1 /* 2 * Copyright 2017 Benjamin Herrenschmidt, IBM Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License, version 2, as 6 * published by the Free Software Foundation. 7 */ 8 9 #define pr_fmt(fmt) "xive-kvm: " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/kvm_host.h> 13 #include <linux/err.h> 14 #include <linux/gfp.h> 15 #include <linux/spinlock.h> 16 #include <linux/delay.h> 17 #include <linux/percpu.h> 18 #include <linux/cpumask.h> 19 #include <asm/uaccess.h> 20 #include <asm/kvm_book3s.h> 21 #include <asm/kvm_ppc.h> 22 #include <asm/hvcall.h> 23 #include <asm/xics.h> 24 #include <asm/xive.h> 25 #include <asm/xive-regs.h> 26 #include <asm/debug.h> 27 #include <asm/debugfs.h> 28 #include <asm/time.h> 29 #include <asm/opal.h> 30 31 #include <linux/debugfs.h> 32 #include <linux/seq_file.h> 33 34 #include "book3s_xive.h" 35 36 37 /* 38 * Virtual mode variants of the hcalls for use on radix/radix 39 * with AIL. They require the VCPU's VP to be "pushed" 40 * 41 * We still instanciate them here because we use some of the 42 * generated utility functions as well in this file. 43 */ 44 #define XIVE_RUNTIME_CHECKS 45 #define X_PFX xive_vm_ 46 #define X_STATIC static 47 #define X_STAT_PFX stat_vm_ 48 #define __x_tima xive_tima 49 #define __x_eoi_page(xd) ((void __iomem *)((xd)->eoi_mmio)) 50 #define __x_trig_page(xd) ((void __iomem *)((xd)->trig_mmio)) 51 #define __x_writeb __raw_writeb 52 #define __x_readw __raw_readw 53 #define __x_readq __raw_readq 54 #define __x_writeq __raw_writeq 55 56 #include "book3s_xive_template.c" 57 58 /* 59 * We leave a gap of a couple of interrupts in the queue to 60 * account for the IPI and additional safety guard. 61 */ 62 #define XIVE_Q_GAP 2 63 64 /* 65 * This is a simple trigger for a generic XIVE IRQ. This must 66 * only be called for interrupts that support a trigger page 67 */ 68 static bool xive_irq_trigger(struct xive_irq_data *xd) 69 { 70 /* This should be only for MSIs */ 71 if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI)) 72 return false; 73 74 /* Those interrupts should always have a trigger page */ 75 if (WARN_ON(!xd->trig_mmio)) 76 return false; 77 78 out_be64(xd->trig_mmio, 0); 79 80 return true; 81 } 82 83 static irqreturn_t xive_esc_irq(int irq, void *data) 84 { 85 struct kvm_vcpu *vcpu = data; 86 87 /* We use the existing H_PROD mechanism to wake up the target */ 88 vcpu->arch.prodded = 1; 89 smp_mb(); 90 if (vcpu->arch.ceded) 91 kvmppc_fast_vcpu_kick(vcpu); 92 93 return IRQ_HANDLED; 94 } 95 96 static int xive_attach_escalation(struct kvm_vcpu *vcpu, u8 prio) 97 { 98 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 99 struct xive_q *q = &xc->queues[prio]; 100 char *name = NULL; 101 int rc; 102 103 /* Already there ? */ 104 if (xc->esc_virq[prio]) 105 return 0; 106 107 /* Hook up the escalation interrupt */ 108 xc->esc_virq[prio] = irq_create_mapping(NULL, q->esc_irq); 109 if (!xc->esc_virq[prio]) { 110 pr_err("Failed to map escalation interrupt for queue %d of VCPU %d\n", 111 prio, xc->server_num); 112 return -EIO; 113 } 114 115 /* 116 * Future improvement: start with them disabled 117 * and handle DD2 and later scheme of merged escalation 118 * interrupts 119 */ 120 name = kasprintf(GFP_KERNEL, "kvm-%d-%d-%d", 121 vcpu->kvm->arch.lpid, xc->server_num, prio); 122 if (!name) { 123 pr_err("Failed to allocate escalation irq name for queue %d of VCPU %d\n", 124 prio, xc->server_num); 125 rc = -ENOMEM; 126 goto error; 127 } 128 rc = request_irq(xc->esc_virq[prio], xive_esc_irq, 129 IRQF_NO_THREAD, name, vcpu); 130 if (rc) { 131 pr_err("Failed to request escalation interrupt for queue %d of VCPU %d\n", 132 prio, xc->server_num); 133 goto error; 134 } 135 xc->esc_virq_names[prio] = name; 136 return 0; 137 error: 138 irq_dispose_mapping(xc->esc_virq[prio]); 139 xc->esc_virq[prio] = 0; 140 kfree(name); 141 return rc; 142 } 143 144 static int xive_provision_queue(struct kvm_vcpu *vcpu, u8 prio) 145 { 146 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 147 struct kvmppc_xive *xive = xc->xive; 148 struct xive_q *q = &xc->queues[prio]; 149 void *qpage; 150 int rc; 151 152 if (WARN_ON(q->qpage)) 153 return 0; 154 155 /* Allocate the queue and retrieve infos on current node for now */ 156 qpage = (__be32 *)__get_free_pages(GFP_KERNEL, xive->q_page_order); 157 if (!qpage) { 158 pr_err("Failed to allocate queue %d for VCPU %d\n", 159 prio, xc->server_num); 160 return -ENOMEM;; 161 } 162 memset(qpage, 0, 1 << xive->q_order); 163 164 /* 165 * Reconfigure the queue. This will set q->qpage only once the 166 * queue is fully configured. This is a requirement for prio 0 167 * as we will stop doing EOIs for every IPI as soon as we observe 168 * qpage being non-NULL, and instead will only EOI when we receive 169 * corresponding queue 0 entries 170 */ 171 rc = xive_native_configure_queue(xc->vp_id, q, prio, qpage, 172 xive->q_order, true); 173 if (rc) 174 pr_err("Failed to configure queue %d for VCPU %d\n", 175 prio, xc->server_num); 176 return rc; 177 } 178 179 /* Called with kvm_lock held */ 180 static int xive_check_provisioning(struct kvm *kvm, u8 prio) 181 { 182 struct kvmppc_xive *xive = kvm->arch.xive; 183 struct kvm_vcpu *vcpu; 184 int i, rc; 185 186 lockdep_assert_held(&kvm->lock); 187 188 /* Already provisioned ? */ 189 if (xive->qmap & (1 << prio)) 190 return 0; 191 192 pr_devel("Provisioning prio... %d\n", prio); 193 194 /* Provision each VCPU and enable escalations */ 195 kvm_for_each_vcpu(i, vcpu, kvm) { 196 if (!vcpu->arch.xive_vcpu) 197 continue; 198 rc = xive_provision_queue(vcpu, prio); 199 if (rc == 0) 200 xive_attach_escalation(vcpu, prio); 201 if (rc) 202 return rc; 203 } 204 205 /* Order previous stores and mark it as provisioned */ 206 mb(); 207 xive->qmap |= (1 << prio); 208 return 0; 209 } 210 211 static void xive_inc_q_pending(struct kvm *kvm, u32 server, u8 prio) 212 { 213 struct kvm_vcpu *vcpu; 214 struct kvmppc_xive_vcpu *xc; 215 struct xive_q *q; 216 217 /* Locate target server */ 218 vcpu = kvmppc_xive_find_server(kvm, server); 219 if (!vcpu) { 220 pr_warn("%s: Can't find server %d\n", __func__, server); 221 return; 222 } 223 xc = vcpu->arch.xive_vcpu; 224 if (WARN_ON(!xc)) 225 return; 226 227 q = &xc->queues[prio]; 228 atomic_inc(&q->pending_count); 229 } 230 231 static int xive_try_pick_queue(struct kvm_vcpu *vcpu, u8 prio) 232 { 233 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 234 struct xive_q *q; 235 u32 max; 236 237 if (WARN_ON(!xc)) 238 return -ENXIO; 239 if (!xc->valid) 240 return -ENXIO; 241 242 q = &xc->queues[prio]; 243 if (WARN_ON(!q->qpage)) 244 return -ENXIO; 245 246 /* Calculate max number of interrupts in that queue. */ 247 max = (q->msk + 1) - XIVE_Q_GAP; 248 return atomic_add_unless(&q->count, 1, max) ? 