xref: /openbmc/linux/arch/powerpc/kvm/book3s_xive.c (revision a34a3ed7)
1 /*
2  * Copyright 2017 Benjamin Herrenschmidt, IBM Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License, version 2, as
6  * published by the Free Software Foundation.
7  */
8 
9 #define pr_fmt(fmt) "xive-kvm: " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/kvm_host.h>
13 #include <linux/err.h>
14 #include <linux/gfp.h>
15 #include <linux/spinlock.h>
16 #include <linux/delay.h>
17 #include <linux/percpu.h>
18 #include <linux/cpumask.h>
19 #include <linux/uaccess.h>
20 #include <asm/kvm_book3s.h>
21 #include <asm/kvm_ppc.h>
22 #include <asm/hvcall.h>
23 #include <asm/xics.h>
24 #include <asm/xive.h>
25 #include <asm/xive-regs.h>
26 #include <asm/debug.h>
27 #include <asm/debugfs.h>
28 #include <asm/time.h>
29 #include <asm/opal.h>
30 
31 #include <linux/debugfs.h>
32 #include <linux/seq_file.h>
33 
34 #include "book3s_xive.h"
35 
36 
37 /*
38  * Virtual mode variants of the hcalls for use on radix/radix
39  * with AIL. They require the VCPU's VP to be "pushed"
40  *
41  * We still instanciate them here because we use some of the
42  * generated utility functions as well in this file.
43  */
44 #define XIVE_RUNTIME_CHECKS
45 #define X_PFX xive_vm_
46 #define X_STATIC static
47 #define X_STAT_PFX stat_vm_
48 #define __x_tima		xive_tima
49 #define __x_eoi_page(xd)	((void __iomem *)((xd)->eoi_mmio))
50 #define __x_trig_page(xd)	((void __iomem *)((xd)->trig_mmio))
51 #define __x_writeb	__raw_writeb
52 #define __x_readw	__raw_readw
53 #define __x_readq	__raw_readq
54 #define __x_writeq	__raw_writeq
55 
56 #include "book3s_xive_template.c"
57 
58 /*
59  * We leave a gap of a couple of interrupts in the queue to
60  * account for the IPI and additional safety guard.
61  */
62 #define XIVE_Q_GAP	2
63 
64 /*
65  * This is a simple trigger for a generic XIVE IRQ. This must
66  * only be called for interrupts that support a trigger page
67  */
68 static bool xive_irq_trigger(struct xive_irq_data *xd)
69 {
70 	/* This should be only for MSIs */
71 	if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
72 		return false;
73 
74 	/* Those interrupts should always have a trigger page */
75 	if (WARN_ON(!xd->trig_mmio))
76 		return false;
77 
78 	out_be64(xd->trig_mmio, 0);
79 
80 	return true;
81 }
82 
83 static irqreturn_t xive_esc_irq(int irq, void *data)
84 {
85 	struct kvm_vcpu *vcpu = data;
86 
87 	vcpu->arch.irq_pending = 1;
88 	smp_mb();
89 	if (vcpu->arch.ceded)
90 		kvmppc_fast_vcpu_kick(vcpu);
91 
92 	/* Since we have the no-EOI flag, the interrupt is effectively
93 	 * disabled now. Clearing xive_esc_on means we won't bother
94 	 * doing so on the next entry.
95 	 *
96 	 * This also allows the entry code to know that if a PQ combination
97 	 * of 10 is observed while xive_esc_on is true, it means the queue
98 	 * contains an unprocessed escalation interrupt. We don't make use of
99 	 * that knowledge today but might (see comment in book3s_hv_rmhandler.S)
100 	 */
101 	vcpu->arch.xive_esc_on = false;
102 
103 	return IRQ_HANDLED;
104 }
105 
106 static int xive_attach_escalation(struct kvm_vcpu *vcpu, u8 prio)
107 {
108 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
109 	struct xive_q *q = &xc->queues[prio];
110 	char *name = NULL;
111 	int rc;
112 
113 	/* Already there ? */
114 	if (xc->esc_virq[prio])
115 		return 0;
116 
117 	/* Hook up the escalation interrupt */
118 	xc->esc_virq[prio] = irq_create_mapping(NULL, q->esc_irq);
119 	if (!xc->esc_virq[prio]) {
120 		pr_err("Failed to map escalation interrupt for queue %d of VCPU %d\n",
121 		       prio, xc->server_num);
122 		return -EIO;
123 	}
124 
125 	if (xc->xive->single_escalation)
126 		name = kasprintf(GFP_KERNEL, "kvm-%d-%d",
127 				 vcpu->kvm->arch.lpid, xc->server_num);
128 	else
129 		name = kasprintf(GFP_KERNEL, "kvm-%d-%d-%d",
130 				 vcpu->kvm->arch.lpid, xc->server_num, prio);
131 	if (!name) {
132 		pr_err("Failed to allocate escalation irq name for queue %d of VCPU %d\n",
133 		       prio, xc->server_num);
134 		rc = -ENOMEM;
135 		goto error;
136 	}
137 
138 	pr_devel("Escalation %s irq %d (prio %d)\n", name, xc->esc_virq[prio], prio);
139 
140 	rc = request_irq(xc->esc_virq[prio], xive_esc_irq,
141 			 IRQF_NO_THREAD, name, vcpu);
142 	if (rc) {
143 		pr_err("Failed to request escalation interrupt for queue %d of VCPU %d\n",
144 		       prio, xc->server_num);
145 		goto error;
146 	}
147 	xc->esc_virq_names[prio] = name;
148 
149 	/* In single escalation mode, we grab the ESB MMIO of the
150 	 * interrupt and mask it. Also populate the VCPU v/raddr
151 	 * of the ESB page for use by asm entry/exit code. Finally
152 	 * set the XIVE_IRQ_NO_EOI flag which will prevent the
153 	 * core code from performing an EOI on the escalation
154 	 * interrupt, thus leaving it effectively masked after
155 	 * it fires once.
