1 /* 2 * Copyright 2017 Benjamin Herrenschmidt, IBM Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License, version 2, as 6 * published by the Free Software Foundation. 7 */ 8 9 #define pr_fmt(fmt) "xive-kvm: " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/kvm_host.h> 13 #include <linux/err.h> 14 #include <linux/gfp.h> 15 #include <linux/spinlock.h> 16 #include <linux/delay.h> 17 #include <linux/percpu.h> 18 #include <linux/cpumask.h> 19 #include <asm/uaccess.h> 20 #include <asm/kvm_book3s.h> 21 #include <asm/kvm_ppc.h> 22 #include <asm/hvcall.h> 23 #include <asm/xics.h> 24 #include <asm/xive.h> 25 #include <asm/xive-regs.h> 26 #include <asm/debug.h> 27 #include <asm/debugfs.h> 28 #include <asm/time.h> 29 #include <asm/opal.h> 30 31 #include <linux/debugfs.h> 32 #include <linux/seq_file.h> 33 34 #include "book3s_xive.h" 35 36 37 /* 38 * Virtual mode variants of the hcalls for use on radix/radix 39 * with AIL. They require the VCPU's VP to be "pushed" 40 * 41 * We still instanciate them here because we use some of the 42 * generated utility functions as well in this file. 43 */ 44 #define XIVE_RUNTIME_CHECKS 45 #define X_PFX xive_vm_ 46 #define X_STATIC static 47 #define X_STAT_PFX stat_vm_ 48 #define __x_tima xive_tima 49 #define __x_eoi_page(xd) ((void __iomem *)((xd)->eoi_mmio)) 50 #define __x_trig_page(xd) ((void __iomem *)((xd)->trig_mmio)) 51 #define __x_readb __raw_readb 52 #define __x_writeb __raw_writeb 53 #define __x_readw __raw_readw 54 #define __x_readq __raw_readq 55 #define __x_writeq __raw_writeq 56 57 #include "book3s_xive_template.c" 58 59 /* 60 * We leave a gap of a couple of interrupts in the queue to 61 * account for the IPI and additional safety guard. 62 */ 63 #define XIVE_Q_GAP 2 64 65 /* 66 * This is a simple trigger for a generic XIVE IRQ. This must 67 * only be called for interrupts that support a trigger page 68 */ 69 static bool xive_irq_trigger(struct xive_irq_data *xd) 70 { 71 /* This should be only for MSIs */ 72 if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI)) 73 return false; 74 75 /* Those interrupts should always have a trigger page */ 76 if (WARN_ON(!xd->trig_mmio)) 77 return false; 78 79 out_be64(xd->trig_mmio, 0); 80 81 return true; 82 } 83 84 static irqreturn_t xive_esc_irq(int irq, void *data) 85 { 86 struct kvm_vcpu *vcpu = data; 87 88 /* We use the existing H_PROD mechanism to wake up the target */ 89 vcpu->arch.prodded = 1; 90 smp_mb(); 91 if (vcpu->arch.ceded) 92 kvmppc_fast_vcpu_kick(vcpu); 93 94 return IRQ_HANDLED; 95 } 96 97 static int xive_attach_escalation(struct kvm_vcpu *vcpu, u8 prio) 98 { 99 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 100 struct xive_q *q = &xc->queues[prio]; 101 char *name = NULL; 102 int rc; 103 104 /* Already there ? */ 105 if (xc->esc_virq[prio]) 106 return 0; 107 108 /* Hook up the escalation interrupt */ 109 xc->esc_virq[prio] = irq_create_mapping(NULL, q->esc_irq); 110 if (!xc->esc_virq[prio]) { 111 pr_err("Failed to map escalation interrupt for queue %d of VCPU %d\n", 112 prio, xc->server_num); 113 return -EIO; 114 } 115 116 /* 117 * Future improvement: start with them disabled 118 * and handle DD2 and later scheme of merged escalation 119 * interrupts 120 */ 121 name = kasprintf(GFP_KERNEL, "kvm-%d-%d-%d", 122 vcpu->kvm->arch.lpid, xc->server_num, prio); 123 if (!name) { 124 pr_err("Failed to allocate escalation irq name for queue %d of VCPU %d\n", 125 prio, xc->server_num); 126 rc = -ENOMEM; 127 goto error; 128 } 129 rc = request_irq(xc->esc_virq[prio], xive_esc_irq, 130 IRQF_NO_THREAD, name, vcpu); 131 if (rc) { 132 pr_err("Failed to request escalation interrupt for queue %d of VCPU %d\n", 133 prio, xc->server_num); 134 goto error; 135 } 136 xc->esc_virq_names[prio] = name; 137 return 0; 138 error: 139 irq_dispose_mapping(xc->esc_virq[prio]); 140 xc->esc_virq[prio] = 0; 141 kfree(name); 142 return rc; 143 } 144 145 static int xive_provision_queue(struct kvm_vcpu *vcpu, u8 prio) 146 { 147 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 148 struct kvmppc_xive *xive = xc->xive; 149 struct xive_q *q = &xc->queues[prio]; 150 void *qpage; 151 int rc; 152 153 if (WARN_ON(q->qpage)) 154 return 0; 155 156 /* Allocate the queue and retrieve infos on current node for now */ 157 qpage = (__be32 *)__get_free_pages(GFP_KERNEL, xive->q_page_order); 158 if (!qpage) { 159 pr_err("Failed to allocate queue %d for VCPU %d\n", 160 prio, xc->server_num); 161 return -ENOMEM;; 162 } 163 memset(qpage, 0, 1 << xive->q_order); 164 165 /* 166 * Reconfigure the queue. This will set q->qpage only once the 167 * queue is fully configured. This is a requirement for prio 0 168 * as we will stop doing EOIs for every IPI as soon as we observe 169 * qpage being non-NULL, and instead will only EOI when we receive 170 * corresponding queue 0 entries 171 */ 172 rc = xive_native_configure_queue(xc->vp_id, q, prio, qpage, 173 xive->q_order, true); 174 if (rc) 175 pr_err("Failed to configure queue %d for VCPU %d\n", 176 prio, xc->server_num); 177 return rc; 178 } 179 180 /* Called with kvm_lock held */ 181 static int xive_check_provisioning(struct kvm *kvm, u8 prio) 182 { 183 struct kvmppc_xive *xive = kvm->arch.xive; 184 struct kvm_vcpu *vcpu; 185 int i, rc; 186 187 lockdep_assert_held(&kvm->lock); 188 189 /* Already provisioned ? */ 190 if (xive->qmap & (1 << prio)) 191 return 0; 192 193 pr_devel("Provisioning prio... %d\n", prio); 194 195 /* Provision each VCPU and enable escalations */ 196 kvm_for_each_vcpu(i, vcpu, kvm) { 197 if (!vcpu->arch.xive_vcpu) 198 continue; 199 rc = xive_provision_queue(vcpu, prio); 200 if (rc == 0) 201 xive_attach_escalation(vcpu, prio); 202 if (rc) 203 return rc; 204 } 205 206 /* Order previous stores and mark it as provisioned */ 207 mb(); 208 xive->qmap |= (1 << prio); 209 return 0; 210 } 211 212 static void xive_inc_q_pending(struct kvm *kvm, u32 server, u8 prio) 213 { 214 struct kvm_vcpu *vcpu; 215 struct kvmppc_xive_vcpu *xc; 216 struct xive_q *q; 217 218 /* Locate target server */ 219 vcpu = kvmppc_xive_find_server(kvm, server); 220 if (!vcpu) { 221 pr_warn("%s: Can't find server %d\n", __func__, server); 222 return; 223 } 224 xc = vcpu->arch.xive_vcpu; 225 if (WARN_ON(!xc)) 226 return; 227 228 q = &xc->queues[prio]; 229 atomic_inc(&q->pending_count); 230 } 231 232 static int xive_try_pick_queue(struct kvm_vcpu *vcpu, u8 prio) 233 { 234 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 235 struct xive_q *q; 236 u32 max; 237 238 if (WARN_ON(!xc)) 239 return -ENXIO; 240 if (!xc->valid) 241 return -ENXIO; 242 243 q = &xc->queues[prio]; 244 if (WARN_ON(!q->qpage)) 245 return -ENXIO; 246 247 /* Calculate max number of interrupts in that queue. */ 248 max = (q->msk + 1) - XIVE_Q_GAP; 249 return atomic_add_unless(&q->count, 1, max) ? 