xref: /openbmc/linux/arch/powerpc/kvm/book3s_xive.c (revision b25db383)
1 /*
2  * Copyright 2017 Benjamin Herrenschmidt, IBM Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License, version 2, as
6  * published by the Free Software Foundation.
7  */
8 
9 #define pr_fmt(fmt) "xive-kvm: " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/kvm_host.h>
13 #include <linux/err.h>
14 #include <linux/gfp.h>
15 #include <linux/spinlock.h>
16 #include <linux/delay.h>
17 #include <linux/percpu.h>
18 #include <linux/cpumask.h>
19 #include <asm/uaccess.h>
20 #include <asm/kvm_book3s.h>
21 #include <asm/kvm_ppc.h>
22 #include <asm/hvcall.h>
23 #include <asm/xics.h>
24 #include <asm/xive.h>
25 #include <asm/xive-regs.h>
26 #include <asm/debug.h>
27 #include <asm/debugfs.h>
28 #include <asm/time.h>
29 #include <asm/opal.h>
30 
31 #include <linux/debugfs.h>
32 #include <linux/seq_file.h>
33 
34 #include "book3s_xive.h"
35 
36 
37 /*
38  * Virtual mode variants of the hcalls for use on radix/radix
39  * with AIL. They require the VCPU's VP to be "pushed"
40  *
41  * We still instanciate them here because we use some of the
42  * generated utility functions as well in this file.
43  */
44 #define XIVE_RUNTIME_CHECKS
45 #define X_PFX xive_vm_
46 #define X_STATIC static
47 #define X_STAT_PFX stat_vm_
48 #define __x_tima		xive_tima
49 #define __x_eoi_page(xd)	((void __iomem *)((xd)->eoi_mmio))
50 #define __x_trig_page(xd)	((void __iomem *)((xd)->trig_mmio))
51 #define __x_readb	__raw_readb
52 #define __x_writeb	__raw_writeb
53 #define __x_readw	__raw_readw
54 #define __x_readq	__raw_readq
55 #define __x_writeq	__raw_writeq
56 
57 #include "book3s_xive_template.c"
58 
59 /*
60  * We leave a gap of a couple of interrupts in the queue to
61  * account for the IPI and additional safety guard.
62  */
63 #define XIVE_Q_GAP	2
64 
65 /*
66  * This is a simple trigger for a generic XIVE IRQ. This must
67  * only be called for interrupts that support a trigger page
68  */
69 static bool xive_irq_trigger(struct xive_irq_data *xd)
70 {
71 	/* This should be only for MSIs */
72 	if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
73 		return false;
74 
75 	/* Those interrupts should always have a trigger page */
76 	if (WARN_ON(!xd->trig_mmio))
77 		return false;
78 
79 	out_be64(xd->trig_mmio, 0);
80 
81 	return true;
82 }
83 
84 static irqreturn_t xive_esc_irq(int irq, void *data)
85 {
86 	struct kvm_vcpu *vcpu = data;
87 
88 	/* We use the existing H_PROD mechanism to wake up the target */
89 	vcpu->arch.prodded = 1;
90 	smp_mb();
91 	if (vcpu->arch.ceded)
92 		kvmppc_fast_vcpu_kick(vcpu);
93 
94 	return IRQ_HANDLED;
95 }
96 
97 static int xive_attach_escalation(struct kvm_vcpu *vcpu, u8 prio)
98 {
99 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
100 	struct xive_q *q = &xc->queues[prio];
101 	char *name = NULL;
102 	int rc;
103 
104 	/* Already there ? */
105 	if (xc->esc_virq[prio])
106 		return 0;
107 
108 	/* Hook up the escalation interrupt */
109 	xc->esc_virq[prio] = irq_create_mapping(NULL, q->esc_irq);
110 	if (!xc->esc_virq[prio]) {
111 		pr_err("Failed to map escalation interrupt for queue %d of VCPU %d\n",
112 		       prio, xc->server_num);
113 		return -EIO;
114 	}
115 
116 	/*
117 	 * Future improvement: start with them disabled
118 	 * and handle DD2 and later scheme of merged escalation
119 	 * interrupts
120 	 */
121 	name = kasprintf(GFP_KERNEL, "kvm-%d-%d-%d",
122 			 vcpu->kvm->arch.lpid, xc->server_num, prio);
123 	if (!name) {
124 		pr_err("Failed to allocate escalation irq name for queue %d of VCPU %d\n",
125 		       prio, xc->server_num);
126 		rc = -ENOMEM;
127 		goto error;
128 	}
129 	rc = request_irq(xc->esc_virq[prio], xive_esc_irq,
130 			 IRQF_NO_THREAD, name, vcpu);
131 	if (rc) {
132 		pr_err("Failed to request escalation interrupt for queue %d of VCPU %d\n",
133 		       prio, xc->server_num);
134 		goto error;
135 	}
136 	xc->esc_virq_names[prio] = name;
137 	return 0;
138 error:
139 	irq_dispose_mapping(xc->esc_virq[prio]);
140 	xc->esc_virq[prio] = 0;
141 	kfree(name);
142 	return rc;
143 }
144 
145 static int xive_provision_queue(struct kvm_vcpu *vcpu, u8 prio)
146 {
147 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
148 	struct kvmppc_xive *xive = xc->xive;
149 	struct xive_q *q =  &xc->queues[prio];
150 	void *qpage;
151 	int rc;
152 
153 	if (WARN_ON(q->qpage))
154 		return 0;
155 
156 	/* Allocate the queue and retrieve infos on current node for now */
157 	qpage = (__be32 *)__get_free_pages(GFP_KERNEL, xive->q_page_order);
158 	if (!qpage) {
159 		pr_err("Failed to allocate queue %d for VCPU %d\n",
160 		       prio, xc->server_num);
161 		return -ENOMEM;;
162 	}
163 	memset(qpage, 0, 1 << xive->q_order);
164 
165 	/*
166 	 * Reconfigure the queue. This will set q->qpage only once the
167 	 * queue is fully configured. This is a requirement for prio 0
168 	 * as we will stop doing EOIs for every IPI as soon as we observe
169 	 * qpage being non-NULL, and instead will only EOI when we receive
170 	 * corresponding queue 0 entries
171 	 */
172 	rc = xive_native_configure_queue(xc->vp_id, q, prio, qpage,
173 					 xive->q_order, true);
174 	if (rc)
175 		pr_err("Failed to configure queue %d for VCPU %d\n",
176 		       prio, xc->server_num);
177 	return rc;
178 }
179 
180 /* Called with kvm_lock held */
181 static int xive_check_provisioning(struct kvm *kvm, u8 prio)
182 {
183 	struct kvmppc_xive *xive = kvm->arch.xive;
184 	struct kvm_vcpu *vcpu;
185 	int i, rc;
186 
187 	lockdep_assert_held(&kvm->lock);
188 
189 	/* Already provisioned ? */
190 	if (xive->qmap & (1 << prio))
191 		return 0;
192 
193 	pr_devel("Provisioning prio... %d\n", prio);
194 
195 	/* Provision each VCPU and enable escalations */
196 	kvm_for_each_vcpu(i, vcpu, kvm) {
197 		if (!vcpu->arch.xive_vcpu)
198 			continue;
199 		rc = xive_provision_queue(vcpu, prio);
200 		if (rc == 0)
201 			xive_attach_escalation(vcpu, prio);
202 		if (rc)
203 			return rc;
204 	}
205 
206 	/* Order previous stores and mark it as provisioned */
207 	mb();
208 	xive->qmap |= (1 << prio);
209 	return 0;
210 }
211 
212 static void xive_inc_q_pending(struct kvm *kvm, u32 server, u8 prio)
213 {
214 	struct kvm_vcpu *vcpu;
215 	struct kvmppc_xive_vcpu *xc;
216 	struct xive_q *q;
217 
218 	/* Locate target server */
219 	vcpu = kvmppc_xive_find_server(kvm, server);
220 	if (!vcpu) {
221 		pr_warn("%s: Can't find server %d\n", __func__, server);
222 		return;
223 	}
224 	xc = vcpu->arch.xive_vcpu;
225 	if (WARN_ON(!xc))
226 		return;
227 
228 	q = &xc->queues[prio];
229 	atomic_inc(&q->pending_count);
230 }
231 
232 static int xive_try_pick_queue(struct kvm_vcpu *vcpu, u8 prio)
233 {
234 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
235 	struct xive_q *q;
236 	u32 max;
237 
238 	if (WARN_ON(!xc))
239 		return -ENXIO;
240 	if (!xc->valid)
241 		return -ENXIO;
242 
243 	q = &xc->queues[prio];
244 	if (WARN_ON(!q->qpage))
245 		return -ENXIO;
246 
247 	/* Calculate max number of interrupts in that queue. */
248 	max = (q->msk + 1) - XIVE_Q_GAP;
249 	return atomic_add_unless(&q->count, 1, max) ? 0 : -EBUSY;
250 }
251 
252 static int xive_select_target(struct kvm *kvm, u32 *server, u8 prio)
253 {
254 	struct kvm_vcpu *vcpu;
255 	int i, rc;
256 
257 	/* Locate target server */
258 	vcpu = kvmppc_xive_find_server(kvm, *server);
259 	if (!vcpu) {
260 		pr_devel("Can't find server %d\n", *server);
261 		return -EINVAL;