156 	 */
157 	if (xc->xive->single_escalation) {
158 		struct irq_data *d = irq_get_irq_data(xc->esc_virq[prio]);
159 		struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
160 
161 		xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01);
162 		vcpu->arch.xive_esc_raddr = xd->eoi_page;
163 		vcpu->arch.xive_esc_vaddr = (__force u64)xd->eoi_mmio;
164 		xd->flags |= XIVE_IRQ_NO_EOI;
165 	}
166 
167 	return 0;
168 error:
169 	irq_dispose_mapping(xc->esc_virq[prio]);
170 	xc->esc_virq[prio] = 0;
171 	kfree(name);
172 	return rc;
173 }
174 
175 static int xive_provision_queue(struct kvm_vcpu *vcpu, u8 prio)
176 {
177 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
178 	struct kvmppc_xive *xive = xc->xive;
179 	struct xive_q *q =  &xc->queues[prio];
180 	void *qpage;
181 	int rc;
182 
183 	if (WARN_ON(q->qpage))
184 		return 0;
185 
186 	/* Allocate the queue and retrieve infos on current node for now */
187 	qpage = (__be32 *)__get_free_pages(GFP_KERNEL, xive->q_page_order);
188 	if (!qpage) {
189 		pr_err("Failed to allocate queue %d for VCPU %d\n",
190 		       prio, xc->server_num);
191 		return -ENOMEM;;
192 	}
193 	memset(qpage, 0, 1 << xive->q_order);
194 
195 	/*
196 	 * Reconfigure the queue. This will set q->qpage only once the
197 	 * queue is fully configured. This is a requirement for prio 0
198 	 * as we will stop doing EOIs for every IPI as soon as we observe
199 	 * qpage being non-NULL, and instead will only EOI when we receive
200 	 * corresponding queue 0 entries
201 	 */
202 	rc = xive_native_configure_queue(xc->vp_id, q, prio, qpage,
203 					 xive->q_order, true);
204 	if (rc)
205 		pr_err("Failed to configure queue %d for VCPU %d\n",
206 		       prio, xc->server_num);
207 	return rc;
208 }
209 
210 /* Called with kvm_lock held */
211 static int xive_check_provisioning(struct kvm *kvm, u8 prio)
212 {
213 	struct kvmppc_xive *xive = kvm->arch.xive;
214 	struct kvm_vcpu *vcpu;
215 	int i, rc;
216 
217 	lockdep_assert_held(&kvm->lock);
218 
219 	/* Already provisioned ? */
220 	if (xive->qmap & (1 << prio))
221 		return 0;
222 
223 	pr_devel("Provisioning prio... %d\n", prio);
224 
225 	/* Provision each VCPU and enable escalations if needed */
226 	kvm_for_each_vcpu(i, vcpu, kvm) {
227 		if (!vcpu->arch.xive_vcpu)
228 			continue;
229 		rc = xive_provision_queue(vcpu, prio);
230 		if (rc == 0 && !xive->single_escalation)
231 			xive_attach_escalation(vcpu, prio);
232 		if (rc)
233 			return rc;
234 	}
235 
236 	/* Order previous stores and mark it as provisioned */
237 	mb();
238 	xive->qmap |= (1 << prio);
239 	return 0;
240 }
241 
242 static void xive_inc_q_pending(struct kvm *kvm, u32 server, u8 prio)
243 {
244 	struct kvm_vcpu *vcpu;
245 	struct kvmppc_xive_vcpu *xc;
246 	struct xive_q *q;
247 
248 	/* Locate target server */
249 	vcpu = kvmppc_xive_find_server(kvm, server);
250 	if (!vcpu) {
251 		pr_warn("%s: Can't find server %d\n", __func__, server);
252 		return;
253 	}
254 	xc = vcpu->arch.xive_vcpu;
255 	if (WARN_ON(!xc))
256 		return;
257 
258 	q = &xc->queues[prio];
259 	atomic_inc(&q->pending_count);
260 }
261 
262 static int xive_try_pick_queue(struct kvm_vcpu *vcpu, u8 prio)
263 {
264 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
265 	struct xive_q *q;
266 	u32 max;
267 
268 	if (WARN_ON(!xc))
269 		return -ENXIO;
270 	if (!xc->valid)
271 		return -ENXIO;
272 
273 	q = &xc->queues[prio];
274 	if (WARN_ON(!q->qpage))
275 		return -ENXIO;
276 
277 	/* Calculate max number of interrupts in that queue. */
278 	max = (q->msk + 1) - XIVE_Q_GAP;
279 	return atomic_add_unless(&q->count, 1, max) ? 0 : -EBUSY;
280 }
281 
282 static int xive_select_target(struct kvm *kvm, u32 *server, u8 prio)
283 {
284 	struct kvm_vcpu *vcpu;
285 	int i, rc;
286 
287 	/* Locate target server */
288 	vcpu = kvmppc_xive_find_server(kvm, *server);
289 	if (!vcpu) {
290 		pr_devel("Can't find server %d\n", *server);
291 		return -EINVAL;
292 	}
293 
294 	pr_devel("Finding irq target on 0x%x/%d...\n", *server, prio);
295 
296 	/* Try pick it */
297 	rc = xive_try_pick_queue(vcpu, prio);
298 	if (rc == 0)
299 		return rc;
300 
301 	pr_devel(" .. failed, looking up candidate...\n");
302 
303 	/* Failed, pick another VCPU */
304 	kvm_for_each_vcpu(i, vcpu, kvm) {
305 		if (!vcpu->arch.xive_vcpu)
306 			continue;
307 		rc = xive_try_pick_queue(vcpu, prio);
308 		if (rc == 0) {
309 			*server = vcpu->arch.xive_vcpu->server_num;
310 			pr_devel("  found on 0x%x/%d\n", *server, prio);
311 			return rc;
312 		}
313 	}
314 	pr_devel("  no available target !\n");
315 
316 	/* No available target ! */
317 	return -EBUSY;
318 }
319 
320 static u8 xive_lock_and_mask(struct kvmppc_xive *xive,
321 			     struct kvmppc_xive_src_block *sb,
322 			     struct kvmppc_xive_irq_state *state)
323 {
324 	struct xive_irq_data *xd;
325 	u32 hw_num;
326 	u8 old_prio;
327 	u64 val;
328 
329 	/*
330 	 * Take the lock, set masked, try again if racing
331 	 * with H_EOI
332 	 */
333 	for (;;) {
334 		arch_spin_lock(&sb->lock);
335 		old_prio = state->guest_priority;
336 		state->guest_priority = MASKED;
337 		mb();
338 		if (!state->in_eoi)
339 			break;
340 		state->guest_priority = old_prio;
341 		arch_spin_unlock(&sb->lock);
342 	}
343 
344 	/* No change ? Bail */
345 	if (old_prio == MASKED)
346 		return old_prio;
347 
348 	/* Get the right irq */
349 	kvmppc_xive_select_irq(state, &hw_num, &xd);
350 
351 	/*
352 	 * If the interrupt is marked as needing masking via
353 	 * firmware, we do it here. Firmware masking however
354 	 * is "lossy", it won't return the old p and q bits
355 	 * and won't set the interrupt to a state where it will
356 	 * record queued ones. If this is an issue we should do
357 	 * lazy masking instead.
358 	 *
359 	 * For now, we work around this in unmask by forcing
360 	 * an interrupt whenever we unmask a non-LSI via FW
361 	 * (if ever).
362 	 */
363 	if (xd->flags & OPAL_XIVE_IRQ_MASK_VIA_FW) {
364 		xive_native_configure_irq(hw_num,
365 					  xive->vp_base + state->act_server,
366 					  MASKED, state->number);
367 		/* set old_p so we can track if an H_EOI was done */
368 		state->old_p = true;
369 		state->old_q = false;
370 	} else {
371 		/* Set PQ to 10, return old P and old Q and remember them */
372 		val = xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_10);
373 		state->old_p = !!(val & 2);
374 		state->old_q = !!(val & 1);
375 
376 		/*
377 		 * Synchronize hardware to sensure the queues are updated
378 		 * when masking
379 		 */
380 		xive_native_sync_source(hw_num);
381 	}
382 
383 	return old_prio;
384 }
385 
386 static void xive_lock_for_unmask(struct kvmppc_xive_src_block *sb,
387 				 struct kvmppc_xive_irq_state *state)
388 {
389 	/*
390 	 * Take the lock try again if racing with H_EOI
391 	 */
392 	for (;;) {
393 		arch_spin_lock(&sb->lock);
394 		if (!state->in_eoi)
395 			break;
396 		arch_spin_unlock(&sb->lock);
397 	}
398 }
399 
400 static void xive_finish_unmask(struct kvmppc_xive *xive,
401 			       struct kvmppc_xive_src_block *sb,
402 			       struct kvmppc_xive_irq_state *state,
403 			       u8 prio)
404 {
405 	struct xive_irq_data *xd;
406 	u32 hw_num;
407 
408 	/* If we aren't changing a thing, move on */
409 	if (state->guest_priority != MASKED)
410 		goto bail;
411 
412 	/* Get the right irq */
413 	kvmppc_xive_select_irq(state, &hw_num, &xd);
414 
415 	/*
416 	 * See command in xive_lock_and_mask() concerning masking
417 	 * via firmware.