0 : -EBUSY; 250 } 251 252 static int xive_select_target(struct kvm *kvm, u32 *server, u8 prio) 253 { 254 struct kvm_vcpu *vcpu; 255 int i, rc; 256 257 /* Locate target server */ 258 vcpu = kvmppc_xive_find_server(kvm, *server); 259 if (!vcpu) { 260 pr_devel("Can't find server %d\n", *server); 261 return -EINVAL; 262 } 263 264 pr_devel("Finding irq target on 0x%x/%d...\n", *server, prio); 265 266 /* Try pick it */ 267 rc = xive_try_pick_queue(vcpu, prio); 268 if (rc == 0) 269 return rc; 270 271 pr_devel(" .. failed, looking up candidate...\n"); 272 273 /* Failed, pick another VCPU */ 274 kvm_for_each_vcpu(i, vcpu, kvm) { 275 if (!vcpu->arch.xive_vcpu) 276 continue; 277 rc = xive_try_pick_queue(vcpu, prio); 278 if (rc == 0) { 279 *server = vcpu->arch.xive_vcpu->server_num; 280 pr_devel(" found on 0x%x/%d\n", *server, prio); 281 return rc; 282 } 283 } 284 pr_devel(" no available target !\n"); 285 286 /* No available target ! */ 287 return -EBUSY; 288 } 289 290 static u8 xive_lock_and_mask(struct kvmppc_xive *xive, 291 struct kvmppc_xive_src_block *sb, 292 struct kvmppc_xive_irq_state *state) 293 { 294 struct xive_irq_data *xd; 295 u32 hw_num; 296 u8 old_prio; 297 u64 val; 298 299 /* 300 * Take the lock, set masked, try again if racing 301 * with H_EOI 302 */ 303 for (;;) { 304 arch_spin_lock(&sb->lock); 305 old_prio = state->guest_priority; 306 state->guest_priority = MASKED; 307 mb(); 308 if (!state->in_eoi) 309 break; 310 state->guest_priority = old_prio; 311 arch_spin_unlock(&sb->lock); 312 } 313 314 /* No change ? Bail */ 315 if (old_prio == MASKED) 316 return old_prio; 317 318 /* Get the right irq */ 319 kvmppc_xive_select_irq(state, &hw_num, &xd); 320 321 /* 322 * If the interrupt is marked as needing masking via 323 * firmware, we do it here. Firmware masking however 324 * is "lossy", it won't return the old p and q bits 325 * and won't set the interrupt to a state where it will 326 * record queued ones. If this is an issue we should do 327 * lazy masking instead. 328 * 329 * For now, we work around this in unmask by forcing 330 * an interrupt whenever we unmask a non-LSI via FW 331 * (if ever). 332 */ 333 if (xd->flags & OPAL_XIVE_IRQ_MASK_VIA_FW) { 334 xive_native_configure_irq(hw_num, 335 xive->vp_base + state->act_server, 336 MASKED, state->number); 337 /* set old_p so we can track if an H_EOI was done */ 338 state->old_p = true; 339 state->old_q = false; 340 } else { 341 /* Set PQ to 10, return old P and old Q and remember them */ 342 val = xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_10); 343 state->old_p = !!(val & 2); 344 state->old_q = !!(val & 1); 345 346 /* 347 * Synchronize hardware to sensure the queues are updated 348 * when masking 349 */ 350 xive_native_sync_source(hw_num); 351 } 352 353 return old_prio; 354 } 355 356 static void xive_lock_for_unmask(struct kvmppc_xive_src_block *sb, 357 struct kvmppc_xive_irq_state *state) 358 { 359 /* 360 * Take the lock try again if racing with H_EOI 361 */ 362 for (;;) { 363 arch_spin_lock(&sb->lock); 364 if (!state->in_eoi) 365 break; 366 arch_spin_unlock(&sb->lock); 367 } 368 } 369 370 static void xive_finish_unmask(struct kvmppc_xive *xive, 371 struct kvmppc_xive_src_block *sb, 372 struct kvmppc_xive_irq_state *state, 373 u8 prio) 374 { 375 struct xive_irq_data *xd; 376 u32 hw_num; 377 378 /* If we aren't changing a thing, move on */ 379 if (state->guest_priority != MASKED) 380 goto bail; 381 382 /* Get the right irq */ 383 kvmppc_xive_select_irq(state, &hw_num, &xd); 384 385 /* 386 * See command in xive_lock_and_mask() concerning masking 387 * via firmware. 388 */ 389 if (xd->flags & OPAL_XIVE_IRQ_MASK_VIA_FW) { 390 xive_native_configure_irq(hw_num, 391 xive->vp_base + state->act_server, 392 state->act_priority, state->number); 393 /* If an EOI is needed, do it here */ 394 if (!state->old_p) 395 xive_vm_source_eoi(hw_num, xd); 396 /* If this is not an LSI, force a trigger */ 397 if (!(xd->flags & OPAL_XIVE_IRQ_LSI)) 398 xive_irq_trigger(xd); 399 goto bail; 400 } 401 402 /* Old Q set, set PQ to 11 */ 403 if (state->old_q) 404 xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_11); 405 406 /* 407 * If not old P, then perform an "effective" EOI, 408 * on the source. This will handle the cases where 409 * FW EOI is needed. 410 */ 411 if (!state->old_p) 412 xive_vm_source_eoi(hw_num, xd); 413 414 /* Synchronize ordering and mark unmasked */ 415 mb(); 416 bail: 417 state->guest_priority = prio; 418 } 419 420 /* 421 * Target an interrupt to a given server/prio, this will fallback 422 * to another server if necessary and perform the HW targetting 423 * updates as needed 424 * 425 * NOTE: Must be called with the state lock held 426 */ 427 static int xive_target_interrupt(struct kvm *kvm, 428 struct kvmppc_xive_irq_state *state, 429 u32 server, u8 prio) 430 { 431 struct kvmppc_xive *xive = kvm->arch.xive; 432 u32 hw_num; 433 int rc; 434 435 /* 436 * This will return a tentative server and actual 437 * priority. The count for that new target will have 438 * already been incremented. 439 */ 440 rc = xive_select_target(kvm, &server, prio); 441 442 /* 443 * We failed to find a target ? Not much we can do 444 * at least until we support the GIQ. 445 */ 446 if (rc) 447 return rc; 448 449 /* 450 * Increment the old queue pending count if there 451 * was one so that the old queue count gets adjusted later 452 * when observed to be empty. 453 */ 454 if (state->act_priority != MASKED) 455 xive_inc_q_pending(kvm, 456 state->act_server, 457 state->act_priority); 458 /* 459 * Update state and HW 460 */ 461 state->act_priority = prio; 462 state->act_server = server; 463 464 /* Get the right irq */ 465 kvmppc_xive_select_irq(state, &hw_num, NULL); 466 467 return xive_native_configure_irq(hw_num, 468 xive->vp_base + server, 469 prio, state->number); 470 } 471 472 /* 473 * Targetting rules: In order to avoid losing track of 474 * pending interrupts accross mask and unmask, which would 475 * allow queue overflows, we implement the following rules: 476 * 477 * - Unless it was never enabled (or we run out of capacity) 478 * an interrupt is always targetted at a valid server/queue 479 * pair even when "masked" by the guest. This pair tends to 480 * be the last one used but it can be changed under some 481 * circumstances. That allows us to separate targetting 482 * from masking, we only handle accounting during (re)targetting, 483 * this also allows us to let an interrupt drain into its target 484 * queue after masking, avoiding complex schemes to remove 485 * interrupts out of remote processor queues. 