262 	}
263 
264 	pr_devel("Finding irq target on 0x%x/%d...\n", *server, prio);
265 
266 	/* Try pick it */
267 	rc = xive_try_pick_queue(vcpu, prio);
268 	if (rc == 0)
269 		return rc;
270 
271 	pr_devel(" .. failed, looking up candidate...\n");
272 
273 	/* Failed, pick another VCPU */
274 	kvm_for_each_vcpu(i, vcpu, kvm) {
275 		if (!vcpu->arch.xive_vcpu)
276 			continue;
277 		rc = xive_try_pick_queue(vcpu, prio);
278 		if (rc == 0) {
279 			*server = vcpu->arch.xive_vcpu->server_num;
280 			pr_devel("  found on 0x%x/%d\n", *server, prio);
281 			return rc;
282 		}
283 	}
284 	pr_devel("  no available target !\n");
285 
286 	/* No available target ! */
287 	return -EBUSY;
288 }
289 
290 static u8 xive_lock_and_mask(struct kvmppc_xive *xive,
291 			     struct kvmppc_xive_src_block *sb,
292 			     struct kvmppc_xive_irq_state *state)
293 {
294 	struct xive_irq_data *xd;
295 	u32 hw_num;
296 	u8 old_prio;
297 	u64 val;
298 
299 	/*
300 	 * Take the lock, set masked, try again if racing
301 	 * with H_EOI
302 	 */
303 	for (;;) {
304 		arch_spin_lock(&sb->lock);
305 		old_prio = state->guest_priority;
306 		state->guest_priority = MASKED;
307 		mb();
308 		if (!state->in_eoi)
309 			break;
310 		state->guest_priority = old_prio;
311 		arch_spin_unlock(&sb->lock);
312 	}
313 
314 	/* No change ? Bail */
315 	if (old_prio == MASKED)
316 		return old_prio;
317 
318 	/* Get the right irq */
319 	kvmppc_xive_select_irq(state, &hw_num, &xd);
320 
321 	/*
322 	 * If the interrupt is marked as needing masking via
323 	 * firmware, we do it here. Firmware masking however
324 	 * is "lossy", it won't return the old p and q bits
325 	 * and won't set the interrupt to a state where it will
326 	 * record queued ones. If this is an issue we should do
327 	 * lazy masking instead.
328 	 *
329 	 * For now, we work around this in unmask by forcing
330 	 * an interrupt whenever we unmask a non-LSI via FW
331 	 * (if ever).
332 	 */
333 	if (xd->flags & OPAL_XIVE_IRQ_MASK_VIA_FW) {
334 		xive_native_configure_irq(hw_num,
335 					  xive->vp_base + state->act_server,
336 					  MASKED, state->number);
337 		/* set old_p so we can track if an H_EOI was done */
338 		state->old_p = true;
339 		state->old_q = false;
340 	} else {
341 		/* Set PQ to 10, return old P and old Q and remember them */
342 		val = xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_10);
343 		state->old_p = !!(val & 2);
344 		state->old_q = !!(val & 1);
345 
346 		/*
347 		 * Synchronize hardware to sensure the queues are updated
348 		 * when masking
349 		 */
350 		xive_native_sync_source(hw_num);
351 	}
352 
353 	return old_prio;
354 }
355 
356 static void xive_lock_for_unmask(struct kvmppc_xive_src_block *sb,
357 				 struct kvmppc_xive_irq_state *state)
358 {
359 	/*
360 	 * Take the lock try again if racing with H_EOI
361 	 */
362 	for (;;) {
363 		arch_spin_lock(&sb->lock);
364 		if (!state->in_eoi)
365 			break;
366 		arch_spin_unlock(&sb->lock);
367 	}
368 }
369 
370 static void xive_finish_unmask(struct kvmppc_xive *xive,
371 			       struct kvmppc_xive_src_block *sb,
372 			       struct kvmppc_xive_irq_state *state,
373 			       u8 prio)
374 {
375 	struct xive_irq_data *xd;
376 	u32 hw_num;
377 
378 	/* If we aren't changing a thing, move on */
379 	if (state->guest_priority != MASKED)
380 		goto bail;
381 
382 	/* Get the right irq */
383 	kvmppc_xive_select_irq(state, &hw_num, &xd);
384 
385 	/*
386 	 * See command in xive_lock_and_mask() concerning masking
387 	 * via firmware.
388 	 */
389 	if (xd->flags & OPAL_XIVE_IRQ_MASK_VIA_FW) {
390 		xive_native_configure_irq(hw_num,
391 					  xive->vp_base + state->act_server,
392 					  state->act_priority, state->number);
393 		/* If an EOI is needed, do it here */
394 		if (!state->old_p)
395 			xive_vm_source_eoi(hw_num, xd);
396 		/* If this is not an LSI, force a trigger */
397 		if (!(xd->flags & OPAL_XIVE_IRQ_LSI))
398 			xive_irq_trigger(xd);
399 		goto bail;
400 	}
401 
402 	/* Old Q set, set PQ to 11 */
403 	if (state->old_q)
404 		xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_11);
405 
406 	/*
407 	 * If not old P, then perform an "effective" EOI,
408 	 * on the source. This will handle the cases where
409 	 * FW EOI is needed.
410 	 */
411 	if (!state->old_p)
412 		xive_vm_source_eoi(hw_num, xd);
413 
414 	/* Synchronize ordering and mark unmasked */
415 	mb();
416 bail:
417 	state->guest_priority = prio;
418 }
419 
420 /*
421  * Target an interrupt to a given server/prio, this will fallback
422  * to another server if necessary and perform the HW targetting
423  * updates as needed
424  *
425  * NOTE: Must be called with the state lock held
426  */
427 static int xive_target_interrupt(struct kvm *kvm,
428 				 struct kvmppc_xive_irq_state *state,
429 				 u32 server, u8 prio)
430 {
431 	struct kvmppc_xive *xive = kvm->arch.xive;
432 	u32 hw_num;
433 	int rc;
434 
435 	/*
436 	 * This will return a tentative server and actual
437 	 * priority. The count for that new target will have
438 	 * already been incremented.
439 	 */
440 	rc = xive_select_target(kvm, &server, prio);
441 
442 	/*
443 	 * We failed to find a target ? Not much we can do
444 	 * at least until we support the GIQ.
445 	 */
446 	if (rc)
447 		return rc;
448 
449 	/*
450 	 * Increment the old queue pending count if there
451 	 * was one so that the old queue count gets adjusted later
452 	 * when observed to be empty.
453 	 */
454 	if (state->act_priority != MASKED)
455 		xive_inc_q_pending(kvm,
456 				   state->act_server,
457 				   state->act_priority);
458 	/*
459 	 * Update state and HW
460 	 */
461 	state->act_priority = prio;
462 	state->act_server = server;
463 
464 	/* Get the right irq */
465 	kvmppc_xive_select_irq(state, &hw_num, NULL);
466 
467 	return xive_native_configure_irq(hw_num,
468 					 xive->vp_base + server,
469 					 prio, state->number);
470 }
471 
472 /*
473  * Targetting rules: In order to avoid losing track of
474  * pending interrupts accross mask and unmask, which would
475  * allow queue overflows, we implement the following rules:
476  *
477  *  - Unless it was never enabled (or we run out of capacity)
478  *    an interrupt is always targetted at a valid server/queue
479  *    pair even when "masked" by the guest. This pair tends to
480  *    be the last one used but it can be changed under some
481  *    circumstances. That allows us to separate targetting
482  *    from masking, we only handle accounting during (re)targetting,
483  *    this also allows us to let an interrupt drain into its target
484  *    queue after masking, avoiding complex schemes to remove
485  *    interrupts out of remote processor queues.
486  *
487  *  - When masking, we set PQ to 10 and save the previous value
488  *    of P and Q.
489  *
490  *  - When unmasking, if saved Q was set, we set PQ to 11
491  *    otherwise we leave PQ to the HW state which will be either
492  *    10 if nothing happened or 11 if the interrupt fired while
493  *    masked. Effectively we are OR'ing the previous Q into the
494  *    HW Q.
495  *
496  *    Then if saved P is clear, we do an effective EOI (Q->P->Trigger)
497  *    which will unmask the interrupt and shoot a new one if Q was
498  *    set.
499  *
500  *    Otherwise (saved P is set) we leave PQ unchanged (so 10 or 11,
501  *    effectively meaning an H_EOI from the guest is still expected
502  *    for that interrupt).
