xref: /openbmc/linux/arch/powerpc/kvm/e500.c (revision 2e6ae11dd0d1c37f44cec51a58fb2092e55ed0f5)
1 /*
2  * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. All rights reserved.
3  *
4  * Author: Yu Liu, <yu.liu@freescale.com>
5  *
6  * Description:
7  * This file is derived from arch/powerpc/kvm/44x.c,
8  * by Hollis Blanchard <hollisb@us.ibm.com>.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License, version 2, as
12  * published by the Free Software Foundation.
13  */
14 
15 #include <linux/kvm_host.h>
16 #include <linux/slab.h>
17 #include <linux/err.h>
18 #include <linux/export.h>
19 #include <linux/module.h>
20 #include <linux/miscdevice.h>
21 
22 #include <asm/reg.h>
23 #include <asm/cputable.h>
24 #include <asm/kvm_ppc.h>
25 
26 #include "../mm/mmu_decl.h"
27 #include "booke.h"
28 #include "e500.h"
29 
30 struct id {
31 	unsigned long val;
32 	struct id **pentry;
33 };
34 
35 #define NUM_TIDS 256
36 
37 /*
38  * This table provide mappings from:
39  * (guestAS,guestTID,guestPR) --> ID of physical cpu
40  * guestAS	[0..1]
41  * guestTID	[0..255]
42  * guestPR	[0..1]
43  * ID		[1..255]
44  * Each vcpu keeps one vcpu_id_table.
45  */
46 struct vcpu_id_table {
47 	struct id id[2][NUM_TIDS][2];
48 };
49 
50 /*
51  * This table provide reversed mappings of vcpu_id_table:
52  * ID --> address of vcpu_id_table item.
53  * Each physical core has one pcpu_id_table.
54  */
55 struct pcpu_id_table {
56 	struct id *entry[NUM_TIDS];
57 };
58 
59 static DEFINE_PER_CPU(struct pcpu_id_table, pcpu_sids);
60 
61 /* This variable keeps last used shadow ID on local core.
62  * The valid range of shadow ID is [1..255] */
63 static DEFINE_PER_CPU(unsigned long, pcpu_last_used_sid);
64 
65 /*
66  * Allocate a free shadow id and setup a valid sid mapping in given entry.
67  * A mapping is only valid when vcpu_id_table and pcpu_id_table are match.
68  *
69  * The caller must have preemption disabled, and keep it that way until
70  * it has finished with the returned shadow id (either written into the
71  * TLB or arch.shadow_pid, or discarded).
72  */
73 static inline int local_sid_setup_one(struct id *entry)
74 {
75 	unsigned long sid;
76 	int ret = -1;
77 
78 	sid = __this_cpu_inc_return(pcpu_last_used_sid);
79 	if (sid < NUM_TIDS) {
80 		__this_cpu_write(pcpu_sids.entry[sid], entry);
81 		entry->val = sid;
82 		entry->pentry = this_cpu_ptr(&pcpu_sids.entry[sid]);
83 		ret = sid;
84 	}
85 
86 	/*
87 	 * If sid == NUM_TIDS, we've run out of sids.  We return -1, and
88 	 * the caller will invalidate everything and start over.
89 	 *
90 	 * sid > NUM_TIDS indicates a race, which we disable preemption to
91 	 * avoid.
92 	 */
93 	WARN_ON(sid > NUM_TIDS);
94 
95 	return ret;
96 }
97 
98 /*
99  * Check if given entry contain a valid shadow id mapping.
100  * An ID mapping is considered valid only if
101  * both vcpu and pcpu know this mapping.
102  *
103  * The caller must have preemption disabled, and keep it that way until
104  * it has finished with the returned shadow id (either written into the
105  * TLB or arch.shadow_pid, or discarded).
