1 /* 2 * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. All rights reserved. 3 * 4 * Author: Yu Liu, <yu.liu@freescale.com> 5 * 6 * Description: 7 * This file is derived from arch/powerpc/kvm/44x.c, 8 * by Hollis Blanchard <hollisb@us.ibm.com>. 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License, version 2, as 12 * published by the Free Software Foundation. 13 */ 14 15 #include <linux/kvm_host.h> 16 #include <linux/slab.h> 17 #include <linux/err.h> 18 #include <linux/export.h> 19 #include <linux/module.h> 20 #include <linux/miscdevice.h> 21 22 #include <asm/reg.h> 23 #include <asm/cputable.h> 24 #include <asm/tlbflush.h> 25 #include <asm/kvm_ppc.h> 26 27 #include "../mm/mmu_decl.h" 28 #include "booke.h" 29 #include "e500.h" 30 31 struct id { 32 unsigned long val; 33 struct id **pentry; 34 }; 35 36 #define NUM_TIDS 256 37 38 /* 39 * This table provide mappings from: 40 * (guestAS,guestTID,guestPR) --> ID of physical cpu 41 * guestAS [0..1] 42 * guestTID [0..255] 43 * guestPR [0..1] 44 * ID [1..255] 45 * Each vcpu keeps one vcpu_id_table. 46 */ 47 struct vcpu_id_table { 48 struct id id[2][NUM_TIDS][2]; 49 }; 50 51 /* 52 * This table provide reversed mappings of vcpu_id_table: 53 * ID --> address of vcpu_id_table item. 54 * Each physical core has one pcpu_id_table. 55 */ 56 struct pcpu_id_table { 57 struct id *entry[NUM_TIDS]; 58 }; 59 60 static DEFINE_PER_CPU(struct pcpu_id_table, pcpu_sids); 61 62 /* This variable keeps last used shadow ID on local core. 63 * The valid range of shadow ID is [1..255] */ 64 static DEFINE_PER_CPU(unsigned long, pcpu_last_used_sid); 65 66 /* 67 * Allocate a free shadow id and setup a valid sid mapping in given entry. 68 * A mapping is only valid when vcpu_id_table and pcpu_id_table are match. 69 * 70 * The caller must have preemption disabled, and keep it that way until 71 * it has finished with the returned shadow id (either written into the 72 * TLB or arch.shadow_pid, or discarded). 73 */ 74 static inline int local_sid_setup_one(struct id *entry) 75 { 76 unsigned long sid; 77 int ret = -1; 78 79 sid = ++(__get_cpu_var(pcpu_last_used_sid)); 80 if (sid < NUM_TIDS) { 81 __get_cpu_var(pcpu_sids).entry[sid] = entry; 82 entry->val = sid; 83 entry->pentry = &__get_cpu_var(pcpu_sids).entry[sid]; 84 ret = sid; 85 } 86 87 /* 88 * If sid == NUM_TIDS, we've run out of sids. We return -1, and 89 * the caller will invalidate everything and start over. 90 * 91 * sid > NUM_TIDS indicates a race, which we disable preemption to 92 * avoid. 93 */ 94 WARN_ON(sid > NUM_TIDS); 95 96 return ret; 97 } 98 99 /* 100 * Check if given entry contain a valid shadow id mapping. 101 * An ID mapping is considered valid only if 102 * both vcpu and pcpu know this mapping. 103 * 104 * The caller must have preemption disabled, and keep it that way until 105 * it has finished with the returned shadow id (either written into the 106 * TLB or arch.shadow_pid, or discarded). 