486 * 487 * - When masking, we set PQ to 10 and save the previous value 488 * of P and Q. 489 * 490 * - When unmasking, if saved Q was set, we set PQ to 11 491 * otherwise we leave PQ to the HW state which will be either 492 * 10 if nothing happened or 11 if the interrupt fired while 493 * masked. Effectively we are OR'ing the previous Q into the 494 * HW Q. 495 * 496 * Then if saved P is clear, we do an effective EOI (Q->P->Trigger) 497 * which will unmask the interrupt and shoot a new one if Q was 498 * set. 499 * 500 * Otherwise (saved P is set) we leave PQ unchanged (so 10 or 11, 501 * effectively meaning an H_EOI from the guest is still expected 502 * for that interrupt). 503 * 504 * - If H_EOI occurs while masked, we clear the saved P. 505 * 506 * - When changing target, we account on the new target and 507 * increment a separate "pending" counter on the old one. 508 * This pending counter will be used to decrement the old 509 * target's count when its queue has been observed empty. 510 */ 511 512 int kvmppc_xive_set_xive(struct kvm *kvm, u32 irq, u32 server, 513 u32 priority) 514 { 515 struct kvmppc_xive *xive = kvm->arch.xive; 516 struct kvmppc_xive_src_block *sb; 517 struct kvmppc_xive_irq_state *state; 518 u8 new_act_prio; 519 int rc = 0; 520 u16 idx; 521 522 if (!xive) 523 return -ENODEV; 524 525 pr_devel("set_xive ! irq 0x%x server 0x%x prio %d\n", 526 irq, server, priority); 527 528 /* First, check provisioning of queues */ 529 if (priority != MASKED) 530 rc = xive_check_provisioning(xive->kvm, 531 xive_prio_from_guest(priority)); 532 if (rc) { 533 pr_devel(" provisioning failure %d !\n", rc); 534 return rc; 535 } 536 537 sb = kvmppc_xive_find_source(xive, irq, &idx); 538 if (!sb) 539 return -EINVAL; 540 state = &sb->irq_state[idx]; 541 542 /* 543 * We first handle masking/unmasking since the locking 544 * might need to be retried due to EOIs, we'll handle 545 * targetting changes later. These functions will return 546 * with the SB lock held. 547 * 548 * xive_lock_and_mask() will also set state->guest_priority 549 * but won't otherwise change other fields of the state. 550 * 551 * xive_lock_for_unmask will not actually unmask, this will 552 * be done later by xive_finish_unmask() once the targetting 553 * has been done, so we don't try to unmask an interrupt 554 * that hasn't yet been targetted. 555 */ 556 if (priority == MASKED) 557 xive_lock_and_mask(xive, sb, state); 558 else 559 xive_lock_for_unmask(sb, state); 560 561 562 /* 563 * Then we handle targetting. 564 * 565 * First calculate a new "actual priority" 566 */ 567 new_act_prio = state->act_priority; 568 if (priority != MASKED) 569 new_act_prio = xive_prio_from_guest(priority); 570 571 pr_devel(" new_act_prio=%x act_server=%x act_prio=%x\n", 572 new_act_prio, state->act_server, state->act_priority); 573 574 /* 575 * Then check if we actually need to change anything, 576 * 577 * The condition for re-targetting the interrupt is that 578 * we have a valid new priority (new_act_prio is not 0xff) 579 * and either the server or the priority changed. 580 * 581 * Note: If act_priority was ff and the new priority is 582 * also ff, we don't do anything and leave the interrupt 583 * untargetted. An attempt of doing an int_on on an 584 * untargetted interrupt will fail. If that is a problem 585 * we could initialize interrupts with valid default 586 */ 587 588 if (new_act_prio != MASKED && 589 (state->act_server != server || 590 state->act_priority != new_act_prio)) 591 rc = xive_target_interrupt(kvm, state, server, new_act_prio); 592 593 /* 594 * Perform the final unmasking of the interrupt source 595 * if necessary 596 */ 597 if (priority != MASKED) 598 xive_finish_unmask(xive, sb, state, priority); 599 600 /* 601 * Finally Update saved_priority to match. Only int_on/off 602 * set this field to a different value. 603 */ 604 state->saved_priority = priority; 605 606 arch_spin_unlock(&sb->lock); 607 return rc; 608 } 609 610 int kvmppc_xive_get_xive(struct kvm *kvm, u32 irq, u32 *server, 611 u32 *priority) 612 { 613 struct kvmppc_xive *xive = kvm->arch.xive; 614 struct kvmppc_xive_src_block *sb; 615 struct kvmppc_xive_irq_state *state; 616 u16 idx; 617 618 if (!xive) 619 return -ENODEV; 620 621 sb = kvmppc_xive_find_source(xive, irq, &idx); 622 if (!sb) 623 return -EINVAL; 624 state = &sb->irq_state[idx]; 625 arch_spin_lock(&sb->lock); 626 *server = state->guest_server; 627 *priority = state->guest_priority; 628 arch_spin_unlock(&sb->lock); 629 630 return 0; 631 } 632 633 int kvmppc_xive_int_on(struct kvm *kvm, u32 irq) 634 { 635 struct kvmppc_xive *xive = kvm->arch.xive; 636 struct kvmppc_xive_src_block *sb; 637 struct kvmppc_xive_irq_state *state; 638 u16 idx; 639 640 if (!xive) 641 return -ENODEV; 642 643 sb = kvmppc_xive_find_source(xive, irq, &idx); 644 if (!sb) 645 return -EINVAL; 646 state = &sb->irq_state[idx]; 647 648 pr_devel("int_on(irq=0x%x)\n", irq); 649 650 /* 651 * Check if interrupt was not targetted 652 */ 653 if (state->act_priority == MASKED) { 654 pr_devel("int_on on untargetted interrupt\n"); 655 return -EINVAL; 656 } 657 658 /* If saved_priority is 0xff, do nothing */ 659 if (state->saved_priority == MASKED) 660 return 0; 661 662 /* 663 * Lock and unmask it. 664 */ 665 xive_lock_for_unmask(sb, state); 666 xive_finish_unmask(xive, sb, state, state->saved_priority); 667 arch_spin_unlock(&sb->lock); 668 669 return 0; 670 } 671 672 int kvmppc_xive_int_off(struct kvm *kvm, u32 irq) 673 { 674 struct kvmppc_xive *xive = kvm->arch.xive; 675 struct kvmppc_xive_src_block *sb; 676 struct kvmppc_xive_irq_state *state; 677 u16 idx; 678 679 if (!xive) 680 return -ENODEV; 681 682 sb = kvmppc_xive_find_source(xive, irq, &idx); 683 if (!sb) 684 return -EINVAL; 685 state = &sb->irq_state[idx]; 686 687 pr_devel("int_off(irq=0x%x)\n", irq); 688 689 /* 690 * Lock and mask 691 */ 692 state->saved_priority = xive_lock_and_mask(xive, sb, state); 693 arch_spin_unlock(&sb->lock); 694 695 return 0; 696 } 697 698 static bool xive_restore_pending_irq(struct kvmppc_xive *xive, u32 irq) 699 { 700 struct kvmppc_xive_src_block *sb; 701 struct kvmppc_xive_irq_state *state; 702 u16 idx; 703 704 sb = kvmppc_xive_find_source(xive, irq, &idx); 705 if (!sb) 706 return false; 707 state = &sb->irq_state[idx]; 708 if (!state->valid) 709 return false; 710 711 /* 712 * Trigger the IPI. This assumes we never restore a pass-through 713 * interrupt which should be safe enough 714 */ 715 xive_irq_trigger(&state->ipi_data); 716 717 return true; 718 } 719 720 u64 kvmppc_xive_get_icp(struct kvm_vcpu *vcpu) 721 { 722 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 723 724 if (!xc) 725 return 0; 726 727 /* Return the per-cpu state for state saving/migration */ 728 return (u64)xc->cppr << KVM_REG_PPC_ICP_CPPR_SHIFT | 729 (u64)xc->mfrr << KVM_REG_PPC_ICP_MFRR_SHIFT; 730 } 731 732 int kvmppc_xive_set_icp(struct kvm_vcpu *vcpu, u64 icpval) 733 { 734 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 735 struct kvmppc_xive *xive = vcpu->kvm->arch.xive; 736 u8 cppr, mfrr; 737 u32 xisr; 738 739 if (!xc || !xive) 740 return -ENOENT; 741 742 /* Grab individual state fields. We don't use pending_pri */ 743 cppr = icpval >> KVM_REG_PPC_ICP_CPPR_SHIFT; 744 xisr = (icpval >> KVM_REG_PPC_ICP_XISR_SHIFT) & 745 KVM_REG_PPC_ICP_XISR_MASK; 746 mfrr = icpval >> KVM_REG_PPC_ICP_MFRR_SHIFT; 747 748 pr_devel("set_icp vcpu %d cppr=0x%x mfrr=0x%x xisr=0x%x\n", 749 xc->server_num, cppr, mfrr, xisr); 750 751 /* 752 * We can't update the state of a "pushed" VCPU, but that 753 * shouldn't happen. 