418 	 */
419 	if (xd->flags & OPAL_XIVE_IRQ_MASK_VIA_FW) {
420 		xive_native_configure_irq(hw_num,
421 					  xive->vp_base + state->act_server,
422 					  state->act_priority, state->number);
423 		/* If an EOI is needed, do it here */
424 		if (!state->old_p)
425 			xive_vm_source_eoi(hw_num, xd);
426 		/* If this is not an LSI, force a trigger */
427 		if (!(xd->flags & OPAL_XIVE_IRQ_LSI))
428 			xive_irq_trigger(xd);
429 		goto bail;
430 	}
431 
432 	/* Old Q set, set PQ to 11 */
433 	if (state->old_q)
434 		xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_11);
435 
436 	/*
437 	 * If not old P, then perform an "effective" EOI,
438 	 * on the source. This will handle the cases where
439 	 * FW EOI is needed.
440 	 */
441 	if (!state->old_p)
442 		xive_vm_source_eoi(hw_num, xd);
443 
444 	/* Synchronize ordering and mark unmasked */
445 	mb();
446 bail:
447 	state->guest_priority = prio;
448 }
449 
450 /*
451  * Target an interrupt to a given server/prio, this will fallback
452  * to another server if necessary and perform the HW targetting
453  * updates as needed
454  *
455  * NOTE: Must be called with the state lock held
456  */
457 static int xive_target_interrupt(struct kvm *kvm,
458 				 struct kvmppc_xive_irq_state *state,
459 				 u32 server, u8 prio)
460 {
461 	struct kvmppc_xive *xive = kvm->arch.xive;
462 	u32 hw_num;
463 	int rc;
464 
465 	/*
466 	 * This will return a tentative server and actual
467 	 * priority. The count for that new target will have
468 	 * already been incremented.
469 	 */
470 	rc = xive_select_target(kvm, &server, prio);
471 
472 	/*
473 	 * We failed to find a target ? Not much we can do
474 	 * at least until we support the GIQ.
475 	 */
476 	if (rc)
477 		return rc;
478 
479 	/*
480 	 * Increment the old queue pending count if there
481 	 * was one so that the old queue count gets adjusted later
482 	 * when observed to be empty.
483 	 */
484 	if (state->act_priority != MASKED)
485 		xive_inc_q_pending(kvm,
486 				   state->act_server,
487 				   state->act_priority);
488 	/*
489 	 * Update state and HW
490 	 */
491 	state->act_priority = prio;
492 	state->act_server = server;
493 
494 	/* Get the right irq */
495 	kvmppc_xive_select_irq(state, &hw_num, NULL);
496 
497 	return xive_native_configure_irq(hw_num,
498 					 xive->vp_base + server,
499 					 prio, state->number);
500 }
501 
502 /*
503  * Targetting rules: In order to avoid losing track of
504  * pending interrupts accross mask and unmask, which would
505  * allow queue overflows, we implement the following rules:
506  *
507  *  - Unless it was never enabled (or we run out of capacity)
508  *    an interrupt is always targetted at a valid server/queue
509  *    pair even when "masked" by the guest. This pair tends to
510  *    be the last one used but it can be changed under some
511  *    circumstances. That allows us to separate targetting
512  *    from masking, we only handle accounting during (re)targetting,
513  *    this also allows us to let an interrupt drain into its target
514  *    queue after masking, avoiding complex schemes to remove
515  *    interrupts out of remote processor queues.
516  *
517  *  - When masking, we set PQ to 10 and save the previous value
518  *    of P and Q.
519  *
520  *  - When unmasking, if saved Q was set, we set PQ to 11
521  *    otherwise we leave PQ to the HW state which will be either
522  *    10 if nothing happened or 11 if the interrupt fired while
523  *    masked. Effectively we are OR'ing the previous Q into the
524  *    HW Q.
525  *
526  *    Then if saved P is clear, we do an effective EOI (Q->P->Trigger)
527  *    which will unmask the interrupt and shoot a new one if Q was
528  *    set.
529  *
530  *    Otherwise (saved P is set) we leave PQ unchanged (so 10 or 11,
531  *    effectively meaning an H_EOI from the guest is still expected
532  *    for that interrupt).
533  *
534  *  - If H_EOI occurs while masked, we clear the saved P.
535  *
536  *  - When changing target, we account on the new target and
537  *    increment a separate "pending" counter on the old one.
538  *    This pending counter will be used to decrement the old
539  *    target's count when its queue has been observed empty.
540  */
541 
542 int kvmppc_xive_set_xive(struct kvm *kvm, u32 irq, u32 server,
543 			 u32 priority)
544 {
545 	struct kvmppc_xive *xive = kvm->arch.xive;
546 	struct kvmppc_xive_src_block *sb;
547 	struct kvmppc_xive_irq_state *state;
548 	u8 new_act_prio;
549 	int rc = 0;
550 	u16 idx;
551 
552 	if (!xive)
553 		return -ENODEV;
554 
555 	pr_devel("set_xive ! irq 0x%x server 0x%x prio %d\n",
556 		 irq, server, priority);
557 
558 	/* First, check provisioning of queues */
559 	if (priority != MASKED)
560 		rc = xive_check_provisioning(xive->kvm,
561 			      xive_prio_from_guest(priority));
562 	if (rc) {
563 		pr_devel("  provisioning failure %d !\n", rc);
564 		return rc;
565 	}
566 
567 	sb = kvmppc_xive_find_source(xive, irq, &idx);
568 	if (!sb)
569 		return -EINVAL;
570 	state = &sb->irq_state[idx];
571 
572 	/*
573 	 * We first handle masking/unmasking since the locking
574 	 * might need to be retried due to EOIs, we'll handle
575 	 * targetting changes later. These functions will return
576 	 * with the SB lock held.
577 	 *
578 	 * xive_lock_and_mask() will also set state->guest_priority
579 	 * but won't otherwise change other fields of the state.
580 	 *
581 	 * xive_lock_for_unmask will not actually unmask, this will
582 	 * be done later by xive_finish_unmask() once the targetting
583 	 * has been done, so we don't try to unmask an interrupt
584 	 * that hasn't yet been targetted.
585 	 */
586 	if (priority == MASKED)
587 		xive_lock_and_mask(xive, sb, state);
588 	else
589 		xive_lock_for_unmask(sb, state);
590 
591 
592 	/*
593 	 * Then we handle targetting.
594 	 *
595 	 * First calculate a new "actual priority"
596 	 */
597 	new_act_prio = state->act_priority;
598 	if (priority != MASKED)
599 		new_act_prio = xive_prio_from_guest(priority);
600 
601 	pr_devel(" new_act_prio=%x act_server=%x act_prio=%x\n",
602 		 new_act_prio, state->act_server, state->act_priority);
603 
604 	/*
605 	 * Then check if we actually need to change anything,
606 	 *
607 	 * The condition for re-targetting the interrupt is that
608 	 * we have a valid new priority (new_act_prio is not 0xff)
609 	 * and either the server or the priority changed.