0 : -EBUSY; 249 } 250 251 static int xive_select_target(struct kvm *kvm, u32 *server, u8 prio) 252 { 253 struct kvm_vcpu *vcpu; 254 int i, rc; 255 256 /* Locate target server */ 257 vcpu = kvmppc_xive_find_server(kvm, *server); 258 if (!vcpu) { 259 pr_devel("Can't find server %d\n", *server); 260 return -EINVAL; 261 } 262 263 pr_devel("Finding irq target on 0x%x/%d...\n", *server, prio); 264 265 /* Try pick it */ 266 rc = xive_try_pick_queue(vcpu, prio); 267 if (rc == 0) 268 return rc; 269 270 pr_devel(" .. failed, looking up candidate...\n"); 271 272 /* Failed, pick another VCPU */ 273 kvm_for_each_vcpu(i, vcpu, kvm) { 274 if (!vcpu->arch.xive_vcpu) 275 continue; 276 rc = xive_try_pick_queue(vcpu, prio); 277 if (rc == 0) { 278 *server = vcpu->arch.xive_vcpu->server_num; 279 pr_devel(" found on 0x%x/%d\n", *server, prio); 280 return rc; 281 } 282 } 283 pr_devel(" no available target !\n"); 284 285 /* No available target ! */ 286 return -EBUSY; 287 } 288 289 static u8 xive_lock_and_mask(struct kvmppc_xive *xive, 290 struct kvmppc_xive_src_block *sb, 291 struct kvmppc_xive_irq_state *state) 292 { 293 struct xive_irq_data *xd; 294 u32 hw_num; 295 u8 old_prio; 296 u64 val; 297 298 /* 299 * Take the lock, set masked, try again if racing 300 * with H_EOI 301 */ 302 for (;;) { 303 arch_spin_lock(&sb->lock); 304 old_prio = state->guest_priority; 305 state->guest_priority = MASKED; 306 mb(); 307 if (!state->in_eoi) 308 break; 309 state->guest_priority = old_prio; 310 arch_spin_unlock(&sb->lock); 311 } 312 313 /* No change ? Bail */ 314 if (old_prio == MASKED) 315 return old_prio; 316 317 /* Get the right irq */ 318 kvmppc_xive_select_irq(state, &hw_num, &xd); 319 320 /* 321 * If the interrupt is marked as needing masking via 322 * firmware, we do it here. Firmware masking however 323 * is "lossy", it won't return the old p and q bits 324 * and won't set the interrupt to a state where it will 325 * record queued ones. If this is an issue we should do 326 * lazy masking instead. 327 * 328 * For now, we work around this in unmask by forcing 329 * an interrupt whenever we unmask a non-LSI via FW 330 * (if ever). 331 */ 332 if (xd->flags & OPAL_XIVE_IRQ_MASK_VIA_FW) { 333 xive_native_configure_irq(hw_num, 334 xive->vp_base + state->act_server, 335 MASKED, state->number); 336 /* set old_p so we can track if an H_EOI was done */ 337 state->old_p = true; 338 state->old_q = false; 339 } else { 340 /* Set PQ to 10, return old P and old Q and remember them */ 341 val = xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_10); 342 state->old_p = !!(val & 2); 343 state->old_q = !!(val & 1); 344 345 /* 346 * Synchronize hardware to sensure the queues are updated 347 * when masking 348 */ 349 xive_native_sync_source(hw_num); 350 } 351 352 return old_prio; 353 } 354 355 static void xive_lock_for_unmask(struct kvmppc_xive_src_block *sb, 356 struct kvmppc_xive_irq_state *state) 357 { 358 /* 359 * Take the lock try again if racing with H_EOI 360 */ 361 for (;;) { 362 arch_spin_lock(&sb->lock); 363 if (!state->in_eoi) 364 break; 365 arch_spin_unlock(&sb->lock); 366 } 367 } 368 369 static void xive_finish_unmask(struct kvmppc_xive *xive, 370 struct kvmppc_xive_src_block *sb, 371 struct kvmppc_xive_irq_state *state, 372 u8 prio) 373 { 374 struct xive_irq_data *xd; 375 u32 hw_num; 376 377 /* If we aren't changing a thing, move on */ 378 if (state->guest_priority != MASKED) 379 goto bail; 380 381 /* Get the right irq */ 382 kvmppc_xive_select_irq(state, &hw_num, &xd); 383 384 /* 385 * See command in xive_lock_and_mask() concerning masking 386 * via firmware. 387 */ 388 if (xd->flags & OPAL_XIVE_IRQ_MASK_VIA_FW) { 389 xive_native_configure_irq(hw_num, 390 xive->vp_base + state->act_server, 391 state->act_priority, state->number); 392 /* If an EOI is needed, do it here */ 393 if (!state->old_p) 394 xive_vm_source_eoi(hw_num, xd); 395 /* If this is not an LSI, force a trigger */ 396 if (!(xd->flags & OPAL_XIVE_IRQ_LSI)) 397 xive_irq_trigger(xd); 398 goto bail; 399 } 400 401 /* Old Q set, set PQ to 11 */ 402 if (state->old_q) 403 xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_11); 404 405 /* 406 * If not old P, then perform an "effective" EOI, 407 * on the source. This will handle the cases where 408 * FW EOI is needed. 409 */ 410 if (!state->old_p) 411 xive_vm_source_eoi(hw_num, xd); 412 413 /* Synchronize ordering and mark unmasked */ 414 mb(); 415 bail: 416 state->guest_priority = prio; 417 } 418 419 /* 420 * Target an interrupt to a given server/prio, this will fallback 421 * to another server if necessary and perform the HW targetting 422 * updates as needed 423 * 424 * NOTE: Must be called with the state lock held 425 */ 426 static int xive_target_interrupt(struct kvm *kvm, 427 struct kvmppc_xive_irq_state *state, 428 u32 server, u8 prio) 429 { 430 struct kvmppc_xive *xive = kvm->arch.xive; 431 u32 hw_num; 432 int rc; 433 434 /* 435 * This will return a tentative server and actual 436 * priority. The count for that new target will have 437 * already been incremented. 438 */ 439 rc = xive_select_target(kvm, &server, prio); 440 441 /* 442 * We failed to find a target ? Not much we can do 443 * at least until we support the GIQ. 444 */ 445 if (rc) 446 return rc; 447 448 /* 449 * Increment the old queue pending count if there 450 * was one so that the old queue count gets adjusted later 451 * when observed to be empty. 452 */ 453 if (state->act_priority != MASKED) 454 xive_inc_q_pending(kvm, 455 state->act_server, 456 state->act_priority); 457 /* 458 * Update state and HW 459 */ 460 state->act_priority = prio; 461 state->act_server = server; 462 463 /* Get the right irq */ 464 kvmppc_xive_select_irq(state, &hw_num, NULL); 465 466 return xive_native_configure_irq(hw_num, 467 xive->vp_base + server, 468 prio, state->number); 469 } 470 471 /* 472 * Targetting rules: In order to avoid losing track of 473 * pending interrupts accross mask and unmask, which would 474 * allow queue overflows, we implement the following rules: 475 * 476 * - Unless it was never enabled (or we run out of capacity) 477 * an interrupt is always targetted at a valid server/queue 478 * pair even when "masked" by the guest. This pair tends to 479 * be the last one used but it can be changed under some 480 * circumstances. That allows us to separate targetting 481 * from masking, we only handle accounting during (re)targetting, 482 * this also allows us to let an interrupt drain into its target 483 * queue after masking, avoiding complex schemes to remove 484 * interrupts out of remote processor queues. 