xref: /openbmc/linux/arch/powerpc/kvm/book3s_xive.c (revision df0e68c1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2017 Benjamin Herrenschmidt, IBM Corporation.
4  */
5 
6 #define pr_fmt(fmt) "xive-kvm: " fmt
7 
8 #include <linux/kernel.h>
9 #include <linux/kvm_host.h>
10 #include <linux/err.h>
11 #include <linux/gfp.h>
12 #include <linux/spinlock.h>
13 #include <linux/delay.h>
14 #include <linux/percpu.h>
15 #include <linux/cpumask.h>
16 #include <linux/uaccess.h>
17 #include <linux/irqdomain.h>
18 #include <asm/kvm_book3s.h>
19 #include <asm/kvm_ppc.h>
20 #include <asm/hvcall.h>
21 #include <asm/xics.h>
22 #include <asm/xive.h>
23 #include <asm/xive-regs.h>
24 #include <asm/debug.h>
25 #include <asm/time.h>
26 #include <asm/opal.h>
27 
28 #include <linux/debugfs.h>
29 #include <linux/seq_file.h>
30 
31 #include "book3s_xive.h"
32 
33 
34 /*
35  * Virtual mode variants of the hcalls for use on radix/radix
36  * with AIL. They require the VCPU's VP to be "pushed"
37  *
38  * We still instantiate them here because we use some of the
39  * generated utility functions as well in this file.
40  */
41 #define XIVE_RUNTIME_CHECKS
42 #define X_PFX xive_vm_
43 #define X_STATIC static
44 #define X_STAT_PFX stat_vm_
45 #define __x_tima		xive_tima
46 #define __x_eoi_page(xd)	((void __iomem *)((xd)->eoi_mmio))
47 #define __x_trig_page(xd)	((void __iomem *)((xd)->trig_mmio))
48 #define __x_writeb	__raw_writeb
49 #define __x_readw	__raw_readw
50 #define __x_readq	__raw_readq
51 #define __x_writeq	__raw_writeq
52 
53 #include "book3s_xive_template.c"
54 
55 /*
56  * We leave a gap of a couple of interrupts in the queue to
57  * account for the IPI and additional safety guard.
58  */
59 #define XIVE_Q_GAP	2
60 
61 static bool kvmppc_xive_vcpu_has_save_restore(struct kvm_vcpu *vcpu)
62 {
63 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
64 
65 	/* Check enablement at VP level */
66 	return xc->vp_cam & TM_QW1W2_HO;
67 }
68 
69 bool kvmppc_xive_check_save_restore(struct kvm_vcpu *vcpu)
70 {
71 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
72 	struct kvmppc_xive *xive = xc->xive;
73 
74 	if (xive->flags & KVMPPC_XIVE_FLAG_SAVE_RESTORE)
75 		return kvmppc_xive_vcpu_has_save_restore(vcpu);
76 
77 	return true;
78 }
79 
80 /*
81  * Push a vcpu's context to the XIVE on guest entry.
82  * This assumes we are in virtual mode (MMU on)
83  */
84 void kvmppc_xive_push_vcpu(struct kvm_vcpu *vcpu)
85 {
86 	void __iomem *tima = local_paca->kvm_hstate.xive_tima_virt;
87 	u64 pq;
88 
89 	/*
90 	 * Nothing to do if the platform doesn't have a XIVE
91 	 * or this vCPU doesn't have its own XIVE context
92 	 * (e.g. because it's not using an in-kernel interrupt controller).
93 	 */
94 	if (!tima || !vcpu->arch.xive_cam_word)
95 		return;
96 
97 	eieio();
98 	if (!kvmppc_xive_vcpu_has_save_restore(vcpu))
99 		__raw_writeq(vcpu->arch.xive_saved_state.w01, tima + TM_QW1_OS);
100 	__raw_writel(vcpu->arch.xive_cam_word, tima + TM_QW1_OS + TM_WORD2);
101 	vcpu->arch.xive_pushed = 1;
102 	eieio();
103 
104 	/*
105 	 * We clear the irq_pending flag. There is a small chance of a
106 	 * race vs. the escalation interrupt happening on another
107 	 * processor setting it again, but the only consequence is to
108 	 * cause a spurious wakeup on the next H_CEDE, which is not an
109 	 * issue.
110 	 */
111 	vcpu->arch.irq_pending = 0;
112 
113 	/*
114 	 * In single escalation mode, if the escalation interrupt is
115 	 * on, we mask it.
116 	 */
117 	if (vcpu->arch.xive_esc_on) {
118 		pq = __raw_readq((void __iomem *)(vcpu->arch.xive_esc_vaddr +
119 						  XIVE_ESB_SET_PQ_01));
120 		mb();
121 
122 		/*
123 		 * We have a possible subtle race here: The escalation
124 		 * interrupt might have fired and be on its way to the
125 		 * host queue while we mask it, and if we unmask it
126 		 * early enough (re-cede right away), there is a
127 		 * theorical possibility that it fires again, thus
128 		 * landing in the target queue more than once which is
129 		 * a big no-no.
130 		 *
131 		 * Fortunately, solving this is rather easy. If the
132 		 * above load setting PQ to 01 returns a previous
133 		 * value where P is set, then we know the escalation
134 		 * interrupt is somewhere on its way to the host. In
135 		 * that case we simply don't clear the xive_esc_on
136 		 * flag below. It will be eventually cleared by the
137 		 * handler for the escalation interrupt.
138 		 *
139 		 * Then, when doing a cede, we check that flag again
140 		 * before re-enabling the escalation interrupt, and if
141 		 * set, we abort the cede.
142 		 */
143 		if (!(pq & XIVE_ESB_VAL_P))
144 			/* Now P is 0, we can clear the flag */
145 			vcpu->arch.xive_esc_on = 0;
146 	}
147 }
148 EXPORT_SYMBOL_GPL(kvmppc_xive_push_vcpu);
149 
150 /*
151  * Pull a vcpu's context from the XIVE on guest exit.
152  * This assumes we are in virtual mode (MMU on)
153  */
154 void kvmppc_xive_pull_vcpu(struct kvm_vcpu *vcpu)
155 {
156 	void __iomem *tima = local_paca->kvm_hstate.xive_tima_virt;
157 
158 	if (!vcpu->arch.xive_pushed)
159 		return;
160 
161 	/*
162 	 * Should not have been pushed if there is no tima
163 	 */
164 	if (WARN_ON(!tima))
165 		return;
166 
167 	eieio();
168 	/* First load to pull the context, we ignore the value */
169 	__raw_readl(tima + TM_SPC_PULL_OS_CTX);
170 	/* Second load to recover the context state (Words 0 and 1) */
171 	if (!kvmppc_xive_vcpu_has_save_restore(vcpu))
172 		vcpu->arch.xive_saved_state.w01 = __raw_readq(tima + TM_QW1_OS);
173 
174 	/* Fixup some of the state for the next load */
175 	vcpu->arch.xive_saved_state.lsmfb = 0;
176 	vcpu->arch.xive_saved_state.ack = 0xff;
177 	vcpu->arch.xive_pushed = 0;
178 	eieio();
179 }
180 EXPORT_SYMBOL_GPL(kvmppc_xive_pull_vcpu);
181 
182 void kvmppc_xive_rearm_escalation(struct kvm_vcpu *vcpu)
183 {
184 	void __iomem *esc_vaddr = (void __iomem *)vcpu->arch.xive_esc_vaddr;
185 
186 	if (!esc_vaddr)
187 		return;
188 
189 	/* we are using XIVE with single escalation */
190 
191 	if (vcpu->arch.xive_esc_on) {
192 		/*
193 		 * If we still have a pending escalation, abort the cede,
194 		 * and we must set PQ to 10 rather than 00 so that we don't
195 		 * potentially end up with two entries for the escalation
196 		 * interrupt in the XIVE interrupt queue.  In that case
197 		 * we also don't want to set xive_esc_on to 1 here in
198 		 * case we race with xive_esc_irq().
199 		 */
200 		vcpu->arch.ceded = 0;
201 		/*
202 		 * The escalation interrupts are special as we don't EOI them.
203 		 * There is no need to use the load-after-store ordering offset
204 		 * to set PQ to 10 as we won't use StoreEOI.
205 		 */
206 		__raw_readq(esc_vaddr + XIVE_ESB_SET_PQ_10);
207 	} else {
208 		vcpu->arch.xive_esc_on = true;
209 		mb();
210 		__raw_readq(esc_vaddr + XIVE_ESB_SET_PQ_00);
211 	}
212 	mb();
213 }
214 EXPORT_SYMBOL_GPL(kvmppc_xive_rearm_escalation);
215 
216 /*
217  * This is a simple trigger for a generic XIVE IRQ. This must
218  * only be called for interrupts that support a trigger page
219  */
220 static bool xive_irq_trigger(struct xive_irq_data *xd)
221 {
222 	/* This should be only for MSIs */
223 	if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
224 		return false;
225 
226 	/* Those interrupts should always have a trigger page */
227 	if (WARN_ON(!xd->trig_mmio))
228 		return false;
229 
230 	out_be64(xd->trig_mmio, 0);
231 
232 	return true;
233 }
234 
235 static irqreturn_t xive_esc_irq(int irq, void *data)
236 {
237 	struct kvm_vcpu *vcpu = data;
238 
239 	vcpu->arch.irq_pending = 1;
240 	smp_mb();
241 	if (vcpu->arch.ceded)
242 		kvmppc_fast_vcpu_kick(vcpu);
243 
244 	/* Since we have the no-EOI flag, the interrupt is effectively
245 	 * disabled now. Clearing xive_esc_on means we won't bother
246 	 * doing so on the next entry.
247 	 *
248 	 * This also allows the entry code to know that if a PQ combination
249 	 * of 10 is observed while xive_esc_on is true, it means the queue
250 	 * contains an unprocessed escalation interrupt. We don't make use of
251 	 * that knowledge today but might (see comment in book3s_hv_rmhandler.S)
252 	 */
253 	vcpu->arch.xive_esc_on = false;
254 
255 	/* This orders xive_esc_on = false vs. subsequent stale_p = true */
256 	smp_wmb();	/* goes with smp_mb() in cleanup_single_escalation */
257 
258 	return IRQ_HANDLED;
259 }
260 
261 int kvmppc_xive_attach_escalation(struct kvm_vcpu *vcpu, u8 prio,
262 				  bool single_escalation)
263 {
264 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
265 	struct xive_q *q = &xc->queues[prio];
266 	char *name = NULL;
267 	int rc;
268 
269 	/* Already there ? */
270 	if (xc->esc_virq[prio])
271 		return 0;
272 
273 	/* Hook up the escalation interrupt */
274 	xc->esc_virq[prio] = irq_create_mapping(NULL, q->esc_irq);
275 	if (!xc->esc_virq[prio]) {
276 		pr_err("Failed to map escalation interrupt for queue %d of VCPU %d\n",
277 		       prio, xc->server_num);
278 		return -EIO;
279 	}
280 
281 	if (single_escalation)
282 		name = kasprintf(GFP_KERNEL, "kvm-%d-%d",
283 				 vcpu->kvm->arch.lpid, xc->server_num);
284 	else
285 		name = kasprintf(GFP_KERNEL, "kvm-%d-%d-%d",
286 				 vcpu->kvm->arch.lpid, xc->server_num, prio);
287 	if (!name) {
288 		pr_err("Failed to allocate escalation irq name for queue %d of VCPU %d\n",
289 		       prio, xc->server_num);
290 		rc = -ENOMEM;
291 		goto error;
292 	}
293 
294 	pr_devel("Escalation %s irq %d (prio %d)\n", name, xc->esc_virq[prio], prio);
295 
296 	rc = request_irq(xc->esc_virq[prio], xive_esc_irq,
297 			 IRQF_NO_THREAD, name, vcpu);
298 	if (rc) {
299 		pr_err("Failed to request escalation interrupt for queue %d of VCPU %d\n",
300 		       prio, xc->server_num);
301 		goto error;
302 	}
303 	xc->esc_virq_names[prio] = name;
304 
305 	/* In single escalation mode, we grab the ESB MMIO of the
306 	 * interrupt and mask it. Also populate the VCPU v/raddr
307 	 * of the ESB page for use by asm entry/exit code. Finally
308 	 * set the XIVE_IRQ_FLAG_NO_EOI flag which will prevent the
309 	 * core code from performing an EOI on the escalation
310 	 * interrupt, thus leaving it effectively masked after
311 	 * it fires once.