106  */
107 static inline int local_sid_lookup(struct id *entry)
108 {
109 	if (entry && entry->val != 0 &&
110 	    __this_cpu_read(pcpu_sids.entry[entry->val]) == entry &&
111 	    entry->pentry == this_cpu_ptr(&pcpu_sids.entry[entry->val]))
112 		return entry->val;
113 	return -1;
114 }
115 
116 /* Invalidate all id mappings on local core -- call with preempt disabled */
117 static inline void local_sid_destroy_all(void)
118 {
119 	__this_cpu_write(pcpu_last_used_sid, 0);
120 	memset(this_cpu_ptr(&pcpu_sids), 0, sizeof(pcpu_sids));
121 }
122 
123 static void *kvmppc_e500_id_table_alloc(struct kvmppc_vcpu_e500 *vcpu_e500)
124 {
125 	vcpu_e500->idt = kzalloc(sizeof(struct vcpu_id_table), GFP_KERNEL);
126 	return vcpu_e500->idt;
127 }
128 
129 static void kvmppc_e500_id_table_free(struct kvmppc_vcpu_e500 *vcpu_e500)
130 {
131 	kfree(vcpu_e500->idt);
132 	vcpu_e500->idt = NULL;
133 }
134 
135 /* Map guest pid to shadow.
136  * We use PID to keep shadow of current guest non-zero PID,
137  * and use PID1 to keep shadow of guest zero PID.
138  * So that guest tlbe with TID=0 can be accessed at any time */
139 static void kvmppc_e500_recalc_shadow_pid(struct kvmppc_vcpu_e500 *vcpu_e500)
140 {
141 	preempt_disable();
142 	vcpu_e500->vcpu.arch.shadow_pid = kvmppc_e500_get_sid(vcpu_e500,
143 			get_cur_as(&vcpu_e500->vcpu),
144 			get_cur_pid(&vcpu_e500->vcpu),
145 			get_cur_pr(&vcpu_e500->vcpu), 1);
146 	vcpu_e500->vcpu.arch.shadow_pid1 = kvmppc_e500_get_sid(vcpu_e500,
147 			get_cur_as(&vcpu_e500->vcpu), 0,
148 			get_cur_pr(&vcpu_e500->vcpu), 1);
149 	preempt_enable();
150 }
151 
152 /* Invalidate all mappings on vcpu */
153 static void kvmppc_e500_id_table_reset_all(struct kvmppc_vcpu_e500 *vcpu_e500)
154 {
155 	memset(vcpu_e500->idt, 0, sizeof(struct vcpu_id_table));
156 
157 	/* Update shadow pid when mappings are changed */
158 	kvmppc_e500_recalc_shadow_pid(vcpu_e500);
159 }
160 
161 /* Invalidate one ID mapping on vcpu */
162 static inline void kvmppc_e500_id_table_reset_one(
163 			       struct kvmppc_vcpu_e500 *vcpu_e500,
164 			       int as, int pid, int pr)
165 {
166 	struct vcpu_id_table *idt = vcpu_e500->idt;
167 
168 	BUG_ON(as >= 2);
169 	BUG_ON(pid >= NUM_TIDS);
170 	BUG_ON(pr >= 2);
171 
172 	idt->id[as][pid][pr].val = 0;
173 	idt->id[as][pid][pr].pentry = NULL;
174 
175 	/* Update shadow pid when mappings are changed */
176 	kvmppc_e500_recalc_shadow_pid(vcpu_e500);
177 }
178 
179 /*
180  * Map guest (vcpu,AS,ID,PR) to physical core shadow id.
181  * This function first lookup if a valid mapping exists,
182  * if not, then creates a new one.
183  *
184  * The caller must have preemption disabled, and keep it that way until
185  * it has finished with the returned shadow id (either written into the
186  * TLB or arch.shadow_pid, or discarded).