503  *
504  *  - If H_EOI occurs while masked, we clear the saved P.
505  *
506  *  - When changing target, we account on the new target and
507  *    increment a separate "pending" counter on the old one.
508  *    This pending counter will be used to decrement the old
509  *    target's count when its queue has been observed empty.
510  */
511 
512 int kvmppc_xive_set_xive(struct kvm *kvm, u32 irq, u32 server,
513 			 u32 priority)
514 {
515 	struct kvmppc_xive *xive = kvm->arch.xive;
516 	struct kvmppc_xive_src_block *sb;
517 	struct kvmppc_xive_irq_state *state;
518 	u8 new_act_prio;
519 	int rc = 0;
520 	u16 idx;
521 
522 	if (!xive)
523 		return -ENODEV;
524 
525 	pr_devel("set_xive ! irq 0x%x server 0x%x prio %d\n",
526 		 irq, server, priority);
527 
528 	/* First, check provisioning of queues */
529 	if (priority != MASKED)
530 		rc = xive_check_provisioning(xive->kvm,
531 			      xive_prio_from_guest(priority));
532 	if (rc) {
533 		pr_devel("  provisioning failure %d !\n", rc);
534 		return rc;
535 	}
536 
537 	sb = kvmppc_xive_find_source(xive, irq, &idx);
538 	if (!sb)
539 		return -EINVAL;
540 	state = &sb->irq_state[idx];
541 
542 	/*
543 	 * We first handle masking/unmasking since the locking
544 	 * might need to be retried due to EOIs, we'll handle
545 	 * targetting changes later. These functions will return
546 	 * with the SB lock held.
547 	 *
548 	 * xive_lock_and_mask() will also set state->guest_priority
549 	 * but won't otherwise change other fields of the state.
550 	 *
551 	 * xive_lock_for_unmask will not actually unmask, this will
552 	 * be done later by xive_finish_unmask() once the targetting
553 	 * has been done, so we don't try to unmask an interrupt
554 	 * that hasn't yet been targetted.
555 	 */
556 	if (priority == MASKED)
557 		xive_lock_and_mask(xive, sb, state);
558 	else
559 		xive_lock_for_unmask(sb, state);
560 
561 
562 	/*
563 	 * Then we handle targetting.
564 	 *
565 	 * First calculate a new "actual priority"
566 	 */
567 	new_act_prio = state->act_priority;
568 	if (priority != MASKED)
569 		new_act_prio = xive_prio_from_guest(priority);
570 
571 	pr_devel(" new_act_prio=%x act_server=%x act_prio=%x\n",
572 		 new_act_prio, state->act_server, state->act_priority);
573 
574 	/*
575 	 * Then check if we actually need to change anything,
576 	 *
577 	 * The condition for re-targetting the interrupt is that
578 	 * we have a valid new priority (new_act_prio is not 0xff)
579 	 * and either the server or the priority changed.
580 	 *
581 	 * Note: If act_priority was ff and the new priority is
582 	 *       also ff, we don't do anything and leave the interrupt
583 	 *       untargetted. An attempt of doing an int_on on an
584 	 *       untargetted interrupt will fail. If that is a problem
585 	 *       we could initialize interrupts with valid default
586 	 */
587 
588 	if (new_act_prio != MASKED &&
589 	    (state->act_server != server ||
590 	     state->act_priority != new_act_prio))
591 		rc = xive_target_interrupt(kvm, state, server, new_act_prio);
592 
593 	/*
594 	 * Perform the final unmasking of the interrupt source
595 	 * if necessary
596 	 */
597 	if (priority != MASKED)
598 		xive_finish_unmask(xive, sb, state, priority);
599 
600 	/*
601 	 * Finally Update saved_priority to match. Only int_on/off
602 	 * set this field to a different value.
603 	 */
604 	state->saved_priority = priority;
605 
606 	arch_spin_unlock(&sb->lock);
607 	return rc;
608 }
609 
610 int kvmppc_xive_get_xive(struct kvm *kvm, u32 irq, u32 *server,
611 			 u32 *priority)
612 {
613 	struct kvmppc_xive *xive = kvm->arch.xive;
614 	struct kvmppc_xive_src_block *sb;
615 	struct kvmppc_xive_irq_state *state;
616 	u16 idx;
617 
618 	if (!xive)
619 		return -ENODEV;
620 
621 	sb = kvmppc_xive_find_source(xive, irq, &idx);
622 	if (!sb)
623 		return -EINVAL;
624 	state = &sb->irq_state[idx];
625 	arch_spin_lock(&sb->lock);
626 	*server = state->guest_server;
627 	*priority = state->guest_priority;
628 	arch_spin_unlock(&sb->lock);
629 
630 	return 0;
631 }
632 
633 int kvmppc_xive_int_on(struct kvm *kvm, u32 irq)
634 {
635 	struct kvmppc_xive *xive = kvm->arch.xive;
636 	struct kvmppc_xive_src_block *sb;
637 	struct kvmppc_xive_irq_state *state;
638 	u16 idx;
639 
640 	if (!xive)
641 		return -ENODEV;
642 
643 	sb = kvmppc_xive_find_source(xive, irq, &idx);
644 	if (!sb)
645 		return -EINVAL;
646 	state = &sb->irq_state[idx];
647 
648 	pr_devel("int_on(irq=0x%x)\n", irq);
649 
650 	/*
651 	 * Check if interrupt was not targetted
652 	 */
653 	if (state->act_priority == MASKED) {
654 		pr_devel("int_on on untargetted interrupt\n");
655 		return -EINVAL;
656 	}
657 
658 	/* If saved_priority is 0xff, do nothing */
659 	if (state->saved_priority == MASKED)
660 		return 0;
661 
662 	/*
663 	 * Lock and unmask it.
664 	 */
665 	xive_lock_for_unmask(sb, state);
666 	xive_finish_unmask(xive, sb, state, state->saved_priority);
667 	arch_spin_unlock(&sb->lock);
668 
669 	return 0;
670 }
671 
672 int kvmppc_xive_int_off(struct kvm *kvm, u32 irq)
673 {
674 	struct kvmppc_xive *xive = kvm->arch.xive;
675 	struct kvmppc_xive_src_block *sb;
676 	struct kvmppc_xive_irq_state *state;
677 	u16 idx;
678 
679 	if (!xive)
680 		return -ENODEV;
681 
682 	sb = kvmppc_xive_find_source(xive, irq, &idx);
683 	if (!sb)
684 		return -EINVAL;
685 	state = &sb->irq_state[idx];
686 
687 	pr_devel("int_off(irq=0x%x)\n", irq);
688 
689 	/*
690 	 * Lock and mask
691 	 */
692 	state->saved_priority = xive_lock_and_mask(xive, sb, state);
693 	arch_spin_unlock(&sb->lock);
694 
695 	return 0;
696 }
697 
698 static bool xive_restore_pending_irq(struct kvmppc_xive *xive, u32 irq)
699 {
700 	struct kvmppc_xive_src_block *sb;
701 	struct kvmppc_xive_irq_state *state;
702 	u16 idx;
703 
704 	sb = kvmppc_xive_find_source(xive, irq, &idx);
705 	if (!sb)
706 		return false;
707 	state = &sb->irq_state[idx];
708 	if (!state->valid)
709 		return false;
710 
711 	/*
712 	 * Trigger the IPI. This assumes we never restore a pass-through
713 	 * interrupt which should be safe enough
714 	 */
715 	xive_irq_trigger(&state->ipi_data);
716 
717 	return true;
718 }
719 
720 u64 kvmppc_xive_get_icp(struct kvm_vcpu *vcpu)
721 {
722 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
723 
724 	if (!xc)
725 		return 0;
726 
727 	/* Return the per-cpu state for state saving/migration */
728 	return (u64)xc->cppr << KVM_REG_PPC_ICP_CPPR_SHIFT |
729 	       (u64)xc->mfrr << KVM_REG_PPC_ICP_MFRR_SHIFT;
730 }
731 
732 int kvmppc_xive_set_icp(struct kvm_vcpu *vcpu, u64 icpval)
733 {
734 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
735 	struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
736 	u8 cppr, mfrr;
737 	u32 xisr;
738 
739 	if (!xc || !xive)
740 		return -ENOENT;
741 
742 	/* Grab individual state fields. We don't use pending_pri */
743 	cppr = icpval >> KVM_REG_PPC_ICP_CPPR_SHIFT;
744 	xisr = (icpval >> KVM_REG_PPC_ICP_XISR_SHIFT) &
745 		KVM_REG_PPC_ICP_XISR_MASK;
746 	mfrr = icpval >> KVM_REG_PPC_ICP_MFRR_SHIFT;
747 
748 	pr_devel("set_icp vcpu %d cppr=0x%x mfrr=0x%x xisr=0x%x\n",
749 		 xc->server_num, cppr, mfrr, xisr);
750 
751 	/*
752 	 * We can't update the state of a "pushed" VCPU, but that
753 	 * shouldn't happen.