485 * 486 * - When masking, we set PQ to 10 and save the previous value 487 * of P and Q. 488 * 489 * - When unmasking, if saved Q was set, we set PQ to 11 490 * otherwise we leave PQ to the HW state which will be either 491 * 10 if nothing happened or 11 if the interrupt fired while 492 * masked. Effectively we are OR'ing the previous Q into the 493 * HW Q. 494 * 495 * Then if saved P is clear, we do an effective EOI (Q->P->Trigger) 496 * which will unmask the interrupt and shoot a new one if Q was 497 * set. 498 * 499 * Otherwise (saved P is set) we leave PQ unchanged (so 10 or 11, 500 * effectively meaning an H_EOI from the guest is still expected 501 * for that interrupt). 502 * 503 * - If H_EOI occurs while masked, we clear the saved P. 504 * 505 * - When changing target, we account on the new target and 506 * increment a separate "pending" counter on the old one. 507 * This pending counter will be used to decrement the old 508 * target's count when its queue has been observed empty. 509 */ 510 511 int kvmppc_xive_set_xive(struct kvm *kvm, u32 irq, u32 server, 512 u32 priority) 513 { 514 struct kvmppc_xive *xive = kvm->arch.xive; 515 struct kvmppc_xive_src_block *sb; 516 struct kvmppc_xive_irq_state *state; 517 u8 new_act_prio; 518 int rc = 0; 519 u16 idx; 520 521 if (!xive) 522 return -ENODEV; 523 524 pr_devel("set_xive ! irq 0x%x server 0x%x prio %d\n", 525 irq, server, priority); 526 527 /* First, check provisioning of queues */ 528 if (priority != MASKED) 529 rc = xive_check_provisioning(xive->kvm, 530 xive_prio_from_guest(priority)); 531 if (rc) { 532 pr_devel(" provisioning failure %d !\n", rc); 533 return rc; 534 } 535 536 sb = kvmppc_xive_find_source(xive, irq, &idx); 537 if (!sb) 538 return -EINVAL; 539 state = &sb->irq_state[idx]; 540 541 /* 542 * We first handle masking/unmasking since the locking 543 * might need to be retried due to EOIs, we'll handle 544 * targetting changes later. These functions will return 545 * with the SB lock held. 546 * 547 * xive_lock_and_mask() will also set state->guest_priority 548 * but won't otherwise change other fields of the state. 549 * 550 * xive_lock_for_unmask will not actually unmask, this will 551 * be done later by xive_finish_unmask() once the targetting 552 * has been done, so we don't try to unmask an interrupt 553 * that hasn't yet been targetted. 554 */ 555 if (priority == MASKED) 556 xive_lock_and_mask(xive, sb, state); 557 else 558 xive_lock_for_unmask(sb, state); 559 560 561 /* 562 * Then we handle targetting. 563 * 564 * First calculate a new "actual priority" 565 */ 566 new_act_prio = state->act_priority; 567 if (priority != MASKED) 568 new_act_prio = xive_prio_from_guest(priority); 569 570 pr_devel(" new_act_prio=%x act_server=%x act_prio=%x\n", 571 new_act_prio, state->act_server, state->act_priority); 572 573 /* 574 * Then check if we actually need to change anything, 575 * 576 * The condition for re-targetting the interrupt is that 577 * we have a valid new priority (new_act_prio is not 0xff) 578 * and either the server or the priority changed. 579 * 580 * Note: If act_priority was ff and the new priority is 581 * also ff, we don't do anything and leave the interrupt 582 * untargetted. An attempt of doing an int_on on an 583 * untargetted interrupt will fail. If that is a problem 584 * we could initialize interrupts with valid default 585 */ 586 587 if (new_act_prio != MASKED && 588 (state->act_server != server || 589 state->act_priority != new_act_prio)) 590 rc = xive_target_interrupt(kvm, state, server, new_act_prio); 591 592 /* 593 * Perform the final unmasking of the interrupt source 594 * if necessary 595 */ 596 if (priority != MASKED) 597 xive_finish_unmask(xive, sb, state, priority); 598 599 /* 600 * Finally Update saved_priority to match. Only int_on/off 601 * set this field to a different value. 602 */ 603 state->saved_priority = priority; 604 605 arch_spin_unlock(&sb->lock); 606 return rc; 607 } 608 609 int kvmppc_xive_get_xive(struct kvm *kvm, u32 irq, u32 *server, 610 u32 *priority) 611 { 612 struct kvmppc_xive *xive = kvm->arch.xive; 613 struct kvmppc_xive_src_block *sb; 614 struct kvmppc_xive_irq_state *state; 615 u16 idx; 616 617 if (!xive) 618 return -ENODEV; 619 620 sb = kvmppc_xive_find_source(xive, irq, &idx); 621 if (!sb) 622 return -EINVAL; 623 state = &sb->irq_state[idx]; 624 arch_spin_lock(&sb->lock); 625 *server = state->act_server; 626 *priority = state->guest_priority; 627 arch_spin_unlock(&sb->lock); 628 629 return 0; 630 } 631 632 int kvmppc_xive_int_on(struct kvm *kvm, u32 irq) 633 { 634 struct kvmppc_xive *xive = kvm->arch.xive; 635 struct kvmppc_xive_src_block *sb; 636 struct kvmppc_xive_irq_state *state; 637 u16 idx; 638 639 if (!xive) 640 return -ENODEV; 641 642 sb = kvmppc_xive_find_source(xive, irq, &idx); 643 if (!sb) 644 return -EINVAL; 645 state = &sb->irq_state[idx]; 646 647 pr_devel("int_on(irq=0x%x)\n", irq); 648 649 /* 650 * Check if interrupt was not targetted 651 */ 652 if (state->act_priority == MASKED) { 653 pr_devel("int_on on untargetted interrupt\n"); 654 return -EINVAL; 655 } 656 657 /* If saved_priority is 0xff, do nothing */ 658 if (state->saved_priority == MASKED) 659 return 0; 660 661 /* 662 * Lock and unmask it. 663 */ 664 xive_lock_for_unmask(sb, state); 665 xive_finish_unmask(xive, sb, state, state->saved_priority); 666 arch_spin_unlock(&sb->lock); 667 668 return 0; 669 } 670 671 int kvmppc_xive_int_off(struct kvm *kvm, u32 irq) 672 { 673 struct kvmppc_xive *xive = kvm->arch.xive; 674 struct kvmppc_xive_src_block *sb; 675 struct kvmppc_xive_irq_state *state; 676 u16 idx; 677 678 if (!xive) 679 return -ENODEV; 680 681 sb = kvmppc_xive_find_source(xive, irq, &idx); 682 if (!sb) 683 return -EINVAL; 684 state = &sb->irq_state[idx]; 685 686 pr_devel("int_off(irq=0x%x)\n", irq); 687 688 /* 689 * Lock and mask 690 */ 691 state->saved_priority = xive_lock_and_mask(xive, sb, state); 692 arch_spin_unlock(&sb->lock); 693 694 return 0; 695 } 696 697 static bool xive_restore_pending_irq(struct kvmppc_xive *xive, u32 irq) 698 { 699 struct kvmppc_xive_src_block *sb; 700 struct kvmppc_xive_irq_state *state; 701 u16 idx; 702 703 sb = kvmppc_xive_find_source(xive, irq, &idx); 704 if (!sb) 705 return false; 706 state = &sb->irq_state[idx]; 707 if (!state->valid) 708 return false; 709 710 /* 711 * Trigger the IPI. This assumes we never restore a pass-through 712 * interrupt which should be safe enough 713 */ 714 xive_irq_trigger(&state->ipi_data); 715 716 return true; 717 } 718 719 u64 kvmppc_xive_get_icp(struct kvm_vcpu *vcpu) 720 { 721 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 722 723 if (!xc) 724 return 0; 725 726 /* Return the per-cpu state for state saving/migration */ 727 return (u64)xc->cppr << KVM_REG_PPC_ICP_CPPR_SHIFT | 728 (u64)xc->mfrr << KVM_REG_PPC_ICP_MFRR_SHIFT | 729 (u64)0xff << KVM_REG_PPC_ICP_PPRI_SHIFT; 730 } 731 732 int kvmppc_xive_set_icp(struct kvm_vcpu *vcpu, u64 icpval) 733 { 734 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 735 struct kvmppc_xive *xive = vcpu->kvm->arch.xive; 736 u8 cppr, mfrr; 737 u32 xisr; 738 739 if (!xc || !xive) 740 return -ENOENT; 741 742 /* Grab individual state fields. We don't use pending_pri */ 743 cppr = icpval >> KVM_REG_PPC_ICP_CPPR_SHIFT; 744 xisr = (icpval >> KVM_REG_PPC_ICP_XISR_SHIFT) & 745 KVM_REG_PPC_ICP_XISR_MASK; 746 mfrr = icpval >> KVM_REG_PPC_ICP_MFRR_SHIFT; 747 748 pr_devel("set_icp vcpu %d cppr=0x%x mfrr=0x%x xisr=0x%x\n", 749 xc->server_num, cppr, mfrr, xisr); 750 751 /* 752 * We can't update the state of a "pushed" VCPU, but that 753 * shouldn't happen. 