187  */
188 unsigned int kvmppc_e500_get_sid(struct kvmppc_vcpu_e500 *vcpu_e500,
189 				 unsigned int as, unsigned int gid,
190 				 unsigned int pr, int avoid_recursion)
191 {
192 	struct vcpu_id_table *idt = vcpu_e500->idt;
193 	int sid;
194 
195 	BUG_ON(as >= 2);
196 	BUG_ON(gid >= NUM_TIDS);
197 	BUG_ON(pr >= 2);
198 
199 	sid = local_sid_lookup(&idt->id[as][gid][pr]);
200 
201 	while (sid <= 0) {
202 		/* No mapping yet */
203 		sid = local_sid_setup_one(&idt->id[as][gid][pr]);
204 		if (sid <= 0) {
205 			_tlbil_all();
206 			local_sid_destroy_all();
207 		}
208 
209 		/* Update shadow pid when mappings are changed */
210 		if (!avoid_recursion)
211 			kvmppc_e500_recalc_shadow_pid(vcpu_e500);
212 	}
213 
214 	return sid;
215 }
216 
217 unsigned int kvmppc_e500_get_tlb_stid(struct kvm_vcpu *vcpu,
218 				      struct kvm_book3e_206_tlb_entry *gtlbe)
219 {
220 	return kvmppc_e500_get_sid(to_e500(vcpu), get_tlb_ts(gtlbe),
221 				   get_tlb_tid(gtlbe), get_cur_pr(vcpu), 0);
222 }
223 
224 void kvmppc_set_pid(struct kvm_vcpu *vcpu, u32 pid)
225 {
226 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
227 
228 	if (vcpu->arch.pid != pid) {
229 		vcpu_e500->pid[0] = vcpu->arch.pid = pid;
230 		kvmppc_e500_recalc_shadow_pid(vcpu_e500);
231 	}
232 }
233 
234 /* gtlbe must not be mapped by more than one host tlbe */
235 void kvmppc_e500_tlbil_one(struct kvmppc_vcpu_e500 *vcpu_e500,
236                            struct kvm_book3e_206_tlb_entry *gtlbe)
237 {
238 	struct vcpu_id_table *idt = vcpu_e500->idt;
239 	unsigned int pr, tid, ts;
240 	int pid;
241 	u32 val, eaddr;
242 	unsigned long flags;
243 
244 	ts = get_tlb_ts(gtlbe);
245 	tid = get_tlb_tid(gtlbe);
246 
247 	preempt_disable();
248 
249 	/* One guest ID may be mapped to two shadow IDs */
250 	for (pr = 0; pr < 2; pr++) {
251 		/*
252 		 * The shadow PID can have a valid mapping on at most one
253 		 * host CPU.  In the common case, it will be valid on this
254 		 * CPU, in which case we do a local invalidation of the
255 		 * specific address.
256 		 *
257 		 * If the shadow PID is not valid on the current host CPU,
258 		 * we invalidate the entire shadow PID.
259 		 */
260 		pid = local_sid_lookup(&idt->id[ts][tid][pr]);
261 		if (pid <= 0) {
262 			kvmppc_e500_id_table_reset_one(vcpu_e500, ts, tid, pr);
263 			continue;
264 		}
265 
266 		/*
267 		 * The guest is invalidating a 4K entry which is in a PID
268 		 * that has a valid shadow mapping on this host CPU.  We
269 		 * search host TLB to invalidate it's shadow TLB entry,
270 		 * similar to __tlbil_va except that we need to look in AS1.