107 */ 108 static inline int local_sid_lookup(struct id *entry) 109 { 110 if (entry && entry->val != 0 && 111 __get_cpu_var(pcpu_sids).entry[entry->val] == entry && 112 entry->pentry == &__get_cpu_var(pcpu_sids).entry[entry->val]) 113 return entry->val; 114 return -1; 115 } 116 117 /* Invalidate all id mappings on local core -- call with preempt disabled */ 118 static inline void local_sid_destroy_all(void) 119 { 120 __get_cpu_var(pcpu_last_used_sid) = 0; 121 memset(&__get_cpu_var(pcpu_sids), 0, sizeof(__get_cpu_var(pcpu_sids))); 122 } 123 124 static void *kvmppc_e500_id_table_alloc(struct kvmppc_vcpu_e500 *vcpu_e500) 125 { 126 vcpu_e500->idt = kzalloc(sizeof(struct vcpu_id_table), GFP_KERNEL); 127 return vcpu_e500->idt; 128 } 129 130 static void kvmppc_e500_id_table_free(struct kvmppc_vcpu_e500 *vcpu_e500) 131 { 132 kfree(vcpu_e500->idt); 133 vcpu_e500->idt = NULL; 134 } 135 136 /* Map guest pid to shadow. 137 * We use PID to keep shadow of current guest non-zero PID, 138 * and use PID1 to keep shadow of guest zero PID. 139 * So that guest tlbe with TID=0 can be accessed at any time */ 140 static void kvmppc_e500_recalc_shadow_pid(struct kvmppc_vcpu_e500 *vcpu_e500) 141 { 142 preempt_disable(); 143 vcpu_e500->vcpu.arch.shadow_pid = kvmppc_e500_get_sid(vcpu_e500, 144 get_cur_as(&vcpu_e500->vcpu), 145 get_cur_pid(&vcpu_e500->vcpu), 146 get_cur_pr(&vcpu_e500->vcpu), 1); 147 vcpu_e500->vcpu.arch.shadow_pid1 = kvmppc_e500_get_sid(vcpu_e500, 148 get_cur_as(&vcpu_e500->vcpu), 0, 149 get_cur_pr(&vcpu_e500->vcpu), 1); 150 preempt_enable(); 151 } 152 153 /* Invalidate all mappings on vcpu */ 154 static void kvmppc_e500_id_table_reset_all(struct kvmppc_vcpu_e500 *vcpu_e500) 155 { 156 memset(vcpu_e500->idt, 0, sizeof(struct vcpu_id_table)); 157 158 /* Update shadow pid when mappings are changed */ 159 kvmppc_e500_recalc_shadow_pid(vcpu_e500); 160 } 161 162 /* Invalidate one ID mapping on vcpu */ 163 static inline void kvmppc_e500_id_table_reset_one( 164 struct kvmppc_vcpu_e500 *vcpu_e500, 165 int as, int pid, int pr) 166 { 167 struct vcpu_id_table *idt = vcpu_e500->idt; 168 169 BUG_ON(as >= 2); 170 BUG_ON(pid >= NUM_TIDS); 171 BUG_ON(pr >= 2); 172 173 idt->id[as][pid][pr].val = 0; 174 idt->id[as][pid][pr].pentry = NULL; 175 176 /* Update shadow pid when mappings are changed */ 177 kvmppc_e500_recalc_shadow_pid(vcpu_e500); 178 } 179 180 /* 181 * Map guest (vcpu,AS,ID,PR) to physical core shadow id. 182 * This function first lookup if a valid mapping exists, 183 * if not, then creates a new one. 184 * 185 * The caller must have preemption disabled, and keep it that way until 186 * it has finished with the returned shadow id (either written into the 187 * TLB or arch.shadow_pid, or discarded). 188 */ 189 unsigned int kvmppc_e500_get_sid(struct kvmppc_vcpu_e500 *vcpu_e500, 190 unsigned int as, unsigned int gid, 191 unsigned int pr, int avoid_recursion) 192 { 193 struct vcpu_id_table *idt = vcpu_e500->idt; 194 int sid; 195 196 BUG_ON(as >= 2); 197 BUG_ON(gid >= NUM_TIDS); 198 BUG_ON(pr >= 2); 199 200 sid = local_sid_lookup(&idt->id[as][gid][pr]); 201 202 while (sid <= 0) { 203 /* No mapping yet */ 204 sid = local_sid_setup_one(&idt->id[as][gid][pr]); 205 if (sid <= 0) { 206 _tlbil_all(); 207 local_sid_destroy_all(); 208 } 209 210 /* Update shadow pid when mappings are changed */ 211 if (!avoid_recursion) 212 kvmppc_e500_recalc_shadow_pid(vcpu_e500); 213 } 214 215 return sid; 216 } 217 218 unsigned int kvmppc_e500_get_tlb_stid(struct kvm_vcpu *vcpu, 219 struct kvm_book3e_206_tlb_entry *gtlbe) 220 { 221 return kvmppc_e500_get_sid(to_e500(vcpu), get_tlb_ts(gtlbe), 222 get_tlb_tid(gtlbe), get_cur_pr(vcpu), 0); 223 } 224 225 void kvmppc_set_pid(struct kvm_vcpu *vcpu, u32 pid) 226 { 227 