754 */ 755 if (WARN_ON(vcpu->arch.xive_pushed)) 756 return -EIO; 757 758 /* Update VCPU HW saved state */ 759 vcpu->arch.xive_saved_state.cppr = cppr; 760 xc->hw_cppr = xc->cppr = cppr; 761 762 /* 763 * Update MFRR state. If it's not 0xff, we mark the VCPU as 764 * having a pending MFRR change, which will re-evaluate the 765 * target. The VCPU will thus potentially get a spurious 766 * interrupt but that's not a big deal. 767 */ 768 xc->mfrr = mfrr; 769 if (mfrr < cppr) 770 xive_irq_trigger(&xc->vp_ipi_data); 771 772 /* 773 * Now saved XIRR is "interesting". It means there's something in 774 * the legacy "1 element" queue... for an IPI we simply ignore it, 775 * as the MFRR restore will handle that. For anything else we need 776 * to force a resend of the source. 777 * However the source may not have been setup yet. If that's the 778 * case, we keep that info and increment a counter in the xive to 779 * tell subsequent xive_set_source() to go look. 780 */ 781 if (xisr > XICS_IPI && !xive_restore_pending_irq(xive, xisr)) { 782 xc->delayed_irq = xisr; 783 xive->delayed_irqs++; 784 pr_devel(" xisr restore delayed\n"); 785 } 786 787 return 0; 788 } 789 790 int kvmppc_xive_set_mapped(struct kvm *kvm, unsigned long guest_irq, 791 struct irq_desc *host_desc) 792 { 793 struct kvmppc_xive *xive = kvm->arch.xive; 794 struct kvmppc_xive_src_block *sb; 795 struct kvmppc_xive_irq_state *state; 796 struct irq_data *host_data = irq_desc_get_irq_data(host_desc); 797 unsigned int host_irq = irq_desc_get_irq(host_desc); 798 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(host_data); 799 u16 idx; 800 u8 prio; 801 int rc; 802 803 if (!xive) 804 return -ENODEV; 805 806 pr_devel("set_mapped girq 0x%lx host HW irq 0x%x...\n",guest_irq, hw_irq); 807 808 sb = kvmppc_xive_find_source(xive, guest_irq, &idx); 809 if (!sb) 810 return -EINVAL; 811 state = &sb->irq_state[idx]; 812 813 /* 814 * Mark the passed-through interrupt as going to a VCPU, 815 * this will prevent further EOIs and similar operations 816 * from the XIVE code. It will also mask the interrupt 817 * to either PQ=10 or 11 state, the latter if the interrupt 818 * is pending. This will allow us to unmask or retrigger it 819 * after routing it to the guest with a simple EOI. 820 * 821 * The "state" argument is a "token", all it needs is to be 822 * non-NULL to switch to passed-through or NULL for the 823 * other way around. We may not yet have an actual VCPU 824 * target here and we don't really care. 825 */ 826 rc = irq_set_vcpu_affinity(host_irq, state); 827 if (rc) { 828 pr_err("Failed to set VCPU affinity for irq %d\n", host_irq); 829 return rc; 830 } 831 832 /* 833 * Mask and read state of IPI. We need to know if its P bit 834 * is set as that means it's potentially already using a 835 * queue entry in the target 836 */ 837 prio = xive_lock_and_mask(xive, sb, state); 838 pr_devel(" old IPI prio %02x P:%d Q:%d\n", prio, 839 state->old_p, state->old_q); 840 841 /* Turn the IPI hard off */ 842 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01); 843 844 /* Grab info about irq */ 845 state->pt_number = hw_irq; 846 state->pt_data = irq_data_get_irq_handler_data(host_data); 847 848 /* 849 * Configure the IRQ to match the existing configuration of 850 * the IPI if it was already targetted. Otherwise this will 851 * mask the interrupt in a lossy way (act_priority is 0xff) 852 * which is fine for a never started interrupt. 853 */ 854 xive_native_configure_irq(hw_irq, 855 xive->vp_base + state->act_server, 856 state->act_priority, state->number); 857 858 /* 859 * We do an EOI to enable the interrupt (and retrigger if needed) 860 * if the guest has the interrupt unmasked and the P bit was *not* 861 * set in the IPI. If it was set, we know a slot may still be in 862 * use in the target queue thus we have to wait for a guest 863 * originated EOI 864 */ 865 if (prio != MASKED && !state->old_p) 866 xive_vm_source_eoi(hw_irq, state->pt_data); 867 868 /* Clear old_p/old_q as they are no longer relevant */ 869 state->old_p = state->old_q = false; 870 871 /* Restore guest prio (unlocks EOI) */ 872 mb(); 873 state->guest_priority = prio; 874 arch_spin_unlock(&sb->lock); 875 876 return 0; 877 } 878 EXPORT_SYMBOL_GPL(kvmppc_xive_set_mapped); 879 880 int kvmppc_xive_clr_mapped(struct kvm *kvm, unsigned long guest_irq, 881 struct irq_desc *host_desc) 882 { 883 struct kvmppc_xive *xive = kvm->arch.xive; 884 struct kvmppc_xive_src_block *sb; 885 struct kvmppc_xive_irq_state *state; 886 unsigned int host_irq = irq_desc_get_irq(host_desc); 887 u16 idx; 888 u8 prio; 889 int rc; 890 891 if (!xive) 892 return -ENODEV; 893 894 pr_devel("clr_mapped girq 0x%lx...\n", guest_irq); 895 896 sb = kvmppc_xive_find_source(xive, guest_irq, &idx); 897 if (!sb) 898 return -EINVAL; 899 state = &sb->irq_state[idx]; 900 901 /* 902 * Mask and read state of IRQ. We need to know if its P bit 903 * is set as that means it's potentially already using a 904 * queue entry in the target 905 */ 906 prio = xive_lock_and_mask(xive, sb, state); 907 pr_devel(" old IRQ prio %02x P:%d Q:%d\n", prio, 908 state->old_p, state->old_q); 909 910 /* 911 * If old_p is set, the interrupt is pending, we switch it to 912 * PQ=11. This will force a resend in the host so the interrupt 913 * isn't lost to whatver host driver may pick it up 914 */ 915 if (state->old_p) 916 xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_11); 917 918 /* Release the passed-through interrupt to the host */ 919 rc = irq_set_vcpu_affinity(host_irq, NULL); 920 if (rc) { 921 pr_err("Failed to clr VCPU affinity for irq %d\n", host_irq); 922 return rc; 923 } 924 925 /* Forget about the IRQ */ 926 state->pt_number = 0; 927 state->pt_data = NULL; 928 929 /* Reconfigure the IPI */ 930 xive_native_configure_irq(state->ipi_number, 931 xive->vp_base + state->act_server, 932 state->act_priority, state->number); 933 934 /* 935 * If old_p is set (we have a queue entry potentially 936 * occupied) or the interrupt is masked, we set the IPI 937 * to PQ=10 state. Otherwise we just re-enable it (PQ=00). 