1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright 2017 Benjamin Herrenschmidt, IBM Corporation 4 */ 5 6 #ifndef _KVM_PPC_BOOK3S_XIVE_H 7 #define _KVM_PPC_BOOK3S_XIVE_H 8 9 #ifdef CONFIG_KVM_XICS 10 #include "book3s_xics.h" 11 12 /* 13 * The XIVE Interrupt source numbers are within the range 0 to 14 * KVMPPC_XICS_NR_IRQS. 15 */ 16 #define KVMPPC_XIVE_FIRST_IRQ 0 17 #define KVMPPC_XIVE_NR_IRQS KVMPPC_XICS_NR_IRQS 18 19 /* 20 * State for one guest irq source. 21 * 22 * For each guest source we allocate a HW interrupt in the XIVE 23 * which we use for all SW triggers. It will be unused for 24 * pass-through but it's easier to keep around as the same 25 * guest interrupt can alternatively be emulated or pass-through 26 * if a physical device is hot unplugged and replaced with an 27 * emulated one. 28 * 29 * This state structure is very similar to the XICS one with 30 * additional XIVE specific tracking. 31 */ 32 struct kvmppc_xive_irq_state { 33 bool valid; /* Interrupt entry is valid */ 34 35 u32 number; /* Guest IRQ number */ 36 u32 ipi_number; /* XIVE IPI HW number */ 37 struct xive_irq_data ipi_data; /* XIVE IPI associated data */ 38 u32 pt_number; /* XIVE Pass-through number if any */ 39 struct xive_irq_data *pt_data; /* XIVE Pass-through associated data */ 40 41 /* Targetting as set by guest */ 42 u8 guest_priority; /* Guest set priority */ 43 u8 saved_priority; /* Saved priority when masking */ 44 45 /* Actual targetting */ 46 u32 act_server; /* Actual server */ 47 u8 act_priority; /* Actual priority */ 48 49 /* Various state bits */ 50 bool in_eoi; /* Synchronize with H_EOI */ 51 bool old_p; /* P bit state when masking */ 52 bool old_q; /* Q bit state when masking */ 53 bool lsi; /* level-sensitive interrupt */ 54 bool asserted; /* Only for emulated LSI: current state */ 55 56 /* Saved for migration state */ 57 bool in_queue; 58 bool saved_p; 59 bool saved_q; 60 u8 saved_scan_prio; 61 62 /* Xive native */ 63 u32 eisn; /* Guest Effective IRQ number */ 64 }; 65 66 /* Select the "right" interrupt (IPI vs. passthrough) */ 67 static inline void kvmppc_xive_select_irq(struct kvmppc_xive_irq_state *state, 68 u32 *out_hw_irq, 69 struct xive_irq_data **out_xd) 70 { 71 if (state->pt_number) { 72 if (out_hw_irq) 73 *out_hw_irq = state->pt_number; 74 if (out_xd) 75 *out_xd = state->pt_data; 76 } else { 77 if (out_hw_irq) 78 *out_hw_irq = state->ipi_number; 79 if (out_xd) 80 *out_xd = &state->ipi_data; 81 } 82 } 83 84 /* 85 * This corresponds to an "ICS" in XICS terminology, we use it 86 * as a mean to break up source information into multiple structures. 87 */ 88 struct kvmppc_xive_src_block { 89 arch_spinlock_t lock; 90 u16 id; 91 struct kvmppc_xive_irq_state irq_state[KVMPPC_XICS_IRQ_PER_ICS]; 92 }; 93 94 struct kvmppc_xive; 95 96 struct kvmppc_xive_ops { 97 int (*reset_mapped)(struct kvm *kvm, unsigned long guest_irq); 98 }; 99 100 #define KVMPPC_XIVE_FLAG_SINGLE_ESCALATION 0x1 101 #define KVMPPC_XIVE_FLAG_SAVE_RESTORE 0x2 102 103 struct kvmppc_xive { 104 struct kvm *kvm; 105 struct kvm_device *dev; 106 struct dentry *dentry; 107 108 /* VP block associated with the VM */ 109 u32 vp_base; 110 111 /* Blocks of sources */ 112 struct kvmppc_xive_src_block *src_blocks[KVMPPC_XICS_MAX_ICS_ID + 1]; 113 u32 max_sbid; 114 115 /* 116 * For state save, we lazily scan the queues on the first interrupt 117 * being migrated. We don't have a clean way to reset that flags 118 * so we keep track of the number of valid sources and how many of 119 * them were migrated so we can reset when all of them have been 120 * processed. 