xref: /openbmc/linux/arch/powerpc/kvm/book3s_xive.c (revision b5277d18)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2017 Benjamin Herrenschmidt, IBM Corporation.
4  */
5 
6 #define pr_fmt(fmt) "xive-kvm: " fmt
7 
8 #include <linux/kernel.h>
9 #include <linux/kvm_host.h>
10 #include <linux/err.h>
11 #include <linux/gfp.h>
12 #include <linux/spinlock.h>
13 #include <linux/delay.h>
14 #include <linux/percpu.h>
15 #include <linux/cpumask.h>
16 #include <linux/uaccess.h>
17 #include <asm/kvm_book3s.h>
18 #include <asm/kvm_ppc.h>
19 #include <asm/hvcall.h>
20 #include <asm/xics.h>
21 #include <asm/xive.h>
22 #include <asm/xive-regs.h>
23 #include <asm/debug.h>
24 #include <asm/debugfs.h>
25 #include <asm/time.h>
26 #include <asm/opal.h>
27 
28 #include <linux/debugfs.h>
29 #include <linux/seq_file.h>
30 
31 #include "book3s_xive.h"
32 
33 
34 /*
35  * Virtual mode variants of the hcalls for use on radix/radix
36  * with AIL. They require the VCPU's VP to be "pushed"
37  *
38  * We still instantiate them here because we use some of the
39  * generated utility functions as well in this file.
40  */
41 #define XIVE_RUNTIME_CHECKS
42 #define X_PFX xive_vm_
43 #define X_STATIC static
44 #define X_STAT_PFX stat_vm_
45 #define __x_tima		xive_tima
46 #define __x_eoi_page(xd)	((void __iomem *)((xd)->eoi_mmio))
47 #define __x_trig_page(xd)	((void __iomem *)((xd)->trig_mmio))
48 #define __x_writeb	__raw_writeb
49 #define __x_readw	__raw_readw
50 #define __x_readq	__raw_readq
51 #define __x_writeq	__raw_writeq
52 
53 #include "book3s_xive_template.c"
54 
55 /*
56  * We leave a gap of a couple of interrupts in the queue to
57  * account for the IPI and additional safety guard.
58  */
59 #define XIVE_Q_GAP	2
60 
61 /*
62  * Push a vcpu's context to the XIVE on guest entry.
63  * This assumes we are in virtual mode (MMU on)
64  */
65 void kvmppc_xive_push_vcpu(struct kvm_vcpu *vcpu)
66 {
67 	void __iomem *tima = local_paca->kvm_hstate.xive_tima_virt;
68 	u64 pq;
69 
70 	/*
71 	 * Nothing to do if the platform doesn't have a XIVE
72 	 * or this vCPU doesn't have its own XIVE context
73 	 * (e.g. because it's not using an in-kernel interrupt controller).
74 	 */
75 	if (!tima || !vcpu->arch.xive_cam_word)
76 		return;
77 
78 	eieio();
79 	__raw_writeq(vcpu->arch.xive_saved_state.w01, tima + TM_QW1_OS);
80 	__raw_writel(vcpu->arch.xive_cam_word, tima + TM_QW1_OS + TM_WORD2);
81 	vcpu->arch.xive_pushed = 1;
82 	eieio();
83 
84 	/*
85 	 * We clear the irq_pending flag. There is a small chance of a
86 	 * race vs. the escalation interrupt happening on another
87 	 * processor setting it again, but the only consequence is to
88 	 * cause a spurious wakeup on the next H_CEDE, which is not an
89 	 * issue.
90 	 */
91 	vcpu->arch.irq_pending = 0;
92 
93 	/*
94 	 * In single escalation mode, if the escalation interrupt is
95 	 * on, we mask it.
96 	 */
97 	if (vcpu->arch.xive_esc_on) {
98 		pq = __raw_readq((void __iomem *)(vcpu->arch.xive_esc_vaddr +
99 						  XIVE_ESB_SET_PQ_01));
100 		mb();
101 
102 		/*
103 		 * We have a possible subtle race here: The escalation
104 		 * interrupt might have fired and be on its way to the
105 		 * host queue while we mask it, and if we unmask it
106 		 * early enough (re-cede right away), there is a
107 		 * theorical possibility that it fires again, thus
108 		 * landing in the target queue more than once which is
109 		 * a big no-no.
110 		 *
111 		 * Fortunately, solving this is rather easy. If the
112 		 * above load setting PQ to 01 returns a previous
113 		 * value where P is set, then we know the escalation
114 		 * interrupt is somewhere on its way to the host. In
115 		 * that case we simply don't clear the xive_esc_on
116 		 * flag below. It will be eventually cleared by the
117 		 * handler for the escalation interrupt.
118 		 *
119 		 * Then, when doing a cede, we check that flag again
120 		 * before re-enabling the escalation interrupt, and if
121 		 * set, we abort the cede.
122 		 */
123 		if (!(pq & XIVE_ESB_VAL_P))
124 			/* Now P is 0, we can clear the flag */
125 			vcpu->arch.xive_esc_on = 0;
126 	}
127 }
128 EXPORT_SYMBOL_GPL(kvmppc_xive_push_vcpu);
129 
130 /*
131  * This is a simple trigger for a generic XIVE IRQ. This must
132  * only be called for interrupts that support a trigger page
133  */
134 static bool xive_irq_trigger(struct xive_irq_data *xd)
135 {
136 	/* This should be only for MSIs */
137 	if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
138 		return false;
139 
140 	/* Those interrupts should always have a trigger page */
141 	if (WARN_ON(!xd->trig_mmio))
142 		return false;
143 
144 	out_be64(xd->trig_mmio, 0);
145 
146 	return true;
147 }
148 
149 static irqreturn_t xive_esc_irq(int irq, void *data)
150 {
151 	struct kvm_vcpu *vcpu = data;
152 
153 	vcpu->arch.irq_pending = 1;
154 	smp_mb();
155 	if (vcpu->arch.ceded)
156 		kvmppc_fast_vcpu_kick(vcpu);
157 
158 	/* Since we have the no-EOI flag, the interrupt is effectively
159 	 * disabled now. Clearing xive_esc_on means we won't bother
160 	 * doing so on the next entry.
161 	 *
162 	 * This also allows the entry code to know that if a PQ combination
163 	 * of 10 is observed while xive_esc_on is true, it means the queue
164 	 * contains an unprocessed escalation interrupt. We don't make use of
165 	 * that knowledge today but might (see comment in book3s_hv_rmhandler.S)
166 	 */
167 	vcpu->arch.xive_esc_on = false;
168 
169 	/* This orders xive_esc_on = false vs. subsequent stale_p = true */
170 	smp_wmb();	/* goes with smp_mb() in cleanup_single_escalation */
171 
172 	return IRQ_HANDLED;
173 }
174 
175 int kvmppc_xive_attach_escalation(struct kvm_vcpu *vcpu, u8 prio,
176 				  bool single_escalation)
177 {
178 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
179 	struct xive_q *q = &xc->queues[prio];
180 	char *name = NULL;
181 	int rc;
182 
183 	/* Already there ? */
184 	if (xc->esc_virq[prio])
185 		return 0;
186 
187 	/* Hook up the escalation interrupt */
188 	xc->esc_virq[prio] = irq_create_mapping(NULL, q->esc_irq);
189 	if (!xc->esc_virq[prio]) {
190 		pr_err("Failed to map escalation interrupt for queue %d of VCPU %d\n",
191 		       prio, xc->server_num);
192 		return -EIO;
193 	}
194 
195 	if (single_escalation)
196 		name = kasprintf(GFP_KERNEL, "kvm-%d-%d",
197 				 vcpu->kvm->arch.lpid, xc->server_num);
198 	else
199 		name = kasprintf(GFP_KERNEL, "kvm-%d-%d-%d",
200 				 vcpu->kvm->arch.lpid, xc->server_num, prio);
201 	if (!name) {
202 		pr_err("Failed to allocate escalation irq name for queue %d of VCPU %d\n",
203 		       prio, xc->server_num);
204 		rc = -ENOMEM;
205 		goto error;
206 	}
207 
208 	pr_devel("Escalation %s irq %d (prio %d)\n", name, xc->esc_virq[prio], prio);
209 
210 	rc = request_irq(xc->esc_virq[prio], xive_esc_irq,
211 			 IRQF_NO_THREAD, name, vcpu);
212 	if (rc) {
213 		pr_err("Failed to request escalation interrupt for queue %d of VCPU %d\n",
214 		       prio, xc->server_num);
215 		goto error;
216 	}
217 	xc->esc_virq_names[prio] = name;
218 
219 	/* In single escalation mode, we grab the ESB MMIO of the
220 	 * interrupt and mask it. Also populate the VCPU v/raddr
221 	 * of the ESB page for use by asm entry/exit code. Finally
222 	 * set the XIVE_IRQ_FLAG_NO_EOI flag which will prevent the
223 	 * core code from performing an EOI on the escalation
224 	 * interrupt, thus leaving it effectively masked after
225 	 * it fires once.