271 		 */
272 		val = (pid << MAS6_SPID_SHIFT) | MAS6_SAS;
273 		eaddr = get_tlb_eaddr(gtlbe);
274 
275 		local_irq_save(flags);
276 
277 		mtspr(SPRN_MAS6, val);
278 		asm volatile("tlbsx 0, %[eaddr]" : : [eaddr] "r" (eaddr));
279 		val = mfspr(SPRN_MAS1);
280 		if (val & MAS1_VALID) {
281 			mtspr(SPRN_MAS1, val & ~MAS1_VALID);
282 			asm volatile("tlbwe");
283 		}
284 
285 		local_irq_restore(flags);
286 	}
287 
288 	preempt_enable();
289 }
290 
291 void kvmppc_e500_tlbil_all(struct kvmppc_vcpu_e500 *vcpu_e500)
292 {
293 	kvmppc_e500_id_table_reset_all(vcpu_e500);
294 }
295 
296 void kvmppc_mmu_msr_notify(struct kvm_vcpu *vcpu, u32 old_msr)
297 {
298 	/* Recalc shadow pid since MSR changes */
299 	kvmppc_e500_recalc_shadow_pid(to_e500(vcpu));
300 }
301 
302 static void kvmppc_core_vcpu_load_e500(struct kvm_vcpu *vcpu, int cpu)
303 {
304 	kvmppc_booke_vcpu_load(vcpu, cpu);
305 
306 	/* Shadow PID may be expired on local core */
307 	kvmppc_e500_recalc_shadow_pid(to_e500(vcpu));
308 }
309 
310 static void kvmppc_core_vcpu_put_e500(struct kvm_vcpu *vcpu)
311 {
312 #ifdef CONFIG_SPE
313 	if (vcpu->arch.shadow_msr & MSR_SPE)
314 		kvmppc_vcpu_disable_spe(vcpu);
315 #endif
316 
317 	kvmppc_booke_vcpu_put(vcpu);
318 }
319 
320 int kvmppc_core_check_processor_compat(void)
321 {
322 	int r;
323 
324 	if (strcmp(cur_cpu_spec->cpu_name, "e500v2") == 0)
325 		r = 0;
326 	else
327 		r = -ENOTSUPP;
328 
329 	return r;
330 }
331 
332 static void kvmppc_e500_tlb_setup(struct kvmppc_vcpu_e500 *vcpu_e500)
333 {
334 	struct kvm_book3e_206_tlb_entry *tlbe;
335 
336 	/* Insert large initial mapping for guest. */
337 	tlbe = get_entry(vcpu_e500, 1, 0);
338 	tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_256M);
339 	tlbe->mas2 = 0;
340 	tlbe->mas7_3 = E500_TLB_SUPER_PERM_MASK;
341 
342 	/* 4K map for serial output. Used by kernel wrapper. */
343 	tlbe = get_entry(vcpu_e500, 1, 1);
344 	tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_4K);
345 	tlbe->mas2 = (0xe0004500 & 0xFFFFF000) | MAS2_I | MAS2_G;
346 	tlbe->mas7_3 = (0xe0004500 & 0xFFFFF000) | E500_TLB_SUPER_PERM_MASK;
347 }
348 
349 int kvmppc_core_vcpu_setup(struct kvm_vcpu *vcpu)
350 {
351 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
352 
353 	kvmppc_e500_tlb_setup(vcpu_e500);
354 
355 	/* Registers init */
356 	vcpu->arch.pvr = mfspr(SPRN_PVR);
357 	vcpu_e500->svr = mfspr(SPRN_SVR);
358 
359 	vcpu->arch.cpu_type = KVM_CPU_E500V2;
360 
361 	return 0;
362 }
363 
364 static int kvmppc_core_get_sregs_e500(struct kvm_vcpu *vcpu,
365 				      struct kvm_sregs *sregs)
366 {
367 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
368 
369 	sregs->u.e.features |= KVM_SREGS_E_ARCH206_MMU | KVM_SREGS_E_SPE |
370 	                       KVM_SREGS_E_PM;
371 	sregs->u.e.impl_id = KVM_SREGS_E_IMPL_FSL;
372 
373 	sregs->u.e.impl.fsl.features = 0;
374 	sregs->u.e.impl.fsl.svr = vcpu_e500->svr;
375 	sregs->u.e.impl.fsl.hid0 = vcpu_e500->hid0;