312 	 */
313 	if (single_escalation) {
314 		struct irq_data *d = irq_get_irq_data(xc->esc_virq[prio]);
315 		struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
316 
317 		xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01);
318 		vcpu->arch.xive_esc_raddr = xd->eoi_page;
319 		vcpu->arch.xive_esc_vaddr = (__force u64)xd->eoi_mmio;
320 		xd->flags |= XIVE_IRQ_FLAG_NO_EOI;
321 	}
322 
323 	return 0;
324 error:
325 	irq_dispose_mapping(xc->esc_virq[prio]);
326 	xc->esc_virq[prio] = 0;
327 	kfree(name);
328 	return rc;
329 }
330 
331 static int xive_provision_queue(struct kvm_vcpu *vcpu, u8 prio)
332 {
333 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
334 	struct kvmppc_xive *xive = xc->xive;
335 	struct xive_q *q =  &xc->queues[prio];
336 	void *qpage;
337 	int rc;
338 
339 	if (WARN_ON(q->qpage))
340 		return 0;
341 
342 	/* Allocate the queue and retrieve infos on current node for now */
343 	qpage = (__be32 *)__get_free_pages(GFP_KERNEL, xive->q_page_order);
344 	if (!qpage) {
345 		pr_err("Failed to allocate queue %d for VCPU %d\n",
346 		       prio, xc->server_num);
347 		return -ENOMEM;
348 	}
349 	memset(qpage, 0, 1 << xive->q_order);
350 
351 	/*
352 	 * Reconfigure the queue. This will set q->qpage only once the
353 	 * queue is fully configured. This is a requirement for prio 0
354 	 * as we will stop doing EOIs for every IPI as soon as we observe
355 	 * qpage being non-NULL, and instead will only EOI when we receive
356 	 * corresponding queue 0 entries
357 	 */
358 	rc = xive_native_configure_queue(xc->vp_id, q, prio, qpage,
359 					 xive->q_order, true);
360 	if (rc)
361 		pr_err("Failed to configure queue %d for VCPU %d\n",
362 		       prio, xc->server_num);
363 	return rc;
364 }
365 
366 /* Called with xive->lock held */
367 static int xive_check_provisioning(struct kvm *kvm, u8 prio)
368 {
369 	struct kvmppc_xive *xive = kvm->arch.xive;
370 	struct kvm_vcpu *vcpu;
371 	int i, rc;
372 
373 	lockdep_assert_held(&xive->lock);
374 
375 	/* Already provisioned ? */
376 	if (xive->qmap & (1 << prio))
377 		return 0;
378 
379 	pr_devel("Provisioning prio... %d\n", prio);
380 
381 	/* Provision each VCPU and enable escalations if needed */
382 	kvm_for_each_vcpu(i, vcpu, kvm) {
383 		if (!vcpu->arch.xive_vcpu)
384 			continue;
385 		rc = xive_provision_queue(vcpu, prio);
386 		if (rc == 0 && !kvmppc_xive_has_single_escalation(xive))
387 			kvmppc_xive_attach_escalation(vcpu, prio,
388 						      kvmppc_xive_has_single_escalation(xive));
389 		if (rc)
390 			return rc;
391 	}
392 
393 	/* Order previous stores and mark it as provisioned */
394 	mb();
395 	xive->qmap |= (1 << prio);
396 	return 0;
397 }
398 
399 static void xive_inc_q_pending(struct kvm *kvm, u32 server, u8 prio)
400 {
401 	struct kvm_vcpu *vcpu;
402 	struct kvmppc_xive_vcpu *xc;
403 	struct xive_q *q;
404 
405 	/* Locate target server */
406 	vcpu = kvmppc_xive_find_server(kvm, server);
407 	if (!vcpu) {
408 		pr_warn("%s: Can't find server %d\n", __func__, server);
409 		return;
410 	}
411 	xc = vcpu->arch.xive_vcpu;
412 	if (WARN_ON(!xc))
413 		return;
414 
415 	q = &xc->queues[prio];
416 	atomic_inc(&q->pending_count);
417 }
418 
419 static int xive_try_pick_queue(struct kvm_vcpu *vcpu, u8 prio)
420 {
421 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
422 	struct xive_q *q;
423 	u32 max;
424 
425 	if (WARN_ON(!xc))
426 		return -ENXIO;
427 	if (!xc->valid)
428 		return -ENXIO;
429 
430 	q = &xc->queues[prio];
431 	if (WARN_ON(!q->qpage))
432 		return -ENXIO;
433 
434 	/* Calculate max number of interrupts in that queue. */
435 	max = (q->msk + 1) - XIVE_Q_GAP;
436 	return atomic_add_unless(&q->count, 1, max) ? 0 : -EBUSY;
437 }
438 
439 int kvmppc_xive_select_target(struct kvm *kvm, u32 *server, u8 prio)
440 {
441 	struct kvm_vcpu *vcpu;
442 	int i, rc;
443 
444 	/* Locate target server */
445 	vcpu = kvmppc_xive_find_server(kvm, *server);
446 	if (!vcpu) {
447 		pr_devel("Can't find server %d\n", *server);
448 		return -EINVAL;
449 	}
450 
451 	pr_devel("Finding irq target on 0x%x/%d...\n", *server, prio);
452 
453 	/* Try pick it */
454 	rc = xive_try_pick_queue(vcpu, prio);
455 	if (rc == 0)
456 		return rc;
457 
458 	pr_devel(" .. failed, looking up candidate...\n");
459 
460 	/* Failed, pick another VCPU */
461 	kvm_for_each_vcpu(i, vcpu, kvm) {
462 		if (!vcpu->arch.xive_vcpu)
463 			continue;
464 		rc = xive_try_pick_queue(vcpu, prio);
465 		if (rc == 0) {
466 			*server = vcpu->arch.xive_vcpu->server_num;
467 			pr_devel("  found on 0x%x/%d\n", *server, prio);
468 			return rc;
469 		}
470 	}
471 	pr_devel("  no available target !\n");
472 
473 	/* No available target ! */
474 	return -EBUSY;
475 }
476 
477 static u8 xive_lock_and_mask(struct kvmppc_xive *xive,
478 			     struct kvmppc_xive_src_block *sb,
479 			     struct kvmppc_xive_irq_state *state)
480 {
481 	struct xive_irq_data *xd;
482 	u32 hw_num;
483 	u8 old_prio;
484 	u64 val;
485 
486 	/*
487 	 * Take the lock, set masked, try again if racing
488 	 * with H_EOI
489 	 */
490 	for (;;) {
491 		arch_spin_lock(&sb->lock);
492 		old_prio = state->guest_priority;
493 		state->guest_priority = MASKED;
494 		mb();
495 		if (!state->in_eoi)
496 			break;
497 		state->guest_priority = old_prio;
498 		arch_spin_unlock(&sb->lock);
499 	}
500 
501 	/* No change ? Bail */
502 	if (old_prio == MASKED)
503 		return old_prio;
504 
505 	/* Get the right irq */
506 	kvmppc_xive_select_irq(state, &hw_num, &xd);
507 
508 	/* Set PQ to 10, return old P and old Q and remember them */
509 	val = xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_10);
510 	state->old_p = !!(val & 2);
511 	state->old_q = !!(val & 1);
512 
513 	/*
514 	 * Synchronize hardware to sensure the queues are updated when
515 	 * masking
516 	 */
517 	xive_native_sync_source(hw_num);
518 
519 	return old_prio;
520 }
521 
522 static void xive_lock_for_unmask(struct kvmppc_xive_src_block *sb,
523 				 struct kvmppc_xive_irq_state *state)
524 {
525 	/*
526 	 * Take the lock try again if racing with H_EOI
527 	 */
528 	for (;;) {
529 		arch_spin_lock(&sb->lock);
530 		if (!state->in_eoi)
531 			break;
532 		arch_spin_unlock(&sb->lock);
533 	}
534 }
535 
536 static void xive_finish_unmask(struct kvmppc_xive *xive,
537 			       struct kvmppc_xive_src_block *sb,
538 			       struct kvmppc_xive_irq_state *state,
539 			       u8 prio)
540 {
541 	struct xive_irq_data *xd;
542 	u32 hw_num;
543 
544 	/* If we aren't changing a thing, move on */
545 	if (state->guest_priority != MASKED)
546 		goto bail;
547 
548 	/* Get the right irq */
549 	kvmppc_xive_select_irq(state, &hw_num, &xd);
550 
551 	/* Old Q set, set PQ to 11 */
552 	if (state->old_q)
553 		xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_11);
554 
555 	/*
556 	 * If not old P, then perform an "effective" EOI,
557 	 * on the source. This will handle the cases where
558 	 * FW EOI is needed.
559 	 */
560 	if (!state->old_p)
561 		xive_vm_source_eoi(hw_num, xd);
562 
563 	/* Synchronize ordering and mark unmasked */
564 	mb();
565 bail:
566 	state->guest_priority = prio;
567 }
568 
569 /*
570  * Target an interrupt to a given server/prio, this will fallback
571  * to another server if necessary and perform the HW targetting
572  * updates as needed
573  *
574  * NOTE: Must be called with the state lock held
575  */
576 static int xive_target_interrupt(struct kvm *kvm,
577 				 struct kvmppc_xive_irq_state *state,
578 				 u32 server, u8 prio)
579 {
580 	struct kvmppc_xive *xive = kvm->arch.xive;
581 	u32 hw_num;
582 	int rc;
583 
584 	/*
585 	 * This will return a tentative server and actual
586 	 * priority. The count for that new target will have
587 	 * already been incremented.
588 	 */
589 	rc = kvmppc_xive_select_target(kvm, &server, prio);
590 
591 	/*
592 	 * We failed to find a target ? Not much we can do
593 	 * at least until we support the GIQ.
594 	 */
595 	if (rc)
596 		return rc;
597 
598 	/*
599 	 * Increment the old queue pending count if there
600 	 * was one so that the old queue count gets adjusted later
601 	 * when observed to be empty.
602 	 */
603 	if (state->act_priority != MASKED)
604 		xive_inc_q_pending(kvm,
605 				   state->act_server,
606 				   state->act_priority);
607 	/*
608 	 * Update state and HW
609 	 */
610 	state->act_priority = prio;
611 	state->act_server = server;
612 
613 	/* Get the right irq */
614 	kvmppc_xive_select_irq(state, &hw_num, NULL);
615 
616 	return xive_native_configure_irq(hw_num,
617 					 kvmppc_xive_vp(xive, server),
618 					 prio, state->number);
619 }
620 
621 /*
622  * Targetting rules: In order to avoid losing track of
623  * pending interrupts accross mask and unmask, which would
624  * allow queue overflows, we implement the following rules:
625  *
626  *  - Unless it was never enabled (or we run out of capacity)
627  *    an interrupt is always targetted at a valid server/queue
628  *    pair even when "masked" by the guest. This pair tends to
629  *    be the last one used but it can be changed under some
630  *    circumstances. That allows us to separate targetting
631  *    from masking, we only handle accounting during (re)targetting,
632  *    this also allows us to let an interrupt drain into its target
633  *    queue after masking, avoiding complex schemes to remove
634  *    interrupts out of remote processor queues.