226 	 */
227 	if (single_escalation) {
228 		struct irq_data *d = irq_get_irq_data(xc->esc_virq[prio]);
229 		struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
230 
231 		xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01);
232 		vcpu->arch.xive_esc_raddr = xd->eoi_page;
233 		vcpu->arch.xive_esc_vaddr = (__force u64)xd->eoi_mmio;
234 		xd->flags |= XIVE_IRQ_FLAG_NO_EOI;
235 	}
236 
237 	return 0;
238 error:
239 	irq_dispose_mapping(xc->esc_virq[prio]);
240 	xc->esc_virq[prio] = 0;
241 	kfree(name);
242 	return rc;
243 }
244 
245 static int xive_provision_queue(struct kvm_vcpu *vcpu, u8 prio)
246 {
247 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
248 	struct kvmppc_xive *xive = xc->xive;
249 	struct xive_q *q =  &xc->queues[prio];
250 	void *qpage;
251 	int rc;
252 
253 	if (WARN_ON(q->qpage))
254 		return 0;
255 
256 	/* Allocate the queue and retrieve infos on current node for now */
257 	qpage = (__be32 *)__get_free_pages(GFP_KERNEL, xive->q_page_order);
258 	if (!qpage) {
259 		pr_err("Failed to allocate queue %d for VCPU %d\n",
260 		       prio, xc->server_num);
261 		return -ENOMEM;
262 	}
263 	memset(qpage, 0, 1 << xive->q_order);
264 
265 	/*
266 	 * Reconfigure the queue. This will set q->qpage only once the
267 	 * queue is fully configured. This is a requirement for prio 0
268 	 * as we will stop doing EOIs for every IPI as soon as we observe
269 	 * qpage being non-NULL, and instead will only EOI when we receive
270 	 * corresponding queue 0 entries
271 	 */
272 	rc = xive_native_configure_queue(xc->vp_id, q, prio, qpage,
273 					 xive->q_order, true);
274 	if (rc)
275 		pr_err("Failed to configure queue %d for VCPU %d\n",
276 		       prio, xc->server_num);
277 	return rc;
278 }
279 
280 /* Called with xive->lock held */
281 static int xive_check_provisioning(struct kvm *kvm, u8 prio)
282 {
283 	struct kvmppc_xive *xive = kvm->arch.xive;
284 	struct kvm_vcpu *vcpu;
285 	int i, rc;
286 
287 	lockdep_assert_held(&xive->lock);
288 
289 	/* Already provisioned ? */
290 	if (xive->qmap & (1 << prio))
291 		return 0;
292 
293 	pr_devel("Provisioning prio... %d\n", prio);
294 
295 	/* Provision each VCPU and enable escalations if needed */
296 	kvm_for_each_vcpu(i, vcpu, kvm) {
297 		if (!vcpu->arch.xive_vcpu)
298 			continue;
299 		rc = xive_provision_queue(vcpu, prio);
300 		if (rc == 0 && !xive->single_escalation)
301 			kvmppc_xive_attach_escalation(vcpu, prio,
302 						      xive->single_escalation);
303 		if (rc)
304 			return rc;
305 	}
306 
307 	/* Order previous stores and mark it as provisioned */
308 	mb();
309 	xive->qmap |= (1 << prio);
310 	return 0;
311 }
312 
313 static void xive_inc_q_pending(struct kvm *kvm, u32 server, u8 prio)
314 {
315 	struct kvm_vcpu *vcpu;
316 	struct kvmppc_xive_vcpu *xc;
317 	struct xive_q *q;
318 
319 	/* Locate target server */
320 	vcpu = kvmppc_xive_find_server(kvm, server);
321 	if (!vcpu) {
322 		pr_warn("%s: Can't find server %d\n", __func__, server);
323 		return;
324 	}
325 	xc = vcpu->arch.xive_vcpu;
326 	if (WARN_ON(!xc))
327 		return;
328 
329 	q = &xc->queues[prio];
330 	atomic_inc(&q->pending_count);
331 }
332 
333 static int xive_try_pick_queue(struct kvm_vcpu *vcpu, u8 prio)
334 {
335 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
336 	struct xive_q *q;
337 	u32 max;
338 
339 	if (WARN_ON(!xc))
340 		return -ENXIO;
341 	if (!xc->valid)
342 		return -ENXIO;
343 
344 	q = &xc->queues[prio];
345 	if (WARN_ON(!q->qpage))
346 		return -ENXIO;
347 
348 	/* Calculate max number of interrupts in that queue. */
349 	max = (q->msk + 1) - XIVE_Q_GAP;
350 	return atomic_add_unless(&q->count, 1, max) ? 0 : -EBUSY;
351 }
352 
353 int kvmppc_xive_select_target(struct kvm *kvm, u32 *server, u8 prio)
354 {
355 	struct kvm_vcpu *vcpu;
356 	int i, rc;
357 
358 	/* Locate target server */
359 	vcpu = kvmppc_xive_find_server(kvm, *server);
360 	if (!vcpu) {
361 		pr_devel("Can't find server %d\n", *server);
362 		return -EINVAL;
363 	}
364 
365 	pr_devel("Finding irq target on 0x%x/%d...\n", *server, prio);
366 
367 	/* Try pick it */
368 	rc = xive_try_pick_queue(vcpu, prio);
369 	if (rc == 0)
370 		return rc;
371 
372 	pr_devel(" .. failed, looking up candidate...\n");
373 
374 	/* Failed, pick another VCPU */
375 	kvm_for_each_vcpu(i, vcpu, kvm) {
376 		if (!vcpu->arch.xive_vcpu)
377 			continue;
378 		rc = xive_try_pick_queue(vcpu, prio);
379 		if (rc == 0) {
380 			*server = vcpu->arch.xive_vcpu->server_num;
381 			pr_devel("  found on 0x%x/%d\n", *server, prio);
382 			return rc;
383 		}
384 	}
385 	pr_devel("  no available target !\n");
386 
387 	/* No available target ! */
388 	return -EBUSY;
389 }
390 
391 static u8 xive_lock_and_mask(struct kvmppc_xive *xive,
392 			     struct kvmppc_xive_src_block *sb,
393 			     struct kvmppc_xive_irq_state *state)
394 {
395 	struct xive_irq_data *xd;
396 	u32 hw_num;
397 	u8 old_prio;
398 	u64 val;
399 
400 	/*
401 	 * Take the lock, set masked, try again if racing
402 	 * with H_EOI
403 	 */
404 	for (;;) {
405 		arch_spin_lock(&sb->lock);
406 		old_prio = state->guest_priority;
407 		state->guest_priority = MASKED;
408 		mb();
409 		if (!state->in_eoi)
410 			break;
411 		state->guest_priority = old_prio;
412 		arch_spin_unlock(&sb->lock);
413 	}
414 
415 	/* No change ? Bail */
416 	if (old_prio == MASKED)
417 		return old_prio;
418 
419 	/* Get the right irq */
420 	kvmppc_xive_select_irq(state, &hw_num, &xd);
421 
422 	/* Set PQ to 10, return old P and old Q and remember them */
423 	val = xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_10);
424 	state->old_p = !!(val & 2);
425 	state->old_q = !!(val & 1);
426 
427 	/*
428 	 * Synchronize hardware to sensure the queues are updated when
429 	 * masking
430 	 */
431 	xive_native_sync_source(hw_num);
432 
433 	return old_prio;
434 }
435 
436 static void xive_lock_for_unmask(struct kvmppc_xive_src_block *sb,
437 				 struct kvmppc_xive_irq_state *state)
438 {
439 	/*
440 	 * Take the lock try again if racing with H_EOI
441 	 */
442 	for (;;) {
443 		arch_spin_lock(&sb->lock);
444 		if (!state->in_eoi)
445 			break;
446 		arch_spin_unlock(&sb->lock);
447 	}
448 }
449 
450 static void xive_finish_unmask(struct kvmppc_xive *xive,
451 			       struct kvmppc_xive_src_block *sb,
452 			       struct kvmppc_xive_irq_state *state,
453 			       u8 prio)
454 {
455 	struct xive_irq_data *xd;
456 	u32 hw_num;
457 
458 	/* If we aren't changing a thing, move on */
459 	if (state->guest_priority != MASKED)
460 		goto bail;
461 
462 	/* Get the right irq */
463 	kvmppc_xive_select_irq(state, &hw_num, &xd);
464 
465 	/* Old Q set, set PQ to 11 */
466 	if (state->old_q)
467 		xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_11);
468 
469 	/*
470 	 * If not old P, then perform an "effective" EOI,
471 	 * on the source. This will handle the cases where
472 	 * FW EOI is needed.
473 	 */
474 	if (!state->old_p)
475 		xive_vm_source_eoi(hw_num, xd);
476 
477 	/* Synchronize ordering and mark unmasked */
478 	mb();
479 bail:
480 	state->guest_priority = prio;
481 }
482 
483 /*
484  * Target an interrupt to a given server/prio, this will fallback
485  * to another server if necessary and perform the HW targetting
486  * updates as needed
487  *
488  * NOTE: Must be called with the state lock held
489  */
490 static int xive_target_interrupt(struct kvm *kvm,
491 				 struct kvmppc_xive_irq_state *state,
492 				 u32 server, u8 prio)
493 {
494 	struct kvmppc_xive *xive = kvm->arch.xive;
495 	u32 hw_num;
496 	int rc;
497 
498 	/*
499 	 * This will return a tentative server and actual
500 	 * priority. The count for that new target will have
501 	 * already been incremented.
502 	 */
503 	rc = kvmppc_xive_select_target(kvm, &server, prio);
504 
505 	/*
506 	 * We failed to find a target ? Not much we can do
507 	 * at least until we support the GIQ.
508 	 */
509 	if (rc)
510 		return rc;
511 
512 	/*
513 	 * Increment the old queue pending count if there
514 	 * was one so that the old queue count gets adjusted later
515 	 * when observed to be empty.
516 	 */
517 	if (state->act_priority != MASKED)
518 		xive_inc_q_pending(kvm,
519 				   state->act_server,
520 				   state->act_priority);
521 	/*
522 	 * Update state and HW
523 	 */
524 	state->act_priority = prio;
525 	state->act_server = server;
526 
527 	/* Get the right irq */
528 	kvmppc_xive_select_irq(state, &hw_num, NULL);
529 
530 	return xive_native_configure_irq(hw_num,
531 					 kvmppc_xive_vp(xive, server),
532 					 prio, state->number);
533 }
534 
535 /*
536  * Targetting rules: In order to avoid losing track of
537  * pending interrupts accross mask and unmask, which would
538  * allow queue overflows, we implement the following rules:
539  *
540  *  - Unless it was never enabled (or we run out of capacity)
541  *    an interrupt is always targetted at a valid server/queue
542  *    pair even when "masked" by the guest. This pair tends to
543  *    be the last one used but it can be changed under some
544  *    circumstances. That allows us to separate targetting
545  *    from masking, we only handle accounting during (re)targetting,
546  *    this also allows us to let an interrupt drain into its target
547  *    queue after masking, avoiding complex schemes to remove
548  *    interrupts out of remote processor queues.
549  *
550  *  - When masking, we set PQ to 10 and save the previous value
551  *    of P and Q.
552  *
553  *  - When unmasking, if saved Q was set, we set PQ to 11
554  *    otherwise we leave PQ to the HW state which will be either
555  *    10 if nothing happened or 11 if the interrupt fired while
556  *    masked. Effectively we are OR'ing the previous Q into the
557  *    HW Q.
558  *
559  *    Then if saved P is clear, we do an effective EOI (Q->P->Trigger)
560  *    which will unmask the interrupt and shoot a new one if Q was
561  *    set.
562  *
563  *    Otherwise (saved P is set) we leave PQ unchanged (so 10 or 11,
564  *    effectively meaning an H_EOI from the guest is still expected
565  *    for that interrupt).
566  *
567  *  - If H_EOI occurs while masked, we clear the saved P.
568  *
569  *  - When changing target, we account on the new target and
570  *    increment a separate "pending" counter on the old one.
571  *    This pending counter will be used to decrement the old
572  *    target's count when its queue has been observed empty.
573  */
574 
575 int kvmppc_xive_set_xive(struct kvm *kvm, u32 irq, u32 server,
576 			 u32 priority)
577 {
578 	struct kvmppc_xive *xive = kvm->arch.xive;
579 	struct kvmppc_xive_src_block *sb;
580 	struct kvmppc_xive_irq_state *state;
581 	u8 new_act_prio;
582 	int rc = 0;
583 	u16 idx;
584 
585 	if (!xive)
586 		return -ENODEV;
587 
588 	pr_devel("set_xive ! irq 0x%x server 0x%x prio %d\n",
589 		 irq, server, priority);
590 
591 	/* First, check provisioning of queues */
592 	if (priority != MASKED) {
593 		mutex_lock(&xive->lock);
594 		rc = xive_check_provisioning(xive->kvm,
595 			      xive_prio_from_guest(priority));
596 		mutex_unlock(&xive->lock);
597 	}
598 	if (rc) {
599 		pr_devel("  provisioning failure %d !\n", rc);
600 		return rc;
601 	}
602 
603 	sb = kvmppc_xive_find_source(xive, irq, &idx);
604 	if (!sb)
605 		return -EINVAL;
606 	state = &sb->irq_state[idx];
607 
608 	/*
609 	 * We first handle masking/unmasking since the locking
610 	 * might need to be retried due to EOIs, we'll handle
611 	 * targetting changes later. These functions will return
612 	 * with the SB lock held.