610 	 *
611 	 * Note: If act_priority was ff and the new priority is
612 	 *       also ff, we don't do anything and leave the interrupt
613 	 *       untargetted. An attempt of doing an int_on on an
614 	 *       untargetted interrupt will fail. If that is a problem
615 	 *       we could initialize interrupts with valid default
616 	 */
617 
618 	if (new_act_prio != MASKED &&
619 	    (state->act_server != server ||
620 	     state->act_priority != new_act_prio))
621 		rc = xive_target_interrupt(kvm, state, server, new_act_prio);
622 
623 	/*
624 	 * Perform the final unmasking of the interrupt source
625 	 * if necessary
626 	 */
627 	if (priority != MASKED)
628 		xive_finish_unmask(xive, sb, state, priority);
629 
630 	/*
631 	 * Finally Update saved_priority to match. Only int_on/off
632 	 * set this field to a different value.
633 	 */
634 	state->saved_priority = priority;
635 
636 	arch_spin_unlock(&sb->lock);
637 	return rc;
638 }
639 
640 int kvmppc_xive_get_xive(struct kvm *kvm, u32 irq, u32 *server,
641 			 u32 *priority)
642 {
643 	struct kvmppc_xive *xive = kvm->arch.xive;
644 	struct kvmppc_xive_src_block *sb;
645 	struct kvmppc_xive_irq_state *state;
646 	u16 idx;
647 
648 	if (!xive)
649 		return -ENODEV;
650 
651 	sb = kvmppc_xive_find_source(xive, irq, &idx);
652 	if (!sb)
653 		return -EINVAL;
654 	state = &sb->irq_state[idx];
655 	arch_spin_lock(&sb->lock);
656 	*server = state->act_server;
657 	*priority = state->guest_priority;
658 	arch_spin_unlock(&sb->lock);
659 
660 	return 0;
661 }
662 
663 int kvmppc_xive_int_on(struct kvm *kvm, u32 irq)
664 {
665 	struct kvmppc_xive *xive = kvm->arch.xive;
666 	struct kvmppc_xive_src_block *sb;
667 	struct kvmppc_xive_irq_state *state;
668 	u16 idx;
669 
670 	if (!xive)
671 		return -ENODEV;
672 
673 	sb = kvmppc_xive_find_source(xive, irq, &idx);
674 	if (!sb)
675 		return -EINVAL;
676 	state = &sb->irq_state[idx];
677 
678 	pr_devel("int_on(irq=0x%x)\n", irq);
679 
680 	/*
681 	 * Check if interrupt was not targetted
682 	 */
683 	if (state->act_priority == MASKED) {
684 		pr_devel("int_on on untargetted interrupt\n");
685 		return -EINVAL;
686 	}
687 
688 	/* If saved_priority is 0xff, do nothing */
689 	if (state->saved_priority == MASKED)
690 		return 0;
691 
692 	/*
693 	 * Lock and unmask it.
694 	 */
695 	xive_lock_for_unmask(sb, state);
696 	xive_finish_unmask(xive, sb, state, state->saved_priority);
697 	arch_spin_unlock(&sb->lock);
698 
699 	return 0;
700 }
701 
702 int kvmppc_xive_int_off(struct kvm *kvm, u32 irq)
703 {
704 	struct kvmppc_xive *xive = kvm->arch.xive;
705 	struct kvmppc_xive_src_block *sb;
706 	struct kvmppc_xive_irq_state *state;
707 	u16 idx;
708 
709 	if (!xive)
710 		return -ENODEV;
711 
712 	sb = kvmppc_xive_find_source(xive, irq, &idx);
713 	if (!sb)
714 		return -EINVAL;
715 	state = &sb->irq_state[idx];
716 
717 	pr_devel("int_off(irq=0x%x)\n", irq);
718 
719 	/*
720 	 * Lock and mask
721 	 */
722 	state->saved_priority = xive_lock_and_mask(xive, sb, state);
723 	arch_spin_unlock(&sb->lock);
724 
725 	return 0;
726 }
727 
728 static bool xive_restore_pending_irq(struct kvmppc_xive *xive, u32 irq)
729 {
730 	struct kvmppc_xive_src_block *sb;
731 	struct kvmppc_xive_irq_state *state;
732 	u16 idx;
733 
734 	sb = kvmppc_xive_find_source(xive, irq, &idx);
735 	if (!sb)
736 		return false;
737 	state = &sb->irq_state[idx];
738 	if (!state->valid)
739 		return false;
740 
741 	/*
742 	 * Trigger the IPI. This assumes we never restore a pass-through
743 	 * interrupt which should be safe enough
744 	 */
745 	xive_irq_trigger(&state->ipi_data);
746 
747 	return true;
748 }
749 
750 u64 kvmppc_xive_get_icp(struct kvm_vcpu *vcpu)
751 {
752 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
753 
754 	if (!xc)
755 		return 0;
756 
757 	/* Return the per-cpu state for state saving/migration */
758 	return (u64)xc->cppr << KVM_REG_PPC_ICP_CPPR_SHIFT |
759 	       (u64)xc->mfrr << KVM_REG_PPC_ICP_MFRR_SHIFT |
760 	       (u64)0xff << KVM_REG_PPC_ICP_PPRI_SHIFT;
761 }
762 
763 int kvmppc_xive_set_icp(struct kvm_vcpu *vcpu, u64 icpval)
764 {
765 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
766 	struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
767 	u8 cppr, mfrr;
768 	u32 xisr;
769 
770 	if (!xc || !xive)
771 		return -ENOENT;
772 
773 	/* Grab individual state fields. We don't use pending_pri */
774 	cppr = icpval >> KVM_REG_PPC_ICP_CPPR_SHIFT;
775 	xisr = (icpval >> KVM_REG_PPC_ICP_XISR_SHIFT) &
776 		KVM_REG_PPC_ICP_XISR_MASK;
777 	mfrr = icpval >> KVM_REG_PPC_ICP_MFRR_SHIFT;
778 
779 	pr_devel("set_icp vcpu %d cppr=0x%x mfrr=0x%x xisr=0x%x\n",
780 		 xc->server_num, cppr, mfrr, xisr);
781 
782 	/*
783 	 * We can't update the state of a "pushed" VCPU, but that
784 	 * shouldn't happen.
785 	 */
786 	if (WARN_ON(vcpu->arch.xive_pushed))
787 		return -EIO;
788 
789 	/* Update VCPU HW saved state */
790 	vcpu->arch.xive_saved_state.cppr = cppr;
791 	xc->hw_cppr = xc->cppr = cppr;
792 
793 	/*
794 	 * Update MFRR state. If it's not 0xff, we mark the VCPU as
795 	 * having a pending MFRR change, which will re-evaluate the
796 	 * target. The VCPU will thus potentially get a spurious
797 	 * interrupt but that's not a big deal.
798 	 */
799 	xc->mfrr = mfrr;
800 	if (mfrr < cppr)
801 		xive_irq_trigger(&xc->vp_ipi_data);
802 
803 	/*
804 	 * Now saved XIRR is "interesting". It means there's something in
805 	 * the legacy "1 element" queue... for an IPI we simply ignore it,
806 	 * as the MFRR restore will handle that. For anything else we need
807 	 * to force a resend of the source.