938 */ 939 if (prio == MASKED || state->old_p) 940 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_10); 941 else 942 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_00); 943 944 /* Restore guest prio (unlocks EOI) */ 945 mb(); 946 state->guest_priority = prio; 947 arch_spin_unlock(&sb->lock); 948 949 return 0; 950 } 951 EXPORT_SYMBOL_GPL(kvmppc_xive_clr_mapped); 952 953 static void kvmppc_xive_disable_vcpu_interrupts(struct kvm_vcpu *vcpu) 954 { 955 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 956 struct kvm *kvm = vcpu->kvm; 957 struct kvmppc_xive *xive = kvm->arch.xive; 958 int i, j; 959 960 for (i = 0; i <= xive->max_sbid; i++) { 961 struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; 962 963 if (!sb) 964 continue; 965 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) { 966 struct kvmppc_xive_irq_state *state = &sb->irq_state[j]; 967 968 if (!state->valid) 969 continue; 970 if (state->act_priority == MASKED) 971 continue; 972 if (state->act_server != xc->server_num) 973 continue; 974 975 /* Clean it up */ 976 arch_spin_lock(&sb->lock); 977 state->act_priority = MASKED; 978 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01); 979 xive_native_configure_irq(state->ipi_number, 0, MASKED, 0); 980 if (state->pt_number) { 981 xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_01); 982 xive_native_configure_irq(state->pt_number, 0, MASKED, 0); 983 } 984 arch_spin_unlock(&sb->lock); 985 } 986 } 987 } 988 989 void kvmppc_xive_cleanup_vcpu(struct kvm_vcpu *vcpu) 990 { 991 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 992 struct kvmppc_xive *xive = xc->xive; 993 int i; 994 995 pr_devel("cleanup_vcpu(cpu=%d)\n", xc->server_num); 996 997 /* Ensure no interrupt is still routed to that VP */ 998 xc->valid = false; 999 kvmppc_xive_disable_vcpu_interrupts(vcpu); 1000 1001 /* Mask the VP IPI */ 1002 xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_01); 1003 1004 /* Disable the VP */ 1005 xive_native_disable_vp(xc->vp_id); 1006 1007 /* Free the queues & associated interrupts */ 1008 for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) { 1009 struct xive_q *q = &xc->queues[i]; 1010 1011 /* Free the escalation irq */ 1012 if (xc->esc_virq[i]) { 1013 free_irq(xc->esc_virq[i], vcpu); 1014 irq_dispose_mapping(xc->esc_virq[i]); 1015 kfree(xc->esc_virq_names[i]); 1016 } 1017 /* Free the queue */ 1018 xive_native_disable_queue(xc->vp_id, q, i); 1019 if (q->qpage) { 1020 free_pages((unsigned long)q->qpage, 1021 xive->q_page_order); 1022 q->qpage = NULL; 1023 } 1024 } 1025 1026 /* Free the IPI */ 1027 if (xc->vp_ipi) { 1028 xive_cleanup_irq_data(&xc->vp_ipi_data); 1029 xive_native_free_irq(xc->vp_ipi); 1030 } 1031 /* Free the VP */ 1032 kfree(xc); 1033 } 1034 1035 int kvmppc_xive_connect_vcpu(struct kvm_device *dev, 1036 struct kvm_vcpu *vcpu, u32 cpu) 1037 { 1038 struct kvmppc_xive *xive = dev->private; 1039 struct kvmppc_xive_vcpu *xc; 1040 int i, r = -EBUSY; 1041 1042 pr_devel("connect_vcpu(cpu=%d)\n", cpu); 1043 1044 if (dev->ops != &kvm_xive_ops) { 1045 pr_devel("Wrong ops !\n"); 1046 return -EPERM; 1047 } 1048 if (xive->kvm != vcpu->kvm) 1049 return -EPERM; 1050 if (vcpu->arch.irq_type) 1051 return -EBUSY; 1052 if (kvmppc_xive_find_server(vcpu->kvm, cpu)) { 1053 pr_devel("Duplicate !\n"); 1054 return -EEXIST; 1055 } 1056 if (cpu >= KVM_MAX_VCPUS) { 1057 pr_devel("Out of bounds !\n"); 1058 return -EINVAL; 1059 } 1060 xc = kzalloc(sizeof(*xc), GFP_KERNEL); 1061 if (!xc) 1062 return -ENOMEM; 1063 1064 /* We need to synchronize with queue provisioning */ 1065 mutex_lock(&vcpu->kvm->lock); 1066 vcpu->arch.xive_vcpu = xc; 1067 xc->xive = xive; 1068 xc->vcpu = vcpu; 1069 xc->server_num = cpu; 1070 xc->vp_id = xive->vp_base + cpu; 1071 xc->mfrr = 0xff; 1072 xc->valid = true; 1073 1074 r = xive_native_get_vp_info(xc->vp_id, &xc->vp_cam, &xc->vp_chip_id); 1075 if (r) 1076 goto bail; 1077 1078 /* Configure VCPU fields for use by assembly push/pull */ 1079 vcpu->arch.xive_saved_state.w01 = cpu_to_be64(0xff000000); 1080 vcpu->arch.xive_cam_word = cpu_to_be32(xc->vp_cam | TM_QW1W2_VO); 1081 1082 /* Allocate IPI */ 1083 xc->vp_ipi = xive_native_alloc_irq(); 1084 if (!xc->vp_ipi) { 1085 r = -EIO; 1086 goto bail; 1087 } 1088 pr_devel(" IPI=0x%x\n", xc->vp_ipi); 1089 1090 r = xive_native_populate_irq_data(xc->vp_ipi, &xc->vp_ipi_data); 1091 if (r) 1092 goto bail; 1093 1094 /* 1095 * Initialize queues. Initially we set them all for no queueing 1096 * and we enable escalation for queue 0 only which we'll use for 1097 * our mfrr change notifications. If the VCPU is hot-plugged, we 1098 * do handle provisioning however. 1099 */ 1100 for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) { 1101 struct xive_q *q = &xc->queues[i]; 1102 1103 /* Is queue already enabled ? Provision it */ 1104 if (xive->qmap & (1 << i)) { 1105 r = xive_provision_queue(vcpu, i); 1106 if (r == 0) 1107 xive_attach_escalation(vcpu, i); 1108 if (r) 1109 goto bail; 1110 } else { 1111 r = xive_native_configure_queue(xc->vp_id, 1112 q, i, NULL, 0, true); 1113 if (r) { 1114 pr_err("Failed to configure queue %d for VCPU %d\n", 1115 i, cpu); 1116 goto bail; 1117 } 1118 } 1119 } 1120 1121 /* If not done above, attach priority 0 escalation */ 1122 r = xive_attach_escalation(vcpu, 0); 1123 if (r) 1124 goto bail; 1125 1126 /* Enable the VP */ 1127 r = xive_native_enable_vp(xc->vp_id); 1128 if (r) 1129 goto bail; 1130 1131 /* Route the IPI */ 1132 r = xive_native_configure_irq(xc->vp_ipi, xc->vp_id, 0, XICS_IPI); 1133 if (!r) 1134 xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_00); 1135 1136 bail: 1137 mutex_unlock(&vcpu->kvm->lock); 1138 if (r) { 1139 kvmppc_xive_cleanup_vcpu(vcpu); 1140 return r; 1141 } 1142 1143 vcpu->arch.irq_type = KVMPPC_IRQ_XICS; 1144 return 0; 1145 } 1146 1147 /* 1148 * Scanning of queues before/after migration save 1149 */ 1150 static void xive_pre_save_set_queued(struct kvmppc_xive *xive, u32 irq) 1151 { 1152 struct kvmppc_xive_src_block *sb; 1153 struct kvmppc_xive_irq_state *state; 1154 u16 idx; 1155 1156 sb = kvmppc_xive_find_source(xive, irq, &idx); 1157 if (!sb) 1158 return; 1159 1160 state = &sb->irq_state[idx]; 1161 1162 /* Some sanity checking */ 1163 if (!state->valid) { 1164 pr_err("invalid irq 0x%x in cpu queue!\n", irq); 1165 return; 1166 } 1167 1168 /* 1169 * If the interrupt is in a queue it should have P set. 1170 * We warn so that gets reported. A backtrace isn't useful 1171 * so no need to use a WARN_ON. 1172 */ 1173 if (!state->saved_p) 1174 pr_err("Interrupt 0x%x is marked in a queue but P not set !