613 	 *
614 	 * xive_lock_and_mask() will also set state->guest_priority
615 	 * but won't otherwise change other fields of the state.
616 	 *
617 	 * xive_lock_for_unmask will not actually unmask, this will
618 	 * be done later by xive_finish_unmask() once the targetting
619 	 * has been done, so we don't try to unmask an interrupt
620 	 * that hasn't yet been targetted.
621 	 */
622 	if (priority == MASKED)
623 		xive_lock_and_mask(xive, sb, state);
624 	else
625 		xive_lock_for_unmask(sb, state);
626 
627 
628 	/*
629 	 * Then we handle targetting.
630 	 *
631 	 * First calculate a new "actual priority"
632 	 */
633 	new_act_prio = state->act_priority;
634 	if (priority != MASKED)
635 		new_act_prio = xive_prio_from_guest(priority);
636 
637 	pr_devel(" new_act_prio=%x act_server=%x act_prio=%x\n",
638 		 new_act_prio, state->act_server, state->act_priority);
639 
640 	/*
641 	 * Then check if we actually need to change anything,
642 	 *
643 	 * The condition for re-targetting the interrupt is that
644 	 * we have a valid new priority (new_act_prio is not 0xff)
645 	 * and either the server or the priority changed.
646 	 *
647 	 * Note: If act_priority was ff and the new priority is
648 	 *       also ff, we don't do anything and leave the interrupt
649 	 *       untargetted. An attempt of doing an int_on on an
650 	 *       untargetted interrupt will fail. If that is a problem
651 	 *       we could initialize interrupts with valid default
652 	 */
653 
654 	if (new_act_prio != MASKED &&
655 	    (state->act_server != server ||
656 	     state->act_priority != new_act_prio))
657 		rc = xive_target_interrupt(kvm, state, server, new_act_prio);
658 
659 	/*
660 	 * Perform the final unmasking of the interrupt source
661 	 * if necessary
662 	 */
663 	if (priority != MASKED)
664 		xive_finish_unmask(xive, sb, state, priority);
665 
666 	/*
667 	 * Finally Update saved_priority to match. Only int_on/off
668 	 * set this field to a different value.
669 	 */
670 	state->saved_priority = priority;
671 
672 	arch_spin_unlock(&sb->lock);
673 	return rc;
674 }
675 
676 int kvmppc_xive_get_xive(struct kvm *kvm, u32 irq, u32 *server,
677 			 u32 *priority)
678 {
679 	struct kvmppc_xive *xive = kvm->arch.xive;
680 	struct kvmppc_xive_src_block *sb;
681 	struct kvmppc_xive_irq_state *state;
682 	u16 idx;
683 
684 	if (!xive)
685 		return -ENODEV;
686 
687 	sb = kvmppc_xive_find_source(xive, irq, &idx);
688 	if (!sb)
689 		return -EINVAL;
690 	state = &sb->irq_state[idx];
691 	arch_spin_lock(&sb->lock);
692 	*server = state->act_server;
693 	*priority = state->guest_priority;
694 	arch_spin_unlock(&sb->lock);
695 
696 	return 0;
697 }
698 
699 int kvmppc_xive_int_on(struct kvm *kvm, u32 irq)
700 {
701 	struct kvmppc_xive *xive = kvm->arch.xive;
702 	struct kvmppc_xive_src_block *sb;
703 	struct kvmppc_xive_irq_state *state;
704 	u16 idx;
705 
706 	if (!xive)
707 		return -ENODEV;
708 
709 	sb = kvmppc_xive_find_source(xive, irq, &idx);
710 	if (!sb)
711 		return -EINVAL;
712 	state = &sb->irq_state[idx];
713 
714 	pr_devel("int_on(irq=0x%x)\n", irq);
715 
716 	/*
717 	 * Check if interrupt was not targetted
718 	 */
719 	if (state->act_priority == MASKED) {
720 		pr_devel("int_on on untargetted interrupt\n");
721 		return -EINVAL;
722 	}
723 
724 	/* If saved_priority is 0xff, do nothing */
725 	if (state->saved_priority == MASKED)
726 		return 0;
727 
728 	/*
729 	 * Lock and unmask it.
730 	 */
731 	xive_lock_for_unmask(sb, state);
732 	xive_finish_unmask(xive, sb, state, state->saved_priority);
733 	arch_spin_unlock(&sb->lock);
734 
735 	return 0;
736 }
737 
738 int kvmppc_xive_int_off(struct kvm *kvm, u32 irq)
739 {
740 	struct kvmppc_xive *xive = kvm->arch.xive;
741 	struct kvmppc_xive_src_block *sb;
742 	struct kvmppc_xive_irq_state *state;
743 	u16 idx;
744 
745 	if (!xive)
746 		return -ENODEV;
747 
748 	sb = kvmppc_xive_find_source(xive, irq, &idx);
749 	if (!sb)
750 		return -EINVAL;
751 	state = &sb->irq_state[idx];
752 
753 	pr_devel("int_off(irq=0x%x)\n", irq);
754 
755 	/*
756 	 * Lock and mask
757 	 */
758 	state->saved_priority = xive_lock_and_mask(xive, sb, state);
759 	arch_spin_unlock(&sb->lock);
760 
761 	return 0;
762 }
763 
764 static bool xive_restore_pending_irq(struct kvmppc_xive *xive, u32 irq)
765 {
766 	struct kvmppc_xive_src_block *sb;
767 	struct kvmppc_xive_irq_state *state;
768 	u16 idx;
769 
770 	sb = kvmppc_xive_find_source(xive, irq, &idx);
771 	if (!sb)
772 		return false;
773 	state = &sb->irq_state[idx];
774 	if (!state->valid)
775 		return false;
776 
777 	/*
778 	 * Trigger the IPI. This assumes we never restore a pass-through
779 	 * interrupt which should be safe enough
780 	 */
781 	xive_irq_trigger(&state->ipi_data);
782 
783 	return true;
784 }
785 
786 u64 kvmppc_xive_get_icp(struct kvm_vcpu *vcpu)
787 {
788 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
789 
790 	if (!xc)
791 		return 0;
792 
793 	/* Return the per-cpu state for state saving/migration */
794 	return (u64)xc->cppr << KVM_REG_PPC_ICP_CPPR_SHIFT |
795 	       (u64)xc->mfrr << KVM_REG_PPC_ICP_MFRR_SHIFT |
796 	       (u64)0xff << KVM_REG_PPC_ICP_PPRI_SHIFT;
797 }
798 
799 int kvmppc_xive_set_icp(struct kvm_vcpu *vcpu, u64 icpval)
800 {
801 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
802 	struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
803 	u8 cppr, mfrr;
804 	u32 xisr;
805 
806 	if (!xc || !xive)
807 		return -ENOENT;
808 
809 	/* Grab individual state fields. We don't use pending_pri */
810 	cppr = icpval >> KVM_REG_PPC_ICP_CPPR_SHIFT;
811 	xisr = (icpval >> KVM_REG_PPC_ICP_XISR_SHIFT) &
812 		KVM_REG_PPC_ICP_XISR_MASK;
813 	mfrr = icpval >> KVM_REG_PPC_ICP_MFRR_SHIFT;
814 
815 	pr_devel("set_icp vcpu %d cppr=0x%x mfrr=0x%x xisr=0x%x\n",
816 		 xc->server_num, cppr, mfrr, xisr);
817 
818 	/*
819 	 * We can't update the state of a "pushed" VCPU, but that
820 	 * shouldn't happen because the vcpu->mutex makes running a
821 	 * vcpu mutually exclusive with doing one_reg get/set on it.
822 	 */
823 	if (WARN_ON(vcpu->arch.xive_pushed))
824 		return -EIO;
825 
826 	/* Update VCPU HW saved state */
827 	vcpu->arch.xive_saved_state.cppr = cppr;
828 	xc->hw_cppr = xc->cppr = cppr;
829 
830 	/*
831 	 * Update MFRR state. If it's not 0xff, we mark the VCPU as
832 	 * having a pending MFRR change, which will re-evaluate the
833 	 * target. The VCPU will thus potentially get a spurious
834 	 * interrupt but that's not a big deal.
835 	 */
836 	xc->mfrr = mfrr;
837 	if (mfrr < cppr)
838 		xive_irq_trigger(&xc->vp_ipi_data);
839 
840 	/*
841 	 * Now saved XIRR is "interesting". It means there's something in
842 	 * the legacy "1 element" queue... for an IPI we simply ignore it,
843 	 * as the MFRR restore will handle that. For anything else we need
844 	 * to force a resend of the source.
845 	 * However the source may not have been setup yet. If that's the
846 	 * case, we keep that info and increment a counter in the xive to
847 	 * tell subsequent xive_set_source() to go look.
848 	 */
849 	if (xisr > XICS_IPI && !xive_restore_pending_irq(xive, xisr)) {
850 		xc->delayed_irq = xisr;
851 		xive->delayed_irqs++;
852 		pr_devel("  xisr restore delayed\n");
853 	}
854 
855 	return 0;
856 }
857 
858 int kvmppc_xive_set_mapped(struct kvm *kvm, unsigned long guest_irq,
859 			   struct irq_desc *host_desc)
860 {
861 	struct kvmppc_xive *xive = kvm->arch.xive;
862 	struct kvmppc_xive_src_block *sb;
863 	struct kvmppc_xive_irq_state *state;
864 	struct irq_data *host_data = irq_desc_get_irq_data(host_desc);
865 	unsigned int host_irq = irq_desc_get_irq(host_desc);
866 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(host_data);
867 	u16 idx;
868 	u8 prio;
869 	int rc;
870 
871 	if (!xive)
872 		return -ENODEV;
873 
874 	pr_devel("set_mapped girq 0x%lx host HW irq 0x%x...\n",guest_irq, hw_irq);
875 
876 	sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
877 	if (!sb)
878 		return -EINVAL;
879 	state = &sb->irq_state[idx];
880 
881 	/*
882 	 * Mark the passed-through interrupt as going to a VCPU,
883 	 * this will prevent further EOIs and similar operations
884 	 * from the XIVE code. It will also mask the interrupt
885 	 * to either PQ=10 or 11 state, the latter if the interrupt
886 	 * is pending. This will allow us to unmask or retrigger it
887 	 * after routing it to the guest with a simple EOI.
888 	 *
889 	 * The "state" argument is a "token", all it needs is to be
890 	 * non-NULL to switch to passed-through or NULL for the
891 	 * other way around. We may not yet have an actual VCPU
892 	 * target here and we don't really care.