808 	 * However the source may not have been setup yet. If that's the
809 	 * case, we keep that info and increment a counter in the xive to
810 	 * tell subsequent xive_set_source() to go look.
811 	 */
812 	if (xisr > XICS_IPI && !xive_restore_pending_irq(xive, xisr)) {
813 		xc->delayed_irq = xisr;
814 		xive->delayed_irqs++;
815 		pr_devel("  xisr restore delayed\n");
816 	}
817 
818 	return 0;
819 }
820 
821 int kvmppc_xive_set_mapped(struct kvm *kvm, unsigned long guest_irq,
822 			   struct irq_desc *host_desc)
823 {
824 	struct kvmppc_xive *xive = kvm->arch.xive;
825 	struct kvmppc_xive_src_block *sb;
826 	struct kvmppc_xive_irq_state *state;
827 	struct irq_data *host_data = irq_desc_get_irq_data(host_desc);
828 	unsigned int host_irq = irq_desc_get_irq(host_desc);
829 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(host_data);
830 	u16 idx;
831 	u8 prio;
832 	int rc;
833 
834 	if (!xive)
835 		return -ENODEV;
836 
837 	pr_devel("set_mapped girq 0x%lx host HW irq 0x%x...\n",guest_irq, hw_irq);
838 
839 	sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
840 	if (!sb)
841 		return -EINVAL;
842 	state = &sb->irq_state[idx];
843 
844 	/*
845 	 * Mark the passed-through interrupt as going to a VCPU,
846 	 * this will prevent further EOIs and similar operations
847 	 * from the XIVE code. It will also mask the interrupt
848 	 * to either PQ=10 or 11 state, the latter if the interrupt
849 	 * is pending. This will allow us to unmask or retrigger it
850 	 * after routing it to the guest with a simple EOI.
851 	 *
852 	 * The "state" argument is a "token", all it needs is to be
853 	 * non-NULL to switch to passed-through or NULL for the
854 	 * other way around. We may not yet have an actual VCPU
855 	 * target here and we don't really care.
856 	 */
857 	rc = irq_set_vcpu_affinity(host_irq, state);
858 	if (rc) {
859 		pr_err("Failed to set VCPU affinity for irq %d\n", host_irq);
860 		return rc;
861 	}
862 
863 	/*
864 	 * Mask and read state of IPI. We need to know if its P bit
865 	 * is set as that means it's potentially already using a
866 	 * queue entry in the target
867 	 */
868 	prio = xive_lock_and_mask(xive, sb, state);
869 	pr_devel(" old IPI prio %02x P:%d Q:%d\n", prio,
870 		 state->old_p, state->old_q);
871 
872 	/* Turn the IPI hard off */
873 	xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
874 
875 	/* Grab info about irq */
876 	state->pt_number = hw_irq;
877 	state->pt_data = irq_data_get_irq_handler_data(host_data);
878 
879 	/*
880 	 * Configure the IRQ to match the existing configuration of
881 	 * the IPI if it was already targetted. Otherwise this will
882 	 * mask the interrupt in a lossy way (act_priority is 0xff)
883 	 * which is fine for a never started interrupt.
884 	 */
885 	xive_native_configure_irq(hw_irq,
886 				  xive->vp_base + state->act_server,
887 				  state->act_priority, state->number);
888 
889 	/*
890 	 * We do an EOI to enable the interrupt (and retrigger if needed)
891 	 * if the guest has the interrupt unmasked and the P bit was *not*
892 	 * set in the IPI. If it was set, we know a slot may still be in
893 	 * use in the target queue thus we have to wait for a guest
894 	 * originated EOI
895 	 */
896 	if (prio != MASKED && !state->old_p)
897 		xive_vm_source_eoi(hw_irq, state->pt_data);
898 
899 	/* Clear old_p/old_q as they are no longer relevant */
900 	state->old_p = state->old_q = false;
901 
902 	/* Restore guest prio (unlocks EOI) */
903 	mb();
904 	state->guest_priority = prio;
905 	arch_spin_unlock(&sb->lock);
906 
907 	return 0;
908 }
909 EXPORT_SYMBOL_GPL(kvmppc_xive_set_mapped);
910 
911 int kvmppc_xive_clr_mapped(struct kvm *kvm, unsigned long guest_irq,
912 			   struct irq_desc *host_desc)
913 {
914 	struct kvmppc_xive *xive = kvm->arch.xive;
915 	struct kvmppc_xive_src_block *sb;
916 	struct kvmppc_xive_irq_state *state;
917 	unsigned int host_irq = irq_desc_get_irq(host_desc);
918 	u16 idx;
919 	u8 prio;
920 	int rc;
921 
922 	if (!xive)
923 		return -ENODEV;
924 
925 	pr_devel("clr_mapped girq 0x%lx...\n", guest_irq);
926 
927 	sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
928 	if (!sb)
929 		return -EINVAL;
930 	state = &sb->irq_state[idx];
931 
932 	/*
933 	 * Mask and read state of IRQ. We need to know if its P bit
934 	 * is set as that means it's potentially already using a
935 	 * queue entry in the target
936 	 */
937 	prio = xive_lock_and_mask(xive, sb, state);
938 	pr_devel(" old IRQ prio %02x P:%d Q:%d\n", prio,
939 		 state->old_p, state->old_q);
940 
941 	/*
942 	 * If old_p is set, the interrupt is pending, we switch it to
943 	 * PQ=11. This will force a resend in the host so the interrupt
944 	 * isn't lost to whatver host driver may pick it up
945 	 */
946 	if (state->old_p)
947 		xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_11);
948 
949 	/* Release the passed-through interrupt to the host */
950 	rc = irq_set_vcpu_affinity(host_irq, NULL);
951 	if (rc) {
952 		pr_err("Failed to clr VCPU affinity for irq %d\n", host_irq);
953 		return rc;
954 	}
955 
956 	/* Forget about the IRQ */
957 	state->pt_number = 0;
958 	state->pt_data = NULL;
959 
960 	/* Reconfigure the IPI */
961 	xive_native_configure_irq(state->ipi_number,
962 				  xive->vp_base + state->act_server,
963 				  state->act_priority, state->number);
964 
965 	/*
966 	 * If old_p is set (we have a queue entry potentially
967 	 * occupied) or the interrupt is masked, we set the IPI
968 	 * to PQ=10 state. Otherwise we just re-enable it (PQ=00).