635  *
636  *  - When masking, we set PQ to 10 and save the previous value
637  *    of P and Q.
638  *
639  *  - When unmasking, if saved Q was set, we set PQ to 11
640  *    otherwise we leave PQ to the HW state which will be either
641  *    10 if nothing happened or 11 if the interrupt fired while
642  *    masked. Effectively we are OR'ing the previous Q into the
643  *    HW Q.
644  *
645  *    Then if saved P is clear, we do an effective EOI (Q->P->Trigger)
646  *    which will unmask the interrupt and shoot a new one if Q was
647  *    set.
648  *
649  *    Otherwise (saved P is set) we leave PQ unchanged (so 10 or 11,
650  *    effectively meaning an H_EOI from the guest is still expected
651  *    for that interrupt).
652  *
653  *  - If H_EOI occurs while masked, we clear the saved P.
654  *
655  *  - When changing target, we account on the new target and
656  *    increment a separate "pending" counter on the old one.
657  *    This pending counter will be used to decrement the old
658  *    target's count when its queue has been observed empty.
659  */
660 
661 int kvmppc_xive_set_xive(struct kvm *kvm, u32 irq, u32 server,
662 			 u32 priority)
663 {
664 	struct kvmppc_xive *xive = kvm->arch.xive;
665 	struct kvmppc_xive_src_block *sb;
666 	struct kvmppc_xive_irq_state *state;
667 	u8 new_act_prio;
668 	int rc = 0;
669 	u16 idx;
670 
671 	if (!xive)
672 		return -ENODEV;
673 
674 	pr_devel("set_xive ! irq 0x%x server 0x%x prio %d\n",
675 		 irq, server, priority);
676 
677 	/* First, check provisioning of queues */
678 	if (priority != MASKED) {
679 		mutex_lock(&xive->lock);
680 		rc = xive_check_provisioning(xive->kvm,
681 			      xive_prio_from_guest(priority));
682 		mutex_unlock(&xive->lock);
683 	}
684 	if (rc) {
685 		pr_devel("  provisioning failure %d !\n", rc);
686 		return rc;
687 	}
688 
689 	sb = kvmppc_xive_find_source(xive, irq, &idx);
690 	if (!sb)
691 		return -EINVAL;
692 	state = &sb->irq_state[idx];
693 
694 	/*
695 	 * We first handle masking/unmasking since the locking
696 	 * might need to be retried due to EOIs, we'll handle
697 	 * targetting changes later. These functions will return
698 	 * with the SB lock held.
699 	 *
700 	 * xive_lock_and_mask() will also set state->guest_priority
701 	 * but won't otherwise change other fields of the state.
702 	 *
703 	 * xive_lock_for_unmask will not actually unmask, this will
704 	 * be done later by xive_finish_unmask() once the targetting
705 	 * has been done, so we don't try to unmask an interrupt
706 	 * that hasn't yet been targetted.
707 	 */
708 	if (priority == MASKED)
709 		xive_lock_and_mask(xive, sb, state);
710 	else
711 		xive_lock_for_unmask(sb, state);
712 
713 
714 	/*
715 	 * Then we handle targetting.
716 	 *
717 	 * First calculate a new "actual priority"
718 	 */
719 	new_act_prio = state->act_priority;
720 	if (priority != MASKED)
721 		new_act_prio = xive_prio_from_guest(priority);
722 
723 	pr_devel(" new_act_prio=%x act_server=%x act_prio=%x\n",
724 		 new_act_prio, state->act_server, state->act_priority);
725 
726 	/*
727 	 * Then check if we actually need to change anything,
728 	 *
729 	 * The condition for re-targetting the interrupt is that
730 	 * we have a valid new priority (new_act_prio is not 0xff)
731 	 * and either the server or the priority changed.
732 	 *
733 	 * Note: If act_priority was ff and the new priority is
734 	 *       also ff, we don't do anything and leave the interrupt
735 	 *       untargetted. An attempt of doing an int_on on an
736 	 *       untargetted interrupt will fail. If that is a problem
737 	 *       we could initialize interrupts with valid default
738 	 */
739 
740 	if (new_act_prio != MASKED &&
741 	    (state->act_server != server ||
742 	     state->act_priority != new_act_prio))
743 		rc = xive_target_interrupt(kvm, state, server, new_act_prio);
744 
745 	/*
746 	 * Perform the final unmasking of the interrupt source
747 	 * if necessary
748 	 */
749 	if (priority != MASKED)
750 		xive_finish_unmask(xive, sb, state, priority);
751 
752 	/*
753 	 * Finally Update saved_priority to match. Only int_on/off
754 	 * set this field to a different value.
755 	 */
756 	state->saved_priority = priority;
757 
758 	arch_spin_unlock(&sb->lock);
759 	return rc;
760 }
761 
762 int kvmppc_xive_get_xive(struct kvm *kvm, u32 irq, u32 *server,
763 			 u32 *priority)
764 {
765 	struct kvmppc_xive *xive = kvm->arch.xive;
766 	struct kvmppc_xive_src_block *sb;
767 	struct kvmppc_xive_irq_state *state;
768 	u16 idx;
769 
770 	if (!xive)
771 		return -ENODEV;
772 
773 	sb = kvmppc_xive_find_source(xive, irq, &idx);
774 	if (!sb)
775 		return -EINVAL;
776 	state = &sb->irq_state[idx];
777 	arch_spin_lock(&sb->lock);
778 	*server = state->act_server;
779 	*priority = state->guest_priority;
780 	arch_spin_unlock(&sb->lock);
781 
782 	return 0;
783 }
784 
785 int kvmppc_xive_int_on(struct kvm *kvm, u32 irq)
786 {
787 	struct kvmppc_xive *xive = kvm->arch.xive;
788 	struct kvmppc_xive_src_block *sb;
789 	struct kvmppc_xive_irq_state *state;
790 	u16 idx;
791 
792 	if (!xive)
793 		return -ENODEV;
794 
795 	sb = kvmppc_xive_find_source(xive, irq, &idx);
796 	if (!sb)
797 		return -EINVAL;
798 	state = &sb->irq_state[idx];
799 
800 	pr_devel("int_on(irq=0x%x)\n", irq);
801 
802 	/*
803 	 * Check if interrupt was not targetted
804 	 */
805 	if (state->act_priority == MASKED) {
806 		pr_devel("int_on on untargetted interrupt\n");
807 		return -EINVAL;
808 	}
809 
810 	/* If saved_priority is 0xff, do nothing */
811 	if (state->saved_priority == MASKED)
812 		return 0;
813 
814 	/*
815 	 * Lock and unmask it.
816 	 */
817 	xive_lock_for_unmask(sb, state);
818 	xive_finish_unmask(xive, sb, state, state->saved_priority);
819 	arch_spin_unlock(&sb->lock);
820 
821 	return 0;
822 }
823 
824 int kvmppc_xive_int_off(struct kvm *kvm, u32 irq)
825 {
826 	struct kvmppc_xive *xive = kvm->arch.xive;
827 	struct kvmppc_xive_src_block *sb;
828 	struct kvmppc_xive_irq_state *state;
829 	u16 idx;
830 
831 	if (!xive)
832 		return -ENODEV;
833 
834 	sb = kvmppc_xive_find_source(xive, irq, &idx);
835 	if (!sb)
836 		return -EINVAL;
837 	state = &sb->irq_state[idx];
838 
839 	pr_devel("int_off(irq=0x%x)\n", irq);
840 
841 	/*
842 	 * Lock and mask
843 	 */
844 	state->saved_priority = xive_lock_and_mask(xive, sb, state);
845 	arch_spin_unlock(&sb->lock);
846 
847 	return 0;
848 }
849 
850 static bool xive_restore_pending_irq(struct kvmppc_xive *xive, u32 irq)
851 {
852 	struct kvmppc_xive_src_block *sb;
853 	struct kvmppc_xive_irq_state *state;
854 	u16 idx;
855 
856 	sb = kvmppc_xive_find_source(xive, irq, &idx);
857 	if (!sb)
858 		return false;
859 	state = &sb->irq_state[idx];
860 	if (!state->valid)
861 		return false;
862 
863 	/*
864 	 * Trigger the IPI. This assumes we never restore a pass-through
865 	 * interrupt which should be safe enough
866 	 */
867 	xive_irq_trigger(&state->ipi_data);
868 
869 	return true;
870 }
871 
872 u64 kvmppc_xive_get_icp(struct kvm_vcpu *vcpu)
873 {
874 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
875 
876 	if (!xc)
877 		return 0;
878 
879 	/* Return the per-cpu state for state saving/migration */
880 	return (u64)xc->cppr << KVM_REG_PPC_ICP_CPPR_SHIFT |
881 	       (u64)xc->mfrr << KVM_REG_PPC_ICP_MFRR_SHIFT |
882 	       (u64)0xff << KVM_REG_PPC_ICP_PPRI_SHIFT;
883 }
884 
885 int kvmppc_xive_set_icp(struct kvm_vcpu *vcpu, u64 icpval)
886 {
887 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
888 	struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
889 	u8 cppr, mfrr;
890 	u32 xisr;
891 
892 	if (!xc || !xive)
893 		return -ENOENT;
894 
895 	/* Grab individual state fields. We don't use pending_pri */
896 	cppr = icpval >> KVM_REG_PPC_ICP_CPPR_SHIFT;
897 	xisr = (icpval >> KVM_REG_PPC_ICP_XISR_SHIFT) &
898 		KVM_REG_PPC_ICP_XISR_MASK;
899 	mfrr = icpval >> KVM_REG_PPC_ICP_MFRR_SHIFT;
900 
901 	pr_devel("set_icp vcpu %d cppr=0x%x mfrr=0x%x xisr=0x%x\n",
902 		 xc->server_num, cppr, mfrr, xisr);
903 
904 	/*
905 	 * We can't update the state of a "pushed" VCPU, but that
906 	 * shouldn't happen because the vcpu->mutex makes running a
907 	 * vcpu mutually exclusive with doing one_reg get/set on it.
908 	 */
909 	if (WARN_ON(vcpu->arch.xive_pushed))
910 		return -EIO;
911 
912 	/* Update VCPU HW saved state */
913 	vcpu->arch.xive_saved_state.cppr = cppr;
914 	xc->hw_cppr = xc->cppr = cppr;
915 
916 	/*
917 	 * Update MFRR state. If it's not 0xff, we mark the VCPU as
918 	 * having a pending MFRR change, which will re-evaluate the
919 	 * target. The VCPU will thus potentially get a spurious
920 	 * interrupt but that's not a big deal.
921 	 */
922 	xc->mfrr = mfrr;
923 	if (mfrr < cppr)
924 		xive_irq_trigger(&xc->vp_ipi_data);
925 
926 	/*
927 	 * Now saved XIRR is "interesting". It means there's something in
928 	 * the legacy "1 element" queue... for an IPI we simply ignore it,
929 	 * as the MFRR restore will handle that. For anything else we need
930 	 * to force a resend of the source.
931 	 * However the source may not have been setup yet. If that's the
932 	 * case, we keep that info and increment a counter in the xive to
933 	 * tell subsequent xive_set_source() to go look.