893 	 */
894 	rc = irq_set_vcpu_affinity(host_irq, state);
895 	if (rc) {
896 		pr_err("Failed to set VCPU affinity for irq %d\n", host_irq);
897 		return rc;
898 	}
899 
900 	/*
901 	 * Mask and read state of IPI. We need to know if its P bit
902 	 * is set as that means it's potentially already using a
903 	 * queue entry in the target
904 	 */
905 	prio = xive_lock_and_mask(xive, sb, state);
906 	pr_devel(" old IPI prio %02x P:%d Q:%d\n", prio,
907 		 state->old_p, state->old_q);
908 
909 	/* Turn the IPI hard off */
910 	xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
911 
912 	/*
913 	 * Reset ESB guest mapping. Needed when ESB pages are exposed
914 	 * to the guest in XIVE native mode
915 	 */
916 	if (xive->ops && xive->ops->reset_mapped)
917 		xive->ops->reset_mapped(kvm, guest_irq);
918 
919 	/* Grab info about irq */
920 	state->pt_number = hw_irq;
921 	state->pt_data = irq_data_get_irq_handler_data(host_data);
922 
923 	/*
924 	 * Configure the IRQ to match the existing configuration of
925 	 * the IPI if it was already targetted. Otherwise this will
926 	 * mask the interrupt in a lossy way (act_priority is 0xff)
927 	 * which is fine for a never started interrupt.
928 	 */
929 	xive_native_configure_irq(hw_irq,
930 				  kvmppc_xive_vp(xive, state->act_server),
931 				  state->act_priority, state->number);
932 
933 	/*
934 	 * We do an EOI to enable the interrupt (and retrigger if needed)
935 	 * if the guest has the interrupt unmasked and the P bit was *not*
936 	 * set in the IPI. If it was set, we know a slot may still be in
937 	 * use in the target queue thus we have to wait for a guest
938 	 * originated EOI
939 	 */
940 	if (prio != MASKED && !state->old_p)
941 		xive_vm_source_eoi(hw_irq, state->pt_data);
942 
943 	/* Clear old_p/old_q as they are no longer relevant */
944 	state->old_p = state->old_q = false;
945 
946 	/* Restore guest prio (unlocks EOI) */
947 	mb();
948 	state->guest_priority = prio;
949 	arch_spin_unlock(&sb->lock);
950 
951 	return 0;
952 }
953 EXPORT_SYMBOL_GPL(kvmppc_xive_set_mapped);
954 
955 int kvmppc_xive_clr_mapped(struct kvm *kvm, unsigned long guest_irq,
956 			   struct irq_desc *host_desc)
957 {
958 	struct kvmppc_xive *xive = kvm->arch.xive;
959 	struct kvmppc_xive_src_block *sb;
960 	struct kvmppc_xive_irq_state *state;
961 	unsigned int host_irq = irq_desc_get_irq(host_desc);
962 	u16 idx;
963 	u8 prio;
964 	int rc;
965 
966 	if (!xive)
967 		return -ENODEV;
968 
969 	pr_devel("clr_mapped girq 0x%lx...\n", guest_irq);
970 
971 	sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
972 	if (!sb)
973 		return -EINVAL;
974 	state = &sb->irq_state[idx];
975 
976 	/*
977 	 * Mask and read state of IRQ. We need to know if its P bit
978 	 * is set as that means it's potentially already using a
979 	 * queue entry in the target
980 	 */
981 	prio = xive_lock_and_mask(xive, sb, state);
982 	pr_devel(" old IRQ prio %02x P:%d Q:%d\n", prio,
983 		 state->old_p, state->old_q);
984 
985 	/*
986 	 * If old_p is set, the interrupt is pending, we switch it to
987 	 * PQ=11. This will force a resend in the host so the interrupt
988 	 * isn't lost to whatver host driver may pick it up
989 	 */
990 	if (state->old_p)
991 		xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_11);
992 
993 	/* Release the passed-through interrupt to the host */
994 	rc = irq_set_vcpu_affinity(host_irq, NULL);
995 	if (rc) {
996 		pr_err("Failed to clr VCPU affinity for irq %d\n", host_irq);
997 		return rc;
998 	}
999 
1000 	/* Forget about the IRQ */
1001 	state->pt_number = 0;
1002 	state->pt_data = NULL;
1003 
1004 	/*
1005 	 * Reset ESB guest mapping. Needed when ESB pages are exposed
1006 	 * to the guest in XIVE native mode
1007 	 */
1008 	if (xive->ops && xive->ops->reset_mapped) {
1009 		xive->ops->reset_mapped(kvm, guest_irq);
1010 	}
1011 
1012 	/* Reconfigure the IPI */
1013 	xive_native_configure_irq(state->ipi_number,
1014 				  kvmppc_xive_vp(xive, state->act_server),
1015 				  state->act_priority, state->number);
1016 
1017 	/*
1018 	 * If old_p is set (we have a queue entry potentially
1019 	 * occupied) or the interrupt is masked, we set the IPI
1020 	 * to PQ=10 state. Otherwise we just re-enable it (PQ=00).
1021 	 */
1022 	if (prio == MASKED || state->old_p)
1023 		xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_10);
1024 	else
1025 		xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_00);
1026 
1027 	/* Restore guest prio (unlocks EOI) */
1028 	mb();
1029 	state->guest_priority = prio;
1030 	arch_spin_unlock(&sb->lock);
1031 
1032 	return 0;
1033 }
1034 EXPORT_SYMBOL_GPL(kvmppc_xive_clr_mapped);
1035 
1036 void kvmppc_xive_disable_vcpu_interrupts(struct kvm_vcpu *vcpu)
1037 {
1038 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1039 	struct kvm *kvm = vcpu->kvm;
1040 	struct kvmppc_xive *xive = kvm->arch.xive;
1041 	int i, j;
1042 
1043 	for (i = 0; i <= xive->max_sbid; i++) {
1044 		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1045 
1046 		if (!sb)
1047 			continue;
1048 		for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) {
1049 			struct kvmppc_xive_irq_state *state = &sb->irq_state[j];
1050 
1051 			if (!state->valid)
1052 				continue;
1053 			if (state->act_priority == MASKED)
1054 				continue;
1055 			if (state->act_server != xc->server_num)
1056 				continue;
1057 
1058 			/* Clean it up */
1059 			arch_spin_lock(&sb->lock);
1060 			state->act_priority = MASKED;
1061 			xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
1062 			xive_native_configure_irq(state->ipi_number, 0, MASKED, 0);
1063 			if (state->pt_number) {
1064 				xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_01);
1065 				xive_native_configure_irq(state->pt_number, 0, MASKED, 0);
1066 			}
1067 			arch_spin_unlock(&sb->lock);
1068 		}
1069 	}
1070 
1071 	/* Disable vcpu's escalation interrupt */
1072 	if (vcpu->arch.xive_esc_on) {
1073 		__raw_readq((void __iomem *)(vcpu->arch.xive_esc_vaddr +
1074 					     XIVE_ESB_SET_PQ_01));
1075 		vcpu->arch.xive_esc_on = false;
1076 	}
1077 
1078 	/*
1079 	 * Clear pointers to escalation interrupt ESB.
1080 	 * This is safe because the vcpu->mutex is held, preventing
1081 	 * any other CPU from concurrently executing a KVM_RUN ioctl.
1082 	 */
1083 	vcpu->arch.xive_esc_vaddr = 0;
1084 	vcpu->arch.xive_esc_raddr = 0;
1085 }
1086 
1087 /*
1088  * In single escalation mode, the escalation interrupt is marked so
1089  * that EOI doesn't re-enable it, but just sets the stale_p flag to
1090  * indicate that the P bit has already been dealt with.  However, the
1091  * assembly code that enters the guest sets PQ to 00 without clearing
1092  * stale_p (because it has no easy way to address it).  Hence we have
1093  * to adjust stale_p before shutting down the interrupt.
1094  */
1095 void xive_cleanup_single_escalation(struct kvm_vcpu *vcpu,
1096 				    struct kvmppc_xive_vcpu *xc, int irq)
1097 {
1098 	struct irq_data *d = irq_get_irq_data(irq);
1099 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
1100 
1101 	/*
1102 	 * This slightly odd sequence gives the right result
1103 	 * (i.e. stale_p set if xive_esc_on is false) even if
1104 	 * we race with xive_esc_irq() and xive_irq_eoi().
1105 	 */
1106 	xd->stale_p = false;
1107 	smp_mb();		/* paired with smb_wmb in xive_esc_irq */
1108 	if (!vcpu->arch.xive_esc_on)
1109 		xd->stale_p = true;
1110 }
1111 
1112 void kvmppc_xive_cleanup_vcpu(struct kvm_vcpu *vcpu)
1113 {
1114 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1115 	struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
1116 	int i;
1117 
1118 	if (!kvmppc_xics_enabled(vcpu))
1119 		return;
1120 
1121 	if (!xc)
1122 		return;
1123 
1124 	pr_devel("cleanup_vcpu(cpu=%d)\n", xc->server_num);
1125 
1126 	/* Ensure no interrupt is still routed to that VP */
1127 	xc->valid = false;
1128 	kvmppc_xive_disable_vcpu_interrupts(vcpu);
1129 
1130 	/* Mask the VP IPI */
1131 	xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_01);
1132 
1133 	/* Free escalations */
1134 	for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1135 		if (xc->esc_virq[i]) {
1136 			if (xc->xive->single_escalation)
1137 				xive_cleanup_single_escalation(vcpu, xc,
1138 							xc->esc_virq[i]);
1139 			free_irq(xc->esc_virq[i], vcpu);
1140 			irq_dispose_mapping(xc->esc_virq[i]);
1141 			kfree(xc->esc_virq_names[i]);
1142 		}
1143 	}
1144 
1145 	/* Disable the VP */
1146 	xive_native_disable_vp(xc->vp_id);
1147 
1148 	/* Clear the cam word so guest entry won't try to push context */
1149 	vcpu->arch.xive_cam_word = 0;
1150 
1151 	/* Free the queues */
1152 	for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1153 		struct xive_q *q = &xc->queues[i];
1154 
1155 		xive_native_disable_queue(xc->vp_id, q, i);
1156 		if (q->qpage) {
1157 			free_pages((unsigned long)q->qpage,
1158 				   xive->q_page_order);
1159 			q->qpage = NULL;
1160 		}
1161 	}
1162 
1163 	/* Free the IPI */
1164 	if (xc->vp_ipi) {
1165 		xive_cleanup_irq_data(&xc->vp_ipi_data);
1166 		xive_native_free_irq(xc->vp_ipi);
1167 	}
1168 	/* Free the VP */
1169 	kfree(xc);
1170 
1171 	/* Cleanup the vcpu */
1172 	vcpu->arch.irq_type = KVMPPC_IRQ_DEFAULT;
1173 	vcpu->arch.xive_vcpu = NULL;
1174 }
1175 
1176 static bool kvmppc_xive_vcpu_id_valid(struct kvmppc_xive *xive, u32 cpu)
1177 {
1178 	/* We have a block of xive->nr_servers VPs. We just need to check
1179 	 * raw vCPU ids are below the expected limit for this guest's
1180 	 * core stride ; kvmppc_pack_vcpu_id() will pack them down to an
1181 	 * index that can be safely used to compute a VP id that belongs
1182 	 * to the VP block.