754 */ 755 if (WARN_ON(vcpu->arch.xive_pushed)) 756 return -EIO; 757 758 /* Update VCPU HW saved state */ 759 vcpu->arch.xive_saved_state.cppr = cppr; 760 xc->hw_cppr = xc->cppr = cppr; 761 762 /* 763 * Update MFRR state. If it's not 0xff, we mark the VCPU as 764 * having a pending MFRR change, which will re-evaluate the 765 * target. The VCPU will thus potentially get a spurious 766 * interrupt but that's not a big deal. 767 */ 768 xc->mfrr = mfrr; 769 if (mfrr < cppr) 770 xive_irq_trigger(&xc->vp_ipi_data); 771 772 /* 773 * Now saved XIRR is "interesting". It means there's something in 774 * the legacy "1 element" queue... for an IPI we simply ignore it, 775 * as the MFRR restore will handle that. For anything else we need 776 * to force a resend of the source. 777 * However the source may not have been setup yet. If that's the 778 * case, we keep that info and increment a counter in the xive to 779 * tell subsequent xive_set_source() to go look. 780 */ 781 if (xisr > XICS_IPI && !xive_restore_pending_irq(xive, xisr)) { 782 xc->delayed_irq = xisr; 783 xive->delayed_irqs++; 784 pr_devel(" xisr restore delayed\n"); 785 } 786 787 return 0; 788 } 789 790 int kvmppc_xive_set_mapped(struct kvm *kvm, unsigned long guest_irq, 791 struct irq_desc *host_desc) 792 { 793 struct kvmppc_xive *xive = kvm->arch.xive; 794 struct kvmppc_xive_src_block *sb; 795 struct kvmppc_xive_irq_state *state; 796 struct irq_data *host_data = irq_desc_get_irq_data(host_desc); 797 unsigned int host_irq = irq_desc_get_irq(host_desc); 798 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(host_data); 799 u16 idx; 800 u8 prio; 801 int rc; 802 803 if (!xive) 804 return -ENODEV; 805 806 pr_devel("set_mapped girq 0x%lx host HW irq 0x%x...\n",guest_irq, hw_irq); 807 808 sb = kvmppc_xive_find_source(xive, guest_irq, &idx); 809 if (!sb) 810 return -EINVAL; 811 state = &sb->irq_state[idx]; 812 813 /* 814 * Mark the passed-through interrupt as going to a VCPU, 815 * this will prevent further EOIs and similar operations 816 * from the XIVE code. It will also mask the interrupt 817 * to either PQ=10 or 11 state, the latter if the interrupt 818 * is pending. This will allow us to unmask or retrigger it 819 * after routing it to the guest with a simple EOI. 820 * 821 * The "state" argument is a "token", all it needs is to be 822 * non-NULL to switch to passed-through or NULL for the 823 * other way around. We may not yet have an actual VCPU 824 * target here and we don't really care. 825 */ 826 rc = irq_set_vcpu_affinity(host_irq, state); 827 if (rc) { 828 pr_err("Failed to set VCPU affinity for irq %d\n", host_irq); 829 return rc; 830 } 831 832 /* 833 * Mask and read state of IPI. We need to know if its P bit 834 * is set as that means it's potentially already using a 835 * queue entry in the target 836 */ 837 prio = xive_lock_and_mask(xive, sb, state); 838 pr_devel(" old IPI prio %02x P:%d Q:%d\n", prio, 839 state->old_p, state->old_q); 840 841 /* Turn the IPI hard off */ 842 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01); 843 844 /* Grab info about irq */ 845 state->pt_number = hw_irq; 846 state->pt_data = irq_data_get_irq_handler_data(host_data); 847 848 /* 849 * Configure the IRQ to match the existing configuration of 850 * the IPI if it was already targetted. Otherwise this will 851 * mask the interrupt in a lossy way (act_priority is 0xff) 852 * which is fine for a never started interrupt. 853 */ 854 xive_native_configure_irq(hw_irq, 855 xive->vp_base + state->act_server, 856 state->act_priority, state->number); 857 858 /* 859 * We do an EOI to enable the interrupt (and retrigger if needed) 860 * if the guest has the interrupt unmasked and the P bit was *not* 861 * set in the IPI. If it was set, we know a slot may still be in 862 * use in the target queue thus we have to wait for a guest 863 * originated EOI 864 */ 865 if (prio != MASKED && !state->old_p) 866 xive_vm_source_eoi(hw_irq, state->pt_data); 867 868 /* Clear old_p/old_q as they are no longer relevant */ 869 state->old_p = state->old_q = false; 870 871 /* Restore guest prio (unlocks EOI) */ 872 mb(); 873 state->guest_priority = prio; 874 arch_spin_unlock(&sb->lock); 875 876 return 0; 877 } 878 EXPORT_SYMBOL_GPL(kvmppc_xive_set_mapped); 879 880 int kvmppc_xive_clr_mapped(struct kvm *kvm, unsigned long guest_irq, 881 struct irq_desc *host_desc) 882 { 883 struct kvmppc_xive *xive = kvm->arch.xive; 884 struct kvmppc_xive_src_block *sb; 885 struct kvmppc_xive_irq_state *state; 886 unsigned int host_irq = irq_desc_get_irq(host_desc); 887 u16 idx; 888 u8 prio; 889 int rc; 890 891 if (!xive) 892 return -ENODEV; 893 894 pr_devel("clr_mapped girq 0x%lx...\n", guest_irq); 895 896 sb = kvmppc_xive_find_source(xive, guest_irq, &idx); 897 if (!sb) 898 return -EINVAL; 899 state = &sb->irq_state[idx]; 900 901 /* 902 * Mask and read state of IRQ. We need to know if its P bit 903 * is set as that means it's potentially already using a 904 * queue entry in the target 905 */ 906 prio = xive_lock_and_mask(xive, sb, state); 907 pr_devel(" old IRQ prio %02x P:%d Q:%d\n", prio, 908 state->old_p, state->old_q); 909 910 /* 911 * If old_p is set, the interrupt is pending, we switch it to 912 * PQ=11. This will force a resend in the host so the interrupt 913 * isn't lost to whatver host driver may pick it up 914 */ 915 if (state->old_p) 916 xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_11); 917 918 /* Release the passed-through interrupt to the host */ 919 rc = irq_set_vcpu_affinity(host_irq, NULL); 920 if (rc) { 921 pr_err("Failed to clr VCPU affinity for irq %d\n", host_irq); 922 return rc; 923 } 924 925 /* Forget about the IRQ */ 926 state->pt_number = 0; 927 state->pt_data = NULL; 928 929 /* Reconfigure the IPI */ 930 xive_native_configure_irq(state->ipi_number, 931 xive->vp_base + state->act_server, 932 state->act_priority, state->number); 933 934 /* 935 * If old_p is set (we have a queue entry potentially 936 * occupied) or the interrupt is masked, we set the IPI 937 * to PQ=10 state. Otherwise we just re-enable it (PQ=00). 