934 	 */
935 	if (xisr > XICS_IPI && !xive_restore_pending_irq(xive, xisr)) {
936 		xc->delayed_irq = xisr;
937 		xive->delayed_irqs++;
938 		pr_devel("  xisr restore delayed\n");
939 	}
940 
941 	return 0;
942 }
943 
944 int kvmppc_xive_set_mapped(struct kvm *kvm, unsigned long guest_irq,
945 			   unsigned long host_irq)
946 {
947 	struct kvmppc_xive *xive = kvm->arch.xive;
948 	struct kvmppc_xive_src_block *sb;
949 	struct kvmppc_xive_irq_state *state;
950 	struct irq_data *host_data =
951 		irq_domain_get_irq_data(irq_get_default_host(), host_irq);
952 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(host_data);
953 	u16 idx;
954 	u8 prio;
955 	int rc;
956 
957 	if (!xive)
958 		return -ENODEV;
959 
960 	pr_debug("%s: GIRQ 0x%lx host IRQ %ld XIVE HW IRQ 0x%x\n",
961 		 __func__, guest_irq, host_irq, hw_irq);
962 
963 	sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
964 	if (!sb)
965 		return -EINVAL;
966 	state = &sb->irq_state[idx];
967 
968 	/*
969 	 * Mark the passed-through interrupt as going to a VCPU,
970 	 * this will prevent further EOIs and similar operations
971 	 * from the XIVE code. It will also mask the interrupt
972 	 * to either PQ=10 or 11 state, the latter if the interrupt
973 	 * is pending. This will allow us to unmask or retrigger it
974 	 * after routing it to the guest with a simple EOI.
975 	 *
976 	 * The "state" argument is a "token", all it needs is to be
977 	 * non-NULL to switch to passed-through or NULL for the
978 	 * other way around. We may not yet have an actual VCPU
979 	 * target here and we don't really care.
980 	 */
981 	rc = irq_set_vcpu_affinity(host_irq, state);
982 	if (rc) {
983 		pr_err("Failed to set VCPU affinity for host IRQ %ld\n", host_irq);
984 		return rc;
985 	}
986 
987 	/*
988 	 * Mask and read state of IPI. We need to know if its P bit
989 	 * is set as that means it's potentially already using a
990 	 * queue entry in the target
991 	 */
992 	prio = xive_lock_and_mask(xive, sb, state);
993 	pr_devel(" old IPI prio %02x P:%d Q:%d\n", prio,
994 		 state->old_p, state->old_q);
995 
996 	/* Turn the IPI hard off */
997 	xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
998 
999 	/*
1000 	 * Reset ESB guest mapping. Needed when ESB pages are exposed
1001 	 * to the guest in XIVE native mode
1002 	 */
1003 	if (xive->ops && xive->ops->reset_mapped)
1004 		xive->ops->reset_mapped(kvm, guest_irq);
1005 
1006 	/* Grab info about irq */
1007 	state->pt_number = hw_irq;
1008 	state->pt_data = irq_data_get_irq_handler_data(host_data);
1009 
1010 	/*
1011 	 * Configure the IRQ to match the existing configuration of
1012 	 * the IPI if it was already targetted. Otherwise this will
1013 	 * mask the interrupt in a lossy way (act_priority is 0xff)
1014 	 * which is fine for a never started interrupt.
1015 	 */
1016 	xive_native_configure_irq(hw_irq,
1017 				  kvmppc_xive_vp(xive, state->act_server),
1018 				  state->act_priority, state->number);
1019 
1020 	/*
1021 	 * We do an EOI to enable the interrupt (and retrigger if needed)
1022 	 * if the guest has the interrupt unmasked and the P bit was *not*
1023 	 * set in the IPI. If it was set, we know a slot may still be in
1024 	 * use in the target queue thus we have to wait for a guest
1025 	 * originated EOI
1026 	 */
1027 	if (prio != MASKED && !state->old_p)
1028 		xive_vm_source_eoi(hw_irq, state->pt_data);
1029 
1030 	/* Clear old_p/old_q as they are no longer relevant */
1031 	state->old_p = state->old_q = false;
1032 
1033 	/* Restore guest prio (unlocks EOI) */
1034 	mb();
1035 	state->guest_priority = prio;
1036 	arch_spin_unlock(&sb->lock);
1037 
1038 	return 0;
1039 }
1040 EXPORT_SYMBOL_GPL(kvmppc_xive_set_mapped);
1041 
1042 int kvmppc_xive_clr_mapped(struct kvm *kvm, unsigned long guest_irq,
1043 			   unsigned long host_irq)
1044 {
1045 	struct kvmppc_xive *xive = kvm->arch.xive;
1046 	struct kvmppc_xive_src_block *sb;
1047 	struct kvmppc_xive_irq_state *state;
1048 	u16 idx;
1049 	u8 prio;
1050 	int rc;
1051 
1052 	if (!xive)
1053 		return -ENODEV;
1054 
1055 	pr_debug("%s: GIRQ 0x%lx host IRQ %ld\n", __func__, guest_irq, host_irq);
1056 
1057 	sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
1058 	if (!sb)
1059 		return -EINVAL;
1060 	state = &sb->irq_state[idx];
1061 
1062 	/*
1063 	 * Mask and read state of IRQ. We need to know if its P bit
1064 	 * is set as that means it's potentially already using a
1065 	 * queue entry in the target
1066 	 */
1067 	prio = xive_lock_and_mask(xive, sb, state);
1068 	pr_devel(" old IRQ prio %02x P:%d Q:%d\n", prio,
1069 		 state->old_p, state->old_q);
1070 
1071 	/*
1072 	 * If old_p is set, the interrupt is pending, we switch it to
1073 	 * PQ=11. This will force a resend in the host so the interrupt
1074 	 * isn't lost to whatver host driver may pick it up
1075 	 */
1076 	if (state->old_p)
1077 		xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_11);
1078 
1079 	/* Release the passed-through interrupt to the host */
1080 	rc = irq_set_vcpu_affinity(host_irq, NULL);
1081 	if (rc) {
1082 		pr_err("Failed to clr VCPU affinity for host IRQ %ld\n", host_irq);
1083 		return rc;
1084 	}
1085 
1086 	/* Forget about the IRQ */
1087 	state->pt_number = 0;
1088 	state->pt_data = NULL;
1089 
1090 	/*
1091 	 * Reset ESB guest mapping. Needed when ESB pages are exposed
1092 	 * to the guest in XIVE native mode
1093 	 */
1094 	if (xive->ops && xive->ops->reset_mapped) {
1095 		xive->ops->reset_mapped(kvm, guest_irq);
1096 	}
1097 
1098 	/* Reconfigure the IPI */
1099 	xive_native_configure_irq(state->ipi_number,
1100 				  kvmppc_xive_vp(xive, state->act_server),
1101 				  state->act_priority, state->number);
1102 
1103 	/*
1104 	 * If old_p is set (we have a queue entry potentially
1105 	 * occupied) or the interrupt is masked, we set the IPI
1106 	 * to PQ=10 state. Otherwise we just re-enable it (PQ=00).
1107 	 */
1108 	if (prio == MASKED || state->old_p)
1109 		xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_10);
1110 	else
1111 		xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_00);
1112 
1113 	/* Restore guest prio (unlocks EOI) */
1114 	mb();
1115 	state->guest_priority = prio;
1116 	arch_spin_unlock(&sb->lock);
1117 
1118 	return 0;
1119 }
1120 EXPORT_SYMBOL_GPL(kvmppc_xive_clr_mapped);
1121 
1122 void kvmppc_xive_disable_vcpu_interrupts(struct kvm_vcpu *vcpu)
1123 {
1124 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1125 	struct kvm *kvm = vcpu->kvm;
1126 	struct kvmppc_xive *xive = kvm->arch.xive;
1127 	int i, j;
1128 
1129 	for (i = 0; i <= xive->max_sbid; i++) {
1130 		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1131 
1132 		if (!sb)
1133 			continue;
1134 		for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) {
1135 			struct kvmppc_xive_irq_state *state = &sb->irq_state[j];
1136 
1137 			if (!state->valid)
1138 				continue;
1139 			if (state->act_priority == MASKED)
1140 				continue;
1141 			if (state->act_server != xc->server_num)
1142 				continue;
1143 
1144 			/* Clean it up */
1145 			arch_spin_lock(&sb->lock);
1146 			state->act_priority = MASKED;
1147 			xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
1148 			xive_native_configure_irq(state->ipi_number, 0, MASKED, 0);
1149 			if (state->pt_number) {
1150 				xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_01);
1151 				xive_native_configure_irq(state->pt_number, 0, MASKED, 0);
1152 			}
1153 			arch_spin_unlock(&sb->lock);
1154 		}
1155 	}
1156 
1157 	/* Disable vcpu's escalation interrupt */
1158 	if (vcpu->arch.xive_esc_on) {
1159 		__raw_readq((void __iomem *)(vcpu->arch.xive_esc_vaddr +
1160 					     XIVE_ESB_SET_PQ_01));
1161 		vcpu->arch.xive_esc_on = false;
1162 	}
1163 
1164 	/*
1165 	 * Clear pointers to escalation interrupt ESB.
1166 	 * This is safe because the vcpu->mutex is held, preventing
1167 	 * any other CPU from concurrently executing a KVM_RUN ioctl.
1168 	 */
1169 	vcpu->arch.xive_esc_vaddr = 0;
1170 	vcpu->arch.xive_esc_raddr = 0;
1171 }
1172 
1173 /*
1174  * In single escalation mode, the escalation interrupt is marked so
1175  * that EOI doesn't re-enable it, but just sets the stale_p flag to
1176  * indicate that the P bit has already been dealt with.  However, the
1177  * assembly code that enters the guest sets PQ to 00 without clearing
1178  * stale_p (because it has no easy way to address it).  Hence we have
1179  * to adjust stale_p before shutting down the interrupt.
1180  */
1181 void xive_cleanup_single_escalation(struct kvm_vcpu *vcpu,
1182 				    struct kvmppc_xive_vcpu *xc, int irq)
1183 {
1184 	struct irq_data *d = irq_get_irq_data(irq);
1185 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
1186 
1187 	/*
1188 	 * This slightly odd sequence gives the right result
1189 	 * (i.e. stale_p set if xive_esc_on is false) even if
1190 	 * we race with xive_esc_irq() and xive_irq_eoi().
1191 	 */
1192 	xd->stale_p = false;
1193 	smp_mb();		/* paired with smb_wmb in xive_esc_irq */
1194 	if (!vcpu->arch.xive_esc_on)
1195 		xd->stale_p = true;
1196 }
1197 
1198 void kvmppc_xive_cleanup_vcpu(struct kvm_vcpu *vcpu)
1199 {
1200 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1201 	struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
1202 	int i;
1203 
1204 	if (!kvmppc_xics_enabled(vcpu))
1205 		return;
1206 
1207 	if (!xc)
1208 		return;
1209 
1210 	pr_devel("cleanup_vcpu(cpu=%d)\n", xc->server_num);
1211 
1212 	/* Ensure no interrupt is still routed to that VP */
1213 	xc->valid = false;
1214 	kvmppc_xive_disable_vcpu_interrupts(vcpu);
1215 
1216 	/* Mask the VP IPI */
1217 	xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_01);
1218 
1219 	/* Free escalations */
1220 	for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1221 		if (xc->esc_virq[i]) {
1222 			if (kvmppc_xive_has_single_escalation(xc->xive))
1223 				xive_cleanup_single_escalation(vcpu, xc,
1224 							xc->esc_virq[i]);
1225 			free_irq(xc->esc_virq[i], vcpu);
1226 			irq_dispose_mapping(xc->esc_virq[i]);
1227 			kfree(xc->esc_virq_names[i]);
1228 		}
1229 	}
1230 
1231 	/* Disable the VP */
1232 	xive_native_disable_vp(xc->vp_id);
1233 
1234 	/* Clear the cam word so guest entry won't try to push context */
1235 	vcpu->arch.xive_cam_word = 0;
1236 
1237 	/* Free the queues */
1238 	for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1239 		struct xive_q *q = &xc->queues[i];
1240 
1241 		xive_native_disable_queue(xc->vp_id, q, i);
1242 		if (q->qpage) {
1243 			free_pages((unsigned long)q->qpage,
1244 				   xive->q_page_order);
1245 			q->qpage = NULL;
1246 		}
1247 	}
1248 
1249 	/* Free the IPI */
1250 	if (xc->vp_ipi) {
1251 		xive_cleanup_irq_data(&xc->vp_ipi_data);
1252 		xive_native_free_irq(xc->vp_ipi);
1253 	}
1254 	/* Free the VP */
1255 	kfree(xc);
1256 
1257 	/* Cleanup the vcpu */
1258 	vcpu->arch.irq_type = KVMPPC_IRQ_DEFAULT;
1259 	vcpu->arch.xive_vcpu = NULL;
1260 }
1261 
1262 static bool kvmppc_xive_vcpu_id_valid(struct kvmppc_xive *xive, u32 cpu)
1263 {
1264 	/* We have a block of xive->nr_servers VPs. We just need to check
1265 	 * packed vCPU ids are below that.