754 	 */
755 	if (WARN_ON(vcpu->arch.xive_pushed))
756 		return -EIO;
757 
758 	/* Update VCPU HW saved state */
759 	vcpu->arch.xive_saved_state.cppr = cppr;
760 	xc->hw_cppr = xc->cppr = cppr;
761 
762 	/*
763 	 * Update MFRR state. If it's not 0xff, we mark the VCPU as
764 	 * having a pending MFRR change, which will re-evaluate the
765 	 * target. The VCPU will thus potentially get a spurious
766 	 * interrupt but that's not a big deal.
767 	 */
768 	xc->mfrr = mfrr;
769 	if (mfrr < cppr)
770 		xive_irq_trigger(&xc->vp_ipi_data);
771 
772 	/*
773 	 * Now saved XIRR is "interesting". It means there's something in
774 	 * the legacy "1 element" queue... for an IPI we simply ignore it,
775 	 * as the MFRR restore will handle that. For anything else we need
776 	 * to force a resend of the source.
777 	 * However the source may not have been setup yet. If that's the
778 	 * case, we keep that info and increment a counter in the xive to
779 	 * tell subsequent xive_set_source() to go look.
780 	 */
781 	if (xisr > XICS_IPI && !xive_restore_pending_irq(xive, xisr)) {
782 		xc->delayed_irq = xisr;
783 		xive->delayed_irqs++;
784 		pr_devel("  xisr restore delayed\n");
785 	}
786 
787 	return 0;
788 }
789 
790 int kvmppc_xive_set_mapped(struct kvm *kvm, unsigned long guest_irq,
791 			   struct irq_desc *host_desc)
792 {
793 	struct kvmppc_xive *xive = kvm->arch.xive;
794 	struct kvmppc_xive_src_block *sb;
795 	struct kvmppc_xive_irq_state *state;
796 	struct irq_data *host_data = irq_desc_get_irq_data(host_desc);
797 	unsigned int host_irq = irq_desc_get_irq(host_desc);
798 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(host_data);
799 	u16 idx;
800 	u8 prio;
801 	int rc;
802 
803 	if (!xive)
804 		return -ENODEV;
805 
806 	pr_devel("set_mapped girq 0x%lx host HW irq 0x%x...\n",guest_irq, hw_irq);
807 
808 	sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
809 	if (!sb)
810 		return -EINVAL;
811 	state = &sb->irq_state[idx];
812 
813 	/*
814 	 * Mark the passed-through interrupt as going to a VCPU,
815 	 * this will prevent further EOIs and similar operations
816 	 * from the XIVE code. It will also mask the interrupt
817 	 * to either PQ=10 or 11 state, the latter if the interrupt
818 	 * is pending. This will allow us to unmask or retrigger it
819 	 * after routing it to the guest with a simple EOI.
820 	 *
821 	 * The "state" argument is a "token", all it needs is to be
822 	 * non-NULL to switch to passed-through or NULL for the
823 	 * other way around. We may not yet have an actual VCPU
824 	 * target here and we don't really care.
825 	 */
826 	rc = irq_set_vcpu_affinity(host_irq, state);
827 	if (rc) {
828 		pr_err("Failed to set VCPU affinity for irq %d\n", host_irq);
829 		return rc;
830 	}
831 
832 	/*
833 	 * Mask and read state of IPI. We need to know if its P bit
834 	 * is set as that means it's potentially already using a
835 	 * queue entry in the target
836 	 */
837 	prio = xive_lock_and_mask(xive, sb, state);
838 	pr_devel(" old IPI prio %02x P:%d Q:%d\n", prio,
839 		 state->old_p, state->old_q);
840 
841 	/* Turn the IPI hard off */
842 	xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
843 
844 	/* Grab info about irq */
845 	state->pt_number = hw_irq;
846 	state->pt_data = irq_data_get_irq_handler_data(host_data);
847 
848 	/*
849 	 * Configure the IRQ to match the existing configuration of
850 	 * the IPI if it was already targetted. Otherwise this will
851 	 * mask the interrupt in a lossy way (act_priority is 0xff)
852 	 * which is fine for a never started interrupt.
853 	 */
854 	xive_native_configure_irq(hw_irq,
855 				  xive->vp_base + state->act_server,
856 				  state->act_priority, state->number);
857 
858 	/*
859 	 * We do an EOI to enable the interrupt (and retrigger if needed)
860 	 * if the guest has the interrupt unmasked and the P bit was *not*
861 	 * set in the IPI. If it was set, we know a slot may still be in
862 	 * use in the target queue thus we have to wait for a guest
863 	 * originated EOI
864 	 */
865 	if (prio != MASKED && !state->old_p)
866 		xive_vm_source_eoi(hw_irq, state->pt_data);
867 
868 	/* Clear old_p/old_q as they are no longer relevant */
869 	state->old_p = state->old_q = false;
870 
871 	/* Restore guest prio (unlocks EOI) */
872 	mb();
873 	state->guest_priority = prio;
874 	arch_spin_unlock(&sb->lock);
875 
876 	return 0;
877 }
878 EXPORT_SYMBOL_GPL(kvmppc_xive_set_mapped);
879 
880 int kvmppc_xive_clr_mapped(struct kvm *kvm, unsigned long guest_irq,
881 			   struct irq_desc *host_desc)
882 {
883 	struct kvmppc_xive *xive = kvm->arch.xive;
884 	struct kvmppc_xive_src_block *sb;
885 	struct kvmppc_xive_irq_state *state;
886 	unsigned int host_irq = irq_desc_get_irq(host_desc);
887 	u16 idx;
888 	u8 prio;
889 	int rc;
890 
891 	if (!xive)
892 		return -ENODEV;
893 
894 	pr_devel("clr_mapped girq 0x%lx...\n", guest_irq);
895 
896 	sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
897 	if (!sb)
898 		return -EINVAL;
899 	state = &sb->irq_state[idx];
900 
901 	/*
902 	 * Mask and read state of IRQ. We need to know if its P bit
903 	 * is set as that means it's potentially already using a
904 	 * queue entry in the target
905 	 */
906 	prio = xive_lock_and_mask(xive, sb, state);
907 	pr_devel(" old IRQ prio %02x P:%d Q:%d\n", prio,
908 		 state->old_p, state->old_q);
909 
910 	/*
911 	 * If old_p is set, the interrupt is pending, we switch it to
912 	 * PQ=11. This will force a resend in the host so the interrupt
913 	 * isn't lost to whatver host driver may pick it up
914 	 */
915 	if (state->old_p)
916 		xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_11);
917 
918 	/* Release the passed-through interrupt to the host */
919 	rc = irq_set_vcpu_affinity(host_irq, NULL);
920 	if (rc) {
921 		pr_err("Failed to clr VCPU affinity for irq %d\n", host_irq);
922 		return rc;
923 	}
924 
925 	/* Forget about the IRQ */
926 	state->pt_number = 0;
927 	state->pt_data = NULL;
928 
929 	/* Reconfigure the IPI */
930 	xive_native_configure_irq(state->ipi_number,
931 				  xive->vp_base + state->act_server,
932 				  state->act_priority, state->number);
933 
934 	/*
935 	 * If old_p is set (we have a queue entry potentially
936 	 * occupied) or the interrupt is masked, we set the IPI
937 	 * to PQ=10 state. Otherwise we just re-enable it (PQ=00).