938 */ 939 if (prio == MASKED || state->old_p) 940 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_10); 941 else 942 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_00); 943 944 /* Restore guest prio (unlocks EOI) */ 945 mb(); 946 state->guest_priority = prio; 947 arch_spin_unlock(&sb->lock); 948 949 return 0; 950 } 951 EXPORT_SYMBOL_GPL(kvmppc_xive_clr_mapped); 952 953 static void kvmppc_xive_disable_vcpu_interrupts(struct kvm_vcpu *vcpu) 954 { 955 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 956 struct kvm *kvm = vcpu->kvm; 957 struct kvmppc_xive *xive = kvm->arch.xive; 958 int i, j; 959 960 for (i = 0; i <= xive->max_sbid; i++) { 961 struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; 962 963 if (!sb) 964 continue; 965 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) { 966 struct kvmppc_xive_irq_state *state = &sb->irq_state[j]; 967 968 if (!state->valid) 969 continue; 970 if (state->act_priority == MASKED) 971 continue; 972 if (state->act_server != xc->server_num) 973 continue; 974 975 /* Clean it up */ 976 arch_spin_lock(&sb->lock); 977 state->act_priority = MASKED; 978 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01); 979 xive_native_configure_irq(state->ipi_number, 0, MASKED, 0); 980 if (state->pt_number) { 981 xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_01); 982 xive_native_configure_irq(state->pt_number, 0, MASKED, 0); 983 } 984 arch_spin_unlock(&sb->lock); 985 } 986 } 987 } 988 989 void kvmppc_xive_cleanup_vcpu(struct kvm_vcpu *vcpu) 990 { 991 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 992 struct kvmppc_xive *xive = xc->xive; 993 int i; 994 995 pr_devel("cleanup_vcpu(cpu=%d)\n", xc->server_num); 996 997 /* Ensure no interrupt is still routed to that VP */ 998 xc->valid = false; 999 kvmppc_xive_disable_vcpu_interrupts(vcpu); 1000 1001 /* Mask the VP IPI */ 1002 xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_01); 1003 1004 /* Disable the VP */ 1005 xive_native_disable_vp(xc->vp_id); 1006 1007 /* Free the queues & associated interrupts */ 1008 for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) { 1009 struct xive_q *q = &xc->queues[i]; 1010 1011 /* Free the escalation irq */ 1012 if (xc->esc_virq[i]) { 1013 free_irq(xc->esc_virq[i], vcpu); 1014 irq_dispose_mapping(xc->esc_virq[i]); 1015 kfree(xc->esc_virq_names[i]); 1016 } 1017 /* Free the queue */ 1018 xive_native_disable_queue(xc->vp_id, q, i); 1019 if (q->qpage) { 1020 free_pages((unsigned long)q->qpage, 1021 xive->q_page_order); 1022 q->qpage = NULL; 1023 } 1024 } 1025 1026 /* Free the IPI */ 1027 if (xc->vp_ipi) { 1028 xive_cleanup_irq_data(&xc->vp_ipi_data); 1029 xive_native_free_irq(xc->vp_ipi); 1030 } 1031 /* Free the VP */ 1032 kfree(xc); 1033 } 1034 1035 int kvmppc_xive_connect_vcpu(struct kvm_device *dev, 1036 struct kvm_vcpu *vcpu, u32 cpu) 1037 { 1038 struct kvmppc_xive *xive = dev->private; 1039 struct kvmppc_xive_vcpu *xc; 1040 int i, r = -EBUSY; 1041 1042 pr_devel("connect_vcpu(cpu=%d)\n", cpu); 1043 1044 if (dev->ops != &kvm_xive_ops) { 1045 pr_devel("Wrong ops !\n"); 1046 return -EPERM; 1047 } 1048 if (xive->kvm != vcpu->kvm) 1049 return -EPERM; 1050 if (vcpu->arch.irq_type) 1051 return -EBUSY; 1052 if (kvmppc_xive_find_server(vcpu->kvm, cpu)) { 1053 pr_devel("Duplicate !\n"); 1054 return -EEXIST; 1055 } 1056 if (cpu >= KVM_MAX_VCPUS) { 1057 pr_devel("Out of bounds !\n"); 1058 return -EINVAL; 1059 } 1060 xc = kzalloc(sizeof(*xc), GFP_KERNEL); 1061 if (!xc) 1062 return -ENOMEM; 1063 1064 /* We need to synchronize with queue provisioning */ 1065 mutex_lock(&vcpu->kvm->lock); 1066 vcpu->arch.xive_vcpu = xc; 1067 xc->xive = xive; 1068 xc->vcpu = vcpu; 1069 xc->server_num = cpu; 1070 xc->vp_id = xive->vp_base + cpu; 1071 xc->mfrr = 0xff; 1072 xc->valid = true; 1073 1074 r = xive_native_get_vp_info(xc->vp_id, &xc->vp_cam, &xc->vp_chip_id); 1075 if (r) 1076 goto bail; 1077 1078 /* Configure VCPU fields for use by assembly push/pull */ 1079 vcpu->arch.xive_saved_state.w01 = cpu_to_be64(0xff000000); 1080 vcpu->arch.xive_cam_word = cpu_to_be32(xc->vp_cam | TM_QW1W2_VO); 1081 1082 /* Allocate IPI */ 1083 xc->vp_ipi = xive_native_alloc_irq(); 1084 if (!xc->vp_ipi) { 1085 r = -EIO; 1086 goto bail; 1087 } 1088 pr_devel(" IPI=0x%x\n", xc->vp_ipi); 1089 1090 r = xive_native_populate_irq_data(xc->vp_ipi, &xc->vp_ipi_data); 1091 if (r) 1092 goto bail; 1093 1094 /* 1095 * Initialize queues. Initially we set them all for no queueing 1096 * and we enable escalation for queue 0 only which we'll use for 1097 * our mfrr change notifications. If the VCPU is hot-plugged, we 1098 * do handle provisioning however. 1099 */ 1100 for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) { 1101 struct xive_q *q = &xc->queues[i]; 1102 1103 /* Is queue already enabled ? Provision it */ 1104 if (xive->qmap & (1 << i)) { 1105 r = xive_provision_queue(vcpu, i); 1106 if (r == 0) 1107 xive_attach_escalation(vcpu, i); 1108 if (r) 1109 goto bail; 1110 } else { 1111 r = xive_native_configure_queue(xc->vp_id, 1112 q, i, NULL, 0, true); 1113 if (r) { 1114 pr_err("Failed to configure queue %d for VCPU %d\n", 1115 i, cpu); 1116 goto bail; 1117 } 1118 } 1119 } 1120 1121 /* If not done above, attach priority 0 escalation */ 1122 r = xive_attach_escalation(vcpu, 0); 1123 if (r) 1124 goto bail; 1125 1126 /* Enable the VP */ 1127 r = xive_native_enable_vp(xc->vp_id); 1128 if (r) 1129 goto bail; 1130 1131 /* Route the IPI */ 1132 r = xive_native_configure_irq(xc->vp_ipi, xc->vp_id, 0, XICS_IPI); 1133 if (!r) 1134 xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_00); 1135 1136 bail: 1137 mutex_unlock(&vcpu->kvm->lock); 1138 if (r) { 1139 kvmppc_xive_cleanup_vcpu(vcpu); 1140 return r; 1141 } 1142 1143 vcpu->arch.irq_type = KVMPPC_IRQ_XICS; 1144 return 0; 1145 } 1146 1147 /* 1148 * Scanning of queues before/after migration save 1149 */ 1150 static void xive_pre_save_set_queued(struct kvmppc_xive *xive, u32 irq) 1151 { 1152 struct kvmppc_xive_src_block *sb; 1153 struct kvmppc_xive_irq_state *state; 1154 u16 idx; 1155 1156 sb = kvmppc_xive_find_source(xive, irq, &idx); 1157 if (!sb) 1158 return; 1159 1160 state = &sb->irq_state[idx]; 1161 1162 /* Some sanity checking */ 1163 if (!state->valid) { 1164 pr_err("invalid irq 0x%x in cpu queue!\n", irq); 1165 return; 1166 } 1167 1168 /* 1169 * If the interrupt is in a queue it should have P set. 1170 * We warn so that gets reported. A backtrace isn't useful 1171 * so no need to use a WARN_ON. 1172 */ 1173 if (!state->saved_p) 1174 pr_err("Interrupt 0x%x is marked in a queue but P not set !