969 	 */
970 	if (prio == MASKED || state->old_p)
971 		xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_10);
972 	else
973 		xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_00);
974 
975 	/* Restore guest prio (unlocks EOI) */
976 	mb();
977 	state->guest_priority = prio;
978 	arch_spin_unlock(&sb->lock);
979 
980 	return 0;
981 }
982 EXPORT_SYMBOL_GPL(kvmppc_xive_clr_mapped);
983 
984 static void kvmppc_xive_disable_vcpu_interrupts(struct kvm_vcpu *vcpu)
985 {
986 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
987 	struct kvm *kvm = vcpu->kvm;
988 	struct kvmppc_xive *xive = kvm->arch.xive;
989 	int i, j;
990 
991 	for (i = 0; i <= xive->max_sbid; i++) {
992 		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
993 
994 		if (!sb)
995 			continue;
996 		for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) {
997 			struct kvmppc_xive_irq_state *state = &sb->irq_state[j];
998 
999 			if (!state->valid)
1000 				continue;
1001 			if (state->act_priority == MASKED)
1002 				continue;
1003 			if (state->act_server != xc->server_num)
1004 				continue;
1005 
1006 			/* Clean it up */
1007 			arch_spin_lock(&sb->lock);
1008 			state->act_priority = MASKED;
1009 			xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
1010 			xive_native_configure_irq(state->ipi_number, 0, MASKED, 0);
1011 			if (state->pt_number) {
1012 				xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_01);
1013 				xive_native_configure_irq(state->pt_number, 0, MASKED, 0);
1014 			}
1015 			arch_spin_unlock(&sb->lock);
1016 		}
1017 	}
1018 }
1019 
1020 void kvmppc_xive_cleanup_vcpu(struct kvm_vcpu *vcpu)
1021 {
1022 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1023 	struct kvmppc_xive *xive = xc->xive;
1024 	int i;
1025 
1026 	pr_devel("cleanup_vcpu(cpu=%d)\n", xc->server_num);
1027 
1028 	/* Ensure no interrupt is still routed to that VP */
1029 	xc->valid = false;
1030 	kvmppc_xive_disable_vcpu_interrupts(vcpu);
1031 
1032 	/* Mask the VP IPI */
1033 	xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_01);
1034 
1035 	/* Disable the VP */
1036 	xive_native_disable_vp(xc->vp_id);
1037 
1038 	/* Free the queues & associated interrupts */
1039 	for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1040 		struct xive_q *q = &xc->queues[i];
1041 
1042 		/* Free the escalation irq */
1043 		if (xc->esc_virq[i]) {
1044 			free_irq(xc->esc_virq[i], vcpu);
1045 			irq_dispose_mapping(xc->esc_virq[i]);
1046 			kfree(xc->esc_virq_names[i]);
1047 		}
1048 		/* Free the queue */
1049 		xive_native_disable_queue(xc->vp_id, q, i);
1050 		if (q->qpage) {
1051 			free_pages((unsigned long)q->qpage,
1052 				   xive->q_page_order);
1053 			q->qpage = NULL;
1054 		}
1055 	}
1056 
1057 	/* Free the IPI */
1058 	if (xc->vp_ipi) {
1059 		xive_cleanup_irq_data(&xc->vp_ipi_data);
1060 		xive_native_free_irq(xc->vp_ipi);
1061 	}
1062 	/* Free the VP */
1063 	kfree(xc);
1064 }
1065 
1066 int kvmppc_xive_connect_vcpu(struct kvm_device *dev,
1067 			     struct kvm_vcpu *vcpu, u32 cpu)
1068 {
1069 	struct kvmppc_xive *xive = dev->private;
1070 	struct kvmppc_xive_vcpu *xc;
1071 	int i, r = -EBUSY;
1072 
1073 	pr_devel("connect_vcpu(cpu=%d)\n", cpu);
1074 
1075 	if (dev->ops != &kvm_xive_ops) {
1076 		pr_devel("Wrong ops !\n");
1077 		return -EPERM;
1078 	}
1079 	if (xive->kvm != vcpu->kvm)
1080 		return -EPERM;
1081 	if (vcpu->arch.irq_type)
1082 		return -EBUSY;
1083 	if (kvmppc_xive_find_server(vcpu->kvm, cpu)) {
1084 		pr_devel("Duplicate !\n");
1085 		return -EEXIST;
1086 	}
1087 	if (cpu >= KVM_MAX_VCPUS) {
1088 		pr_devel("Out of bounds !\n");
1089 		return -EINVAL;
1090 	}
1091 	xc = kzalloc(sizeof(*xc), GFP_KERNEL);
1092 	if (!xc)
1093 		return -ENOMEM;
1094 
1095 	/* We need to synchronize with queue provisioning */
1096 	mutex_lock(&vcpu->kvm->lock);
1097 	vcpu->arch.xive_vcpu = xc;
1098 	xc->xive = xive;
1099 	xc->vcpu = vcpu;
1100 	xc->server_num = cpu;
1101 	xc->vp_id = xive->vp_base + cpu;
1102 	xc->mfrr = 0xff;
1103 	xc->valid = true;
1104 
1105 	r = xive_native_get_vp_info(xc->vp_id, &xc->vp_cam, &xc->vp_chip_id);
1106 	if (r)
1107 		goto bail;
1108 
1109 	/* Configure VCPU fields for use by assembly push/pull */
1110 	vcpu->arch.xive_saved_state.w01 = cpu_to_be64(0xff000000);
1111 	vcpu->arch.xive_cam_word = cpu_to_be32(xc->vp_cam | TM_QW1W2_VO);
1112 
1113 	/* Allocate IPI */
1114 	xc->vp_ipi = xive_native_alloc_irq();
1115 	if (!xc->vp_ipi) {
1116 		pr_err("Failed to allocate xive irq for VCPU IPI\n");
1117 		r = -EIO;
1118 		goto bail;
1119 	}
1120 	pr_devel(" IPI=0x%x\n", xc->vp_ipi);
1121 
1122 	r = xive_native_populate_irq_data(xc->vp_ipi, &xc->vp_ipi_data);
1123 	if (r)
1124 		goto bail;
1125 
1126 	/*
1127 	 * Enable the VP first as the single escalation mode will
1128 	 * affect escalation interrupts numbering
1129 	 */
1130 	r = xive_native_enable_vp(xc->vp_id, xive->single_escalation);
1131 	if (r) {
1132 		pr_err("Failed to enable VP in OPAL, err %d\n", r);
1133 		goto bail;
1134 	}
1135 
1136 	/*
1137 	 * Initialize queues. Initially we set them all for no queueing
1138 	 * and we enable escalation for queue 0 only which we'll use for
1139 	 * our mfrr change notifications. If the VCPU is hot-plugged, we
1140 	 * do handle provisioning however based on the existing "map"
1141 	 * of enabled queues.
1142 	 */
1143 	for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1144 		struct xive_q *q = &xc->queues[i];
1145 
1146 		/* Single escalation, no queue 7 */
1147 		if (i == 7 && xive->single_escalation)
1148 			break;
1149 
1150 		/* Is queue already enabled ? Provision it */
1151 		if (xive->qmap & (1 << i)) {
1152 			r = xive_provision_queue(vcpu, i);
1153 			if (r == 0 && !xive->single_escalation)
1154 				xive_attach_escalation(vcpu, i);
1155 			if (r)
1156 				goto bail;
1157 		} else {
1158 			r = xive_native_configure_queue(xc->vp_id,
1159 							q, i, NULL, 0, true);
1160 			if (r) {
1161 				pr_err("Failed to configure queue %d for VCPU %d\n",
1162 				       i, cpu);
1163 				goto bail;
1164 			}
1165 		}
1166 	}
1167 
1168 	/* If not done above, attach priority 0 escalation */
1169 	r = xive_attach_escalation(vcpu, 0);
1170 	if (r)
1171 		goto bail;
1172 
1173 	/* Route the IPI */
1174 	r = xive_native_configure_irq(xc->vp_ipi, xc->vp_id, 0, XICS_IPI);
1175 	if (!r)
1176 		xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_00);
1177 
1178 bail:
1179 	mutex_unlock(&vcpu->kvm->lock);
1180 	if (r) {
1181 		kvmppc_xive_cleanup_vcpu(vcpu);
1182 		return r;
1183 	}
1184 
1185 	vcpu->arch.irq_type = KVMPPC_IRQ_XICS;
1186 	return 0;
1187 }
1188 
1189 /*
1190  * Scanning of queues before/after migration save
1191  */
1192 static void xive_pre_save_set_queued(struct kvmppc_xive *xive, u32 irq)
1193 {
1194 	struct kvmppc_xive_src_block *sb;
1195 	struct kvmppc_xive_irq_state *state;
1196 	u16 idx;
1197 
1198 	sb = kvmppc_xive_find_source(xive, irq, &idx);
1199 	if (!sb)
1200 		return;
1201 
1202 	state = &sb->irq_state[idx];
1203 
1204 	/* Some sanity checking */
1205 	if (!state->valid) {
1206 		pr_err("invalid irq 0x%x in cpu queue!\n", irq);
1207 		return;
1208 	}
1209 
1210 	/*
1211 	 * If the interrupt is in a queue it should have P set.