938 	 */
939 	if (prio == MASKED || state->old_p)
940 		xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_10);
941 	else
942 		xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_00);
943 
944 	/* Restore guest prio (unlocks EOI) */
945 	mb();
946 	state->guest_priority = prio;
947 	arch_spin_unlock(&sb->lock);
948 
949 	return 0;
950 }
951 EXPORT_SYMBOL_GPL(kvmppc_xive_clr_mapped);
952 
953 static void kvmppc_xive_disable_vcpu_interrupts(struct kvm_vcpu *vcpu)
954 {
955 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
956 	struct kvm *kvm = vcpu->kvm;
957 	struct kvmppc_xive *xive = kvm->arch.xive;
958 	int i, j;
959 
960 	for (i = 0; i <= xive->max_sbid; i++) {
961 		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
962 
963 		if (!sb)
964 			continue;
965 		for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) {
966 			struct kvmppc_xive_irq_state *state = &sb->irq_state[j];
967 
968 			if (!state->valid)
969 				continue;
970 			if (state->act_priority == MASKED)
971 				continue;
972 			if (state->act_server != xc->server_num)
973 				continue;
974 
975 			/* Clean it up */
976 			arch_spin_lock(&sb->lock);
977 			state->act_priority = MASKED;
978 			xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
979 			xive_native_configure_irq(state->ipi_number, 0, MASKED, 0);
980 			if (state->pt_number) {
981 				xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_01);
982 				xive_native_configure_irq(state->pt_number, 0, MASKED, 0);
983 			}
984 			arch_spin_unlock(&sb->lock);
985 		}
986 	}
987 }
988 
989 void kvmppc_xive_cleanup_vcpu(struct kvm_vcpu *vcpu)
990 {
991 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
992 	struct kvmppc_xive *xive = xc->xive;
993 	int i;
994 
995 	pr_devel("cleanup_vcpu(cpu=%d)\n", xc->server_num);
996 
997 	/* Ensure no interrupt is still routed to that VP */
998 	xc->valid = false;
999 	kvmppc_xive_disable_vcpu_interrupts(vcpu);
1000 
1001 	/* Mask the VP IPI */
1002 	xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_01);
1003 
1004 	/* Disable the VP */
1005 	xive_native_disable_vp(xc->vp_id);
1006 
1007 	/* Free the queues & associated interrupts */
1008 	for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1009 		struct xive_q *q = &xc->queues[i];
1010 
1011 		/* Free the escalation irq */
1012 		if (xc->esc_virq[i]) {
1013 			free_irq(xc->esc_virq[i], vcpu);
1014 			irq_dispose_mapping(xc->esc_virq[i]);
1015 			kfree(xc->esc_virq_names[i]);
1016 		}
1017 		/* Free the queue */
1018 		xive_native_disable_queue(xc->vp_id, q, i);
1019 		if (q->qpage) {
1020 			free_pages((unsigned long)q->qpage,
1021 				   xive->q_page_order);
1022 			q->qpage = NULL;
1023 		}
1024 	}
1025 
1026 	/* Free the IPI */
1027 	if (xc->vp_ipi) {
1028 		xive_cleanup_irq_data(&xc->vp_ipi_data);
1029 		xive_native_free_irq(xc->vp_ipi);
1030 	}
1031 	/* Free the VP */
1032 	kfree(xc);
1033 }
1034 
1035 int kvmppc_xive_connect_vcpu(struct kvm_device *dev,
1036 			     struct kvm_vcpu *vcpu, u32 cpu)
1037 {
1038 	struct kvmppc_xive *xive = dev->private;
1039 	struct kvmppc_xive_vcpu *xc;
1040 	int i, r = -EBUSY;
1041 
1042 	pr_devel("connect_vcpu(cpu=%d)\n", cpu);
1043 
1044 	if (dev->ops != &kvm_xive_ops) {
1045 		pr_devel("Wrong ops !\n");
1046 		return -EPERM;
1047 	}
1048 	if (xive->kvm != vcpu->kvm)
1049 		return -EPERM;
1050 	if (vcpu->arch.irq_type)
1051 		return -EBUSY;
1052 	if (kvmppc_xive_find_server(vcpu->kvm, cpu)) {
1053 		pr_devel("Duplicate !\n");
1054 		return -EEXIST;
1055 	}
1056 	if (cpu >= KVM_MAX_VCPUS) {
1057 		pr_devel("Out of bounds !\n");
1058 		return -EINVAL;
1059 	}
1060 	xc = kzalloc(sizeof(*xc), GFP_KERNEL);
1061 	if (!xc)
1062 		return -ENOMEM;
1063 
1064 	/* We need to synchronize with queue provisioning */
1065 	mutex_lock(&vcpu->kvm->lock);
1066 	vcpu->arch.xive_vcpu = xc;
1067 	xc->xive = xive;
1068 	xc->vcpu = vcpu;
1069 	xc->server_num = cpu;
1070 	xc->vp_id = xive->vp_base + cpu;
1071 	xc->mfrr = 0xff;
1072 	xc->valid = true;
1073 
1074 	r = xive_native_get_vp_info(xc->vp_id, &xc->vp_cam, &xc->vp_chip_id);
1075 	if (r)
1076 		goto bail;
1077 
1078 	/* Configure VCPU fields for use by assembly push/pull */
1079 	vcpu->arch.xive_saved_state.w01 = cpu_to_be64(0xff000000);
1080 	vcpu->arch.xive_cam_word = cpu_to_be32(xc->vp_cam | TM_QW1W2_VO);
1081 
1082 	/* Allocate IPI */
1083 	xc->vp_ipi = xive_native_alloc_irq();
1084 	if (!xc->vp_ipi) {
1085 		r = -EIO;
1086 		goto bail;
1087 	}
1088 	pr_devel(" IPI=0x%x\n", xc->vp_ipi);
1089 
1090 	r = xive_native_populate_irq_data(xc->vp_ipi, &xc->vp_ipi_data);
1091 	if (r)
1092 		goto bail;
1093 
1094 	/*
1095 	 * Initialize queues. Initially we set them all for no queueing
1096 	 * and we enable escalation for queue 0 only which we'll use for
1097 	 * our mfrr change notifications. If the VCPU is hot-plugged, we
1098 	 * do handle provisioning however.
1099 	 */
1100 	for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1101 		struct xive_q *q = &xc->queues[i];
1102 
1103 		/* Is queue already enabled ? Provision it */
1104 		if (xive->qmap & (1 << i)) {
1105 			r = xive_provision_queue(vcpu, i);
1106 			if (r == 0)
1107 				xive_attach_escalation(vcpu, i);
1108 			if (r)
1109 				goto bail;
1110 		} else {
1111 			r = xive_native_configure_queue(xc->vp_id,
1112 							q, i, NULL, 0, true);
1113 			if (r) {
1114 				pr_err("Failed to configure queue %d for VCPU %d\n",
1115 				       i, cpu);
1116 				goto bail;
1117 			}
1118 		}
1119 	}
1120 
1121 	/* If not done above, attach priority 0 escalation */
1122 	r = xive_attach_escalation(vcpu, 0);
1123 	if (r)
1124 		goto bail;
1125 
1126 	/* Enable the VP */
1127 	r = xive_native_enable_vp(xc->vp_id);
1128 	if (r)
1129 		goto bail;
1130 
1131 	/* Route the IPI */
1132 	r = xive_native_configure_irq(xc->vp_ipi, xc->vp_id, 0, XICS_IPI);
1133 	if (!r)
1134 		xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_00);
1135 
1136 bail:
1137 	mutex_unlock(&vcpu->kvm->lock);
1138 	if (r) {
1139 		kvmppc_xive_cleanup_vcpu(vcpu);
1140 		return r;
1141 	}
1142 
1143 	vcpu->arch.irq_type = KVMPPC_IRQ_XICS;
1144 	return 0;
1145 }
1146 
1147 /*
1148  * Scanning of queues before/after migration save
1149  */
1150 static void xive_pre_save_set_queued(struct kvmppc_xive *xive, u32 irq)
1151 {
1152 	struct kvmppc_xive_src_block *sb;
1153 	struct kvmppc_xive_irq_state *state;
1154 	u16 idx;
1155 
1156 	sb = kvmppc_xive_find_source(xive, irq, &idx);
1157 	if (!sb)
1158 		return;
1159 
1160 	state = &sb->irq_state[idx];
1161 
1162 	/* Some sanity checking */
1163 	if (!state->valid) {
1164 		pr_err("invalid irq 0x%x in cpu queue!\n", irq);
1165 		return;
1166 	}
1167 
1168 	/*
1169 	 * If the interrupt is in a queue it should have P set.
1170 	 * We warn so that gets reported. A backtrace isn't useful
1171 	 * so no need to use a WARN_ON.
1172 	 */
1173 	if (!state->saved_p)
1174 		pr_err("Interrupt 0x%x is marked in a queue but P not set !\n", irq);
1175 
1176 	/* Set flag */
1177 	state->in_queue = true;
1178 }
1179 
1180 static void xive_pre_save_mask_irq(struct kvmppc_xive *xive,
1181 				   struct kvmppc_xive_src_block *sb,
1182 				   u32 irq)
1183 {
1184 	struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
1185 
1186 	if (!state->valid)
1187 		return;
1188 
1189 	/* Mask and save state, this will also sync HW queues */
1190 	state->saved_scan_prio = xive_lock_and_mask(xive, sb, state);
1191 
1192 	/* Transfer P and Q */
1193 	state->saved_p = state->old_p;
1194 	state->saved_q = state->old_q;
1195 
1196 	/* Unlock */
1197 	arch_spin_unlock(&sb->lock);
1198 }
1199 
1200 static void xive_pre_save_unmask_irq(struct kvmppc_xive *xive,
1201 				     struct kvmppc_xive_src_block *sb,
1202 				     u32 irq)
1203 {
1204 	struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
1205 
1206 	if (!state->valid)
1207 		return;
1208 
1209 	/*
1210 	 * Lock / exclude EOI (not technically necessary if the
1211 	 * guest isn't running concurrently. If this becomes a
1212 	 * performance issue we can probably remove the lock.
