vcpu;
474 
475 uninit_tlb:
476 	kvmppc_e500_tlb_uninit(vcpu_e500);
477 uninit_id:
478 	kvmppc_e500_id_table_free(vcpu_e500);
479 uninit_vcpu:
480 	kvm_vcpu_uninit(vcpu);
481 free_vcpu:
482 	kmem_cache_free(kvm_vcpu_cache, vcpu_e500);
483 out:
484 	return ERR_PTR(err);
485 }
486 
487 static void kvmppc_core_vcpu_free_e500(struct kvm_vcpu *vcpu)
488 {
489 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
490 
491 	free_page((unsigned long)vcpu->arch.shared);
492 	kvmppc_e500_tlb_uninit(vcpu_e500);
493 	kvmppc_e500_id_table_free(vcpu_e500);
494 	kvm_vcpu_uninit(vcpu);
495 	kmem_cache_free(kvm_vcpu_cache, vcpu_e500);
496 }
497 
498 static int kvmppc_core_init_vm_e500(struct kvm *kvm)
499 {
500 	return 0;
501 }
502 
503 static void kvmppc_core_destroy_vm_e500(struct kvm *kvm)
504 {
505 }
506 
507 static struct kvmppc_ops kvm_ops_e500 = {
508 	.get_sregs = kvmppc_core_get_sregs_e500,
509 	.set_sregs = kvmppc_core_set_sregs_e500,
510 	.get_one_reg = kvmppc_get_one_reg_e500,
511 	.set_one_reg = kvmppc_set_one_reg_e500,
512 	.vcpu_load   = kvmppc_core_vcpu_load_e500,
513 	.vcpu_put    = kvmppc_core_vcpu_put_e500,
514 	.vcpu_create = kvmppc_core_vcpu_create_e500,
515 	.vcpu_free   = kvmppc_core_vcpu_free_e500,
516 	.mmu_destroy  = kvmppc_mmu_destroy_e500,
517 	.init_vm = kvmppc_core_init_vm_e500,
518 	.destroy_vm = kvmppc_core_destroy_vm_e500,
519 	.emulate_op = kvmppc_core_emulate_op_e500,
520 	.emulate_mtspr = kvmppc_core_emulate_mtspr_e500,
521 	.emulate_mfspr = kvmppc_core_emulate_mfspr_e500,
522 };
523 
524 static int __init kvmppc_e500_init(void)
525 {
526 	int r, i;
527 	unsigned long ivor[3];
528 	/* Process remaining handlers above the generic first 16 */
529 	unsigned long *handler = &kvmppc_booke_handler_addr[16];
530 	unsigned long handler_len;
531 	unsigned long max_ivor = 0;
532 
533 	r = kvmppc_core_check_processor_compat();
534 	if (r)
535 		goto err_out;
536 
537 	r = kvmppc_booke_init();
538 	if (r)
539 		goto err_out;
540 
541 	/* copy extra E500 exception handlers */
542 	ivor[0] = mfspr(SPRN_IVOR32);
543 	ivor[1] = mfspr(SPRN_IVOR33);
544 	ivor[2] = mfspr(SPRN_IVOR34);
545 	for (i = 0; i < 3; i++) {
546 		if (ivor[i] > ivor[max_ivor])
547 			max_ivor = i;
548 
549 		handler_len = handler[i + 1] - handler[i];
550 		memcpy((void *)kvmppc_booke_handlers + ivor[i],
551 		       (void *)handler[i], handler_len);
552 	}
553 	handler_len = handler[max_ivor + 1] - handler[max_ivor];
554 	flush_icache_range(kvmppc_booke_handlers, kvmppc_booke_handlers +
555 			   ivor[max_ivor] + handler_len);
556 
557 	r = kvm_init(NULL, sizeof(struct kvmppc_vcpu_e500), 0, THIS_MODULE);
558 	if (r)
559 		goto err_out;
560 	kvm_ops_e500.owner = THIS_MODULE;
561 	kvmppc_pr_ops = &kvm_ops_e500;
562 
563 err_out:
564 	return r;
565 }
566 
567 static void __exit kvmppc_e500_exit(void)
568 {
569 	kvmppc_pr_ops = NULL;
570 	kvmppc_booke_exit();
571 }
572 
573 module_init(kvmppc_e500_init);
574 module_exit(kvmppc_e500_exit);
575 MODULE_ALIAS_MISCDEV(KVM_MINOR);
576 MODULE_ALIAS("devname:kvm");
577