121 */ 122 u32 src_count; 123 u32 saved_src_count; 124 125 /* 126 * Some irqs are delayed on restore until the source is created, 127 * keep track here of how many of them 128 */ 129 u32 delayed_irqs; 130 131 /* Which queues (priorities) are in use by the guest */ 132 u8 qmap; 133 134 /* Queue orders */ 135 u32 q_order; 136 u32 q_page_order; 137 138 /* Flags */ 139 u8 flags; 140 141 /* Number of entries in the VP block */ 142 u32 nr_servers; 143 144 struct kvmppc_xive_ops *ops; 145 struct address_space *mapping; 146 struct mutex mapping_lock; 147 struct mutex lock; 148 }; 149 150 #define KVMPPC_XIVE_Q_COUNT 8 151 152 struct kvmppc_xive_vcpu { 153 struct kvmppc_xive *xive; 154 struct kvm_vcpu *vcpu; 155 bool valid; 156 157 /* Server number. This is the HW CPU ID from a guest perspective */ 158 u32 server_num; 159 160 /* 161 * HW VP corresponding to this VCPU. This is the base of the VP 162 * block plus the server number. 163 */ 164 u32 vp_id; 165 u32 vp_chip_id; 166 u32 vp_cam; 167 168 /* IPI used for sending ... IPIs */ 169 u32 vp_ipi; 170 struct xive_irq_data vp_ipi_data; 171 172 /* Local emulation state */ 173 uint8_t cppr; /* guest CPPR */ 174 uint8_t hw_cppr;/* Hardware CPPR */ 175 uint8_t mfrr; 176 uint8_t pending; 177 178 /* Each VP has 8 queues though we only provision some */ 179 struct xive_q queues[KVMPPC_XIVE_Q_COUNT]; 180 u32 esc_virq[KVMPPC_XIVE_Q_COUNT]; 181 char *esc_virq_names[KVMPPC_XIVE_Q_COUNT]; 182 183 /* Stash a delayed irq on restore from migration (see set_icp) */ 184 u32 delayed_irq; 185 186 /* Stats */ 187 u64 stat_rm_h_xirr; 188 u64 stat_rm_h_ipoll; 189 u64 stat_rm_h_cppr; 190 u64 stat_rm_h_eoi; 191 u64 stat_rm_h_ipi; 192 u64 stat_vm_h_xirr; 193 u64 stat_vm_h_ipoll; 194 u64 stat_vm_h_cppr; 195 u64 stat_vm_h_eoi; 196 u64 stat_vm_h_ipi; 197 }; 198 199 static inline struct kvm_vcpu *kvmppc_xive_find_server(struct kvm *kvm, u32 nr) 200 { 201 struct kvm_vcpu *vcpu = NULL; 202 int i; 203 204 kvm_for_each_vcpu(i, vcpu, kvm) { 205 if (vcpu->arch.xive_vcpu && nr == vcpu->arch.xive_vcpu->server_num) 206 return vcpu; 207 } 208 return NULL; 209 } 210 211 static inline struct kvmppc_xive_src_block *kvmppc_xive_find_source(struct kvmppc_xive *xive, 212 u32 irq, u16 *source) 213 { 214 u32 bid = irq >> KVMPPC_XICS_ICS_SHIFT; 215 u16 src = irq & KVMPPC_XICS_SRC_MASK; 216 217 if (source) 218 *source = src; 219 if (bid > KVMPPC_XICS_MAX_ICS_ID) 220 return NULL; 221 return xive->src_blocks[bid]; 222 } 223 224 /* 225 * When the XIVE resources are allocated at the HW level, the VP 226 * structures describing the vCPUs of a guest are distributed among 227 * the chips to optimize the PowerBUS usage. For best performance, the 228 * guest vCPUs can be pinned to match the VP structure distribution. 