\n", irq); 1175 1176 /* Set flag */ 1177 state->in_queue = true; 1178 } 1179 1180 static void xive_pre_save_mask_irq(struct kvmppc_xive *xive, 1181 struct kvmppc_xive_src_block *sb, 1182 u32 irq) 1183 { 1184 struct kvmppc_xive_irq_state *state = &sb->irq_state[irq]; 1185 1186 if (!state->valid) 1187 return; 1188 1189 /* Mask and save state, this will also sync HW queues */ 1190 state->saved_scan_prio = xive_lock_and_mask(xive, sb, state); 1191 1192 /* Transfer P and Q */ 1193 state->saved_p = state->old_p; 1194 state->saved_q = state->old_q; 1195 1196 /* Unlock */ 1197 arch_spin_unlock(&sb->lock); 1198 } 1199 1200 static void xive_pre_save_unmask_irq(struct kvmppc_xive *xive, 1201 struct kvmppc_xive_src_block *sb, 1202 u32 irq) 1203 { 1204 struct kvmppc_xive_irq_state *state = &sb->irq_state[irq]; 1205 1206 if (!state->valid) 1207 return; 1208 1209 /* 1210 * Lock / exclude EOI (not technically necessary if the 1211 * guest isn't running concurrently. If this becomes a 1212 * performance issue we can probably remove the lock. 1213 */ 1214 xive_lock_for_unmask(sb, state); 1215 1216 /* Restore mask/prio if it wasn't masked */ 1217 if (state->saved_scan_prio != MASKED) 1218 xive_finish_unmask(xive, sb, state, state->saved_scan_prio); 1219 1220 /* Unlock */ 1221 arch_spin_unlock(&sb->lock); 1222 } 1223 1224 static void xive_pre_save_queue(struct kvmppc_xive *xive, struct xive_q *q) 1225 { 1226 u32 idx = q->idx; 1227 u32 toggle = q->toggle; 1228 u32 irq; 1229 1230 do { 1231 irq = __xive_read_eq(q->qpage, q->msk, &idx, &toggle); 1232 if (irq > XICS_IPI) 1233 xive_pre_save_set_queued(xive, irq); 1234 } while(irq); 1235 } 1236 1237 static void xive_pre_save_scan(struct kvmppc_xive *xive) 1238 { 1239 struct kvm_vcpu *vcpu = NULL; 1240 int i, j; 1241 1242 /* 1243 * See comment in xive_get_source() about how this 1244 * work. Collect a stable state for all interrupts 1245 */ 1246 for (i = 0; i <= xive->max_sbid; i++) { 1247 struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; 1248 if (!sb) 1249 continue; 1250 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) 1251 xive_pre_save_mask_irq(xive, sb, j); 1252 } 1253 1254 /* Then scan the queues and update the "in_queue" flag */ 1255 kvm_for_each_vcpu(i, vcpu, xive->kvm) { 1256 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 1257 if (!xc) 1258 continue; 1259 for (j = 0; j < KVMPPC_XIVE_Q_COUNT; j++) { 1260 if (xc->queues[j].qpage) 1261 xive_pre_save_queue(xive, &xc->queues[j]); 1262 } 1263 } 1264 1265 /* Finally restore interrupt states */ 1266 for (i = 0; i <= xive->max_sbid; i++) { 1267 struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; 1268 if (!sb) 1269 continue; 1270 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) 1271 xive_pre_save_unmask_irq(xive, sb, j); 1272 } 1273 } 1274 1275 static void xive_post_save_scan(struct kvmppc_xive *xive) 1276 { 1277 u32 i, j; 1278 1279 /* Clear all the in_queue flags */ 1280 for (i = 0; i <= xive->max_sbid; i++) { 1281 struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; 1282 if (!sb) 1283 continue; 1284 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) 1285 sb->irq_state[j].in_queue = false; 1286 } 1287 1288 /* Next get_source() will do a new scan */ 1289 xive->saved_src_count = 0; 1290 } 1291 1292 /* 1293 * This returns the source configuration and state to user space. 1294 */ 1295 static int xive_get_source(struct kvmppc_xive *xive, long irq, u64 addr) 1296 { 1297 struct kvmppc_xive_src_block *sb; 1298 struct kvmppc_xive_irq_state *state; 1299 u64 __user *ubufp = (u64 __user *) addr; 1300 u64 val, prio; 1301 u16 idx; 1302 1303 sb = kvmppc_xive_find_source(xive, irq, &idx); 1304 if (!sb) 1305 return -ENOENT; 1306 1307 state = &sb->irq_state[idx]; 1308 1309 if (!state->valid) 1310 return -ENOENT; 1311 1312 pr_devel("get_source(%ld)...\n", irq); 1313 1314 /* 1315 * So to properly save the state into something that looks like a 1316 * XICS migration stream we cannot treat interrupts individually. 1317 * 1318 * We need, instead, mask them all (& save their previous PQ state) 1319 * to get a stable state in the HW, then sync them to ensure that 1320 * any interrupt that had already fired hits its queue, and finally 1321 * scan all the queues to collect which interrupts are still present 1322 * in the queues, so we can set the "pending" flag on them and 1323 * they can be resent on restore. 1324 * 1325 * So we do it all when the "first" interrupt gets saved, all the 1326 * state is collected at that point, the rest of xive_get_source() 1327 * will merely collect and convert that state to the expected 1328 * userspace bit mask. 1329 */ 1330 if (xive->saved_src_count == 0) 1331 xive_pre_save_scan(xive); 1332 xive->saved_src_count++; 1333 1334 /* Convert saved state into something compatible with xics */ 1335 val = state->guest_server; 1336 prio = state->saved_scan_prio; 1337 1338 if (prio == MASKED) { 1339 val |= KVM_XICS_MASKED; 1340 prio = state->saved_priority; 1341 } 1342 val |= prio << KVM_XICS_PRIORITY_SHIFT; 1343 if (state->lsi) { 1344 val |= KVM_XICS_LEVEL_SENSITIVE; 1345 if (state->saved_p) 1346 val |= KVM_XICS_PENDING; 1347 } else { 1348 if (state->saved_p) 1349 val |= KVM_XICS_PRESENTED; 1350 1351 if (state->saved_q) 1352 val |= KVM_XICS_QUEUED; 1353 1354 /* 1355 * We mark it pending (which will attempt a re-delivery) 1356 * if we are in a queue *or* we were masked and had 1357 * Q set which is equivalent to the XICS "masked pending" 1358 * state 1359 */ 1360 if (state->in_queue || (prio == MASKED && state->saved_q)) 1361 val |= KVM_XICS_PENDING; 1362 } 1363 1364 /* 1365 * If that was the last interrupt saved, reset the 1366 * in_queue flags 1367 */ 1368 if (xive->saved_src_count == xive->src_count) 1369 xive_post_save_scan(xive); 1370 1371 /* Copy the result to userspace */ 1372 if (put_user(val, ubufp)) 1373 return -EFAULT; 1374 1375 return 0; 1376 } 1377 1378 static struct kvmppc_xive_src_block *xive_create_src_block(struct kvmppc_xive *xive, 1379 int irq) 1380 { 1381 struct kvm *kvm = xive->kvm; 1382 struct kvmppc_xive_src_block *sb; 1383 int i, bid; 1384 1385 bid = irq >> KVMPPC_XICS_ICS_SHIFT; 1386 1387 mutex_lock(&kvm->lock); 1388 1389 /* block already exists - somebody else got here first */ 1390 if (xive->src_blocks[bid]) 1391 goto out; 1392 1393 /* Create the ICS */ 1394 sb = kzalloc(sizeof(*sb), GFP_KERNEL); 1395 if (!sb) 1396 goto out; 1397 1398 sb->id = bid; 1399 1400 for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) { 1401 sb->irq_state[i].number = (bid << KVMPPC_XICS_ICS_SHIFT) | i; 1402 sb->irq_state[i].guest_priority = MASKED; 1403 sb->irq_state[i].saved_priority = MASKED; 1404 sb->irq_state[i].act_priority = MASKED; 1405 } 1406 smp_wmb(); 1407 xive->src_blocks[bid] = sb; 1408 1409 if (bid > xive->max_sbid) 1410 xive->max_sbid = bid; 1411 1412 out: 1413 mutex_unlock(&kvm->lock); 1414 return xive->src_blocks[bid]; 1415 } 1416 1417 static bool xive_check_delayed_irq(struct kvmppc_xive *xive, u32 irq) 1418 { 1419 struct kvm *kvm = xive->kvm; 1420 struct kvm_vcpu *vcpu = NULL; 1421 int i; 1422 1423 kvm_for_each_vcpu(i, vcpu, kvm) { 1424 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 1425 1426 if (!xc) 1427 continue; 1428 1429 if (xc->delayed_irq == irq) { 1430 xc->delayed_irq = 0; 1431 xive->delayed_irqs--; 1432 return true; 1433 } 1434 } 1435 return false; 1436 } 1437 1438 static int xive_set_source(struct kvmppc_xive *xive, long irq, u64 addr) 1439 { 1440 struct kvmppc_xive_src_block *sb; 1441 struct kvmppc_xive_irq_state *state; 1442 u64 __user *ubufp = (u64 __user *) addr; 1443 u16 idx; 1444 u64 val; 1445 u8 act_prio, guest_prio; 1446 u32 server; 1447 int rc = 0; 1448 1449 if (irq < KVMPPC_XICS_FIRST_IRQ || irq >= KVMPPC_XICS_NR_IRQS) 1450 return -ENOENT; 1451 1452 pr_devel("set_source(irq=0x%lx)\n", irq); 1453 1454 /* Find the source */ 1455 sb = kvmppc_xive_find_source(xive, irq, &idx); 1456 if (!sb) { 1457 pr_devel("No source, creating source block...