1266 	 */
1267 	return kvmppc_pack_vcpu_id(xive->kvm, cpu) < xive->nr_servers;
1268 }
1269 
1270 int kvmppc_xive_compute_vp_id(struct kvmppc_xive *xive, u32 cpu, u32 *vp)
1271 {
1272 	u32 vp_id;
1273 
1274 	if (!kvmppc_xive_vcpu_id_valid(xive, cpu)) {
1275 		pr_devel("Out of bounds !\n");
1276 		return -EINVAL;
1277 	}
1278 
1279 	if (xive->vp_base == XIVE_INVALID_VP) {
1280 		xive->vp_base = xive_native_alloc_vp_block(xive->nr_servers);
1281 		pr_devel("VP_Base=%x nr_servers=%d\n", xive->vp_base, xive->nr_servers);
1282 
1283 		if (xive->vp_base == XIVE_INVALID_VP)
1284 			return -ENOSPC;
1285 	}
1286 
1287 	vp_id = kvmppc_xive_vp(xive, cpu);
1288 	if (kvmppc_xive_vp_in_use(xive->kvm, vp_id)) {
1289 		pr_devel("Duplicate !\n");
1290 		return -EEXIST;
1291 	}
1292 
1293 	*vp = vp_id;
1294 
1295 	return 0;
1296 }
1297 
1298 int kvmppc_xive_connect_vcpu(struct kvm_device *dev,
1299 			     struct kvm_vcpu *vcpu, u32 cpu)
1300 {
1301 	struct kvmppc_xive *xive = dev->private;
1302 	struct kvmppc_xive_vcpu *xc;
1303 	int i, r = -EBUSY;
1304 	u32 vp_id;
1305 
1306 	pr_devel("connect_vcpu(cpu=%d)\n", cpu);
1307 
1308 	if (dev->ops != &kvm_xive_ops) {
1309 		pr_devel("Wrong ops !\n");
1310 		return -EPERM;
1311 	}
1312 	if (xive->kvm != vcpu->kvm)
1313 		return -EPERM;
1314 	if (vcpu->arch.irq_type != KVMPPC_IRQ_DEFAULT)
1315 		return -EBUSY;
1316 
1317 	/* We need to synchronize with queue provisioning */
1318 	mutex_lock(&xive->lock);
1319 
1320 	r = kvmppc_xive_compute_vp_id(xive, cpu, &vp_id);
1321 	if (r)
1322 		goto bail;
1323 
1324 	xc = kzalloc(sizeof(*xc), GFP_KERNEL);
1325 	if (!xc) {
1326 		r = -ENOMEM;
1327 		goto bail;
1328 	}
1329 
1330 	vcpu->arch.xive_vcpu = xc;
1331 	xc->xive = xive;
1332 	xc->vcpu = vcpu;
1333 	xc->server_num = cpu;
1334 	xc->vp_id = vp_id;
1335 	xc->mfrr = 0xff;
1336 	xc->valid = true;
1337 
1338 	r = xive_native_get_vp_info(xc->vp_id, &xc->vp_cam, &xc->vp_chip_id);
1339 	if (r)
1340 		goto bail;
1341 
1342 	if (!kvmppc_xive_check_save_restore(vcpu)) {
1343 		pr_err("inconsistent save-restore setup for VCPU %d\n", cpu);
1344 		r = -EIO;
1345 		goto bail;
1346 	}
1347 
1348 	/* Configure VCPU fields for use by assembly push/pull */
1349 	vcpu->arch.xive_saved_state.w01 = cpu_to_be64(0xff000000);
1350 	vcpu->arch.xive_cam_word = cpu_to_be32(xc->vp_cam | TM_QW1W2_VO);
1351 
1352 	/* Allocate IPI */
1353 	xc->vp_ipi = xive_native_alloc_irq();
1354 	if (!xc->vp_ipi) {
1355 		pr_err("Failed to allocate xive irq for VCPU IPI\n");
1356 		r = -EIO;
1357 		goto bail;
1358 	}
1359 	pr_devel(" IPI=0x%x\n", xc->vp_ipi);
1360 
1361 	r = xive_native_populate_irq_data(xc->vp_ipi, &xc->vp_ipi_data);
1362 	if (r)
1363 		goto bail;
1364 
1365 	/*
1366 	 * Enable the VP first as the single escalation mode will
1367 	 * affect escalation interrupts numbering
1368 	 */
1369 	r = xive_native_enable_vp(xc->vp_id, kvmppc_xive_has_single_escalation(xive));
1370 	if (r) {
1371 		pr_err("Failed to enable VP in OPAL, err %d\n", r);
1372 		goto bail;
1373 	}
1374 
1375 	/*
1376 	 * Initialize queues. Initially we set them all for no queueing
1377 	 * and we enable escalation for queue 0 only which we'll use for
1378 	 * our mfrr change notifications. If the VCPU is hot-plugged, we
1379 	 * do handle provisioning however based on the existing "map"
1380 	 * of enabled queues.
1381 	 */
1382 	for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1383 		struct xive_q *q = &xc->queues[i];
1384 
1385 		/* Single escalation, no queue 7 */
1386 		if (i == 7 && kvmppc_xive_has_single_escalation(xive))
1387 			break;
1388 
1389 		/* Is queue already enabled ? Provision it */
1390 		if (xive->qmap & (1 << i)) {
1391 			r = xive_provision_queue(vcpu, i);
1392 			if (r == 0 && !kvmppc_xive_has_single_escalation(xive))
1393 				kvmppc_xive_attach_escalation(
1394 					vcpu, i, kvmppc_xive_has_single_escalation(xive));
1395 			if (r)
1396 				goto bail;
1397 		} else {
1398 			r = xive_native_configure_queue(xc->vp_id,
1399 							q, i, NULL, 0, true);
1400 			if (r) {
1401 				pr_err("Failed to configure queue %d for VCPU %d\n",
1402 				       i, cpu);
1403 				goto bail;
1404 			}
1405 		}
1406 	}
1407 
1408 	/* If not done above, attach priority 0 escalation */
1409 	r = kvmppc_xive_attach_escalation(vcpu, 0, kvmppc_xive_has_single_escalation(xive));
1410 	if (r)
1411 		goto bail;
1412 
1413 	/* Route the IPI */
1414 	r = xive_native_configure_irq(xc->vp_ipi, xc->vp_id, 0, XICS_IPI);
1415 	if (!r)
1416 		xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_00);
1417 
1418 bail:
1419 	mutex_unlock(&xive->lock);
1420 	if (r) {
1421 		kvmppc_xive_cleanup_vcpu(vcpu);
1422 		return r;
1423 	}
1424 
1425 	vcpu->arch.irq_type = KVMPPC_IRQ_XICS;
1426 	return 0;
1427 }
1428 
1429 /*
1430  * Scanning of queues before/after migration save
1431  */
1432 static void xive_pre_save_set_queued(struct kvmppc_xive *xive, u32 irq)
1433 {
1434 	struct kvmppc_xive_src_block *sb;
1435 	struct kvmppc_xive_irq_state *state;
1436 	u16 idx;
1437 
1438 	sb = kvmppc_xive_find_source(xive, irq, &idx);
1439 	if (!sb)
1440 		return;
1441 
1442 	state = &sb->irq_state[idx];
1443 
1444 	/* Some sanity checking */
1445 	if (!state->valid) {
1446 		pr_err("invalid irq 0x%x in cpu queue!\n", irq);
1447 		return;
1448 	}
1449 
1450 	/*
1451 	 * If the interrupt is in a queue it should have P set.
1452 	 * We warn so that gets reported. A backtrace isn't useful
1453 	 * so no need to use a WARN_ON.
1454 	 */
1455 	if (!state->saved_p)
1456 		pr_err("Interrupt 0x%x is marked in a queue but P not set !\n", irq);
1457 
1458 	/* Set flag */
1459 	state->in_queue = true;
1460 }
1461 
1462 static void xive_pre_save_mask_irq(struct kvmppc_xive *xive,
1463 				   struct kvmppc_xive_src_block *sb,
1464 				   u32 irq)
1465 {
1466 	struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
1467 
1468 	if (!state->valid)
1469 		return;
1470 
1471 	/* Mask and save state, this will also sync HW queues */
1472 	state->saved_scan_prio = xive_lock_and_mask(xive, sb, state);
1473 
1474 	/* Transfer P and Q */
1475 	state->saved_p = state->old_p;
1476 	state->saved_q = state->old_q;
1477 
1478 	/* Unlock */
1479 	arch_spin_unlock(&sb->lock);
1480 }
1481 
1482 static void xive_pre_save_unmask_irq(struct kvmppc_xive *xive,
1483 				     struct kvmppc_xive_src_block *sb,
1484 				     u32 irq)
1485 {
1486 	struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
1487 
1488 	if (!state->valid)
1489 		return;
1490 
1491 	/*
1492 	 * Lock / exclude EOI (not technically necessary if the
1493 	 * guest isn't running concurrently. If this becomes a
1494 	 * performance issue we can probably remove the lock.