1183 	 */
1184 	return cpu < xive->nr_servers * xive->kvm->arch.emul_smt_mode;
1185 }
1186 
1187 int kvmppc_xive_compute_vp_id(struct kvmppc_xive *xive, u32 cpu, u32 *vp)
1188 {
1189 	u32 vp_id;
1190 
1191 	if (!kvmppc_xive_vcpu_id_valid(xive, cpu)) {
1192 		pr_devel("Out of bounds !\n");
1193 		return -EINVAL;
1194 	}
1195 
1196 	if (xive->vp_base == XIVE_INVALID_VP) {
1197 		xive->vp_base = xive_native_alloc_vp_block(xive->nr_servers);
1198 		pr_devel("VP_Base=%x nr_servers=%d\n", xive->vp_base, xive->nr_servers);
1199 
1200 		if (xive->vp_base == XIVE_INVALID_VP)
1201 			return -ENOSPC;
1202 	}
1203 
1204 	vp_id = kvmppc_xive_vp(xive, cpu);
1205 	if (kvmppc_xive_vp_in_use(xive->kvm, vp_id)) {
1206 		pr_devel("Duplicate !\n");
1207 		return -EEXIST;
1208 	}
1209 
1210 	*vp = vp_id;
1211 
1212 	return 0;
1213 }
1214 
1215 int kvmppc_xive_connect_vcpu(struct kvm_device *dev,
1216 			     struct kvm_vcpu *vcpu, u32 cpu)
1217 {
1218 	struct kvmppc_xive *xive = dev->private;
1219 	struct kvmppc_xive_vcpu *xc;
1220 	int i, r = -EBUSY;
1221 	u32 vp_id;
1222 
1223 	pr_devel("connect_vcpu(cpu=%d)\n", cpu);
1224 
1225 	if (dev->ops != &kvm_xive_ops) {
1226 		pr_devel("Wrong ops !\n");
1227 		return -EPERM;
1228 	}
1229 	if (xive->kvm != vcpu->kvm)
1230 		return -EPERM;
1231 	if (vcpu->arch.irq_type != KVMPPC_IRQ_DEFAULT)
1232 		return -EBUSY;
1233 
1234 	/* We need to synchronize with queue provisioning */
1235 	mutex_lock(&xive->lock);
1236 
1237 	r = kvmppc_xive_compute_vp_id(xive, cpu, &vp_id);
1238 	if (r)
1239 		goto bail;
1240 
1241 	xc = kzalloc(sizeof(*xc), GFP_KERNEL);
1242 	if (!xc) {
1243 		r = -ENOMEM;
1244 		goto bail;
1245 	}
1246 
1247 	vcpu->arch.xive_vcpu = xc;
1248 	xc->xive = xive;
1249 	xc->vcpu = vcpu;
1250 	xc->server_num = cpu;
1251 	xc->vp_id = vp_id;
1252 	xc->mfrr = 0xff;
1253 	xc->valid = true;
1254 
1255 	r = xive_native_get_vp_info(xc->vp_id, &xc->vp_cam, &xc->vp_chip_id);
1256 	if (r)
1257 		goto bail;
1258 
1259 	/* Configure VCPU fields for use by assembly push/pull */
1260 	vcpu->arch.xive_saved_state.w01 = cpu_to_be64(0xff000000);
1261 	vcpu->arch.xive_cam_word = cpu_to_be32(xc->vp_cam | TM_QW1W2_VO);
1262 
1263 	/* Allocate IPI */
1264 	xc->vp_ipi = xive_native_alloc_irq();
1265 	if (!xc->vp_ipi) {
1266 		pr_err("Failed to allocate xive irq for VCPU IPI\n");
1267 		r = -EIO;
1268 		goto bail;
1269 	}
1270 	pr_devel(" IPI=0x%x\n", xc->vp_ipi);
1271 
1272 	r = xive_native_populate_irq_data(xc->vp_ipi, &xc->vp_ipi_data);
1273 	if (r)
1274 		goto bail;
1275 
1276 	/*
1277 	 * Enable the VP first as the single escalation mode will
1278 	 * affect escalation interrupts numbering
1279 	 */
1280 	r = xive_native_enable_vp(xc->vp_id, xive->single_escalation);
1281 	if (r) {
1282 		pr_err("Failed to enable VP in OPAL, err %d\n", r);
1283 		goto bail;
1284 	}
1285 
1286 	/*
1287 	 * Initialize queues. Initially we set them all for no queueing
1288 	 * and we enable escalation for queue 0 only which we'll use for
1289 	 * our mfrr change notifications. If the VCPU is hot-plugged, we
1290 	 * do handle provisioning however based on the existing "map"
1291 	 * of enabled queues.
1292 	 */
1293 	for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1294 		struct xive_q *q = &xc->queues[i];
1295 
1296 		/* Single escalation, no queue 7 */
1297 		if (i == 7 && xive->single_escalation)
1298 			break;
1299 
1300 		/* Is queue already enabled ? Provision it */
1301 		if (xive->qmap & (1 << i)) {
1302 			r = xive_provision_queue(vcpu, i);
1303 			if (r == 0 && !xive->single_escalation)
1304 				kvmppc_xive_attach_escalation(
1305 					vcpu, i, xive->single_escalation);
1306 			if (r)
1307 				goto bail;
1308 		} else {
1309 			r = xive_native_configure_queue(xc->vp_id,
1310 							q, i, NULL, 0, true);
1311 			if (r) {
1312 				pr_err("Failed to configure queue %d for VCPU %d\n",
1313 				       i, cpu);
1314 				goto bail;
1315 			}
1316 		}
1317 	}
1318 
1319 	/* If not done above, attach priority 0 escalation */
1320 	r = kvmppc_xive_attach_escalation(vcpu, 0, xive->single_escalation);
1321 	if (r)
1322 		goto bail;
1323 
1324 	/* Route the IPI */
1325 	r = xive_native_configure_irq(xc->vp_ipi, xc->vp_id, 0, XICS_IPI);
1326 	if (!r)
1327 		xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_00);
1328 
1329 bail:
1330 	mutex_unlock(&xive->lock);
1331 	if (r) {
1332 		kvmppc_xive_cleanup_vcpu(vcpu);
1333 		return r;
1334 	}
1335 
1336 	vcpu->arch.irq_type = KVMPPC_IRQ_XICS;
1337 	return 0;
1338 }
1339 
1340 /*
1341  * Scanning of queues before/after migration save
1342  */
1343 static void xive_pre_save_set_queued(struct kvmppc_xive *xive, u32 irq)
1344 {
1345 	struct kvmppc_xive_src_block *sb;
1346 	struct kvmppc_xive_irq_state *state;
1347 	u16 idx;
1348 
1349 	sb = kvmppc_xive_find_source(xive, irq, &idx);
1350 	if (!sb)
1351 		return;
1352 
1353 	state = &sb->irq_state[idx];
1354 
1355 	/* Some sanity checking */
1356 	if (!state->valid) {
1357 		pr_err("invalid irq 0x%x in cpu queue!\n", irq);
1358 		return;
1359 	}
1360 
1361 	/*
1362 	 * If the interrupt is in a queue it should have P set.
1363 	 * We warn so that gets reported. A backtrace isn't useful
1364 	 * so no need to use a WARN_ON.
1365 	 */
1366 	if (!state->saved_p)
1367 		pr_err("Interrupt 0x%x is marked in a queue but P not set !\n", irq);
1368 
1369 	/* Set flag */
1370 	state->in_queue = true;
1371 }
1372 
1373 static void xive_pre_save_mask_irq(struct kvmppc_xive *xive,
1374 				   struct kvmppc_xive_src_block *sb,
1375 				   u32 irq)
1376 {
1377 	struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
1378 
1379 	if (!state->valid)
1380 		return;
1381 
1382 	/* Mask and save state, this will also sync HW queues */
1383 	state->saved_scan_prio = xive_lock_and_mask(xive, sb, state);
1384 
1385 	/* Transfer P and Q */
1386 	state->saved_p = state->old_p;
1387 	state->saved_q = state->old_q;
1388 
1389 	/* Unlock */
1390 	arch_spin_unlock(&sb->lock);
1391 }
1392 
1393 static void xive_pre_save_unmask_irq(struct kvmppc_xive *xive,
1394 				     struct kvmppc_xive_src_block *sb,
1395 				     u32 irq)
1396 {
1397 	struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
1398 
1399 	if (!state->valid)
1400 		return;
1401 
1402 	/*
1403 	 * Lock / exclude EOI (not technically necessary if the
1404 	 * guest isn't running concurrently. If this becomes a
1405 	 * performance issue we can probably remove the lock.
1406 	 */
1407 	xive_lock_for_unmask(sb, state);
1408 
1409 	/* Restore mask/prio if it wasn't masked */
1410 	if (state->saved_scan_prio != MASKED)
1411 		xive_finish_unmask(xive, sb, state, state->saved_scan_prio);
1412 
1413 	/* Unlock */
1414 	arch_spin_unlock(&sb->lock);
1415 }
1416 
1417 static void xive_pre_save_queue(struct kvmppc_xive *xive, struct xive_q *q)
1418 {
1419 	u32 idx = q->idx;
1420 	u32 toggle = q->toggle;
1421 	u32 irq;
1422 
1423 	do {
1424 		irq = __xive_read_eq(q->qpage, q->msk, &idx, &toggle);
1425 		if (irq > XICS_IPI)
1426 			xive_pre_save_set_queued(xive, irq);
1427 	} while(irq);
1428 }
1429 
1430 static void xive_pre_save_scan(struct kvmppc_xive *xive)
1431 {
1432 	struct kvm_vcpu *vcpu = NULL;
1433 	int i, j;
1434 
1435 	/*
1436 	 * See comment in xive_get_source() about how this
1437 	 * work. Collect a stable state for all interrupts
1438 	 */
1439 	for (i = 0; i <= xive->max_sbid; i++) {
1440 		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1441 		if (!sb)
1442 			continue;
1443 		for (j = 0;  j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1444 			xive_pre_save_mask_irq(xive, sb, j);
1445 	}
1446 
1447 	/* Then scan the queues and update the "in_queue" flag */
1448 	kvm_for_each_vcpu(i, vcpu, xive->kvm) {
1449 		struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1450 		if (!xc)
1451 			continue;
1452 		for (j = 0; j < KVMPPC_XIVE_Q_COUNT; j++) {
1453 			if (xc->queues[j].qpage)
1454 				xive_pre_save_queue(xive, &xc->queues[j]);
1455 		}
1456 	}
1457 
1458 	/* Finally restore interrupt states */
1459 	for (i = 0; i <= xive->max_sbid; i++) {
1460 		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1461 		if (!sb)
1462 			continue;
1463 		for (j = 0;  j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1464 			xive_pre_save_unmask_irq(xive, sb, j);
1465 	}
1466 }
1467 
1468 static void xive_post_save_scan(struct kvmppc_xive *xive)
1469 {
1470 	u32 i, j;
1471 
1472 	/* Clear all the in_queue flags */
1473 	for (i = 0; i <= xive->max_sbid; i++) {
1474 		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1475 		if (!sb)
1476 			continue;
1477 		for (j = 0;  j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1478 			sb->irq_state[j].in_queue = false;
1479 	}
1480 
1481 	/* Next get_source() will do a new scan */
1482 	xive->saved_src_count = 0;
1483 }
1484 
1485 /*
1486  * This returns the source configuration and state to user space.