1212 	 * We warn so that gets reported. A backtrace isn't useful
1213 	 * so no need to use a WARN_ON.
1214 	 */
1215 	if (!state->saved_p)
1216 		pr_err("Interrupt 0x%x is marked in a queue but P not set !\n", irq);
1217 
1218 	/* Set flag */
1219 	state->in_queue = true;
1220 }
1221 
1222 static void xive_pre_save_mask_irq(struct kvmppc_xive *xive,
1223 				   struct kvmppc_xive_src_block *sb,
1224 				   u32 irq)
1225 {
1226 	struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
1227 
1228 	if (!state->valid)
1229 		return;
1230 
1231 	/* Mask and save state, this will also sync HW queues */
1232 	state->saved_scan_prio = xive_lock_and_mask(xive, sb, state);
1233 
1234 	/* Transfer P and Q */
1235 	state->saved_p = state->old_p;
1236 	state->saved_q = state->old_q;
1237 
1238 	/* Unlock */
1239 	arch_spin_unlock(&sb->lock);
1240 }
1241 
1242 static void xive_pre_save_unmask_irq(struct kvmppc_xive *xive,
1243 				     struct kvmppc_xive_src_block *sb,
1244 				     u32 irq)
1245 {
1246 	struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
1247 
1248 	if (!state->valid)
1249 		return;
1250 
1251 	/*
1252 	 * Lock / exclude EOI (not technically necessary if the
1253 	 * guest isn't running concurrently. If this becomes a
1254 	 * performance issue we can probably remove the lock.
1255 	 */
1256 	xive_lock_for_unmask(sb, state);
1257 
1258 	/* Restore mask/prio if it wasn't masked */
1259 	if (state->saved_scan_prio != MASKED)
1260 		xive_finish_unmask(xive, sb, state, state->saved_scan_prio);
1261 
1262 	/* Unlock */
1263 	arch_spin_unlock(&sb->lock);
1264 }
1265 
1266 static void xive_pre_save_queue(struct kvmppc_xive *xive, struct xive_q *q)
1267 {
1268 	u32 idx = q->idx;
1269 	u32 toggle = q->toggle;
1270 	u32 irq;
1271 
1272 	do {
1273 		irq = __xive_read_eq(q->qpage, q->msk, &idx, &toggle);
1274 		if (irq > XICS_IPI)
1275 			xive_pre_save_set_queued(xive, irq);
1276 	} while(irq);
1277 }
1278 
1279 static void xive_pre_save_scan(struct kvmppc_xive *xive)
1280 {
1281 	struct kvm_vcpu *vcpu = NULL;
1282 	int i, j;
1283 
1284 	/*
1285 	 * See comment in xive_get_source() about how this
1286 	 * work. Collect a stable state for all interrupts
1287 	 */
1288 	for (i = 0; i <= xive->max_sbid; i++) {
1289 		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1290 		if (!sb)
1291 			continue;
1292 		for (j = 0;  j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1293 			xive_pre_save_mask_irq(xive, sb, j);
1294 	}
1295 
1296 	/* Then scan the queues and update the "in_queue" flag */
1297 	kvm_for_each_vcpu(i, vcpu, xive->kvm) {
1298 		struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1299 		if (!xc)
1300 			continue;
1301 		for (j = 0; j < KVMPPC_XIVE_Q_COUNT; j++) {
1302 			if (xc->queues[j].qpage)
1303 				xive_pre_save_queue(xive, &xc->queues[j]);
1304 		}
1305 	}
1306 
1307 	/* Finally restore interrupt states */
1308 	for (i = 0; i <= xive->max_sbid; i++) {
1309 		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1310 		if (!sb)
1311 			continue;
1312 		for (j = 0;  j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1313 			xive_pre_save_unmask_irq(xive, sb, j);
1314 	}
1315 }
1316 
1317 static void xive_post_save_scan(struct kvmppc_xive *xive)
1318 {
1319 	u32 i, j;
1320 
1321 	/* Clear all the in_queue flags */
1322 	for (i = 0; i <= xive->max_sbid; i++) {
1323 		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1324 		if (!sb)
1325 			continue;
1326 		for (j = 0;  j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1327 			sb->irq_state[j].in_queue = false;
1328 	}
1329 
1330 	/* Next get_source() will do a new scan */
1331 	xive->saved_src_count = 0;
1332 }
1333 
1334 /*
1335  * This returns the source configuration and state to user space.
1336  */
1337 static int xive_get_source(struct kvmppc_xive *xive, long irq, u64 addr)
1338 {
1339 	struct kvmppc_xive_src_block *sb;
1340 	struct kvmppc_xive_irq_state *state;
1341 	u64 __user *ubufp = (u64 __user *) addr;
1342 	u64 val, prio;
1343 	u16 idx;
1344 
1345 	sb = kvmppc_xive_find_source(xive, irq, &idx);
1346 	if (!sb)
1347 		return -ENOENT;
1348 
1349 	state = &sb->irq_state[idx];
1350 
1351 	if (!state->valid)
1352 		return -ENOENT;
1353 
1354 	pr_devel("get_source(%ld)...\n", irq);
1355 
1356 	/*
1357 	 * So to properly save the state into something that looks like a
1358 	 * XICS migration stream we cannot treat interrupts individually.
1359 	 *
1360 	 * We need, instead, mask them all (& save their previous PQ state)
1361 	 * to get a stable state in the HW, then sync them to ensure that
1362 	 * any interrupt that had already fired hits its queue, and finally
1363 	 * scan all the queues to collect which interrupts are still present
1364 	 * in the queues, so we can set the "pending" flag on them and
1365 	 * they can be resent on restore.
1366 	 *
1367 	 * So we do it all when the "first" interrupt gets saved, all the
1368 	 * state is collected at that point, the rest of xive_get_source()
1369 	 * will merely collect and convert that state to the expected
1370 	 * userspace bit mask.