1495 	 */
1496 	xive_lock_for_unmask(sb, state);
1497 
1498 	/* Restore mask/prio if it wasn't masked */
1499 	if (state->saved_scan_prio != MASKED)
1500 		xive_finish_unmask(xive, sb, state, state->saved_scan_prio);
1501 
1502 	/* Unlock */
1503 	arch_spin_unlock(&sb->lock);
1504 }
1505 
1506 static void xive_pre_save_queue(struct kvmppc_xive *xive, struct xive_q *q)
1507 {
1508 	u32 idx = q->idx;
1509 	u32 toggle = q->toggle;
1510 	u32 irq;
1511 
1512 	do {
1513 		irq = __xive_read_eq(q->qpage, q->msk, &idx, &toggle);
1514 		if (irq > XICS_IPI)
1515 			xive_pre_save_set_queued(xive, irq);
1516 	} while(irq);
1517 }
1518 
1519 static void xive_pre_save_scan(struct kvmppc_xive *xive)
1520 {
1521 	struct kvm_vcpu *vcpu = NULL;
1522 	int i, j;
1523 
1524 	/*
1525 	 * See comment in xive_get_source() about how this
1526 	 * work. Collect a stable state for all interrupts
1527 	 */
1528 	for (i = 0; i <= xive->max_sbid; i++) {
1529 		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1530 		if (!sb)
1531 			continue;
1532 		for (j = 0;  j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1533 			xive_pre_save_mask_irq(xive, sb, j);
1534 	}
1535 
1536 	/* Then scan the queues and update the "in_queue" flag */
1537 	kvm_for_each_vcpu(i, vcpu, xive->kvm) {
1538 		struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1539 		if (!xc)
1540 			continue;
1541 		for (j = 0; j < KVMPPC_XIVE_Q_COUNT; j++) {
1542 			if (xc->queues[j].qpage)
1543 				xive_pre_save_queue(xive, &xc->queues[j]);
1544 		}
1545 	}
1546 
1547 	/* Finally restore interrupt states */
1548 	for (i = 0; i <= xive->max_sbid; i++) {
1549 		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1550 		if (!sb)
1551 			continue;
1552 		for (j = 0;  j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1553 			xive_pre_save_unmask_irq(xive, sb, j);
1554 	}
1555 }
1556 
1557 static void xive_post_save_scan(struct kvmppc_xive *xive)
1558 {
1559 	u32 i, j;
1560 
1561 	/* Clear all the in_queue flags */
1562 	for (i = 0; i <= xive->max_sbid; i++) {
1563 		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1564 		if (!sb)
1565 			continue;
1566 		for (j = 0;  j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1567 			sb->irq_state[j].in_queue = false;
1568 	}
1569 
1570 	/* Next get_source() will do a new scan */
1571 	xive->saved_src_count = 0;
1572 }
1573 
1574 /*
1575  * This returns the source configuration and state to user space.
1576  */
1577 static int xive_get_source(struct kvmppc_xive *xive, long irq, u64 addr)
1578 {
1579 	struct kvmppc_xive_src_block *sb;
1580 	struct kvmppc_xive_irq_state *state;
1581 	u64 __user *ubufp = (u64 __user *) addr;
1582 	u64 val, prio;
1583 	u16 idx;
1584 
1585 	sb = kvmppc_xive_find_source(xive, irq, &idx);
1586 	if (!sb)
1587 		return -ENOENT;
1588 
1589 	state = &sb->irq_state[idx];
1590 
1591 	if (!state->valid)
1592 		return -ENOENT;
1593 
1594 	pr_devel("get_source(%ld)...\n", irq);
1595 
1596 	/*
1597 	 * So to properly save the state into something that looks like a
1598 	 * XICS migration stream we cannot treat interrupts individually.
1599 	 *
1600 	 * We need, instead, mask them all (& save their previous PQ state)
1601 	 * to get a stable state in the HW, then sync them to ensure that
1602 	 * any interrupt that had already fired hits its queue, and finally
1603 	 * scan all the queues to collect which interrupts are still present
1604 	 * in the queues, so we can set the "pending" flag on them and
1605 	 * they can be resent on restore.
1606 	 *
1607 	 * So we do it all when the "first" interrupt gets saved, all the
1608 	 * state is collected at that point, the rest of xive_get_source()
1609 	 * will merely collect and convert that state to the expected
1610 	 * userspace bit mask.
1611 	 */
1612 	if (xive->saved_src_count == 0)
1613 		xive_pre_save_scan(xive);
1614 	xive->saved_src_count++;
1615 
1616 	/* Convert saved state into something compatible with xics */
1617 	val = state->act_server;
1618 	prio = state->saved_scan_prio;
1619 
1620 	if (prio == MASKED) {
1621 		val |= KVM_XICS_MASKED;
1622 		prio = state->saved_priority;
1623 	}
1624 	val |= prio << KVM_XICS_PRIORITY_SHIFT;
1625 	if (state->lsi) {
1626 		val |= KVM_XICS_LEVEL_SENSITIVE;
1627 		if (state->saved_p)
1628 			val |= KVM_XICS_PENDING;
1629 	} else {
1630 		if (state->saved_p)
1631 			val |= KVM_XICS_PRESENTED;
1632 
1633 		if (state->saved_q)
1634 			val |= KVM_XICS_QUEUED;
1635 
1636 		/*
1637 		 * We mark it pending (which will attempt a re-delivery)
1638 		 * if we are in a queue *or* we were masked and had
1639 		 * Q set which is equivalent to the XICS "masked pending"
1640 		 * state
1641 		 */
1642 		if (state->in_queue || (prio == MASKED && state->saved_q))
1643 			val |= KVM_XICS_PENDING;
1644 	}
1645 
1646 	/*
1647 	 * If that was the last interrupt saved, reset the
1648 	 * in_queue flags
1649 	 */
1650 	if (xive->saved_src_count == xive->src_count)
1651 		xive_post_save_scan(xive);
1652 
1653 	/* Copy the result to userspace */
1654 	if (put_user(val, ubufp))
1655 		return -EFAULT;
1656 
1657 	return 0;
1658 }
1659 
1660 struct kvmppc_xive_src_block *kvmppc_xive_create_src_block(
1661 	struct kvmppc_xive *xive, int irq)
1662 {
1663 	struct kvmppc_xive_src_block *sb;
1664 	int i, bid;
1665 
1666 	bid = irq >> KVMPPC_XICS_ICS_SHIFT;
1667 
1668 	mutex_lock(&xive->lock);
1669 
1670 	/* block already exists - somebody else got here first */
1671 	if (xive->src_blocks[bid])
1672 		goto out;
1673 
1674 	/* Create the ICS */
1675 	sb = kzalloc(sizeof(*sb), GFP_KERNEL);
1676 	if (!sb)
1677 		goto out;
1678 
1679 	sb->id = bid;
1680 
1681 	for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
1682 		sb->irq_state[i].number = (bid << KVMPPC_XICS_ICS_SHIFT) | i;
1683 		sb->irq_state[i].eisn = 0;
1684 		sb->irq_state[i].guest_priority = MASKED;
1685 		sb->irq_state[i].saved_priority = MASKED;
1686 		sb->irq_state[i].act_priority = MASKED;
1687 	}
1688 	smp_wmb();
1689 	xive->src_blocks[bid] = sb;
1690 
1691 	if (bid > xive->max_sbid)
1692 		xive->max_sbid = bid;
1693 
1694 out:
1695 	mutex_unlock(&xive->lock);
1696 	return xive->src_blocks[bid];
1697 }
1698 
1699 static bool xive_check_delayed_irq(struct kvmppc_xive *xive, u32 irq)
1700 {
1701 	struct kvm *kvm = xive->kvm;
1702 	struct kvm_vcpu *vcpu = NULL;
1703 	int i;
1704 
1705 	kvm_for_each_vcpu(i, vcpu, kvm) {
1706 		struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1707 
1708 		if (!xc)
1709 			continue;
1710 
1711 		if (xc->delayed_irq == irq) {
1712 			xc->delayed_irq = 0;
1713 			xive->delayed_irqs--;
1714 			return true;
1715 		}
1716 	}
1717 	return false;
1718 }
1719 
1720 static int xive_set_source(struct kvmppc_xive *xive, long irq, u64 addr)
1721 {
1722 	struct kvmppc_xive_src_block *sb;
1723 	struct kvmppc_xive_irq_state *state;
1724 	u64 __user *ubufp = (u64 __user *) addr;
1725 	u16 idx;
1726 	u64 val;
1727 	u8 act_prio, guest_prio;
1728 	u32 server;
1729 	int rc = 0;
1730 
1731 	if (irq < KVMPPC_XICS_FIRST_IRQ || irq >= KVMPPC_XICS_NR_IRQS)
1732 		return -ENOENT;
1733 
1734 	pr_devel("set_source(irq=0x%lx)\n", irq);
1735 
1736 	/* Find the source */
1737 	sb = kvmppc_xive_find_source(xive, irq, &idx);
1738 	if (!sb) {
1739 		pr_devel("No source, creating source block...\n");
1740 		sb = kvmppc_xive_create_src_block(xive, irq);
1741 		if (!sb) {
1742 			pr_devel("Failed to create block...\n");
1743 			return -ENOMEM;
1744 		}
1745 	}
1746 	state = &sb->irq_state[idx];
1747 
1748 	/* Read user passed data */
1749 	if (get_user(val, ubufp)) {
1750 		pr_devel("fault getting user info !\n");
1751 		return -EFAULT;
1752 	}
1753 
1754 	server = val & KVM_XICS_DESTINATION_MASK;
1755 	guest_prio = val >> KVM_XICS_PRIORITY_SHIFT;
1756 
1757 	pr_devel("  val=0x016%llx (server=0x%x, guest_prio=%d)\n",
1758 		 val, server, guest_prio);
1759 
1760 	/*
1761 	 * If the source doesn't already have an IPI, allocate
1762 	 * one and get the corresponding data
1763 	 */
1764 	if (!state->ipi_number) {
1765 		state->ipi_number = xive_native_alloc_irq();
1766 		if (state->ipi_number == 0) {
1767 			pr_devel("Failed to allocate IPI !\n");
1768 			return -ENOMEM;
1769 		}
1770 		xive_native_populate_irq_data(state->ipi_number, &state->ipi_data);
1771 		pr_devel(" src_ipi=0x%x\n", state->ipi_number);
1772 	}
1773 
1774 	/*
1775 	 * We use lock_and_mask() to set us in the right masked
1776 	 * state. We will override that state from the saved state
1777 	 * further down, but this will handle the cases of interrupts
1778 	 * that need FW masking. We set the initial guest_priority to
1779 	 * 0 before calling it to ensure it actually performs the masking.
1780 	 */
1781 	state->guest_priority = 0;
1782 	xive_lock_and_mask(xive, sb, state);
1783 
1784 	/*
1785 	 * Now, we select a target if we have one. If we don't we
1786 	 * leave the interrupt untargetted. It means that an interrupt
1787 	 * can become "untargetted" accross migration if it was masked
1788 	 * by set_xive() but there is little we can do about it.
1789 	 */
1790 
1791 	/* First convert prio and mark interrupt as untargetted */
1792 	act_prio = xive_prio_from_guest(guest_prio);
1793 	state->act_priority = MASKED;
1794 
1795 	/*
1796 	 * We need to drop the lock due to the mutex below. Hopefully
1797 	 * nothing is touching that interrupt yet since it hasn't been
1798 	 * advertized to a running guest yet
1799 	 */
1800 	arch_spin_unlock(&sb->lock);
1801 
1802 	/* If we have a priority target the interrupt */
1803 	if (act_prio != MASKED) {
1804 		/* First, check provisioning of queues */
1805 		mutex_lock(&xive->lock);
1806 		rc = xive_check_provisioning(xive->kvm, act_prio);
1807 		mutex_unlock(&xive->lock);
1808 
1809 		/* Target interrupt */
1810 		if (rc == 0)
1811 			rc = xive_target_interrupt(xive->kvm, state,
1812 						   server, act_prio);
1813 		/*
1814 		 * If provisioning or targetting failed, leave it
1815 		 * alone and masked. It will remain disabled until
1816 		 * the guest re-targets it.
1817 		 */
1818 	}
1819 
1820 	/*
1821 	 * Find out if this was a delayed irq stashed in an ICP,
1822 	 * in which case, treat it as pending
1823 	 */
1824 	if (xive->delayed_irqs && xive_check_delayed_irq(xive, irq)) {
1825 		val |= KVM_XICS_PENDING;
1826 		pr_devel("  Found delayed ! forcing PENDING !\n");
1827 	}
1828 
1829 	/* Cleanup the SW state */
1830 	state->old_p = false;
1831 	state->old_q = false;
1832 	state->lsi = false;
1833 	state->asserted = false;
1834 
1835 	/* Restore LSI state */
1836 	if (val & KVM_XICS_LEVEL_SENSITIVE) {
1837 		state->lsi = true;
1838 		if (val & KVM_XICS_PENDING)
1839 			state->asserted = true;
1840 		pr_devel("  LSI ! Asserted=%d\n", state->asserted);
1841 	}
1842 
1843 	/*
1844 	 * Restore P and Q. If the interrupt was pending, we
1845 	 * force Q and !P, which will trigger a resend.