1487  */
1488 static int xive_get_source(struct kvmppc_xive *xive, long irq, u64 addr)
1489 {
1490 	struct kvmppc_xive_src_block *sb;
1491 	struct kvmppc_xive_irq_state *state;
1492 	u64 __user *ubufp = (u64 __user *) addr;
1493 	u64 val, prio;
1494 	u16 idx;
1495 
1496 	sb = kvmppc_xive_find_source(xive, irq, &idx);
1497 	if (!sb)
1498 		return -ENOENT;
1499 
1500 	state = &sb->irq_state[idx];
1501 
1502 	if (!state->valid)
1503 		return -ENOENT;
1504 
1505 	pr_devel("get_source(%ld)...\n", irq);
1506 
1507 	/*
1508 	 * So to properly save the state into something that looks like a
1509 	 * XICS migration stream we cannot treat interrupts individually.
1510 	 *
1511 	 * We need, instead, mask them all (& save their previous PQ state)
1512 	 * to get a stable state in the HW, then sync them to ensure that
1513 	 * any interrupt that had already fired hits its queue, and finally
1514 	 * scan all the queues to collect which interrupts are still present
1515 	 * in the queues, so we can set the "pending" flag on them and
1516 	 * they can be resent on restore.
1517 	 *
1518 	 * So we do it all when the "first" interrupt gets saved, all the
1519 	 * state is collected at that point, the rest of xive_get_source()
1520 	 * will merely collect and convert that state to the expected
1521 	 * userspace bit mask.
1522 	 */
1523 	if (xive->saved_src_count == 0)
1524 		xive_pre_save_scan(xive);
1525 	xive->saved_src_count++;
1526 
1527 	/* Convert saved state into something compatible with xics */
1528 	val = state->act_server;
1529 	prio = state->saved_scan_prio;
1530 
1531 	if (prio == MASKED) {
1532 		val |= KVM_XICS_MASKED;
1533 		prio = state->saved_priority;
1534 	}
1535 	val |= prio << KVM_XICS_PRIORITY_SHIFT;
1536 	if (state->lsi) {
1537 		val |= KVM_XICS_LEVEL_SENSITIVE;
1538 		if (state->saved_p)
1539 			val |= KVM_XICS_PENDING;
1540 	} else {
1541 		if (state->saved_p)
1542 			val |= KVM_XICS_PRESENTED;
1543 
1544 		if (state->saved_q)
1545 			val |= KVM_XICS_QUEUED;
1546 
1547 		/*
1548 		 * We mark it pending (which will attempt a re-delivery)
1549 		 * if we are in a queue *or* we were masked and had
1550 		 * Q set which is equivalent to the XICS "masked pending"
1551 		 * state
1552 		 */
1553 		if (state->in_queue || (prio == MASKED && state->saved_q))
1554 			val |= KVM_XICS_PENDING;
1555 	}
1556 
1557 	/*
1558 	 * If that was the last interrupt saved, reset the
1559 	 * in_queue flags
1560 	 */
1561 	if (xive->saved_src_count == xive->src_count)
1562 		xive_post_save_scan(xive);
1563 
1564 	/* Copy the result to userspace */
1565 	if (put_user(val, ubufp))
1566 		return -EFAULT;
1567 
1568 	return 0;
1569 }
1570 
1571 struct kvmppc_xive_src_block *kvmppc_xive_create_src_block(
1572 	struct kvmppc_xive *xive, int irq)
1573 {
1574 	struct kvmppc_xive_src_block *sb;
1575 	int i, bid;
1576 
1577 	bid = irq >> KVMPPC_XICS_ICS_SHIFT;
1578 
1579 	mutex_lock(&xive->lock);
1580 
1581 	/* block already exists - somebody else got here first */
1582 	if (xive->src_blocks[bid])
1583 		goto out;
1584 
1585 	/* Create the ICS */
1586 	sb = kzalloc(sizeof(*sb), GFP_KERNEL);
1587 	if (!sb)
1588 		goto out;
1589 
1590 	sb->id = bid;
1591 
1592 	for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
1593 		sb->irq_state[i].number = (bid << KVMPPC_XICS_ICS_SHIFT) | i;
1594 		sb->irq_state[i].eisn = 0;
1595 		sb->irq_state[i].guest_priority = MASKED;
1596 		sb->irq_state[i].saved_priority = MASKED;
1597 		sb->irq_state[i].act_priority = MASKED;
1598 	}
1599 	smp_wmb();
1600 	xive->src_blocks[bid] = sb;
1601 
1602 	if (bid > xive->max_sbid)
1603 		xive->max_sbid = bid;
1604 
1605 out:
1606 	mutex_unlock(&xive->lock);
1607 	return xive->src_blocks[bid];
1608 }
1609 
1610 static bool xive_check_delayed_irq(struct kvmppc_xive *xive, u32 irq)
1611 {
1612 	struct kvm *kvm = xive->kvm;
1613 	struct kvm_vcpu *vcpu = NULL;
1614 	int i;
1615 
1616 	kvm_for_each_vcpu(i, vcpu, kvm) {
1617 		struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1618 
1619 		if (!xc)
1620 			continue;
1621 
1622 		if (xc->delayed_irq == irq) {
1623 			xc->delayed_irq = 0;
1624 			xive->delayed_irqs--;
1625 			return true;
1626 		}
1627 	}
1628 	return false;
1629 }
1630 
1631 static int xive_set_source(struct kvmppc_xive *xive, long irq, u64 addr)
1632 {
1633 	struct kvmppc_xive_src_block *sb;
1634 	struct kvmppc_xive_irq_state *state;
1635 	u64 __user *ubufp = (u64 __user *) addr;
1636 	u16 idx;
1637 	u64 val;
1638 	u8 act_prio, guest_prio;
1639 	u32 server;
1640 	int rc = 0;
1641 
1642 	if (irq < KVMPPC_XICS_FIRST_IRQ || irq >= KVMPPC_XICS_NR_IRQS)
1643 		return -ENOENT;
1644 
1645 	pr_devel("set_source(irq=0x%lx)\n", irq);
1646 
1647 	/* Find the source */
1648 	sb = kvmppc_xive_find_source(xive, irq, &idx);
1649 	if (!sb) {
1650 		pr_devel("No source, creating source block...\n");
1651 		sb = kvmppc_xive_create_src_block(xive, irq);
1652 		if (!sb) {
1653 			pr_devel("Failed to create block...\n");
1654 			return -ENOMEM;
1655 		}
1656 	}
1657 	state = &sb->irq_state[idx];
1658 
1659 	/* Read user passed data */
1660 	if (get_user(val, ubufp)) {
1661 		pr_devel("fault getting user info !\n");
1662 		return -EFAULT;
1663 	}
1664 
1665 	server = val & KVM_XICS_DESTINATION_MASK;
1666 	guest_prio = val >> KVM_XICS_PRIORITY_SHIFT;
1667 
1668 	pr_devel("  val=0x016%llx (server=0x%x, guest_prio=%d)\n",
1669 		 val, server, guest_prio);
1670 
1671 	/*
1672 	 * If the source doesn't already have an IPI, allocate
1673 	 * one and get the corresponding data
1674 	 */
1675 	if (!state->ipi_number) {
1676 		state->ipi_number = xive_native_alloc_irq();
1677 		if (state->ipi_number == 0) {
1678 			pr_devel("Failed to allocate IPI !\n");
1679 			return -ENOMEM;
1680 		}
1681 		xive_native_populate_irq_data(state->ipi_number, &state->ipi_data);
1682 		pr_devel(" src_ipi=0x%x\n", state->ipi_number);
1683 	}
1684 
1685 	/*
1686 	 * We use lock_and_mask() to set us in the right masked
1687 	 * state. We will override that state from the saved state
1688 	 * further down, but this will handle the cases of interrupts
1689 	 * that need FW masking. We set the initial guest_priority to
1690 	 * 0 before calling it to ensure it actually performs the masking.
1691 	 */
1692 	state->guest_priority = 0;
1693 	xive_lock_and_mask(xive, sb, state);
1694 
1695 	/*
1696 	 * Now, we select a target if we have one. If we don't we
1697 	 * leave the interrupt untargetted. It means that an interrupt
1698 	 * can become "untargetted" accross migration if it was masked
1699 	 * by set_xive() but there is little we can do about it.
1700 	 */
1701 
1702 	/* First convert prio and mark interrupt as untargetted */
1703 	act_prio = xive_prio_from_guest(guest_prio);
1704 	state->act_priority = MASKED;
1705 
1706 	/*
1707 	 * We need to drop the lock due to the mutex below. Hopefully
1708 	 * nothing is touching that interrupt yet since it hasn't been
1709 	 * advertized to a running guest yet
1710 	 */
1711 	arch_spin_unlock(&sb->lock);
1712 
1713 	/* If we have a priority target the interrupt */
1714 	if (act_prio != MASKED) {
1715 		/* First, check provisioning of queues */
1716 		mutex_lock(&xive->lock);
1717 		rc = xive_check_provisioning(xive->kvm, act_prio);
1718 		mutex_unlock(&xive->lock);
1719 
1720 		/* Target interrupt */
1721 		if (rc == 0)
1722 			rc = xive_target_interrupt(xive->kvm, state,
1723 						   server, act_prio);
1724 		/*
1725 		 * If provisioning or targetting failed, leave it
1726 		 * alone and masked. It will remain disabled until
1727 		 * the guest re-targets it.
1728 		 */
1729 	}
1730 
1731 	/*
1732 	 * Find out if this was a delayed irq stashed in an ICP,
1733 	 * in which case, treat it as pending
1734 	 */
1735 	if (xive->delayed_irqs && xive_check_delayed_irq(xive, irq)) {
1736 		val |= KVM_XICS_PENDING;
1737 		pr_devel("  Found delayed ! forcing PENDING !\n");
1738 	}
1739 
1740 	/* Cleanup the SW state */
1741 	state->old_p = false;
1742 	state->old_q = false;
1743 	state->lsi = false;
1744 	state->asserted = false;
1745 
1746 	/* Restore LSI state */
1747 	if (val & KVM_XICS_LEVEL_SENSITIVE) {
1748 		state->lsi = true;
1749 		if (val & KVM_XICS_PENDING)
1750 			state->asserted = true;
1751 		pr_devel("  LSI ! Asserted=%d\n", state->asserted);
1752 	}
1753 
1754 	/*
1755 	 * Restore P and Q. If the interrupt was pending, we
1756 	 * force Q and !P, which will trigger a resend.