376 	sregs->u.e.impl.fsl.mcar = vcpu_e500->mcar;
377 
378 	sregs->u.e.ivor_high[0] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL];
379 	sregs->u.e.ivor_high[1] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA];
380 	sregs->u.e.ivor_high[2] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND];
381 	sregs->u.e.ivor_high[3] =
382 		vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR];
383 
384 	kvmppc_get_sregs_ivor(vcpu, sregs);
385 	kvmppc_get_sregs_e500_tlb(vcpu, sregs);
386 	return 0;
387 }
388 
389 static int kvmppc_core_set_sregs_e500(struct kvm_vcpu *vcpu,
390 				      struct kvm_sregs *sregs)
391 {
392 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
393 	int ret;
394 
395 	if (sregs->u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
396 		vcpu_e500->svr = sregs->u.e.impl.fsl.svr;
397 		vcpu_e500->hid0 = sregs->u.e.impl.fsl.hid0;
398 		vcpu_e500->mcar = sregs->u.e.impl.fsl.mcar;
399 	}
400 
401 	ret = kvmppc_set_sregs_e500_tlb(vcpu, sregs);
402 	if (ret < 0)
403 		return ret;
404 
405 	if (!(sregs->u.e.features & KVM_SREGS_E_IVOR))
406 		return 0;
407 
408 	if (sregs->u.e.features & KVM_SREGS_E_SPE) {
409 		vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL] =
410 			sregs->u.e.ivor_high[0];
411 		vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA] =
412 			sregs->u.e.ivor_high[1];
413 		vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND] =
414 			sregs->u.e.ivor_high[2];
415 	}
416 
417 	if (sregs->u.e.features & KVM_SREGS_E_PM) {
418 		vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR] =
419 			sregs->u.e.ivor_high[3];
420 	}
421 
422 	return kvmppc_set_sregs_ivor(vcpu, sregs);
423 }
424 
425 static int kvmppc_get_one_reg_e500(struct kvm_vcpu *vcpu, u64 id,
426 				   union kvmppc_one_reg *val)
427 {
428 	int r = kvmppc_get_one_reg_e500_tlb(vcpu, id, val);
429 	return r;
430 }
431 
432 static int kvmppc_set_one_reg_e500(struct kvm_vcpu *vcpu, u64 id,
433 				   union kvmppc_one_reg *val)
434 {
435 	int r = kvmppc_get_one_reg_e500_tlb(vcpu, id, val);
436 	return r;
437 }
438 
439 static struct kvm_vcpu *kvmppc_core_vcpu_create_e500(struct kvm *kvm,
440 						     unsigned int id)
441 {
442 	struct kvmppc_vcpu_e500 *vcpu_e500;
443 	struct kvm_vcpu *vcpu;
444 	int err;
445 
446 	vcpu_e500 = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
447 	if (!vcpu_e500) {
448 		err = -ENOMEM;
449 		goto out;
450 	}
451 
452 	vcpu = &vcpu_e500->vcpu;
453 	err = kvm_vcpu_init(vcpu, kvm, id);
454 	if (err)
455 		goto free_vcpu;
456 
457 	if (kvmppc_e500_id_table_alloc(vcpu_e500) == NULL) {
458 		err = -ENOMEM;
459 		goto uninit_vcpu;
460 	}
461 
462 	err = kvmppc_e500_tlb_init(vcpu_e500);
463 	if (err)
464 		goto uninit_id;
465 
466 	vcpu->arch.shared = (void*)__get_free_page(GFP_KERNEL|__GFP_ZERO);
467 	if (!vcpu->arch.shared) {
468 		err = -ENOMEM;
469 		goto uninit_tlb;
470 	}
471 
472 	return vcpu;
473 
474 uninit_tlb:
475 	kvmppc_e500_tlb_uninit(vcpu_e500);
476 uninit_id:
477 	kvmppc_e500_id_table_free(vcpu_e500);
478 uninit_vcpu:
479 	kvm_vcpu_uninit(vcpu);
480 free_vcpu:
481 	kmem_cache_free(kvm_vcpu_cache, vcpu_e500);
482 out:
483 	return ERR_PTR(err);
484 }
485 
486 static void kvmppc_core_vcpu_free_e500(struct kvm_vcpu *vcpu)
487 {
488 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
489 
490 	free_page((unsigned long)vcpu->arch.shared);
491 	kvmppc_e500_tlb_uninit(vcpu_e500);
492 	kvmppc_e500_id_table_free(vcpu_e500);
493 	kvm_vcpu_uninit(vcpu);
494 	kmem_cache_free(kvm_vcpu_cache, vcpu_e500);
495 }
496 
497 static int kvmppc_core_init_vm_e500(struct kvm *kvm)
498 {
499 	return 0;
500 }
501 
502 static void kvmppc_core_destroy_vm_e500(struct kvm *kvm)
503 {
504 }
505 
506 static struct kvmppc_ops kvm_ops_e500 = {
507 	.get_sregs = kvmppc_core_get_sregs_e500,
508 	.set_sregs = kvmppc_core_set_sregs_e500,
509 	.get_one_reg = kvmppc_get_one_reg_e500,
510 	.set_one_reg = kvmppc_set_one_reg_e500,
511 	.vcpu_load   = kvmppc_core_vcpu_load_e500,
512 	.vcpu_put    = kvmppc_core_vcpu_put_e500,
513 	.vcpu_create = kvmppc_core_vcpu_create_e500,
514 	.vcpu_free   = kvmppc_core_vcpu_free_e500,
515 	.mmu_destroy  = kvmppc_mmu_destroy_e500,
516 	.init_vm = kvmppc_core_init_vm_e500,
517 	.destroy_vm = kvmppc_core_destroy_vm_e500,
518 	.emulate_op = kvmppc_core_emulate_op_e500,
519 	.emulate_mtspr = kvmppc_core_emulate_mtspr_e500,
520 	.emulate_mfspr = kvmppc_core_emulate_mfspr_e500,
521 };
522 
523 static int __init kvmppc_e500_init(void)
524 {
525 	int r, i;
526 	unsigned long ivor[3];
527 	/* Process remaining handlers above the generic first 16 */
528 	unsigned long *handler = &kvmppc_booke_handler_addr[16];
529 	unsigned long handler_len;
530 	unsigned long max_ivor = 0;
531 
532 	r = kvmppc_core_check_processor_compat();
533 	if (r)
534 		goto err_out;
535 
536 	r = kvmppc_booke_init();
537 	if (r)
538 		goto err_out;
539 
540 	/* copy extra E500 exception handlers */
541 	ivor[0] = mfspr(SPRN_IVOR32);
542 	ivor[1] = mfspr(SPRN_IVOR33);
543 	ivor[2] = mfspr(SPRN_IVOR34);
544 	for (i = 0; i < 3; i++) {
545 		if (ivor[i] > ivor[max_ivor])
546 			max_ivor = i;
547 
548 		handler_len = handler[i + 1] - handler[i];
549 		memcpy((void *)kvmppc_booke_handlers + ivor[i],
550 		       (void *)handler[i], handler_len);
551 	}
552 	handler_len = handler[max_ivor + 1] - handler[max_ivor];
553 	flush_icache_range(kvmppc_booke_handlers, kvmppc_booke_handlers +
554 			   ivor[max_ivor] + handler_len);
555 
556 	r = kvm_init(NULL, sizeof(struct kvmppc_vcpu_e500), 0, THIS_MODULE);
557 	if (r)
558 		goto err_out;
559 	kvm_ops_e500.owner = THIS_MODULE;
560 	kvmppc_pr_ops = &kvm_ops_e500;
561 
562 err_out:
563 	return r;
564 }
565 
566 static void __exit kvmppc_e500_exit(void)
567 {
568 	kvmppc_pr_ops = NULL;
569 	kvmppc_booke_exit();
570 }
571 
572 module_init(kvmppc_e500_init);
573 module_exit(kvmppc_e500_exit);
574 MODULE_ALIAS_MISCDEV(KVM_MINOR);
575 MODULE_ALIAS("devname:kvm");
576