1846 	 *
1847 	 * That means that a guest that had both an interrupt
1848 	 * pending (queued) and Q set will restore with only
1849 	 * one instance of that interrupt instead of 2, but that
1850 	 * is perfectly fine as coalescing interrupts that haven't
1851 	 * been presented yet is always allowed.
1852 	 */
1853 	if (val & KVM_XICS_PRESENTED && !(val & KVM_XICS_PENDING))
1854 		state->old_p = true;
1855 	if (val & KVM_XICS_QUEUED || val & KVM_XICS_PENDING)
1856 		state->old_q = true;
1857 
1858 	pr_devel("  P=%d, Q=%d\n", state->old_p, state->old_q);
1859 
1860 	/*
1861 	 * If the interrupt was unmasked, update guest priority and
1862 	 * perform the appropriate state transition and do a
1863 	 * re-trigger if necessary.
1864 	 */
1865 	if (val & KVM_XICS_MASKED) {
1866 		pr_devel("  masked, saving prio\n");
1867 		state->guest_priority = MASKED;
1868 		state->saved_priority = guest_prio;
1869 	} else {
1870 		pr_devel("  unmasked, restoring to prio %d\n", guest_prio);
1871 		xive_finish_unmask(xive, sb, state, guest_prio);
1872 		state->saved_priority = guest_prio;
1873 	}
1874 
1875 	/* Increment the number of valid sources and mark this one valid */
1876 	if (!state->valid)
1877 		xive->src_count++;
1878 	state->valid = true;
1879 
1880 	return 0;
1881 }
1882 
1883 int kvmppc_xive_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1884 			bool line_status)
1885 {
1886 	struct kvmppc_xive *xive = kvm->arch.xive;
1887 	struct kvmppc_xive_src_block *sb;
1888 	struct kvmppc_xive_irq_state *state;
1889 	u16 idx;
1890 
1891 	if (!xive)
1892 		return -ENODEV;
1893 
1894 	sb = kvmppc_xive_find_source(xive, irq, &idx);
1895 	if (!sb)
1896 		return -EINVAL;
1897 
1898 	/* Perform locklessly .... (we need to do some RCUisms here...) */
1899 	state = &sb->irq_state[idx];
1900 	if (!state->valid)
1901 		return -EINVAL;
1902 
1903 	/* We don't allow a trigger on a passed-through interrupt */
1904 	if (state->pt_number)
1905 		return -EINVAL;
1906 
1907 	if ((level == 1 && state->lsi) || level == KVM_INTERRUPT_SET_LEVEL)
1908 		state->asserted = true;
1909 	else if (level == 0 || level == KVM_INTERRUPT_UNSET) {
1910 		state->asserted = false;
1911 		return 0;
1912 	}
1913 
1914 	/* Trigger the IPI */
1915 	xive_irq_trigger(&state->ipi_data);
1916 
1917 	return 0;
1918 }
1919 
1920 int kvmppc_xive_set_nr_servers(struct kvmppc_xive *xive, u64 addr)
1921 {
1922 	u32 __user *ubufp = (u32 __user *) addr;
1923 	u32 nr_servers;
1924 	int rc = 0;
1925 
1926 	if (get_user(nr_servers, ubufp))
1927 		return -EFAULT;
1928 
1929 	pr_devel("%s nr_servers=%u\n", __func__, nr_servers);
1930 
1931 	if (!nr_servers || nr_servers > KVM_MAX_VCPU_IDS)
1932 		return -EINVAL;
1933 
1934 	mutex_lock(&xive->lock);
1935 	if (xive->vp_base != XIVE_INVALID_VP)
1936 		/* The VP block is allocated once and freed when the device
1937 		 * is released. Better not allow to change its size since its
1938 		 * used by connect_vcpu to validate vCPU ids are valid (eg,
1939 		 * setting it back to a higher value could allow connect_vcpu
1940 		 * to come up with a VP id that goes beyond the VP block, which
1941 		 * is likely to cause a crash in OPAL).
1942 		 */
1943 		rc = -EBUSY;
1944 	else if (nr_servers > KVM_MAX_VCPUS)
1945 		/* We don't need more servers. Higher vCPU ids get packed
1946 		 * down below KVM_MAX_VCPUS by kvmppc_pack_vcpu_id().
1947 		 */
1948 		xive->nr_servers = KVM_MAX_VCPUS;
1949 	else
1950 		xive->nr_servers = nr_servers;
1951 
1952 	mutex_unlock(&xive->lock);
1953 
1954 	return rc;
1955 }
1956 
1957 static int xive_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1958 {
1959 	struct kvmppc_xive *xive = dev->private;
1960 
1961 	/* We honor the existing XICS ioctl */
1962 	switch (attr->group) {
1963 	case KVM_DEV_XICS_GRP_SOURCES:
1964 		return xive_set_source(xive, attr->attr, attr->addr);
1965 	case KVM_DEV_XICS_GRP_CTRL:
1966 		switch (attr->attr) {
1967 		case KVM_DEV_XICS_NR_SERVERS:
1968 			return kvmppc_xive_set_nr_servers(xive, attr->addr);
1969 		}
1970 	}
1971 	return -ENXIO;
1972 }
1973 
1974 static int xive_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1975 {
1976 	struct kvmppc_xive *xive = dev->private;
1977 
1978 	/* We honor the existing XICS ioctl */
1979 	switch (attr->group) {
1980 	case KVM_DEV_XICS_GRP_SOURCES:
1981 		return xive_get_source(xive, attr->attr, attr->addr);
1982 	}
1983 	return -ENXIO;
1984 }
1985 
1986 static int xive_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1987 {
1988 	/* We honor the same limits as XICS, at least for now */
1989 	switch (attr->group) {
1990 	case KVM_DEV_XICS_GRP_SOURCES:
1991 		if (attr->attr >= KVMPPC_XICS_FIRST_IRQ &&
1992 		    attr->attr < KVMPPC_XICS_NR_IRQS)
1993 			return 0;
1994 		break;
1995 	case KVM_DEV_XICS_GRP_CTRL:
1996 		switch (attr->attr) {
1997 		case KVM_DEV_XICS_NR_SERVERS:
1998 			return 0;
1999 		}
2000 	}
2001 	return -ENXIO;
2002 }
2003 
2004 static void kvmppc_xive_cleanup_irq(u32 hw_num, struct xive_irq_data *xd)
2005 {
2006 	xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01);
2007 	xive_native_configure_irq(hw_num, 0, MASKED, 0);
2008 }
2009 
2010 void kvmppc_xive_free_sources(struct kvmppc_xive_src_block *sb)
2011 {
2012 	int i;
2013 
2014 	for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
2015 		struct kvmppc_xive_irq_state *state = &sb->irq_state[i];
2016 
2017 		if (!state->valid)
2018 			continue;
2019 
2020 		kvmppc_xive_cleanup_irq(state->ipi_number, &state->ipi_data);
2021 		xive_cleanup_irq_data(&state->ipi_data);
2022 		xive_native_free_irq(state->ipi_number);
2023 
2024 		/* Pass-through, cleanup too but keep IRQ hw data */
2025 		if (state->pt_number)
2026 			kvmppc_xive_cleanup_irq(state->pt_number, state->pt_data);
2027 
2028 		state->valid = false;
2029 	}
2030 }
2031 
2032 /*
2033  * Called when device fd is closed.  kvm->lock is held.
2034  */
2035 static void kvmppc_xive_release(struct kvm_device *dev)
2036 {
2037 	struct kvmppc_xive *xive = dev->private;
2038 	struct kvm *kvm = xive->kvm;
2039 	struct kvm_vcpu *vcpu;
2040 	int i;
2041 
2042 	pr_devel("Releasing xive device\n");
2043 
2044 	/*
2045 	 * Since this is the device release function, we know that
2046 	 * userspace does not have any open fd referring to the
2047 	 * device.  Therefore there can not be any of the device
2048 	 * attribute set/get functions being executed concurrently,
2049 	 * and similarly, the connect_vcpu and set/clr_mapped
2050 	 * functions also cannot be being executed.
2051 	 */
2052 
2053 	debugfs_remove(xive->dentry);
2054 
2055 	/*
2056 	 * We should clean up the vCPU interrupt presenters first.
2057 	 */
2058 	kvm_for_each_vcpu(i, vcpu, kvm) {
2059 		/*
2060 		 * Take vcpu->mutex to ensure that no one_reg get/set ioctl
2061 		 * (i.e. kvmppc_xive_[gs]et_icp) can be done concurrently.
2062 		 * Holding the vcpu->mutex also means that the vcpu cannot
2063 		 * be executing the KVM_RUN ioctl, and therefore it cannot
2064 		 * be executing the XIVE push or pull code or accessing
2065 		 * the XIVE MMIO regions.
2066 		 */
2067 		mutex_lock(&vcpu->mutex);
2068 		kvmppc_xive_cleanup_vcpu(vcpu);
2069 		mutex_unlock(&vcpu->mutex);
2070 	}
2071 
2072 	/*
2073 	 * Now that we have cleared vcpu->arch.xive_vcpu, vcpu->arch.irq_type
2074 	 * and vcpu->arch.xive_esc_[vr]addr on each vcpu, we are safe
2075 	 * against xive code getting called during vcpu execution or
2076 	 * set/get one_reg operations.
2077 	 */
2078 	kvm->arch.xive = NULL;
2079 
2080 	/* Mask and free interrupts */
2081 	for (i = 0; i <= xive->max_sbid; i++) {
2082 		if (xive->src_blocks[i])
2083 			kvmppc_xive_free_sources(xive->src_blocks[i]);
2084 		kfree(xive->src_blocks[i]);
2085 		xive->src_blocks[i] = NULL;
2086 	}
2087 
2088 	if (xive->vp_base != XIVE_INVALID_VP)
2089 		xive_native_free_vp_block(xive->vp_base);
2090 
2091 	/*
2092 	 * A reference of the kvmppc_xive pointer is now kept under
2093 	 * the xive_devices struct of the machine for reuse. It is
2094 	 * freed when the VM is destroyed for now until we fix all the
2095 	 * execution paths.
2096 	 */
2097 
2098 	kfree(dev);
2099 }
2100 
2101 /*
2102  * When the guest chooses the interrupt mode (XICS legacy or XIVE
2103  * native), the VM will switch of KVM device. The previous device will
2104  * be "released" before the new one is created.
2105  *
2106  * Until we are sure all execution paths are well protected, provide a
2107  * fail safe (transitional) method for device destruction, in which
2108  * the XIVE device pointer is recycled and not directly freed.
2109  */
2110 struct kvmppc_xive *kvmppc_xive_get_device(struct kvm *kvm, u32 type)
2111 {
2112 	struct kvmppc_xive **kvm_xive_device = type == KVM_DEV_TYPE_XIVE ?
2113 		&kvm->arch.xive_devices.native :
2114 		&kvm->arch.xive_devices.xics_on_xive;
2115 	struct kvmppc_xive *xive = *kvm_xive_device;
2116 
2117 	if (!xive) {
2118 		xive = kzalloc(sizeof(*xive), GFP_KERNEL);
2119 		*kvm_xive_device = xive;
2120 	} else {
2121 		memset(xive, 0, sizeof(*xive));
2122 	}
2123 
2124 	return xive;
2125 }
2126 
2127 /*
2128  * Create a XICS device with XIVE backend.  kvm->lock is held.