1757 	 *
1758 	 * That means that a guest that had both an interrupt
1759 	 * pending (queued) and Q set will restore with only
1760 	 * one instance of that interrupt instead of 2, but that
1761 	 * is perfectly fine as coalescing interrupts that haven't
1762 	 * been presented yet is always allowed.
1763 	 */
1764 	if (val & KVM_XICS_PRESENTED && !(val & KVM_XICS_PENDING))
1765 		state->old_p = true;
1766 	if (val & KVM_XICS_QUEUED || val & KVM_XICS_PENDING)
1767 		state->old_q = true;
1768 
1769 	pr_devel("  P=%d, Q=%d\n", state->old_p, state->old_q);
1770 
1771 	/*
1772 	 * If the interrupt was unmasked, update guest priority and
1773 	 * perform the appropriate state transition and do a
1774 	 * re-trigger if necessary.
1775 	 */
1776 	if (val & KVM_XICS_MASKED) {
1777 		pr_devel("  masked, saving prio\n");
1778 		state->guest_priority = MASKED;
1779 		state->saved_priority = guest_prio;
1780 	} else {
1781 		pr_devel("  unmasked, restoring to prio %d\n", guest_prio);
1782 		xive_finish_unmask(xive, sb, state, guest_prio);
1783 		state->saved_priority = guest_prio;
1784 	}
1785 
1786 	/* Increment the number of valid sources and mark this one valid */
1787 	if (!state->valid)
1788 		xive->src_count++;
1789 	state->valid = true;
1790 
1791 	return 0;
1792 }
1793 
1794 int kvmppc_xive_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1795 			bool line_status)
1796 {
1797 	struct kvmppc_xive *xive = kvm->arch.xive;
1798 	struct kvmppc_xive_src_block *sb;
1799 	struct kvmppc_xive_irq_state *state;
1800 	u16 idx;
1801 
1802 	if (!xive)
1803 		return -ENODEV;
1804 
1805 	sb = kvmppc_xive_find_source(xive, irq, &idx);
1806 	if (!sb)
1807 		return -EINVAL;
1808 
1809 	/* Perform locklessly .... (we need to do some RCUisms here...) */
1810 	state = &sb->irq_state[idx];
1811 	if (!state->valid)
1812 		return -EINVAL;
1813 
1814 	/* We don't allow a trigger on a passed-through interrupt */
1815 	if (state->pt_number)
1816 		return -EINVAL;
1817 
1818 	if ((level == 1 && state->lsi) || level == KVM_INTERRUPT_SET_LEVEL)
1819 		state->asserted = 1;
1820 	else if (level == 0 || level == KVM_INTERRUPT_UNSET) {
1821 		state->asserted = 0;
1822 		return 0;
1823 	}
1824 
1825 	/* Trigger the IPI */
1826 	xive_irq_trigger(&state->ipi_data);
1827 
1828 	return 0;
1829 }
1830 
1831 int kvmppc_xive_set_nr_servers(struct kvmppc_xive *xive, u64 addr)
1832 {
1833 	u32 __user *ubufp = (u32 __user *) addr;
1834 	u32 nr_servers;
1835 	int rc = 0;
1836 
1837 	if (get_user(nr_servers, ubufp))
1838 		return -EFAULT;
1839 
1840 	pr_devel("%s nr_servers=%u\n", __func__, nr_servers);
1841 
1842 	if (!nr_servers || nr_servers > KVM_MAX_VCPU_ID)
1843 		return -EINVAL;
1844 
1845 	mutex_lock(&xive->lock);
1846 	if (xive->vp_base != XIVE_INVALID_VP)
1847 		/* The VP block is allocated once and freed when the device
1848 		 * is released. Better not allow to change its size since its
1849 		 * used by connect_vcpu to validate vCPU ids are valid (eg,
1850 		 * setting it back to a higher value could allow connect_vcpu
1851 		 * to come up with a VP id that goes beyond the VP block, which
1852 		 * is likely to cause a crash in OPAL).
1853 		 */
1854 		rc = -EBUSY;
1855 	else if (nr_servers > KVM_MAX_VCPUS)
1856 		/* We don't need more servers. Higher vCPU ids get packed
1857 		 * down below KVM_MAX_VCPUS by kvmppc_pack_vcpu_id().
1858 		 */
1859 		xive->nr_servers = KVM_MAX_VCPUS;
1860 	else
1861 		xive->nr_servers = nr_servers;
1862 
1863 	mutex_unlock(&xive->lock);
1864 
1865 	return rc;
1866 }
1867 
1868 static int xive_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1869 {
1870 	struct kvmppc_xive *xive = dev->private;
1871 
1872 	/* We honor the existing XICS ioctl */
1873 	switch (attr->group) {
1874 	case KVM_DEV_XICS_GRP_SOURCES:
1875 		return xive_set_source(xive, attr->attr, attr->addr);
1876 	case KVM_DEV_XICS_GRP_CTRL:
1877 		switch (attr->attr) {
1878 		case KVM_DEV_XICS_NR_SERVERS:
1879 			return kvmppc_xive_set_nr_servers(xive, attr->addr);
1880 		}
1881 	}
1882 	return -ENXIO;
1883 }
1884 
1885 static int xive_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1886 {
1887 	struct kvmppc_xive *xive = dev->private;
1888 
1889 	/* We honor the existing XICS ioctl */
1890 	switch (attr->group) {
1891 	case KVM_DEV_XICS_GRP_SOURCES:
1892 		return xive_get_source(xive, attr->attr, attr->addr);
1893 	}
1894 	return -ENXIO;
1895 }
1896 
1897 static int xive_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1898 {
1899 	/* We honor the same limits as XICS, at least for now */
1900 	switch (attr->group) {
1901 	case KVM_DEV_XICS_GRP_SOURCES:
1902 		if (attr->attr >= KVMPPC_XICS_FIRST_IRQ &&
1903 		    attr->attr < KVMPPC_XICS_NR_IRQS)
1904 			return 0;
1905 		break;
1906 	case KVM_DEV_XICS_GRP_CTRL:
1907 		switch (attr->attr) {
1908 		case KVM_DEV_XICS_NR_SERVERS:
1909 			return 0;
1910 		}
1911 	}
1912 	return -ENXIO;
1913 }
1914 
1915 static void kvmppc_xive_cleanup_irq(u32 hw_num, struct xive_irq_data *xd)
1916 {
1917 	xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01);
1918 	xive_native_configure_irq(hw_num, 0, MASKED, 0);
1919 }
1920 
1921 void kvmppc_xive_free_sources(struct kvmppc_xive_src_block *sb)
1922 {
1923 	int i;
1924 
1925 	for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
1926 		struct kvmppc_xive_irq_state *state = &sb->irq_state[i];
1927 
1928 		if (!state->valid)
1929 			continue;
1930 
1931 		kvmppc_xive_cleanup_irq(state->ipi_number, &state->ipi_data);
1932 		xive_cleanup_irq_data(&state->ipi_data);
1933 		xive_native_free_irq(state->ipi_number);
1934 
1935 		/* Pass-through, cleanup too but keep IRQ hw data */
1936 		if (state->pt_number)
1937 			kvmppc_xive_cleanup_irq(state->pt_number, state->pt_data);
1938 
1939 		state->valid = false;
1940 	}
1941 }
1942 
1943 /*
1944  * Called when device fd is closed.  kvm->lock is held.
1945  */
1946 static void kvmppc_xive_release(struct kvm_device *dev)
1947 {
1948 	struct kvmppc_xive *xive = dev->private;
1949 	struct kvm *kvm = xive->kvm;
1950 	struct kvm_vcpu *vcpu;
1951 	int i;
1952 
1953 	pr_devel("Releasing xive device\n");
1954 
1955 	/*
1956 	 * Since this is the device release function, we know that
1957 	 * userspace does not have any open fd referring to the
1958 	 * device.  Therefore there can not be any of the device
1959 	 * attribute set/get functions being executed concurrently,
1960 	 * and similarly, the connect_vcpu and set/clr_mapped
1961 	 * functions also cannot be being executed.
1962 	 */
1963 
1964 	debugfs_remove(xive->dentry);
1965 
1966 	/*
1967 	 * We should clean up the vCPU interrupt presenters first.
1968 	 */
1969 	kvm_for_each_vcpu(i, vcpu, kvm) {
1970 		/*
1971 		 * Take vcpu->mutex to ensure that no one_reg get/set ioctl
1972 		 * (i.e. kvmppc_xive_[gs]et_icp) can be done concurrently.
1973 		 * Holding the vcpu->mutex also means that the vcpu cannot
1974 		 * be executing the KVM_RUN ioctl, and therefore it cannot
1975 		 * be executing the XIVE push or pull code or accessing
1976 		 * the XIVE MMIO regions.
1977 		 */
1978 		mutex_lock(&vcpu->mutex);
1979 		kvmppc_xive_cleanup_vcpu(vcpu);
1980 		mutex_unlock(&vcpu->mutex);
1981 	}
1982 
1983 	/*
1984 	 * Now that we have cleared vcpu->arch.xive_vcpu, vcpu->arch.irq_type
1985 	 * and vcpu->arch.xive_esc_[vr]addr on each vcpu, we are safe
1986 	 * against xive code getting called during vcpu execution or
1987 	 * set/get one_reg operations.
1988 	 */
1989 	kvm->arch.xive = NULL;
1990 
1991 	/* Mask and free interrupts */
1992 	for (i = 0; i <= xive->max_sbid; i++) {
1993 		if (xive->src_blocks[i])
1994 			kvmppc_xive_free_sources(xive->src_blocks[i]);
1995 		kfree(xive->src_blocks[i]);
1996 		xive->src_blocks[i] = NULL;
1997 	}
1998 
1999 	if (xive->vp_base != XIVE_INVALID_VP)
2000 		xive_native_free_vp_block(xive->vp_base);
2001 
2002 	/*
2003 	 * A reference of the kvmppc_xive pointer is now kept under
2004 	 * the xive_devices struct of the machine for reuse. It is
2005 	 * freed when the VM is destroyed for now until we fix all the
2006 	 * execution paths.
2007 	 */
2008 
2009 	kfree(dev);
2010 }
2011 
2012 /*
2013  * When the guest chooses the interrupt mode (XICS legacy or XIVE
2014  * native), the VM will switch of KVM device. The previous device will
2015  * be "released" before the new one is created.
2016  *
2017  * Until we are sure all execution paths are well protected, provide a
2018  * fail safe (transitional) method for device destruction, in which
2019  * the XIVE device pointer is recycled and not directly freed.
2020  */
2021 struct kvmppc_xive *kvmppc_xive_get_device(struct kvm *kvm, u32 type)
2022 {
2023 	struct kvmppc_xive **kvm_xive_device = type == KVM_DEV_TYPE_XIVE ?