\n", irq); 1175 1176 /* Set flag */ 1177 state->in_queue = true; 1178 } 1179 1180 static void xive_pre_save_mask_irq(struct kvmppc_xive *xive, 1181 struct kvmppc_xive_src_block *sb, 1182 u32 irq) 1183 { 1184 struct kvmppc_xive_irq_state *state = &sb->irq_state[irq]; 1185 1186 if (!state->valid) 1187 return; 1188 1189 /* Mask and save state, this will also sync HW queues */ 1190 state->saved_scan_prio = xive_lock_and_mask(xive, sb, state); 1191 1192 /* Transfer P and Q */ 1193 state->saved_p = state->old_p; 1194 state->saved_q = state->old_q; 1195 1196 /* Unlock */ 1197 arch_spin_unlock(&sb->lock); 1198 } 1199 1200 static void xive_pre_save_unmask_irq(struct kvmppc_xive *xive, 1201 struct kvmppc_xive_src_block *sb, 1202 u32 irq) 1203 { 1204 struct kvmppc_xive_irq_state *state = &sb->irq_state[irq]; 1205 1206 if (!state->valid) 1207 return; 1208 1209 /* 1210 * Lock / exclude EOI (not technically necessary if the 1211 * guest isn't running concurrently. If this becomes a 1212 * performance issue we can probably remove the lock. 1213 */ 1214 xive_lock_for_unmask(sb, state); 1215 1216 /* Restore mask/prio if it wasn't masked */ 1217 if (state->saved_scan_prio != MASKED) 1218 xive_finish_unmask(xive, sb, state, state->saved_scan_prio); 1219 1220 /* Unlock */ 1221 arch_spin_unlock(&sb->lock); 1222 } 1223 1224 static void xive_pre_save_queue(struct kvmppc_xive *xive, struct xive_q *q) 1225 { 1226 u32 idx = q->idx; 1227 u32 toggle = q->toggle; 1228 u32 irq; 1229 1230 do { 1231 irq = __xive_read_eq(q->qpage, q->msk, &idx, &toggle); 1232 if (irq > XICS_IPI) 1233 xive_pre_save_set_queued(xive, irq); 1234 } while(irq); 1235 } 1236 1237 static void xive_pre_save_scan(struct kvmppc_xive *xive) 1238 { 1239 struct kvm_vcpu *vcpu = NULL; 1240 int i, j; 1241 1242 /* 1243 * See comment in xive_get_source() about how this 1244 * work. Collect a stable state for all interrupts 1245 */ 1246 for (i = 0; i <= xive->max_sbid; i++) { 1247 struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; 1248 if (!sb) 1249 continue; 1250 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) 1251 xive_pre_save_mask_irq(xive, sb, j); 1252 } 1253 1254 /* Then scan the queues and update the "in_queue" flag */ 1255 kvm_for_each_vcpu(i, vcpu, xive->kvm) { 1256 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 1257 if (!xc) 1258 continue; 1259 for (j = 0; j < KVMPPC_XIVE_Q_COUNT; j++) { 1260 if (xc->queues[j].qpage) 1261 xive_pre_save_queue(xive, &xc->queues[j]); 1262 } 1263 } 1264 1265 /* Finally restore interrupt states */ 1266 for (i = 0; i <= xive->max_sbid; i++) { 1267 struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; 1268 if (!sb) 1269 continue; 1270 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) 1271 xive_pre_save_unmask_irq(xive, sb, j); 1272 } 1273 } 1274 1275 static void xive_post_save_scan(struct kvmppc_xive *xive) 1276 { 1277 u32 i, j; 1278 1279 /* Clear all the in_queue flags */ 1280 for (i = 0; i <= xive->max_sbid; i++) { 1281 struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; 1282 if (!sb) 1283 continue; 1284 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) 1285 sb->irq_state[j].in_queue = false; 1286 } 1287 1288 /* Next get_source() will do a new scan */ 1289 xive->saved_src_count = 0; 1290 } 1291 1292 /* 1293 * This returns the source configuration and state to user space. 1294 */ 1295 static int xive_get_source(struct kvmppc_xive *xive, long irq, u64 addr) 1296 { 1297 struct kvmppc_xive_src_block *sb; 1298 struct kvmppc_xive_irq_state *state; 1299 u64 __user *ubufp = (u64 __user *) addr; 1300 u64 val, prio; 1301 u16 idx; 1302 1303 sb = kvmppc_xive_find_source(xive, irq, &idx); 1304 if (!sb) 1305 return -ENOENT; 1306 1307 state = &sb->irq_state[idx]; 1308 1309 if (!state->valid) 1310 return -ENOENT; 1311 1312 pr_devel("get_source(%ld)...\n", irq); 1313 1314 /* 1315 * So to properly save the state into something that looks like a 1316 * XICS migration stream we cannot treat interrupts individually. 1317 * 1318 * We need, instead, mask them all (& save their previous PQ state) 1319 * to get a stable state in the HW, then sync them to ensure that 1320 * any interrupt that had already fired hits its queue, and finally 1321 * scan all the queues to collect which interrupts are still present 1322 * in the queues, so we can set the "pending" flag on them and 1323 * they can be resent on restore. 1324 * 1325 * So we do it all when the "first" interrupt gets saved, all the 1326 * state is collected at that point, the rest of xive_get_source() 1327 * will merely collect and convert that state to the expected 1328 * userspace bit mask. 1329 */ 1330 if (xive->saved_src_count == 0) 1331 xive_pre_save_scan(xive); 1332 xive->saved_src_count++; 1333 1334 /* Convert saved state into something compatible with xics */ 1335 val = state->act_server; 1336 prio = state->saved_scan_prio; 1337 1338 if (prio == MASKED) { 1339 val |= KVM_XICS_MASKED; 1340 prio = state->saved_priority; 1341 } 1342 val |= prio << KVM_XICS_PRIORITY_SHIFT; 1343 if (state->lsi) { 1344 val |= KVM_XICS_LEVEL_SENSITIVE; 1345 if (state->saved_p) 1346 val |= KVM_XICS_PENDING; 1347 } else { 1348 if (state->saved_p) 1349 val |= KVM_XICS_PRESENTED; 1350 1351 if (state->saved_q) 1352 val |= KVM_XICS_QUEUED; 1353 1354 /* 1355 * We mark it pending (which will attempt a re-delivery) 1356 * if we are in a queue *or* we were masked and had 1357 * Q set which is equivalent to the XICS "masked pending" 1358 * state 1359 */ 1360 if (state->in_queue || (prio == MASKED && state->saved_q)) 1361 val |= KVM_XICS_PENDING; 1362 } 1363 1364 /* 1365 * If that was the last interrupt saved, reset the 1366 * in_queue flags 1367 */ 1368 if (xive->saved_src_count == xive->src_count) 1369 xive_post_save_scan(xive); 1370 1371 /* Copy the result to userspace */ 1372 if (put_user(val, ubufp)) 1373 return -EFAULT; 1374 1375 return 0; 1376 } 1377 1378 static struct kvmppc_xive_src_block *xive_create_src_block(struct kvmppc_xive *xive, 1379 int irq) 1380 { 1381 struct kvm *kvm = xive->kvm; 1382 struct kvmppc_xive_src_block *sb; 1383 int i, bid; 1384 1385 bid = irq >> KVMPPC_XICS_ICS_SHIFT; 1386 1387 mutex_lock(&kvm->lock); 1388 1389 /* block already exists - somebody else got here first */ 1390 if (xive->src_blocks[bid]) 1391 goto out; 1392 1393 /* Create the ICS */ 1394 sb = kzalloc(sizeof(*sb), GFP_KERNEL); 1395 if (!sb) 1396 goto out; 1397 1398 sb->id = bid; 1399 1400 for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) { 1401 sb->irq_state[i].number = (bid << KVMPPC_XICS_ICS_SHIFT) | i; 1402 sb->irq_state[i].guest_priority = MASKED; 1403 sb->irq_state[i].saved_priority = MASKED; 1404 sb->irq_state[i].act_priority = MASKED; 1405 } 1406 smp_wmb(); 1407 xive->src_blocks[bid] = sb; 1408 1409 if (bid > xive->max_sbid) 1410 xive->max_sbid = bid; 1411 1412 out: 1413 mutex_unlock(&kvm->lock); 1414 return xive->src_blocks[bid]; 1415 } 1416 1417 static bool xive_check_delayed_irq(struct kvmppc_xive *xive, u32 irq) 1418 { 1419 struct kvm *kvm = xive->kvm; 1420 struct kvm_vcpu *vcpu = NULL; 1421 int i; 1422 1423 kvm_for_each_vcpu(i, vcpu, kvm) { 1424 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 1425 1426 if (!xc) 1427 continue; 1428 1429 if (xc->delayed_irq == irq) { 1430 xc->delayed_irq = 0; 1431 xive->delayed_irqs--; 1432 return true; 1433 } 1434 } 1435 return false; 1436 } 1437 1438 static int xive_set_source(struct kvmppc_xive *xive, long irq, u64 addr) 1439 { 1440 struct kvmppc_xive_src_block *sb; 1441 struct kvmppc_xive_irq_state *state; 1442 u64 __user *ubufp = (u64 __user *) addr; 1443 u16 idx; 1444 u64 val; 1445 u8 act_prio, guest_prio; 1446 u32 server; 1447 int rc = 0; 1448 1449 if (irq < KVMPPC_XICS_FIRST_IRQ || irq >= KVMPPC_XICS_NR_IRQS) 1450 return -ENOENT; 1451 1452 pr_devel("set_source(irq=0x%lx)\n", irq); 1453 1454 /* Find the source */ 1455 sb = kvmppc_xive_find_source(xive, irq, &idx); 1456 if (!sb) { 1457 pr_devel("No source, creating source block...