1213 	 */
1214 	xive_lock_for_unmask(sb, state);
1215 
1216 	/* Restore mask/prio if it wasn't masked */
1217 	if (state->saved_scan_prio != MASKED)
1218 		xive_finish_unmask(xive, sb, state, state->saved_scan_prio);
1219 
1220 	/* Unlock */
1221 	arch_spin_unlock(&sb->lock);
1222 }
1223 
1224 static void xive_pre_save_queue(struct kvmppc_xive *xive, struct xive_q *q)
1225 {
1226 	u32 idx = q->idx;
1227 	u32 toggle = q->toggle;
1228 	u32 irq;
1229 
1230 	do {
1231 		irq = __xive_read_eq(q->qpage, q->msk, &idx, &toggle);
1232 		if (irq > XICS_IPI)
1233 			xive_pre_save_set_queued(xive, irq);
1234 	} while(irq);
1235 }
1236 
1237 static void xive_pre_save_scan(struct kvmppc_xive *xive)
1238 {
1239 	struct kvm_vcpu *vcpu = NULL;
1240 	int i, j;
1241 
1242 	/*
1243 	 * See comment in xive_get_source() about how this
1244 	 * work. Collect a stable state for all interrupts
1245 	 */
1246 	for (i = 0; i <= xive->max_sbid; i++) {
1247 		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1248 		if (!sb)
1249 			continue;
1250 		for (j = 0;  j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1251 			xive_pre_save_mask_irq(xive, sb, j);
1252 	}
1253 
1254 	/* Then scan the queues and update the "in_queue" flag */
1255 	kvm_for_each_vcpu(i, vcpu, xive->kvm) {
1256 		struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1257 		if (!xc)
1258 			continue;
1259 		for (j = 0; j < KVMPPC_XIVE_Q_COUNT; j++) {
1260 			if (xc->queues[j].qpage)
1261 				xive_pre_save_queue(xive, &xc->queues[j]);
1262 		}
1263 	}
1264 
1265 	/* Finally restore interrupt states */
1266 	for (i = 0; i <= xive->max_sbid; i++) {
1267 		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1268 		if (!sb)
1269 			continue;
1270 		for (j = 0;  j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1271 			xive_pre_save_unmask_irq(xive, sb, j);
1272 	}
1273 }
1274 
1275 static void xive_post_save_scan(struct kvmppc_xive *xive)
1276 {
1277 	u32 i, j;
1278 
1279 	/* Clear all the in_queue flags */
1280 	for (i = 0; i <= xive->max_sbid; i++) {
1281 		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1282 		if (!sb)
1283 			continue;
1284 		for (j = 0;  j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1285 			sb->irq_state[j].in_queue = false;
1286 	}
1287 
1288 	/* Next get_source() will do a new scan */
1289 	xive->saved_src_count = 0;
1290 }
1291 
1292 /*
1293  * This returns the source configuration and state to user space.
1294  */
1295 static int xive_get_source(struct kvmppc_xive *xive, long irq, u64 addr)
1296 {
1297 	struct kvmppc_xive_src_block *sb;
1298 	struct kvmppc_xive_irq_state *state;
1299 	u64 __user *ubufp = (u64 __user *) addr;
1300 	u64 val, prio;
1301 	u16 idx;
1302 
1303 	sb = kvmppc_xive_find_source(xive, irq, &idx);
1304 	if (!sb)
1305 		return -ENOENT;
1306 
1307 	state = &sb->irq_state[idx];
1308 
1309 	if (!state->valid)
1310 		return -ENOENT;
1311 
1312 	pr_devel("get_source(%ld)...\n", irq);
1313 
1314 	/*
1315 	 * So to properly save the state into something that looks like a
1316 	 * XICS migration stream we cannot treat interrupts individually.
1317 	 *
1318 	 * We need, instead, mask them all (& save their previous PQ state)
1319 	 * to get a stable state in the HW, then sync them to ensure that
1320 	 * any interrupt that had already fired hits its queue, and finally
1321 	 * scan all the queues to collect which interrupts are still present
1322 	 * in the queues, so we can set the "pending" flag on them and
1323 	 * they can be resent on restore.
1324 	 *
1325 	 * So we do it all when the "first" interrupt gets saved, all the
1326 	 * state is collected at that point, the rest of xive_get_source()
1327 	 * will merely collect and convert that state to the expected
1328 	 * userspace bit mask.
1329 	 */
1330 	if (xive->saved_src_count == 0)
1331 		xive_pre_save_scan(xive);
1332 	xive->saved_src_count++;
1333 
1334 	/* Convert saved state into something compatible with xics */
1335 	val = state->guest_server;
1336 	prio = state->saved_scan_prio;
1337 
1338 	if (prio == MASKED) {
1339 		val |= KVM_XICS_MASKED;
1340 		prio = state->saved_priority;
1341 	}
1342 	val |= prio << KVM_XICS_PRIORITY_SHIFT;
1343 	if (state->lsi) {
1344 		val |= KVM_XICS_LEVEL_SENSITIVE;
1345 		if (state->saved_p)
1346 			val |= KVM_XICS_PENDING;
1347 	} else {
1348 		if (state->saved_p)
1349 			val |= KVM_XICS_PRESENTED;
1350 
1351 		if (state->saved_q)
1352 			val |= KVM_XICS_QUEUED;
1353 
1354 		/*
1355 		 * We mark it pending (which will attempt a re-delivery)
1356 		 * if we are in a queue *or* we were masked and had
1357 		 * Q set which is equivalent to the XICS "masked pending"
1358 		 * state
1359 		 */
1360 		if (state->in_queue || (prio == MASKED && state->saved_q))
1361 			val |= KVM_XICS_PENDING;
1362 	}
1363 
1364 	/*
1365 	 * If that was the last interrupt saved, reset the
1366 	 * in_queue flags
1367 	 */
1368 	if (xive->saved_src_count == xive->src_count)
1369 		xive_post_save_scan(xive);
1370 
1371 	/* Copy the result to userspace */
1372 	if (put_user(val, ubufp))
1373 		return -EFAULT;
1374 
1375 	return 0;
1376 }
1377 
1378 static struct kvmppc_xive_src_block *xive_create_src_block(struct kvmppc_xive *xive,
1379 							   int irq)
1380 {
1381 	struct kvm *kvm = xive->kvm;
1382 	struct kvmppc_xive_src_block *sb;
1383 	int i, bid;
1384 
1385 	bid = irq >> KVMPPC_XICS_ICS_SHIFT;
1386 
1387 	mutex_lock(&kvm->lock);
1388 
1389 	/* block already exists - somebody else got here first */
1390 	if (xive->src_blocks[bid])
1391 		goto out;
1392 
1393 	/* Create the ICS */
1394 	sb = kzalloc(sizeof(*sb), GFP_KERNEL);
1395 	if (!sb)
1396 		goto out;
1397 
1398 	sb->id = bid;
1399 
1400 	for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
1401 		sb->irq_state[i].number = (bid << KVMPPC_XICS_ICS_SHIFT) | i;
1402 		sb->irq_state[i].guest_priority = MASKED;
1403 		sb->irq_state[i].saved_priority = MASKED;
1404 		sb->irq_state[i].act_priority = MASKED;
1405 	}
1406 	smp_wmb();
1407 	xive->src_blocks[bid] = sb;
1408 
1409 	if (bid > xive->max_sbid)
1410 		xive->max_sbid = bid;
1411 
1412 out:
1413 	mutex_unlock(&kvm->lock);
1414 	return xive->src_blocks[bid];
1415 }
1416 
1417 static bool xive_check_delayed_irq(struct kvmppc_xive *xive, u32 irq)
1418 {
1419 	struct kvm *kvm = xive->kvm;
1420 	struct kvm_vcpu *vcpu = NULL;
1421 	int i;
1422 
1423 	kvm_for_each_vcpu(i, vcpu, kvm) {
1424 		struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1425 
1426 		if (!xc)
1427 			continue;
1428 
1429 		if (xc->delayed_irq == irq) {
1430 			xc->delayed_irq = 0;
1431 			xive->delayed_irqs--;
1432 			return true;
1433 		}
1434 	}
1435 	return false;
1436 }
1437 
1438 static int xive_set_source(struct kvmppc_xive *xive, long irq, u64 addr)
1439 {
1440 	struct kvmppc_xive_src_block *sb;
1441 	struct kvmppc_xive_irq_state *state;
1442 	u64 __user *ubufp = (u64 __user *) addr;
1443 	u16 idx;
1444 	u64 val;
1445 	u8 act_prio, guest_prio;
1446 	u32 server;
1447 	int rc = 0;
1448 
1449 	if (irq < KVMPPC_XICS_FIRST_IRQ || irq >= KVMPPC_XICS_NR_IRQS)
1450 		return -ENOENT;
1451 
1452 	pr_devel("set_source(irq=0x%lx)\n", irq);
1453 
1454 	/* Find the source */
1455 	sb = kvmppc_xive_find_source(xive, irq, &idx);
1456 	if (!sb) {
1457 		pr_devel("No source, creating source block...\n");
1458 		sb = xive_create_src_block(xive, irq);
1459 		if (!sb) {
1460 			pr_devel("Failed to create block...\n");
1461 			return -ENOMEM;
1462 		}
1463 	}
1464 	state = &sb->irq_state[idx];
1465 
1466 	/* Read user passed data */
1467 	if (get_user(val, ubufp)) {
1468 		pr_devel("fault getting user info !\n");
1469 		return -EFAULT;
1470 	}
1471 
1472 	server = val & KVM_XICS_DESTINATION_MASK;
1473 	guest_prio = val >> KVM_XICS_PRIORITY_SHIFT;
1474 
1475 	pr_devel("  val=0x016%llx (server=0x%x, guest_prio=%d)\n",
1476 		 val, server, guest_prio);
1477 	/*
1478 	 * If the source doesn't already have an IPI, allocate
1479 	 * one and get the corresponding data
1480 	 */
1481 	if (!state->ipi_number) {
1482 		state->ipi_number = xive_native_alloc_irq();
1483 		if (state->ipi_number == 0) {
1484 			pr_devel("Failed to allocate IPI !\n");
1485 			return -ENOMEM;
1486 		}
1487 		xive_native_populate_irq_data(state->ipi_number, &state->ipi_data);
1488 		pr_devel(" src_ipi=0x%x\n", state->ipi_number);
1489 	}
1490 
1491 	/*
1492 	 * We use lock_and_mask() to set us in the right masked
1493 	 * state. We will override that state from the saved state
1494 	 * further down, but this will handle the cases of interrupts
1495 	 * that need FW masking. We set the initial guest_priority to
1496 	 * 0 before calling it to ensure it actually performs the masking.