\n"); 1458 sb = xive_create_src_block(xive, irq); 1459 if (!sb) { 1460 pr_devel("Failed to create block...\n"); 1461 return -ENOMEM; 1462 } 1463 } 1464 state = &sb->irq_state[idx]; 1465 1466 /* Read user passed data */ 1467 if (get_user(val, ubufp)) { 1468 pr_devel("fault getting user info !\n"); 1469 return -EFAULT; 1470 } 1471 1472 server = val & KVM_XICS_DESTINATION_MASK; 1473 guest_prio = val >> KVM_XICS_PRIORITY_SHIFT; 1474 1475 pr_devel(" val=0x016%llx (server=0x%x, guest_prio=%d)\n", 1476 val, server, guest_prio); 1477 /* 1478 * If the source doesn't already have an IPI, allocate 1479 * one and get the corresponding data 1480 */ 1481 if (!state->ipi_number) { 1482 state->ipi_number = xive_native_alloc_irq(); 1483 if (state->ipi_number == 0) { 1484 pr_devel("Failed to allocate IPI !\n"); 1485 return -ENOMEM; 1486 } 1487 xive_native_populate_irq_data(state->ipi_number, &state->ipi_data); 1488 pr_devel(" src_ipi=0x%x\n", state->ipi_number); 1489 } 1490 1491 /* 1492 * We use lock_and_mask() to set us in the right masked 1493 * state. We will override that state from the saved state 1494 * further down, but this will handle the cases of interrupts 1495 * that need FW masking. We set the initial guest_priority to 1496 * 0 before calling it to ensure it actually performs the masking. 1497 */ 1498 state->guest_priority = 0; 1499 xive_lock_and_mask(xive, sb, state); 1500 1501 /* 1502 * Now, we select a target if we have one. If we don't we 1503 * leave the interrupt untargetted. It means that an interrupt 1504 * can become "untargetted" accross migration if it was masked 1505 * by set_xive() but there is little we can do about it. 1506 */ 1507 1508 /* First convert prio and mark interrupt as untargetted */ 1509 act_prio = xive_prio_from_guest(guest_prio); 1510 state->act_priority = MASKED; 1511 state->guest_server = server; 1512 1513 /* 1514 * We need to drop the lock due to the mutex below. Hopefully 1515 * nothing is touching that interrupt yet since it hasn't been 1516 * advertized to a running guest yet 1517 */ 1518 arch_spin_unlock(&sb->lock); 1519 1520 /* If we have a priority target the interrupt */ 1521 if (act_prio != MASKED) { 1522 /* First, check provisioning of queues */ 1523 mutex_lock(&xive->kvm->lock); 1524 rc = xive_check_provisioning(xive->kvm, act_prio); 1525 mutex_unlock(&xive->kvm->lock); 1526 1527 /* Target interrupt */ 1528 if (rc == 0) 1529 rc = xive_target_interrupt(xive->kvm, state, 1530 server, act_prio); 1531 /* 1532 * If provisioning or targetting failed, leave it 1533 * alone and masked. It will remain disabled until 1534 * the guest re-targets it. 1535 */ 1536 } 1537 1538 /* 1539 * Find out if this was a delayed irq stashed in an ICP, 1540 * in which case, treat it as pending 1541 */ 1542 if (xive->delayed_irqs && xive_check_delayed_irq(xive, irq)) { 1543 val |= KVM_XICS_PENDING; 1544 pr_devel(" Found delayed ! forcing PENDING !\n"); 1545 } 1546 1547 /* Cleanup the SW state */ 1548 state->old_p = false; 1549 state->old_q = false; 1550 state->lsi = false; 1551 state->asserted = false; 1552 1553 /* Restore LSI state */ 1554 if (val & KVM_XICS_LEVEL_SENSITIVE) { 1555 state->lsi = true; 1556 if (val & KVM_XICS_PENDING) 1557 state->asserted = true; 1558 pr_devel(" LSI ! Asserted=%d\n", state->asserted); 1559 } 1560 1561 /* 1562 * Restore P and Q. If the interrupt was pending, we 1563 * force both P and Q, which will trigger a resend. 1564 * 1565 * That means that a guest that had both an interrupt 1566 * pending (queued) and Q set will restore with only 1567 * one instance of that interrupt instead of 2, but that 1568 * is perfectly fine as coalescing interrupts that haven't 1569 * been presented yet is always allowed. 1570 */ 1571 if (val & KVM_XICS_PRESENTED || val & KVM_XICS_PENDING) 1572 state->old_p = true; 1573 if (val & KVM_XICS_QUEUED || val & KVM_XICS_PENDING) 1574 state->old_q = true; 1575 1576 pr_devel(" P=%d, Q=%d\n", state->old_p, state->old_q); 1577 1578 /* 1579 * If the interrupt was unmasked, update guest priority and 1580 * perform the appropriate state transition and do a 1581 * re-trigger if necessary. 1582 */ 1583 if (val & KVM_XICS_MASKED) { 1584 pr_devel(" masked, saving prio\n"); 1585 state->guest_priority = MASKED; 1586 state->saved_priority = guest_prio; 1587 } else { 1588 pr_devel(" unmasked, restoring to prio %d\n", guest_prio); 1589 xive_finish_unmask(xive, sb, state, guest_prio); 1590 state->saved_priority = guest_prio; 1591 } 1592 1593 /* Increment the number of valid sources and mark this one valid */ 1594 if (!state->valid) 1595 xive->src_count++; 1596 state->valid = true; 1597 1598 return 0; 1599 } 1600 1601 int kvmppc_xive_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1602 bool line_status) 1603 { 1604 struct kvmppc_xive *xive = kvm->arch.xive; 1605 struct kvmppc_xive_src_block *sb; 1606 struct kvmppc_xive_irq_state *state; 1607 u16 idx; 1608 1609 if (!xive) 1610 return -ENODEV; 1611 1612 sb = kvmppc_xive_find_source(xive, irq, &idx); 1613 if (!sb) 1614 return -EINVAL; 1615 1616 /* Perform locklessly .... (we need to do some RCUisms here...) */ 1617 state = &sb->irq_state[idx]; 1618 if (!state->valid) 1619 return -EINVAL; 1620 1621 /* We don't allow a trigger on a passed-through interrupt */ 1622 if (state->pt_number) 1623 return -EINVAL; 1624 1625 if ((level == 1 && state->lsi) || level == KVM_INTERRUPT_SET_LEVEL) 1626 state->asserted = 1; 1627 else if (level == 0 || level == KVM_INTERRUPT_UNSET) { 1628 state->asserted = 0; 1629 return 0; 1630 } 1631 1632 /* Trigger the IPI */ 1633 xive_irq_trigger(&state->ipi_data); 1634 1635 return 0; 1636 } 1637 1638 static int xive_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 1639 { 1640 struct kvmppc_xive *xive = dev->private; 1641 1642 /* We honor the existing XICS ioctl */ 1643 switch (attr->group) { 1644 case KVM_DEV_XICS_GRP_SOURCES: 1645 return xive_set_source(xive, attr->attr, attr->addr); 1646 } 