\n"); 1458 sb = xive_create_src_block(xive, irq); 1459 if (!sb) { 1460 pr_devel("Failed to create block...\n"); 1461 return -ENOMEM; 1462 } 1463 } 1464 state = &sb->irq_state[idx]; 1465 1466 /* Read user passed data */ 1467 if (get_user(val, ubufp)) { 1468 pr_devel("fault getting user info !\n"); 1469 return -EFAULT; 1470 } 1471 1472 server = val & KVM_XICS_DESTINATION_MASK; 1473 guest_prio = val >> KVM_XICS_PRIORITY_SHIFT; 1474 1475 pr_devel(" val=0x016%llx (server=0x%x, guest_prio=%d)\n", 1476 val, server, guest_prio); 1477 /* 1478 * If the source doesn't already have an IPI, allocate 1479 * one and get the corresponding data 1480 */ 1481 if (!state->ipi_number) { 1482 state->ipi_number = xive_native_alloc_irq(); 1483 if (state->ipi_number == 0) { 1484 pr_devel("Failed to allocate IPI !\n"); 1485 return -ENOMEM; 1486 } 1487 xive_native_populate_irq_data(state->ipi_number, &state->ipi_data); 1488 pr_devel(" src_ipi=0x%x\n", state->ipi_number); 1489 } 1490 1491 /* 1492 * We use lock_and_mask() to set us in the right masked 1493 * state. We will override that state from the saved state 1494 * further down, but this will handle the cases of interrupts 1495 * that need FW masking. We set the initial guest_priority to 1496 * 0 before calling it to ensure it actually performs the masking. 1497 */ 1498 state->guest_priority = 0; 1499 xive_lock_and_mask(xive, sb, state); 1500 1501 /* 1502 * Now, we select a target if we have one. If we don't we 1503 * leave the interrupt untargetted. It means that an interrupt 1504 * can become "untargetted" accross migration if it was masked 1505 * by set_xive() but there is little we can do about it. 1506 */ 1507 1508 /* First convert prio and mark interrupt as untargetted */ 1509 act_prio = xive_prio_from_guest(guest_prio); 1510 state->act_priority = MASKED; 1511 1512 /* 1513 * We need to drop the lock due to the mutex below. Hopefully 1514 * nothing is touching that interrupt yet since it hasn't been 1515 * advertized to a running guest yet 1516 */ 1517 arch_spin_unlock(&sb->lock); 1518 1519 /* If we have a priority target the interrupt */ 1520 if (act_prio != MASKED) { 1521 /* First, check provisioning of queues */ 1522 mutex_lock(&xive->kvm->lock); 1523 rc = xive_check_provisioning(xive->kvm, act_prio); 1524 mutex_unlock(&xive->kvm->lock); 1525 1526 /* Target interrupt */ 1527 if (rc == 0) 1528 rc = xive_target_interrupt(xive->kvm, state, 1529 server, act_prio); 1530 /* 1531 * If provisioning or targetting failed, leave it 1532 * alone and masked. It will remain disabled until 1533 * the guest re-targets it. 1534 */ 1535 } 1536 1537 /* 1538 * Find out if this was a delayed irq stashed in an ICP, 1539 * in which case, treat it as pending 1540 */ 1541 if (xive->delayed_irqs && xive_check_delayed_irq(xive, irq)) { 1542 val |= KVM_XICS_PENDING; 1543 pr_devel(" Found delayed ! forcing PENDING !\n"); 1544 } 1545 1546 /* Cleanup the SW state */ 1547 state->old_p = false; 1548 state->old_q = false; 1549 state->lsi = false; 1550 state->asserted = false; 1551 1552 /* Restore LSI state */ 1553 if (val & KVM_XICS_LEVEL_SENSITIVE) { 1554 state->lsi = true; 1555 if (val & KVM_XICS_PENDING) 1556 state->asserted = true; 1557 pr_devel(" LSI ! Asserted=%d\n", state->asserted); 1558 } 1559 1560 /* 1561 * Restore P and Q. If the interrupt was pending, we 1562 * force Q and !P, which will trigger a resend. 1563 * 1564 * That means that a guest that had both an interrupt 1565 * pending (queued) and Q set will restore with only 1566 * one instance of that interrupt instead of 2, but that 1567 * is perfectly fine as coalescing interrupts that haven't 1568 * been presented yet is always allowed. 1569 */ 1570 if (val & KVM_XICS_PRESENTED && !(val & KVM_XICS_PENDING)) 1571 state->old_p = true; 1572 if (val & KVM_XICS_QUEUED || val & KVM_XICS_PENDING) 1573 state->old_q = true; 1574 1575 pr_devel(" P=%d, Q=%d\n", state->old_p, state->old_q); 1576 1577 /* 1578 * If the interrupt was unmasked, update guest priority and 1579 * perform the appropriate state transition and do a 1580 * re-trigger if necessary. 1581 */ 1582 if (val & KVM_XICS_MASKED) { 1583 pr_devel(" masked, saving prio\n"); 1584 state->guest_priority = MASKED; 1585 state->saved_priority = guest_prio; 1586 } else { 1587 pr_devel(" unmasked, restoring to prio %d\n", guest_prio); 1588 xive_finish_unmask(xive, sb, state, guest_prio); 1589 state->saved_priority = guest_prio; 1590 } 1591 1592 /* Increment the number of valid sources and mark this one valid */ 1593 if (!state->valid) 1594 xive->src_count++; 1595 state->valid = true; 1596 1597 return 0; 1598 } 1599 1600 int kvmppc_xive_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1601 bool line_status) 1602 { 1603 struct kvmppc_xive *xive = kvm->arch.xive; 1604 struct kvmppc_xive_src_block *sb; 1605 struct kvmppc_xive_irq_state *state; 1606 u16 idx; 1607 1608 if (!xive) 1609 return -ENODEV; 1610 1611 sb = kvmppc_xive_find_source(xive, irq, &idx); 1612 if (!sb) 1613 return -EINVAL; 1614 1615 /* Perform locklessly .... (we need to do some RCUisms here...) */ 1616 state = &sb->irq_state[idx]; 1617 if (!state->valid) 1618 return -EINVAL; 1619 1620 /* We don't allow a trigger on a passed-through interrupt */ 1621 if (state->pt_number) 1622 return -EINVAL; 1623 1624 if ((level == 1 && state->lsi) || level == KVM_INTERRUPT_SET_LEVEL) 1625 state->asserted = 1; 1626 else if (level == 0 || level == KVM_INTERRUPT_UNSET) { 1627 state->asserted = 0; 1628 return 0; 1629 } 1630 1631 /* Trigger the IPI */ 1632 xive_irq_trigger(&state->ipi_data); 1633 1634 return 0; 1635 } 1636 1637 static int xive_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 1638 { 1639 struct kvmppc_xive *xive = dev->private; 1640 1641 /* We honor the existing XICS ioctl */ 1642 switch (attr->group) { 1643 case KVM_DEV_XICS_GRP_SOURCES: 1644 return xive_set_source(xive, attr->attr, attr->addr); 1645 } 1646 