1497 	 */
1498 	state->guest_priority = 0;
1499 	xive_lock_and_mask(xive, sb, state);
1500 
1501 	/*
1502 	 * Now, we select a target if we have one. If we don't we
1503 	 * leave the interrupt untargetted. It means that an interrupt
1504 	 * can become "untargetted" accross migration if it was masked
1505 	 * by set_xive() but there is little we can do about it.
1506 	 */
1507 
1508 	/* First convert prio and mark interrupt as untargetted */
1509 	act_prio = xive_prio_from_guest(guest_prio);
1510 	state->act_priority = MASKED;
1511 	state->guest_server = server;
1512 
1513 	/*
1514 	 * We need to drop the lock due to the mutex below. Hopefully
1515 	 * nothing is touching that interrupt yet since it hasn't been
1516 	 * advertized to a running guest yet
1517 	 */
1518 	arch_spin_unlock(&sb->lock);
1519 
1520 	/* If we have a priority target the interrupt */
1521 	if (act_prio != MASKED) {
1522 		/* First, check provisioning of queues */
1523 		mutex_lock(&xive->kvm->lock);
1524 		rc = xive_check_provisioning(xive->kvm, act_prio);
1525 		mutex_unlock(&xive->kvm->lock);
1526 
1527 		/* Target interrupt */
1528 		if (rc == 0)
1529 			rc = xive_target_interrupt(xive->kvm, state,
1530 						   server, act_prio);
1531 		/*
1532 		 * If provisioning or targetting failed, leave it
1533 		 * alone and masked. It will remain disabled until
1534 		 * the guest re-targets it.
1535 		 */
1536 	}
1537 
1538 	/*
1539 	 * Find out if this was a delayed irq stashed in an ICP,
1540 	 * in which case, treat it as pending
1541 	 */
1542 	if (xive->delayed_irqs && xive_check_delayed_irq(xive, irq)) {
1543 		val |= KVM_XICS_PENDING;
1544 		pr_devel("  Found delayed ! forcing PENDING !\n");
1545 	}
1546 
1547 	/* Cleanup the SW state */
1548 	state->old_p = false;
1549 	state->old_q = false;
1550 	state->lsi = false;
1551 	state->asserted = false;
1552 
1553 	/* Restore LSI state */
1554 	if (val & KVM_XICS_LEVEL_SENSITIVE) {
1555 		state->lsi = true;
1556 		if (val & KVM_XICS_PENDING)
1557 			state->asserted = true;
1558 		pr_devel("  LSI ! Asserted=%d\n", state->asserted);
1559 	}
1560 
1561 	/*
1562 	 * Restore P and Q. If the interrupt was pending, we
1563 	 * force both P and Q, which will trigger a resend.
1564 	 *
1565 	 * That means that a guest that had both an interrupt
1566 	 * pending (queued) and Q set will restore with only
1567 	 * one instance of that interrupt instead of 2, but that
1568 	 * is perfectly fine as coalescing interrupts that haven't
1569 	 * been presented yet is always allowed.
1570 	 */
1571 	if (val & KVM_XICS_PRESENTED || val & KVM_XICS_PENDING)
1572 		state->old_p = true;
1573 	if (val & KVM_XICS_QUEUED || val & KVM_XICS_PENDING)
1574 		state->old_q = true;
1575 
1576 	pr_devel("  P=%d, Q=%d\n", state->old_p, state->old_q);
1577 
1578 	/*
1579 	 * If the interrupt was unmasked, update guest priority and
1580 	 * perform the appropriate state transition and do a
1581 	 * re-trigger if necessary.
1582 	 */
1583 	if (val & KVM_XICS_MASKED) {
1584 		pr_devel("  masked, saving prio\n");
1585 		state->guest_priority = MASKED;
1586 		state->saved_priority = guest_prio;
1587 	} else {
1588 		pr_devel("  unmasked, restoring to prio %d\n", guest_prio);
1589 		xive_finish_unmask(xive, sb, state, guest_prio);
1590 		state->saved_priority = guest_prio;
1591 	}
1592 
1593 	/* Increment the number of valid sources and mark this one valid */
1594 	if (!state->valid)
1595 		xive->src_count++;
1596 	state->valid = true;
1597 
1598 	return 0;
1599 }
1600 
1601 int kvmppc_xive_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1602 			bool line_status)
1603 {
1604 	struct kvmppc_xive *xive = kvm->arch.xive;
1605 	struct kvmppc_xive_src_block *sb;
1606 	struct kvmppc_xive_irq_state *state;
1607 	u16 idx;
1608 
1609 	if (!xive)
1610 		return -ENODEV;
1611 
1612 	sb = kvmppc_xive_find_source(xive, irq, &idx);
1613 	if (!sb)
1614 		return -EINVAL;
1615 
1616 	/* Perform locklessly .... (we need to do some RCUisms here...) */
1617 	state = &sb->irq_state[idx];
1618 	if (!state->valid)
1619 		return -EINVAL;
1620 
1621 	/* We don't allow a trigger on a passed-through interrupt */
1622 	if (state->pt_number)
1623 		return -EINVAL;
1624 
1625 	if ((level == 1 && state->lsi) || level == KVM_INTERRUPT_SET_LEVEL)
1626 		state->asserted = 1;
1627 	else if (level == 0 || level == KVM_INTERRUPT_UNSET) {
1628 		state->asserted = 0;
1629 		return 0;
1630 	}
1631 
1632 	/* Trigger the IPI */
1633 	xive_irq_trigger(&state->ipi_data);
1634 
1635 	return 0;
1636 }
1637 
1638 static int xive_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1639 {
1640 	struct kvmppc_xive *xive = dev->private;
1641 
1642 	/* We honor the existing XICS ioctl */
1643 	switch (attr->group) {
1644 	case KVM_DEV_XICS_GRP_SOURCES:
1645 		return xive_set_source(xive, attr->attr, attr->addr);
1646 	}
1647 	return -ENXIO;
1648 }
1649 
1650 static int xive_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1651 {
1652 	struct kvmppc_xive *xive = dev->private;
1653 
1654 	/* We honor the existing XICS ioctl */
1655 	switch (attr->group) {
1656 	case KVM_DEV_XICS_GRP_SOURCES:
1657 		return xive_get_source(xive, attr->attr, attr->addr);
1658 	}
1659 	return -ENXIO;
1660 }
1661 
1662 static int xive_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1663 {
1664 	/* We honor the same limits as XICS, at least for now */
1665 	switch (attr->group) {
1666 	case KVM_DEV_XICS_GRP_SOURCES:
1667 		if (attr->attr >= KVMPPC_XICS_FIRST_IRQ &&
1668 		    attr->attr < KVMPPC_XICS_NR_IRQS)
1669 			return 0;
1670 		break;
1671 	}
1672 	return -ENXIO;
1673 }
1674 
1675 static void kvmppc_xive_cleanup_irq(u32 hw_num, struct xive_irq_data *xd)
1676 {
1677 	xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01);
1678 	xive_native_configure_irq(hw_num, 0, MASKED, 0);
1679 	xive_cleanup_irq_data(xd);
1680 }
1681 
1682 static void kvmppc_xive_free_sources(struct kvmppc_xive_src_block *sb)
1683 {
1684 	int i;