1647 return -ENXIO; 1648 } 1649 1650 static int xive_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 1651 { 1652 struct kvmppc_xive *xive = dev->private; 1653 1654 /* We honor the existing XICS ioctl */ 1655 switch (attr->group) { 1656 case KVM_DEV_XICS_GRP_SOURCES: 1657 return xive_get_source(xive, attr->attr, attr->addr); 1658 } 1659 return -ENXIO; 1660 } 1661 1662 static int xive_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 1663 { 1664 /* We honor the same limits as XICS, at least for now */ 1665 switch (attr->group) { 1666 case KVM_DEV_XICS_GRP_SOURCES: 1667 if (attr->attr >= KVMPPC_XICS_FIRST_IRQ && 1668 attr->attr < KVMPPC_XICS_NR_IRQS) 1669 return 0; 1670 break; 1671 } 1672 return -ENXIO; 1673 } 1674 1675 static void kvmppc_xive_cleanup_irq(u32 hw_num, struct xive_irq_data *xd) 1676 { 1677 xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01); 1678 xive_native_configure_irq(hw_num, 0, MASKED, 0); 1679 xive_cleanup_irq_data(xd); 1680 } 1681 1682 static void kvmppc_xive_free_sources(struct kvmppc_xive_src_block *sb) 1683 { 1684 int i; 1685 1686 for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) { 1687 struct kvmppc_xive_irq_state *state = &sb->irq_state[i]; 1688 1689 if (!state->valid) 1690 continue; 1691 1692 kvmppc_xive_cleanup_irq(state->ipi_number, &state->ipi_data); 1693 xive_native_free_irq(state->ipi_number); 1694 1695 /* Pass-through, cleanup too */ 1696 if (state->pt_number) 1697 kvmppc_xive_cleanup_irq(state->pt_number, state->pt_data); 1698 1699 state->valid = false; 1700 } 1701 } 1702 1703 static void kvmppc_xive_free(struct kvm_device *dev) 1704 { 1705 struct kvmppc_xive *xive = dev->private; 1706 struct kvm *kvm = xive->kvm; 1707 int i; 1708 1709 debugfs_remove(xive->dentry); 1710 1711 if (kvm) 1712 kvm->arch.xive = NULL; 1713 1714 /* Mask and free interrupts */ 1715 for (i = 0; i <= xive->max_sbid; i++) { 1716 if (xive->src_blocks[i]) 1717 kvmppc_xive_free_sources(xive->src_blocks[i]); 1718 kfree(xive->src_blocks[i]); 1719 xive->src_blocks[i] = NULL; 1720 } 1721 1722 if (xive->vp_base != XIVE_INVALID_VP) 1723 xive_native_free_vp_block(xive->vp_base); 1724 1725 1726 kfree(xive); 1727 kfree(dev); 1728 } 1729 1730 static int kvmppc_xive_create(struct kvm_device *dev, u32 type) 1731 { 1732 struct kvmppc_xive *xive; 1733 struct kvm *kvm = dev->kvm; 1734 int ret = 0; 1735 1736 pr_devel("Creating xive for partition\n"); 1737 1738 xive = kzalloc(sizeof(*xive), GFP_KERNEL); 1739 if (!xive) 1740 return -ENOMEM; 1741 1742 dev->private = xive; 1743 xive->dev = dev; 1744 xive->kvm = kvm; 1745 1746 /* Already there ? */ 1747 if (kvm->arch.xive) 1748 ret = -EEXIST; 1749 else 1750 kvm->arch.xive = xive; 1751 1752 /* We use the default queue size set by the host */ 1753 xive->q_order = xive_native_default_eq_shift(); 1754 if (xive->q_order < PAGE_SHIFT) 1755 xive->q_page_order = 0; 1756 else 1757 xive->q_page_order = xive->q_order - PAGE_SHIFT; 1758 1759 /* Allocate a bunch of VPs */ 1760 xive->vp_base = xive_native_alloc_vp_block(KVM_MAX_VCPUS); 1761 pr_devel("VP_Base=%x\n", xive->vp_base); 1762 1763 if (xive->vp_base == XIVE_INVALID_VP) 1764 ret = -ENOMEM; 1765 1766 if (ret) { 1767 kfree(xive); 1768 return ret; 1769 } 1770 1771 return 0; 1772 } 1773 1774 1775 static int xive_debug_show(struct seq_file *m, void *private) 1776 { 1777 struct kvmppc_xive *xive = m->private; 1778 struct kvm *kvm = xive->kvm; 1779 struct kvm_vcpu *vcpu; 1780 u64 t_rm_h_xirr = 0; 1781 u64 t_rm_h_ipoll = 0; 1782 u64 t_rm_h_cppr = 0; 1783 u64 t_rm_h_eoi = 0; 1784 u64 t_rm_h_ipi = 0; 1785 u64 t_vm_h_xirr = 0; 1786 u64 t_vm_h_ipoll = 0; 1787 u64 t_vm_h_cppr = 0; 1788 u64 t_vm_h_eoi = 0; 1789 u64 t_vm_h_ipi = 0; 1790 unsigned int i; 1791 1792 if (!kvm) 1793 return 0; 1794 1795 seq_printf(m, "=========\nVCPU state\n=========\n"); 1796 1797 kvm_for_each_vcpu(i, vcpu, kvm) { 1798 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 1799 1800 if (!xc) 1801 continue; 1802 1803 seq_printf(m, "cpu server %#x CPPR:%#x HWCPPR:%#x" 1804 " MFRR:%#x PEND:%#x h_xirr: R=%lld V=%lld\n", 1805 xc->server_num, xc->cppr, xc->hw_cppr, 1806 xc->mfrr, xc->pending, 1807 xc->stat_rm_h_xirr, xc->stat_vm_h_xirr); 1808 1809 t_rm_h_xirr += xc->stat_rm_h_xirr; 1810 t_rm_h_ipoll += xc->stat_rm_h_ipoll; 1811 t_rm_h_cppr += xc->stat_rm_h_cppr; 1812 t_rm_h_eoi += xc->stat_rm_h_eoi; 1813 t_rm_h_ipi += xc->stat_rm_h_ipi; 1814 t_vm_h_xirr += xc->stat_vm_h_xirr; 1815 t_vm_h_ipoll += xc->stat_vm_h_ipoll; 1816 t_vm_h_cppr += xc->stat_vm_h_cppr; 1817 t_vm_h_eoi += xc->stat_vm_h_eoi; 1818 t_vm_h_ipi += xc->stat_vm_h_ipi; 1819 } 1820 1821 seq_printf(m, "Hcalls totals\n"); 1822 seq_printf(m, " H_XIRR R=%10lld V=%10lld\n", t_rm_h_xirr, t_vm_h_xirr); 1823 seq_printf(m, " H_IPOLL R=%10lld V=%10lld\n", t_rm_h_ipoll, t_vm_h_ipoll); 1824 seq_printf(m, " H_CPPR R=%10lld V=%10lld\n", t_rm_h_cppr, t_vm_h_cppr); 1825 seq_printf(m, " H_EOI R=%10lld V=%10lld\n", t_rm_h_eoi, t_vm_h_eoi); 1826 seq_printf(m, " H_IPI R=%10lld V=%10lld\n", t_rm_h_ipi, t_vm_h_ipi); 1827 1828 return 0; 1829 } 1830 1831 static int xive_debug_open(struct inode *inode, struct file *file) 1832 { 1833 return single_open(file, xive_debug_show, inode->i_private); 1834 } 1835 1836 static const struct file_operations xive_debug_fops = { 1837 .open = xive_debug_open, 1838 .read = seq_read, 1839 .llseek = seq_lseek, 1840 .release = single_release, 1841 }; 1842 1843 static void xive_debugfs_init(struct kvmppc_xive *xive) 1844 { 1845 char *name; 1846 1847 name = kasprintf(GFP_KERNEL, "kvm-xive-%p", xive); 1848 if (!name) { 1849 pr_err("%s: no memory for name\n", __func__); 1850 return; 1851 } 1852 1853 xive->dentry = debugfs_create_file(name, S_IRUGO, powerpc_debugfs_root, 1854 xive, &xive_debug_fops); 1855 1856 pr_debug("%s: created %s\n", __func__, name); 1857 kfree(name); 1858 } 1859 1860 static void kvmppc_xive_init(struct kvm_device *dev) 1861 { 1862 struct kvmppc_xive *xive = (struct kvmppc_xive *)dev->private; 1863 1864 /* Register some debug interfaces */ 1865 xive_debugfs_init(xive); 1866 } 1867 1868 struct kvm_device_ops kvm_xive_ops = { 1869 .name = "kvm-xive", 1870 .create = kvmppc_xive_create, 1871 .init = kvmppc_xive_init, 1872 .destroy = kvmppc_xive_free, 1873 .set_attr = xive_set_attr, 1874 .get_attr = xive_get_attr, 1875 .has_attr = xive_has_attr, 1876 }; 1877 1878 void kvmppc_xive_init_module(void) 1879 { 1880 __xive_vm_h_xirr = xive_vm_h_xirr; 1881 __xive_vm_h_ipoll = xive_vm_h_ipoll; 1882 __xive_vm_h_ipi = xive_vm_h_ipi; 1883 __xive_vm_h_cppr = xive_vm_h_cppr; 1884 __xive_vm_h_eoi = xive_vm_h_eoi; 1885 } 1886 1887 void kvmppc_xive_exit_module(void) 1888 { 1889 __xive_vm_h_xirr = NULL; 1890 __xive_vm_h_ipoll = NULL; 1891 __xive_vm_h_ipi = NULL; 1892 __xive_vm_h_cppr = NULL; 1893 __xive_vm_h_eoi = NULL; 1894 } 1895