2129  */
2130 static int kvmppc_xive_create(struct kvm_device *dev, u32 type)
2131 {
2132 	struct kvmppc_xive *xive;
2133 	struct kvm *kvm = dev->kvm;
2134 
2135 	pr_devel("Creating xive for partition\n");
2136 
2137 	/* Already there ? */
2138 	if (kvm->arch.xive)
2139 		return -EEXIST;
2140 
2141 	xive = kvmppc_xive_get_device(kvm, type);
2142 	if (!xive)
2143 		return -ENOMEM;
2144 
2145 	dev->private = xive;
2146 	xive->dev = dev;
2147 	xive->kvm = kvm;
2148 	mutex_init(&xive->lock);
2149 
2150 	/* We use the default queue size set by the host */
2151 	xive->q_order = xive_native_default_eq_shift();
2152 	if (xive->q_order < PAGE_SHIFT)
2153 		xive->q_page_order = 0;
2154 	else
2155 		xive->q_page_order = xive->q_order - PAGE_SHIFT;
2156 
2157 	/* VP allocation is delayed to the first call to connect_vcpu */
2158 	xive->vp_base = XIVE_INVALID_VP;
2159 	/* KVM_MAX_VCPUS limits the number of VMs to roughly 64 per sockets
2160 	 * on a POWER9 system.
2161 	 */
2162 	xive->nr_servers = KVM_MAX_VCPUS;
2163 
2164 	if (xive_native_has_single_escalation())
2165 		xive->flags |= KVMPPC_XIVE_FLAG_SINGLE_ESCALATION;
2166 
2167 	if (xive_native_has_save_restore())
2168 		xive->flags |= KVMPPC_XIVE_FLAG_SAVE_RESTORE;
2169 
2170 	kvm->arch.xive = xive;
2171 	return 0;
2172 }
2173 
2174 int kvmppc_xive_xics_hcall(struct kvm_vcpu *vcpu, u32 req)
2175 {
2176 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
2177 
2178 	/* The VM should have configured XICS mode before doing XICS hcalls. */
2179 	if (!kvmppc_xics_enabled(vcpu))
2180 		return H_TOO_HARD;
2181 
2182 	switch (req) {
2183 	case H_XIRR:
2184 		return xive_vm_h_xirr(vcpu);
2185 	case H_CPPR:
2186 		return xive_vm_h_cppr(vcpu, kvmppc_get_gpr(vcpu, 4));
2187 	case H_EOI:
2188 		return xive_vm_h_eoi(vcpu, kvmppc_get_gpr(vcpu, 4));
2189 	case H_IPI:
2190 		return xive_vm_h_ipi(vcpu, kvmppc_get_gpr(vcpu, 4),
2191 					  kvmppc_get_gpr(vcpu, 5));
2192 	case H_IPOLL:
2193 		return xive_vm_h_ipoll(vcpu, kvmppc_get_gpr(vcpu, 4));
2194 	case H_XIRR_X:
2195 		xive_vm_h_xirr(vcpu);
2196 		kvmppc_set_gpr(vcpu, 5, get_tb() + vc->tb_offset);
2197 		return H_SUCCESS;
2198 	}
2199 
2200 	return H_UNSUPPORTED;
2201 }
2202 EXPORT_SYMBOL_GPL(kvmppc_xive_xics_hcall);
2203 
2204 int kvmppc_xive_debug_show_queues(struct seq_file *m, struct kvm_vcpu *vcpu)
2205 {
2206 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
2207 	unsigned int i;
2208 
2209 	for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
2210 		struct xive_q *q = &xc->queues[i];
2211 		u32 i0, i1, idx;
2212 
2213 		if (!q->qpage && !xc->esc_virq[i])
2214 			continue;
2215 
2216 		if (q->qpage) {
2217 			seq_printf(m, "    q[%d]: ", i);
2218 			idx = q->idx;
2219 			i0 = be32_to_cpup(q->qpage + idx);
2220 			idx = (idx + 1) & q->msk;
2221 			i1 = be32_to_cpup(q->qpage + idx);
2222 			seq_printf(m, "T=%d %08x %08x...\n", q->toggle,
2223 				   i0, i1);
2224 		}
2225 		if (xc->esc_virq[i]) {
2226 			struct irq_data *d = irq_get_irq_data(xc->esc_virq[i]);
2227 			struct xive_irq_data *xd =
2228 				irq_data_get_irq_handler_data(d);
2229 			u64 pq = xive_vm_esb_load(xd, XIVE_ESB_GET);
2230 
2231 			seq_printf(m, "    ESC %d %c%c EOI @%llx",
2232 				   xc->esc_virq[i],
2233 				   (pq & XIVE_ESB_VAL_P) ? 'P' : '-',
2234 				   (pq & XIVE_ESB_VAL_Q) ? 'Q' : '-',
2235 				   xd->eoi_page);
2236 			seq_puts(m, "\n");
2237 		}
2238 	}
2239 	return 0;
2240 }
2241 
2242 void kvmppc_xive_debug_show_sources(struct seq_file *m,
2243 				    struct kvmppc_xive_src_block *sb)
2244 {
2245 	int i;
2246 
2247 	seq_puts(m, "    LISN      HW/CHIP   TYPE    PQ      EISN    CPU/PRIO\n");
2248 	for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
2249 		struct kvmppc_xive_irq_state *state = &sb->irq_state[i];
2250 		struct xive_irq_data *xd;
2251 		u64 pq;
2252 		u32 hw_num;
2253 
2254 		if (!state->valid)
2255 			continue;
2256 
2257 		kvmppc_xive_select_irq(state, &hw_num, &xd);
2258 
2259 		pq = xive_vm_esb_load(xd, XIVE_ESB_GET);
2260 
2261 		seq_printf(m, "%08x  %08x/%02x", state->number, hw_num,
2262 			   xd->src_chip);
2263 		if (state->lsi)
2264 			seq_printf(m, " %cLSI", state->asserted ? '^' : ' ');
2265 		else
2266 			seq_puts(m, "  MSI");
2267 
2268 		seq_printf(m, " %s  %c%c  %08x   % 4d/%d",
2269 			   state->ipi_number == hw_num ? "IPI" : " PT",
2270 			   pq & XIVE_ESB_VAL_P ? 'P' : '-',
2271 			   pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
2272 			   state->eisn, state->act_server,
2273 			   state->act_priority);
2274 
2275 		seq_puts(m, "\n");
2276 	}
2277 }
2278 
2279 static int xive_debug_show(struct seq_file *m, void *private)
2280 {
2281 	struct kvmppc_xive *xive = m->private;
2282 	struct kvm *kvm = xive->kvm;
2283 	struct kvm_vcpu *vcpu;
2284 	u64 t_rm_h_xirr = 0;
2285 	u64 t_rm_h_ipoll = 0;
2286 	u64 t_rm_h_cppr = 0;
2287 	u64 t_rm_h_eoi = 0;
2288 	u64 t_rm_h_ipi = 0;
2289 	u64 t_vm_h_xirr = 0;
2290 	u64 t_vm_h_ipoll = 0;
2291 	u64 t_vm_h_cppr = 0;
2292 	u64 t_vm_h_eoi = 0;
2293 	u64 t_vm_h_ipi = 0;
2294 	unsigned int i;
2295 
2296 	if (!kvm)
2297 		return 0;
2298 
2299 	seq_puts(m, "=========\nVCPU state\n=========\n");
2300 
2301 	kvm_for_each_vcpu(i, vcpu, kvm) {
2302 		struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
2303 
2304 		if (!xc)
2305 			continue;
2306 
2307 		seq_printf(m, "VCPU %d: VP:%#x/%02x\n"
2308 			 "    CPPR:%#x HWCPPR:%#x MFRR:%#x PEND:%#x h_xirr: R=%lld V=%lld\n",
2309 			 xc->server_num, xc->vp_id, xc->vp_chip_id,
2310 			 xc->cppr, xc->hw_cppr,
2311 			 xc->mfrr, xc->pending,
2312 			 xc->stat_rm_h_xirr, xc->stat_vm_h_xirr);
2313 
2314 		kvmppc_xive_debug_show_queues(m, vcpu);
2315 
2316 		t_rm_h_xirr += xc->stat_rm_h_xirr;
2317 		t_rm_h_ipoll += xc->stat_rm_h_ipoll;
2318 		t_rm_h_cppr += xc->stat_rm_h_cppr;
2319 		t_rm_h_eoi += xc->stat_rm_h_eoi;
2320 		t_rm_h_ipi += xc->stat_rm_h_ipi;
2321 		t_vm_h_xirr += xc->stat_vm_h_xirr;
2322 		t_vm_h_ipoll += xc->stat_vm_h_ipoll;
2323 		t_vm_h_cppr += xc->stat_vm_h_cppr;
2324 		t_vm_h_eoi += xc->stat_vm_h_eoi;
2325 		t_vm_h_ipi += xc->stat_vm_h_ipi;
2326 	}
2327 
2328 	seq_puts(m, "Hcalls totals\n");
2329 	seq_printf(m, " H_XIRR  R=%10lld V=%10lld\n", t_rm_h_xirr, t_vm_h_xirr);
2330 	seq_printf(m, " H_IPOLL R=%10lld V=%10lld\n", t_rm_h_ipoll, t_vm_h_ipoll);
2331 	seq_printf(m, " H_CPPR  R=%10lld V=%10lld\n", t_rm_h_cppr, t_vm_h_cppr);
2332 	seq_printf(m, " H_EOI   R=%10lld V=%10lld\n", t_rm_h_eoi, t_vm_h_eoi);
2333 	seq_printf(m, " H_IPI   R=%10lld V=%10lld\n", t_rm_h_ipi, t_vm_h_ipi);
2334 
2335 	seq_puts(m, "=========\nSources\n=========\n");
2336 
2337 	for (i = 0; i <= xive->max_sbid; i++) {
2338 		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
2339 
2340 		if (sb) {
2341 			arch_spin_lock(&sb->lock);
2342 			kvmppc_xive_debug_show_sources(m, sb);
2343 			arch_spin_unlock(&sb->lock);
2344 		}
2345 	}
2346 
2347 	return 0;
2348 }
2349 
2350 DEFINE_SHOW_ATTRIBUTE(xive_debug);
2351 
2352 static void xive_debugfs_init(struct kvmppc_xive *xive)
2353 {
2354 	char *name;
2355 
2356 	name = kasprintf(GFP_KERNEL, "kvm-xive-%p", xive);
2357 	if (!name) {
2358 		pr_err("%s: no memory for name\n", __func__);
2359 		return;
2360 	}
2361 
2362 	xive->dentry = debugfs_create_file(name, S_IRUGO, arch_debugfs_dir,
2363 					   xive, &xive_debug_fops);
2364 
2365 	pr_debug("%s: created %s\n", __func__, name);
2366 	kfree(name);
2367 }
2368 
2369 static void kvmppc_xive_init(struct kvm_device *dev)
2370 {
2371 	struct kvmppc_xive *xive = (struct kvmppc_xive *)dev->private;
2372 
2373 	/* Register some debug interfaces */
2374 	xive_debugfs_init(xive);
2375 }
2376 
2377 struct kvm_device_ops kvm_xive_ops = {
2378 	.name = "kvm-xive",
2379 	.create = kvmppc_xive_create,
2380 	.init = kvmppc_xive_init,
2381 	.release = kvmppc_xive_release,
2382 	.set_attr = xive_set_attr,
2383 	.get_attr = xive_get_attr,
2384 	.has_attr = xive_has_attr,
2385 };
2386