1685 
1686 	for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
1687 		struct kvmppc_xive_irq_state *state = &sb->irq_state[i];
1688 
1689 		if (!state->valid)
1690 			continue;
1691 
1692 		kvmppc_xive_cleanup_irq(state->ipi_number, &state->ipi_data);
1693 		xive_native_free_irq(state->ipi_number);
1694 
1695 		/* Pass-through, cleanup too */
1696 		if (state->pt_number)
1697 			kvmppc_xive_cleanup_irq(state->pt_number, state->pt_data);
1698 
1699 		state->valid = false;
1700 	}
1701 }
1702 
1703 static void kvmppc_xive_free(struct kvm_device *dev)
1704 {
1705 	struct kvmppc_xive *xive = dev->private;
1706 	struct kvm *kvm = xive->kvm;
1707 	int i;
1708 
1709 	debugfs_remove(xive->dentry);
1710 
1711 	if (kvm)
1712 		kvm->arch.xive = NULL;
1713 
1714 	/* Mask and free interrupts */
1715 	for (i = 0; i <= xive->max_sbid; i++) {
1716 		if (xive->src_blocks[i])
1717 			kvmppc_xive_free_sources(xive->src_blocks[i]);
1718 		kfree(xive->src_blocks[i]);
1719 		xive->src_blocks[i] = NULL;
1720 	}
1721 
1722 	if (xive->vp_base != XIVE_INVALID_VP)
1723 		xive_native_free_vp_block(xive->vp_base);
1724 
1725 
1726 	kfree(xive);
1727 	kfree(dev);
1728 }
1729 
1730 static int kvmppc_xive_create(struct kvm_device *dev, u32 type)
1731 {
1732 	struct kvmppc_xive *xive;
1733 	struct kvm *kvm = dev->kvm;
1734 	int ret = 0;
1735 
1736 	pr_devel("Creating xive for partition\n");
1737 
1738 	xive = kzalloc(sizeof(*xive), GFP_KERNEL);
1739 	if (!xive)
1740 		return -ENOMEM;
1741 
1742 	dev->private = xive;
1743 	xive->dev = dev;
1744 	xive->kvm = kvm;
1745 
1746 	/* Already there ? */
1747 	if (kvm->arch.xive)
1748 		ret = -EEXIST;
1749 	else
1750 		kvm->arch.xive = xive;
1751 
1752 	/* We use the default queue size set by the host */
1753 	xive->q_order = xive_native_default_eq_shift();
1754 	if (xive->q_order < PAGE_SHIFT)
1755 		xive->q_page_order = 0;
1756 	else
1757 		xive->q_page_order = xive->q_order - PAGE_SHIFT;
1758 
1759 	/* Allocate a bunch of VPs */
1760 	xive->vp_base = xive_native_alloc_vp_block(KVM_MAX_VCPUS);
1761 	pr_devel("VP_Base=%x\n", xive->vp_base);
1762 
1763 	if (xive->vp_base == XIVE_INVALID_VP)
1764 		ret = -ENOMEM;
1765 
1766 	if (ret) {
1767 		kfree(xive);
1768 		return ret;
1769 	}
1770 
1771 	return 0;
1772 }
1773 
1774 
1775 static int xive_debug_show(struct seq_file *m, void *private)
1776 {
1777 	struct kvmppc_xive *xive = m->private;
1778 	struct kvm *kvm = xive->kvm;
1779 	struct kvm_vcpu *vcpu;
1780 	u64 t_rm_h_xirr = 0;
1781 	u64 t_rm_h_ipoll = 0;
1782 	u64 t_rm_h_cppr = 0;
1783 	u64 t_rm_h_eoi = 0;
1784 	u64 t_rm_h_ipi = 0;
1785 	u64 t_vm_h_xirr = 0;
1786 	u64 t_vm_h_ipoll = 0;
1787 	u64 t_vm_h_cppr = 0;
1788 	u64 t_vm_h_eoi = 0;
1789 	u64 t_vm_h_ipi = 0;
1790 	unsigned int i;
1791 
1792 	if (!kvm)
1793 		return 0;
1794 
1795 	seq_printf(m, "=========\nVCPU state\n=========\n");
1796 
1797 	kvm_for_each_vcpu(i, vcpu, kvm) {
1798 		struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1799 
1800 		if (!xc)
1801 			continue;
1802 
1803 		seq_printf(m, "cpu server %#x CPPR:%#x HWCPPR:%#x"
1804 			   " MFRR:%#x PEND:%#x h_xirr: R=%lld V=%lld\n",
1805 			   xc->server_num, xc->cppr, xc->hw_cppr,
1806 			   xc->mfrr, xc->pending,
1807 			   xc->stat_rm_h_xirr, xc->stat_vm_h_xirr);
1808 
1809 		t_rm_h_xirr += xc->stat_rm_h_xirr;
1810 		t_rm_h_ipoll += xc->stat_rm_h_ipoll;
1811 		t_rm_h_cppr += xc->stat_rm_h_cppr;
1812 		t_rm_h_eoi += xc->stat_rm_h_eoi;
1813 		t_rm_h_ipi += xc->stat_rm_h_ipi;
1814 		t_vm_h_xirr += xc->stat_vm_h_xirr;
1815 		t_vm_h_ipoll += xc->stat_vm_h_ipoll;
1816 		t_vm_h_cppr += xc->stat_vm_h_cppr;
1817 		t_vm_h_eoi += xc->stat_vm_h_eoi;
1818 		t_vm_h_ipi += xc->stat_vm_h_ipi;
1819 	}
1820 
1821 	seq_printf(m, "Hcalls totals\n");
1822 	seq_printf(m, " H_XIRR  R=%10lld V=%10lld\n", t_rm_h_xirr, t_vm_h_xirr);
1823 	seq_printf(m, " H_IPOLL R=%10lld V=%10lld\n", t_rm_h_ipoll, t_vm_h_ipoll);
1824 	seq_printf(m, " H_CPPR  R=%10lld V=%10lld\n", t_rm_h_cppr, t_vm_h_cppr);
1825 	seq_printf(m, " H_EOI   R=%10lld V=%10lld\n", t_rm_h_eoi, t_vm_h_eoi);
1826 	seq_printf(m, " H_IPI   R=%10lld V=%10lld\n", t_rm_h_ipi, t_vm_h_ipi);
1827 
1828 	return 0;
1829 }
1830 
1831 static int xive_debug_open(struct inode *inode, struct file *file)
1832 {
1833 	return single_open(file, xive_debug_show, inode->i_private);
1834 }
1835 
1836 static const struct file_operations xive_debug_fops = {
1837 	.open = xive_debug_open,
1838 	.read = seq_read,
1839 	.llseek = seq_lseek,
1840 	.release = single_release,
1841 };
1842 
1843 static void xive_debugfs_init(struct kvmppc_xive *xive)
1844 {
1845 	char *name;
1846 
1847 	name = kasprintf(GFP_KERNEL, "kvm-xive-%p", xive);
1848 	if (!name) {
1849 		pr_err("%s: no memory for name\n", __func__);
1850 		return;
1851 	}
1852 
1853 	xive->dentry = debugfs_create_file(name, S_IRUGO, powerpc_debugfs_root,
1854 					   xive, &xive_debug_fops);
1855 
1856 	pr_debug("%s: created %s\n", __func__, name);
1857 	kfree(name);
1858 }
1859 
1860 static void kvmppc_xive_init(struct kvm_device *dev)
1861 {
1862 	struct kvmppc_xive *xive = (struct kvmppc_xive *)dev->private;
1863 
1864 	/* Register some debug interfaces */
1865 	xive_debugfs_init(xive);
1866 }
1867 
1868 struct kvm_device_ops kvm_xive_ops = {
1869 	.name = "kvm-xive",
1870 	.create = kvmppc_xive_create,
1871 	.init = kvmppc_xive_init,
1872 	.destroy = kvmppc_xive_free,
1873 	.set_attr = xive_set_attr,
1874 	.get_attr = xive_get_attr,
1875 	.has_attr = xive_has_attr,
1876 };
1877 
1878 void kvmppc_xive_init_module(void)
1879 {
1880 	__xive_vm_h_xirr = xive_vm_h_xirr;
1881 	__xive_vm_h_ipoll = xive_vm_h_ipoll;
1882 	__xive_vm_h_ipi = xive_vm_h_ipi;
1883 	__xive_vm_h_cppr = xive_vm_h_cppr;
1884 	__xive_vm_h_eoi = xive_vm_h_eoi;
1885 }
1886 
1887 void kvmppc_xive_exit_module(void)
1888 {
1889 	__xive_vm_h_xirr = NULL;
1890 	__xive_vm_h_ipoll = NULL;
1891 	__xive_vm_h_ipi = NULL;
1892 	__xive_vm_h_cppr = NULL;
1893 	__xive_vm_h_eoi = NULL;
1894 }
1895