229 * 230 * Currently, the VP identifiers are deduced from the vCPU id using 231 * the kvmppc_pack_vcpu_id() routine which is not incorrect but not 232 * optimal either. It VSMT is used, the result is not continuous and 233 * the constraints on HW resources described above can not be met. 234 */ 235 static inline u32 kvmppc_xive_vp(struct kvmppc_xive *xive, u32 server) 236 { 237 return xive->vp_base + kvmppc_pack_vcpu_id(xive->kvm, server); 238 } 239 240 static inline bool kvmppc_xive_vp_in_use(struct kvm *kvm, u32 vp_id) 241 { 242 struct kvm_vcpu *vcpu = NULL; 243 int i; 244 245 kvm_for_each_vcpu(i, vcpu, kvm) { 246 if (vcpu->arch.xive_vcpu && vp_id == vcpu->arch.xive_vcpu->vp_id) 247 return true; 248 } 249 return false; 250 } 251 252 /* 253 * Mapping between guest priorities and host priorities 254 * is as follow. 255 * 256 * Guest request for 0...6 are honored. Guest request for anything 257 * higher results in a priority of 6 being applied. 258 * 259 * Similar mapping is done for CPPR values 260 */ 261 static inline u8 xive_prio_from_guest(u8 prio) 262 { 263 if (prio == 0xff || prio < 6) 264 return prio; 265 return 6; 266 } 267 268 static inline u8 xive_prio_to_guest(u8 prio) 269 { 270 return prio; 271 } 272 273 static inline u32 __xive_read_eq(__be32 *qpage, u32 msk, u32 *idx, u32 *toggle) 274 { 275 u32 cur; 276 277 if (!qpage) 278 return 0; 279 cur = be32_to_cpup(qpage + *idx); 280 if ((cur >> 31) == *toggle) 281 return 0; 282 *idx = (*idx + 1) & msk; 283 if (*idx == 0) 284 (*toggle) ^= 1; 285 return cur & 0x7fffffff; 286 } 287 288 extern unsigned long xive_rm_h_xirr(struct kvm_vcpu *vcpu); 289 extern unsigned long xive_rm_h_ipoll(struct kvm_vcpu *vcpu, unsigned long server); 290 extern int xive_rm_h_ipi(struct kvm_vcpu *vcpu, unsigned long server, 291 unsigned long mfrr); 292 extern int xive_rm_h_cppr(struct kvm_vcpu *vcpu, unsigned long cppr); 293 extern int xive_rm_h_eoi(struct kvm_vcpu *vcpu, unsigned long xirr); 294 295 /* 296 * Common Xive routines for XICS-over-XIVE and XIVE native 297 */ 298 void kvmppc_xive_disable_vcpu_interrupts(struct kvm_vcpu *vcpu); 299 int kvmppc_xive_debug_show_queues(struct seq_file *m, struct kvm_vcpu *vcpu); 300 void kvmppc_xive_debug_show_sources(struct seq_file *m, 301 struct kvmppc_xive_src_block *sb); 302 struct kvmppc_xive_src_block *kvmppc_xive_create_src_block( 303 struct kvmppc_xive *xive, int irq); 304 void kvmppc_xive_free_sources(struct kvmppc_xive_src_block *sb); 305 int kvmppc_xive_select_target(struct kvm *kvm, u32 *server, u8 prio); 306 int kvmppc_xive_attach_escalation(struct kvm_vcpu *vcpu, u8 prio, 307 bool single_escalation); 308 struct kvmppc_xive *kvmppc_xive_get_device(struct kvm *kvm, u32 type); 309 void xive_cleanup_single_escalation(struct kvm_vcpu *vcpu, 310 struct kvmppc_xive_vcpu *xc, int irq); 311 int kvmppc_xive_compute_vp_id(struct kvmppc_xive *xive, u32 cpu, u32 *vp); 312 int kvmppc_xive_set_nr_servers(struct kvmppc_xive *xive, u64 addr); 313 bool kvmppc_xive_check_save_restore(struct kvm_vcpu *vcpu); 314 315 static inline bool kvmppc_xive_has_single_escalation(struct kvmppc_xive *xive) 316 { 317 return xive->flags & KVMPPC_XIVE_FLAG_SINGLE_ESCALATION; 318 } 319 320 #endif /* CONFIG_KVM_XICS */ 321 #endif /* _KVM_PPC_BOOK3S_XICS_H */ 322