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); 228 229 if (vcpu->arch.pid != pid) { 230 vcpu_e500->pid[0] = vcpu->arch.pid = pid; 231 kvmppc_e500_recalc_shadow_pid(vcpu_e500); 232 } 233 } 234 235 /* gtlbe must not be mapped by more than one host tlbe */ 236 void kvmppc_e500_tlbil_one(struct kvmppc_vcpu_e500 *vcpu_e500, 237 struct kvm_book3e_206_tlb_entry *gtlbe) 238 { 239 struct vcpu_id_table *idt = vcpu_e500->idt; 240 unsigned int pr, tid, ts, pid; 241 u32 val, eaddr; 242 unsigned long flags; 243 244 ts = get_tlb_ts(gtlbe); 245 tid = get_tlb_tid(gtlbe); 246 247 preempt_disable(); 248 249 /* One guest ID may be mapped to two shadow IDs */ 250 for (pr = 0; pr < 2; pr++) { 251 /* 252 * The shadow PID can have a valid mapping on at most one 253 * host CPU. In the common case, it will be valid on this 254 * CPU, in which case we do a local invalidation of the 255 * specific address. 256 * 257 * If the shadow PID is not valid on the current host CPU, 258 * we invalidate the entire shadow PID. 259 */ 260 pid = local_sid_lookup(&idt->id[ts][tid][pr]); 261 if (pid <= 0) { 262 kvmppc_e500_id_table_reset_one(vcpu_e500, ts, tid, pr); 263 continue; 264 } 265 266 /* 267 * The guest is invalidating a 4K entry which is in a PID 268 * that has a valid shadow mapping on this host CPU. We 269 * search host TLB to invalidate it's shadow TLB entry, 270 * similar to __tlbil_va except that we need to look in AS1. 271 */ 272 val = (pid << MAS6_SPID_SHIFT) | MAS6_SAS; 273 eaddr = get_tlb_eaddr(gtlbe); 274 275 local_irq_save(flags); 276 277 mtspr(SPRN_MAS6, val); 278 asm volatile("tlbsx 0, %[eaddr]" : : [eaddr] "r" (eaddr)); 279 val = mfspr(SPRN_MAS1); 280 if (val & MAS1_VALID) { 281 mtspr(SPRN_MAS1, val & ~MAS1_VALID); 282 asm volatile("tlbwe"); 283 } 284 285 local_irq_restore(flags); 286 } 287 288 preempt_enable(); 289 } 290 291 void kvmppc_e500_tlbil_all(struct kvmppc_vcpu_e500 *vcpu_e500) 292 { 293 kvmppc_e500_id_table_reset_all(vcpu_e500); 294 } 295 296 void kvmppc_mmu_msr_notify(struct kvm_vcpu *vcpu, u32 old_msr) 297 { 298 /* Recalc shadow pid since MSR changes */ 299 kvmppc_e500_recalc_shadow_pid(to_e500(vcpu)); 300 } 301 302 void kvmppc_core_load_host_debugstate(struct kvm_vcpu *vcpu) 303 { 304 } 305 306 void kvmppc_core_load_guest_debugstate(struct kvm_vcpu *vcpu) 307 { 308 } 309 310 static void kvmppc_core_vcpu_load_e500(struct kvm_vcpu *vcpu, int cpu) 311 { 312 kvmppc_booke_vcpu_load(vcpu, cpu); 313 314 /* Shadow PID may be expired on local core */ 315 kvmppc_e500_recalc_shadow_pid(to_e500(vcpu)); 316 } 317 318 static void kvmppc_core_vcpu_put_e500(struct kvm_vcpu *vcpu) 319 { 320 #ifdef CONFIG_SPE 321 if (vcpu->arch.shadow_msr & MSR_SPE) 322 kvmppc_vcpu_disable_spe(vcpu); 323 #endif 324 325 kvmppc_booke_vcpu_put(vcpu); 326 } 327 328 int kvmppc_core_check_processor_compat(void) 329 { 330 int r; 331 332 if (strcmp(cur_cpu_spec->cpu_name, "e500v2") == 0) 333 r = 0; 334 else 335 r = -ENOTSUPP; 336 337 return r; 338 } 339 340 static void kvmppc_e500_tlb_setup(struct kvmppc_vcpu_e500 *vcpu_e500) 341 { 342 struct kvm_book3e_206_tlb_entry *tlbe; 343 344 /* Insert large initial mapping for guest. */ 345 tlbe = get_entry(vcpu_e500, 1, 0); 346 tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_256M); 347 tlbe->mas2 = 0; 348 tlbe->mas7_3 = E500_TLB_SUPER_PERM_MASK; 349 350 /* 4K map for serial