return -ENXIO; 1647 } 1648 1649 static int xive_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 1650 { 1651 struct kvmppc_xive *xive = dev->private; 1652 1653 /* We honor the existing XICS ioctl */ 1654 switch (attr->group) { 1655 case KVM_DEV_XICS_GRP_SOURCES: 1656 return xive_get_source(xive, attr->attr, attr->addr); 1657 } 1658 return -ENXIO; 1659 } 1660 1661 static int xive_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 1662 { 1663 /* We honor the same limits as XICS, at least for now */ 1664 switch (attr->group) { 1665 case KVM_DEV_XICS_GRP_SOURCES: 1666 if (attr->attr >= KVMPPC_XICS_FIRST_IRQ && 1667 attr->attr < KVMPPC_XICS_NR_IRQS) 1668 return 0; 1669 break; 1670 } 1671 return -ENXIO; 1672 } 1673 1674 static void kvmppc_xive_cleanup_irq(u32 hw_num, struct xive_irq_data *xd) 1675 { 1676 xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01); 1677 xive_native_configure_irq(hw_num, 0, MASKED, 0); 1678 xive_cleanup_irq_data(xd); 1679 } 1680 1681 static void kvmppc_xive_free_sources(struct kvmppc_xive_src_block *sb) 1682 { 1683 int i; 1684 1685 for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) { 1686 struct kvmppc_xive_irq_state *state = &sb->irq_state[i]; 1687 1688 if (!state->valid) 1689 continue; 1690 1691 kvmppc_xive_cleanup_irq(state->ipi_number, &state->ipi_data); 1692 xive_native_free_irq(state->ipi_number); 1693 1694 /* Pass-through, cleanup too */ 1695 if (state->pt_number) 1696 kvmppc_xive_cleanup_irq(state->pt_number, state->pt_data); 1697 1698 state->valid = false; 1699 } 1700 } 1701 1702 static void kvmppc_xive_free(struct kvm_device *dev) 1703 { 1704 struct kvmppc_xive *xive = dev->private; 1705 struct kvm *kvm = xive->kvm; 1706 int i; 1707 1708 debugfs_remove(xive->dentry); 1709 1710 if (kvm) 1711 kvm->arch.xive = NULL; 1712 1713 /* Mask and free interrupts */ 1714 for (i = 0; i <= xive->max_sbid; i++) { 1715 if (xive->src_blocks[i]) 1716 kvmppc_xive_free_sources(xive->src_blocks[i]); 1717 kfree(xive->src_blocks[i]); 1718 xive->src_blocks[i] = NULL; 1719 } 1720 1721 if (xive->vp_base != XIVE_INVALID_VP) 1722 xive_native_free_vp_block(xive->vp_base); 1723 1724 1725 kfree(xive); 1726 kfree(dev); 1727 } 1728 1729 static int kvmppc_xive_create(struct kvm_device *dev, u32 type) 1730 { 1731 struct kvmppc_xive *xive; 1732 struct kvm *kvm = dev->kvm; 1733 int ret = 0; 1734 1735 pr_devel("Creating xive for partition\n"); 1736 1737 xive = kzalloc(sizeof(*xive), GFP_KERNEL); 1738 if (!xive) 1739 return -ENOMEM; 1740 1741 dev->private = xive; 1742 xive->dev = dev; 1743 xive->kvm = kvm; 1744 1745 /* Already there ? */ 1746 if (kvm->arch.xive) 1747 ret = -EEXIST; 1748 else 1749 kvm->arch.xive = xive; 1750 1751 /* We use the default queue size set by the host */ 1752 xive->q_order = xive_native_default_eq_shift(); 1753 if (xive->q_order < PAGE_SHIFT) 1754 xive->q_page_order = 0; 1755 else 1756 xive->q_page_order = xive->q_order - PAGE_SHIFT; 1757 1758 /* Allocate a bunch of VPs */ 1759 xive->vp_base = xive_native_alloc_vp_block(KVM_MAX_VCPUS); 1760 pr_devel("VP_Base=%x\n", xive->vp_base); 1761 1762 if (xive->vp_base == XIVE_INVALID_VP) 1763 ret = -ENOMEM; 1764 1765 if (ret) { 1766 kfree(xive); 1767 return ret; 1768 } 1769 1770 return 0; 1771 } 1772 1773 1774 static int xive_debug_show(struct seq_file *m, void *private) 1775 { 1776 struct kvmppc_xive *xive = m->private; 1777 struct kvm *kvm = xive->kvm; 1778 struct kvm_vcpu *vcpu; 1779 u64 t_rm_h_xirr = 0; 1780 u64 t_rm_h_ipoll = 0; 1781 u64 t_rm_h_cppr = 0; 1782 u64 t_rm_h_eoi = 0; 1783 u64 t_rm_h_ipi = 0; 1784 u64 t_vm_h_xirr = 0; 1785 u64 t_vm_h_ipoll = 0; 1786 u64 t_vm_h_cppr = 0; 1787 u64 t_vm_h_eoi = 0; 1788 u64 t_vm_h_ipi = 0; 1789 unsigned int i; 1790 1791 if (!kvm) 1792 return 0; 1793 1794 seq_printf(m, "=========\nVCPU state\n=========\n"); 1795 1796 kvm_for_each_vcpu(i, vcpu, kvm) { 1797 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 1798 1799 if (!xc) 1800 continue; 1801 1802 seq_printf(m, "cpu server %#x CPPR:%#x HWCPPR:%#x" 1803 " MFRR:%#x PEND:%#x h_xirr: R=%lld V=%lld\n", 1804 xc->server_num, xc->cppr, xc->hw_cppr, 1805 xc->mfrr, xc->pending, 1806 xc->stat_rm_h_xirr, xc->stat_vm_h_xirr); 1807 1808 t_rm_h_xirr += xc->stat_rm_h_xirr; 1809 t_rm_h_ipoll += xc->stat_rm_h_ipoll; 1810 t_rm_h_cppr += xc->stat_rm_h_cppr; 1811 t_rm_h_eoi += xc->stat_rm_h_eoi; 1812 t_rm_h_ipi += xc->stat_rm_h_ipi; 1813 t_vm_h_xirr += xc->stat_vm_h_xirr; 1814 t_vm_h_ipoll += xc->stat_vm_h_ipoll; 1815 t_vm_h_cppr += xc->stat_vm_h_cppr; 1816 t_vm_h_eoi += xc->stat_vm_h_eoi; 1817 t_vm_h_ipi += xc->stat_vm_h_ipi; 1818 } 1819 1820 seq_printf(m, "Hcalls totals\n"); 1821 seq_printf(m, " H_XIRR R=%10lld V=%10lld\n", t_rm_h_xirr, t_vm_h_xirr); 1822 seq_printf(m, " H_IPOLL R=%10lld V=%10lld\n", t_rm_h_ipoll, t_vm_h_ipoll); 1823 seq_printf(m, " H_CPPR R=%10lld V=%10lld\n", t_rm_h_cppr, t_vm_h_cppr); 1824 seq_printf(m, " H_EOI R=%10lld V=%10lld\n", t_rm_h_eoi, t_vm_h_eoi); 1825 seq_printf(m, " H_IPI R=%10lld V=%10lld\n", t_rm_h_ipi, t_vm_h_ipi); 1826 1827 return 0; 1828 } 1829 1830 static int xive_debug_open(struct inode *inode, struct file *file) 1831 { 1832 return single_open(file, xive_debug_show, inode->i_private); 1833 } 1834 1835 static const struct file_operations xive_debug_fops = { 1836 .open = xive_debug_open, 1837 .read = seq_read, 1838 .llseek = seq_lseek, 1839 .release = single_release, 1840 }; 1841 1842 static void xive_debugfs_init(struct kvmppc_xive *xive) 1843 { 1844 char *name; 1845 1846 name = kasprintf(GFP_KERNEL, "kvm-xive-%p", xive); 1847 if (!name) { 1848 pr_err("%s: no memory for name\n", __func__); 1849 return; 1850 } 1851 1852 xive->dentry = debugfs_create_file(name, S_IRUGO, powerpc_debugfs_root, 1853 xive, &xive_debug_fops); 1854 1855 pr_debug("%s: created %s\n", __func__, name); 1856 kfree(name); 1857 } 1858 1859 static void kvmppc_xive_init(struct kvm_device *dev) 1860 { 1861 struct kvmppc_xive *xive = (struct kvmppc_xive *)dev->private; 1862 1863 /* Register some debug interfaces */ 1864 xive_debugfs_init(xive); 1865 } 1866 1867 struct kvm_device_ops kvm_xive_ops = { 1868 .name = "kvm-xive", 1869 .create = kvmppc_xive_create, 1870 .init = kvmppc_xive_init, 1871 .destroy = kvmppc_xive_free, 1872 .set_attr = xive_set_attr, 1873 .get_attr = xive_get_attr, 1874 .has_attr = xive_has_attr, 1875 }; 1876 1877 void kvmppc_xive_init_module(void) 1878 { 1879 __xive_vm_h_xirr = xive_vm_h_xirr; 1880 __xive_vm_h_ipoll = xive_vm_h_ipoll; 1881 __xive_vm_h_ipi = xive_vm_h_ipi; 1882 __xive_vm_h_cppr = xive_vm_h_cppr; 1883 __xive_vm_h_eoi = xive_vm_h_eoi; 1884 } 1885 1886 void kvmppc_xive_exit_module(void) 1887 { 1888 __xive_vm_h_xirr = NULL; 1889 __xive_vm_h_ipoll = NULL; 1890 __xive_vm_h_ipi = NULL; 1891 __xive_vm_h_cppr = NULL; 1892 __xive_vm_h_eoi = NULL; 1893 } 1894