2024 		&kvm->arch.xive_devices.native :
2025 		&kvm->arch.xive_devices.xics_on_xive;
2026 	struct kvmppc_xive *xive = *kvm_xive_device;
2027 
2028 	if (!xive) {
2029 		xive = kzalloc(sizeof(*xive), GFP_KERNEL);
2030 		*kvm_xive_device = xive;
2031 	} else {
2032 		memset(xive, 0, sizeof(*xive));
2033 	}
2034 
2035 	return xive;
2036 }
2037 
2038 /*
2039  * Create a XICS device with XIVE backend.  kvm->lock is held.
2040  */
2041 static int kvmppc_xive_create(struct kvm_device *dev, u32 type)
2042 {
2043 	struct kvmppc_xive *xive;
2044 	struct kvm *kvm = dev->kvm;
2045 
2046 	pr_devel("Creating xive for partition\n");
2047 
2048 	/* Already there ? */
2049 	if (kvm->arch.xive)
2050 		return -EEXIST;
2051 
2052 	xive = kvmppc_xive_get_device(kvm, type);
2053 	if (!xive)
2054 		return -ENOMEM;
2055 
2056 	dev->private = xive;
2057 	xive->dev = dev;
2058 	xive->kvm = kvm;
2059 	mutex_init(&xive->lock);
2060 
2061 	/* We use the default queue size set by the host */
2062 	xive->q_order = xive_native_default_eq_shift();
2063 	if (xive->q_order < PAGE_SHIFT)
2064 		xive->q_page_order = 0;
2065 	else
2066 		xive->q_page_order = xive->q_order - PAGE_SHIFT;
2067 
2068 	/* VP allocation is delayed to the first call to connect_vcpu */
2069 	xive->vp_base = XIVE_INVALID_VP;
2070 	/* KVM_MAX_VCPUS limits the number of VMs to roughly 64 per sockets
2071 	 * on a POWER9 system.
2072 	 */
2073 	xive->nr_servers = KVM_MAX_VCPUS;
2074 
2075 	xive->single_escalation = xive_native_has_single_escalation();
2076 
2077 	kvm->arch.xive = xive;
2078 	return 0;
2079 }
2080 
2081 int kvmppc_xive_debug_show_queues(struct seq_file *m, struct kvm_vcpu *vcpu)
2082 {
2083 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
2084 	unsigned int i;
2085 
2086 	for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
2087 		struct xive_q *q = &xc->queues[i];
2088 		u32 i0, i1, idx;
2089 
2090 		if (!q->qpage && !xc->esc_virq[i])
2091 			continue;
2092 
2093 		if (q->qpage) {
2094 			seq_printf(m, "    q[%d]: ", i);
2095 			idx = q->idx;
2096 			i0 = be32_to_cpup(q->qpage + idx);
2097 			idx = (idx + 1) & q->msk;
2098 			i1 = be32_to_cpup(q->qpage + idx);
2099 			seq_printf(m, "T=%d %08x %08x...\n", q->toggle,
2100 				   i0, i1);
2101 		}
2102 		if (xc->esc_virq[i]) {
2103 			struct irq_data *d = irq_get_irq_data(xc->esc_virq[i]);
2104 			struct xive_irq_data *xd =
2105 				irq_data_get_irq_handler_data(d);
2106 			u64 pq = xive_vm_esb_load(xd, XIVE_ESB_GET);
2107 
2108 			seq_printf(m, "    ESC %d %c%c EOI @%llx",
2109 				   xc->esc_virq[i],
2110 				   (pq & XIVE_ESB_VAL_P) ? 'P' : '-',
2111 				   (pq & XIVE_ESB_VAL_Q) ? 'Q' : '-',
2112 				   xd->eoi_page);
2113 			seq_puts(m, "\n");
2114 		}
2115 	}
2116 	return 0;
2117 }
2118 
2119 void kvmppc_xive_debug_show_sources(struct seq_file *m,
2120 				    struct kvmppc_xive_src_block *sb)
2121 {
2122 	int i;
2123 
2124 	seq_puts(m, "    LISN      HW/CHIP   TYPE    PQ      EISN    CPU/PRIO\n");
2125 	for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
2126 		struct kvmppc_xive_irq_state *state = &sb->irq_state[i];
2127 		struct xive_irq_data *xd;
2128 		u64 pq;
2129 		u32 hw_num;
2130 
2131 		if (!state->valid)
2132 			continue;
2133 
2134 		kvmppc_xive_select_irq(state, &hw_num, &xd);
2135 
2136 		pq = xive_vm_esb_load(xd, XIVE_ESB_GET);
2137 
2138 		seq_printf(m, "%08x  %08x/%02x", state->number, hw_num,
2139 			   xd->src_chip);
2140 		if (state->lsi)
2141 			seq_printf(m, " %cLSI", state->asserted ? '^' : ' ');
2142 		else
2143 			seq_puts(m, "  MSI");
2144 
2145 		seq_printf(m, " %s  %c%c  %08x   % 4d/%d",
2146 			   state->ipi_number == hw_num ? "IPI" : " PT",
2147 			   pq & XIVE_ESB_VAL_P ? 'P' : '-',
2148 			   pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
2149 			   state->eisn, state->act_server,
2150 			   state->act_priority);
2151 
2152 		seq_puts(m, "\n");
2153 	}
2154 }
2155 
2156 static int xive_debug_show(struct seq_file *m, void *private)
2157 {
2158 	struct kvmppc_xive *xive = m->private;
2159 	struct kvm *kvm = xive->kvm;
2160 	struct kvm_vcpu *vcpu;
2161 	u64 t_rm_h_xirr = 0;
2162 	u64 t_rm_h_ipoll = 0;
2163 	u64 t_rm_h_cppr = 0;
2164 	u64 t_rm_h_eoi = 0;
2165 	u64 t_rm_h_ipi = 0;
2166 	u64 t_vm_h_xirr = 0;
2167 	u64 t_vm_h_ipoll = 0;
2168 	u64 t_vm_h_cppr = 0;
2169 	u64 t_vm_h_eoi = 0;
2170 	u64 t_vm_h_ipi = 0;
2171 	unsigned int i;
2172 
2173 	if (!kvm)
2174 		return 0;
2175 
2176 	seq_puts(m, "=========\nVCPU state\n=========\n");
2177 
2178 	kvm_for_each_vcpu(i, vcpu, kvm) {
2179 		struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
2180 
2181 		if (!xc)
2182 			continue;
2183 
2184 		seq_printf(m, "VCPU %d: VP:%#x/%02x\n"
2185 			 "    CPPR:%#x HWCPPR:%#x MFRR:%#x PEND:%#x h_xirr: R=%lld V=%lld\n",
2186 			 xc->server_num, xc->vp_id, xc->vp_chip_id,
2187 			 xc->cppr, xc->hw_cppr,
2188 			 xc->mfrr, xc->pending,
2189 			 xc->stat_rm_h_xirr, xc->stat_vm_h_xirr);
2190 
2191 		kvmppc_xive_debug_show_queues(m, vcpu);
2192 
2193 		t_rm_h_xirr += xc->stat_rm_h_xirr;
2194 		t_rm_h_ipoll += xc->stat_rm_h_ipoll;
2195 		t_rm_h_cppr += xc->stat_rm_h_cppr;
2196 		t_rm_h_eoi += xc->stat_rm_h_eoi;
2197 		t_rm_h_ipi += xc->stat_rm_h_ipi;
2198 		t_vm_h_xirr += xc->stat_vm_h_xirr;
2199 		t_vm_h_ipoll += xc->stat_vm_h_ipoll;
2200 		t_vm_h_cppr += xc->stat_vm_h_cppr;
2201 		t_vm_h_eoi += xc->stat_vm_h_eoi;
2202 		t_vm_h_ipi += xc->stat_vm_h_ipi;
2203 	}
2204 
2205 	seq_puts(m, "Hcalls totals\n");
2206 	seq_printf(m, " H_XIRR  R=%10lld V=%10lld\n", t_rm_h_xirr, t_vm_h_xirr);
2207 	seq_printf(m, " H_IPOLL R=%10lld V=%10lld\n", t_rm_h_ipoll, t_vm_h_ipoll);
2208 	seq_printf(m, " H_CPPR  R=%10lld V=%10lld\n", t_rm_h_cppr, t_vm_h_cppr);
2209 	seq_printf(m, " H_EOI   R=%10lld V=%10lld\n", t_rm_h_eoi, t_vm_h_eoi);
2210 	seq_printf(m, " H_IPI   R=%10lld V=%10lld\n", t_rm_h_ipi, t_vm_h_ipi);
2211 
2212 	seq_puts(m, "=========\nSources\n=========\n");
2213 
2214 	for (i = 0; i <= xive->max_sbid; i++) {
2215 		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
2216 
2217 		if (sb) {
2218 			arch_spin_lock(&sb->lock);
2219 			kvmppc_xive_debug_show_sources(m, sb);
2220 			arch_spin_unlock(&sb->lock);
2221 		}
2222 	}
2223 
2224 	return 0;
2225 }
2226 
2227 DEFINE_SHOW_ATTRIBUTE(xive_debug);
2228 
2229 static void xive_debugfs_init(struct kvmppc_xive *xive)
2230 {
2231 	char *name;
2232 
2233 	name = kasprintf(GFP_KERNEL, "kvm-xive-%p", xive);
2234 	if (!name) {
2235 		pr_err("%s: no memory for name\n", __func__);
2236 		return;
2237 	}
2238 
2239 	xive->dentry = debugfs_create_file(name, S_IRUGO, powerpc_debugfs_root,
2240 					   xive, &xive_debug_fops);
2241 
2242 	pr_debug("%s: created %s\n", __func__, name);
2243 	kfree(name);
2244 }
2245 
2246 static void kvmppc_xive_init(struct kvm_device *dev)
2247 {
2248 	struct kvmppc_xive *xive = (struct kvmppc_xive *)dev->private;
2249 
2250 	/* Register some debug interfaces */
2251 	xive_debugfs_init(xive);
2252 }
2253 
2254 struct kvm_device_ops kvm_xive_ops = {
2255 	.name = "kvm-xive",
2256 	.create = kvmppc_xive_create,
2257 	.init = kvmppc_xive_init,
2258 	.release = kvmppc_xive_release,
2259 	.set_attr = xive_set_attr,
2260 	.get_attr = xive_get_attr,
2261 	.has_attr = xive_has_attr,
2262 };
2263 
2264 void kvmppc_xive_init_module(void)
2265 {
2266 	__xive_vm_h_xirr = xive_vm_h_xirr;
2267 	__xive_vm_h_ipoll = xive_vm_h_ipoll;
2268 	__xive_vm_h_ipi = xive_vm_h_ipi;
2269 	__xive_vm_h_cppr = xive_vm_h_cppr;
2270 	__xive_vm_h_eoi = xive_vm_h_eoi;
2271 }
2272 
2273 void kvmppc_xive_exit_module(void)
2274 {
2275 	__xive_vm_h_xirr = NULL;
2276 	__xive_vm_h_ipoll = NULL;
2277 	__xive_vm_h_ipi = NULL;
2278 	__xive_vm_h_cppr = NULL;
2279 	__xive_vm_h_eoi = NULL;
2280 }
2281