output. Used by kernel wrapper. */ 351 tlbe = get_entry(vcpu_e500, 1, 1); 352 tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_4K); 353 tlbe->mas2 = (0xe0004500 & 0xFFFFF000) | MAS2_I | MAS2_G; 354 tlbe->mas7_3 = (0xe0004500 & 0xFFFFF000) | E500_TLB_SUPER_PERM_MASK; 355 } 356 357 int kvmppc_core_vcpu_setup(struct kvm_vcpu *vcpu) 358 { 359 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); 360 361 kvmppc_e500_tlb_setup(vcpu_e500); 362 363 /* Registers init */ 364 vcpu->arch.pvr = mfspr(SPRN_PVR); 365 vcpu_e500->svr = mfspr(SPRN_SVR); 366 367 vcpu->arch.cpu_type = KVM_CPU_E500V2; 368 369 return 0; 370 } 371 372 static int kvmppc_core_get_sregs_e500(struct kvm_vcpu *vcpu, 373 struct kvm_sregs *sregs) 374 { 375 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); 376 377 sregs->u.e.features |= KVM_SREGS_E_ARCH206_MMU | KVM_SREGS_E_SPE | 378 KVM_SREGS_E_PM; 379 sregs->u.e.impl_id = KVM_SREGS_E_IMPL_FSL; 380 381 sregs->u.e.impl.fsl.features = 0; 382 sregs->u.e.impl.fsl.svr = vcpu_e500->svr; 383 sregs->u.e.impl.fsl.hid0 = vcpu_e500->hid0; 384 sregs->u.e.impl.fsl.mcar = vcpu_e500->mcar; 385 386 sregs->u.e.ivor_high[0] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL]; 387 sregs->u.e.ivor_high[1] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA]; 388 sregs->u.e.ivor_high[2] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND]; 389 sregs->u.e.ivor_high[3] = 390 vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR]; 391 392 kvmppc_get_sregs_ivor(vcpu, sregs); 393 kvmppc_get_sregs_e500_tlb(vcpu, sregs); 394 return 0; 395 } 396 397 static int kvmppc_core_set_sregs_e500(struct kvm_vcpu *vcpu, 398 struct kvm_sregs *sregs) 399 { 400 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); 401 int ret; 402 403 if (sregs->u.e.impl_id == KVM_SREGS_E_IMPL_FSL) { 404 vcpu_e500->svr = sregs->u.e.impl.fsl.svr; 405 vcpu_e500->hid0 = sregs->u.e.impl.fsl.hid0; 406 vcpu_e500->mcar = sregs->u.e.impl.fsl.mcar; 407 } 408 409 ret = kvmppc_set_sregs_e500_tlb(vcpu, sregs); 410 if (ret < 0) 411 return ret; 412 413 if (!(sregs->u.e.features & KVM_SREGS_E_IVOR)) 414 return 0; 415 416 if (sregs->u.e.features & KVM_SREGS_E_SPE) { 417 vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL] = 418 sregs->u.e.ivor_high[0]; 419 vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA] = 420 sregs->u.e.ivor_high[1]; 421 vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND] = 422 sregs->u.e.ivor_high[2]; 423 } 424 425 if (sregs->u.e.features & KVM_SREGS_E_PM) { 426 vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR] = 427 sregs->u.e.ivor_high[3]; 428 } 429 430 return kvmppc_set_sregs_ivor(vcpu, sregs); 431 } 432 433 static int kvmppc_get_one_reg_e500(struct kvm_vcpu *vcpu, u64 id, 434 union kvmppc_one_reg *val) 435 { 436 int r = kvmppc_get_one_reg_e500_tlb(vcpu, id, val); 437 return r; 438 } 439 440 static int kvmppc_set_one_reg_e500(struct kvm_vcpu *vcpu, u64 id, 441 union kvmppc_one_reg *val) 442 { 443 int r = kvmppc_get_one_reg_e500_tlb(vcpu, id, val); 444 return r; 445 } 446 447 static struct kvm_vcpu *kvmppc_core_vcpu_create_e500(struct kvm *kvm, 448 unsigned int id) 449 { 450 struct kvmppc_vcpu_e500 *vcpu_e500; 451 struct kvm_vcpu *vcpu; 452 int err; 453 454 vcpu_e500 = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 455 if (!vcpu_e500) { 456 err = -ENOMEM; 457 goto out; 458 } 459 460 vcpu = &vcpu_e500->vcpu; 461 err = kvm_vcpu_init(vcpu, kvm, id); 462 if (err) 463 goto free_vcpu; 464 465 if (kvmppc_e500_id_table_alloc(vcpu_e500) == NULL) 466 goto uninit_vcpu; 467 468 err = kvmppc_e500_tlb_init(vcpu_e500); 469 if (err) 470 goto uninit_id; 471 472 vcpu->arch.shared = (void*)__get_free_page(GFP_KERNEL|__GFP_ZERO); 473 if (!vcpu->arch.shared) 474 goto uninit_tlb; 475 476 return vcpu; 477 478 uninit_tlb: 479 kvmppc_e500_tlb_uninit(vcpu_e500); 480 uninit_id: 481 kvmppc_e500_id_table_free(vcpu_e500); 482 uninit_vcpu: 483 kvm_vcpu_uninit(vcpu); 484 free_vcpu: 485 kmem_cache_free(kvm_vcpu_cache, vcpu_e500); 486 out: 487 return ERR_PTR(err); 488 } 489 490 static void kvmppc_core_vcpu_free_e500(struct kvm_vcpu *vcpu) 491 { 492 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); 493 494 free_page((unsigned long)vcpu->arch.shared); 495 kvmppc_e500_tlb_uninit(vcpu_e500); 496 kvmppc_e500_id_table_free(vcpu_e500); 497 kvm_vcpu_uninit(vcpu); 498 kmem_cache_free(kvm_vcpu_cache, vcpu_e500); 499 } 500 501 static int kvmppc_core_init_vm_e500(struct kvm *kvm) 502 { 503 return 0; 504 } 505 506 static void kvmppc_core_destroy_vm_e500(struct kvm *kvm) 507 { 508 } 509 510 static struct kvmppc_ops kvm_ops_e500 = { 511 .get_sregs = kvmppc_core_get_sregs_e500, 512 .set_sregs = kvmppc_core_set_sregs_e500, 513 .get_one_reg = kvmppc_get_one_reg_e500, 514 .set_one_reg = kvmppc_set_one_reg_e500, 515 .vcpu_load = kvmppc_core_vcpu_load_e500, 516 .vcpu_put = kvmppc_core_vcpu_put_e500, 517 .vcpu_create = kvmppc_core_vcpu_create_e500, 518 .vcpu_free = kvmppc_core_vcpu_free_e500, 519 .mmu_destroy = kvmppc_mmu_destroy_e500, 520 .init_vm = kvmppc_core_init_vm_e500, 521 .destroy_vm = kvmppc_core_destroy_vm_e500, 522 .emulate_op = kvmppc_core_emulate_op_e500, 523 .emulate_mtspr = kvmppc_core_emulate_mtspr_e500, 524 .emulate_mfspr = kvmppc_core_emulate_mfspr_e500, 525 }; 526 527 static int __init kvmppc_e500_init(void) 528 { 529 int r, i; 530 unsigned long ivor[3]; 531 /* Process remaining handlers above the generic first 16 */ 532 unsigned long *handler = &kvmppc_booke_handler_addr[16]; 533 unsigned long handler_len; 534 unsigned long max_ivor = 0; 535 536 r = kvmppc_core_check_processor_compat(); 537 if (r) 538 goto err_out; 539 540 r = kvmppc_booke_init(); 541 if (r) 542 goto err_out; 543 544 /* copy extra E500 exception handlers */ 545 ivor[0] = mfspr(SPRN_IVOR32); 546 ivor[1] = mfspr(SPRN_IVOR33); 547 ivor[2] = mfspr(SPRN_IVOR34); 548 for (i = 0; i < 3; i++) { 549 if (ivor[i] > ivor[max_ivor]) 550 max_ivor = i; 551 552 handler_len = handler[i + 1] - handler[i]; 553 memcpy((void *)kvmppc_booke_handlers + ivor[i], 554 (void *)handler[i], handler_len); 555 } 556 handler_len = handler[max_ivor + 1] - handler[max_ivor]; 557 flush_icache_range(kvmppc_booke_handlers, kvmppc_booke_handlers + 558 ivor[max_ivor] + handler_len); 559 560 r = kvm_init(NULL, sizeof(struct kvmppc_vcpu_e500), 0, THIS_MODULE); 561 if (r) 562 goto err_out; 563 kvm_ops_e500.owner = THIS_MODULE; 564 kvmppc_pr_ops = &kvm_ops_e500; 565 566 err_out: 567 return r; 568 } 569 570 static void __exit kvmppc_e500_exit(void) 571 { 572 kvmppc_pr_ops = NULL; 573 kvmppc_booke_exit(); 574 } 575 576 module_init(kvmppc_e500_init); 577 module_exit(kvmppc_e500_exit); 578 MODULE_ALIAS_MISCDEV(KVM_MINOR); 579 MODULE_ALIAS("devname:kvm"); 580