1371 	 */
1372 	if (xive->saved_src_count == 0)
1373 		xive_pre_save_scan(xive);
1374 	xive->saved_src_count++;
1375 
1376 	/* Convert saved state into something compatible with xics */
1377 	val = state->act_server;
1378 	prio = state->saved_scan_prio;
1379 
1380 	if (prio == MASKED) {
1381 		val |= KVM_XICS_MASKED;
1382 		prio = state->saved_priority;
1383 	}
1384 	val |= prio << KVM_XICS_PRIORITY_SHIFT;
1385 	if (state->lsi) {
1386 		val |= KVM_XICS_LEVEL_SENSITIVE;
1387 		if (state->saved_p)
1388 			val |= KVM_XICS_PENDING;
1389 	} else {
1390 		if (state->saved_p)
1391 			val |= KVM_XICS_PRESENTED;
1392 
1393 		if (state->saved_q)
1394 			val |= KVM_XICS_QUEUED;
1395 
1396 		/*
1397 		 * We mark it pending (which will attempt a re-delivery)
1398 		 * if we are in a queue *or* we were masked and had
1399 		 * Q set which is equivalent to the XICS "masked pending"
1400 		 * state
1401 		 */
1402 		if (state->in_queue || (prio == MASKED && state->saved_q))
1403 			val |= KVM_XICS_PENDING;
1404 	}
1405 
1406 	/*
1407 	 * If that was the last interrupt saved, reset the
1408 	 * in_queue flags
1409 	 */
1410 	if (xive->saved_src_count == xive->src_count)
1411 		xive_post_save_scan(xive);
1412 
1413 	/* Copy the result to userspace */
1414 	if (put_user(val, ubufp))
1415 		return -EFAULT;
1416 
1417 	return 0;
1418 }
1419 
1420 static struct kvmppc_xive_src_block *xive_create_src_block(struct kvmppc_xive *xive,
1421 							   int irq)
1422 {
1423 	struct kvm *kvm = xive->kvm;
1424 	struct kvmppc_xive_src_block *sb;
1425 	int i, bid;
1426 
1427 	bid = irq >> KVMPPC_XICS_ICS_SHIFT;
1428 
1429 	mutex_lock(&kvm->lock);
1430 
1431 	/* block already exists - somebody else got here first */
1432 	if (xive->src_blocks[bid])
1433 		goto out;
1434 
1435 	/* Create the ICS */
1436 	sb = kzalloc(sizeof(*sb), GFP_KERNEL);
1437 	if (!sb)
1438 		goto out;
1439 
1440 	sb->id = bid;
1441 
1442 	for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
1443 		sb->irq_state[i].number = (bid << KVMPPC_XICS_ICS_SHIFT) | i;
1444 		sb->irq_state[i].guest_priority = MASKED;
1445 		sb->irq_state[i].saved_priority = MASKED;
1446 		sb->irq_state[i].act_priority = MASKED;
1447 	}
1448 	smp_wmb();
1449 	xive->src_blocks[bid] = sb;
1450 
1451 	if (bid > xive->max_sbid)
1452 		xive->max_sbid = bid;
1453 
1454 out:
1455 	mutex_unlock(&kvm->lock);
1456 	return xive->src_blocks[bid];
1457 }
1458 
1459 static bool xive_check_delayed_irq(struct kvmppc_xive *xive, u32 irq)
1460 {
1461 	struct kvm *kvm = xive->kvm;
1462 	struct kvm_vcpu *vcpu = NULL;
1463 	int i;
1464 
1465 	kvm_for_each_vcpu(i, vcpu, kvm) {
1466 		struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1467 
1468 		if (!xc)
1469 			continue;
1470 
1471 		if (xc->delayed_irq == irq) {
1472 			xc->delayed_irq = 0;
1473 			xive->delayed_irqs--;
1474 			return true;
1475 		}
1476 	}
1477 	return false;
1478 }
1479 
1480 static int xive_set_source(struct kvmppc_xive *xive, long irq, u64 addr)
1481 {
1482 	struct kvmppc_xive_src_block *sb;
1483 	struct kvmppc_xive_irq_state *state;
1484 	u64 __user *ubufp = (u64 __user *) addr;
1485 	u16 idx;
1486 	u64 val;
1487 	u8 act_prio, guest_prio;
1488 	u32 server;
1489 	int rc = 0;
1490 
1491 	if (irq < KVMPPC_XICS_FIRST_IRQ || irq >= KVMPPC_XICS_NR_IRQS)
1492 		return -ENOENT;
1493 
1494 	pr_devel("set_source(irq=0x%lx)\n", irq);
1495 
1496 	/* Find the source */
1497 	sb = kvmppc_xive_find_source(xive, irq, &idx);
1498 	if (!sb) {
1499 		pr_devel("No source, creating source block...\n");
1500 		sb = xive_create_src_block(xive, irq);
1501 		if (!sb) {
1502 			pr_devel("Failed to create block...\n");
1503 			return -ENOMEM;
1504 		}
1505 	}
1506 	state = &sb->irq_state[idx];
1507 
1508 	/* Read user passed data */
1509 	if (get_user(val, ubufp)) {
1510 		pr_devel("fault getting user info !\n");
1511 		return -EFAULT;
1512 	}
1513 
1514 	server = val & KVM_XICS_DESTINATION_MASK;
1515 	guest_prio = val >> KVM_XICS_PRIORITY_SHIFT;
1516 
1517 	pr_devel("  val=0x016%llx (server=0x%x, guest_prio=%d)\n",
1518 		 val, server, guest_prio);
1519 
1520 	/*
1521 	 * If the source doesn't already have an IPI, allocate
1522 	 * one and get the corresponding data
1523 	 */
1524 	if (!state->ipi_number) {
1525 		state->ipi_number = xive_native_alloc_irq();
1526 		if (state->ipi_number == 0) {
1527 			pr_devel("Failed to allocate IPI !\n");
1528 			return -ENOMEM;
1529 		}
1530 		xive_native_populate_irq_data(state->ipi_number, &state->ipi_data);
1531 		pr_devel(" src_ipi=0x%x\n", state->ipi_number);
1532 	}
1533 
1534 	/*
1535 	 * We use lock_and_mask() to set us in the right masked
1536 	 * state. We will override that state from the saved state
1537 	 * further down, but this will handle the cases of interrupts
1538 	 * that need FW masking. We set the initial guest_priority to
1539 	 * 0 before calling it to ensure it actually performs the masking.
1540 	 */
1541 	state->guest_priority = 0;
1542 	xive_lock_and_mask(xive, sb, state);
1543 
1544 	/*
1545 	 * Now, we select a target if we have one. If we don't we
1546 	 * leave the interrupt untargetted. It means that an interrupt
1547 	 * can become "untargetted" accross migration if it was masked
1548 	 * by set_xive() but there is little we can do about it.
1549 	 */
1550 
1551 	/* First convert prio and mark interrupt as untargetted */
1552 	act_prio = xive_prio_from_guest(guest_prio);
1553 	state->act_priority = MASKED;
1554 
1555 	/*
1556 	 * We need to drop the lock due to the mutex below. Hopefully
1557 	 * nothing is touching that interrupt yet since it hasn't been
1558 	 * advertized to a running guest yet
1559 	 */
1560 	arch_spin_unlock(&sb->lock);
1561 
1562 	/* If we have a priority target the interrupt */
1563 	if (act_prio != MASKED) {
1564 		/* First, check provisioning of queues */
1565 		mutex_lock(&xive->kvm->lock);
1566 		rc = xive_check_provisioning(xive->kvm, act_prio);
1567 		mutex_unlock(&xive->kvm->lock);
1568 
1569 		/* Target interrupt */
1570 		if (rc == 0)
1571 			rc = xive_target_interrupt(xive->kvm, state,
1572 						   server, act_prio);
1573 		/*
1574 		 * If provisioning or targetting failed, leave it
1575 		 * alone and masked. It will remain disabled until
1576 		 * the guest re-targets it.
1577 		 */
1578 	}
1579 
1580 	/*
1581 	 * Find out if this was a delayed irq stashed in an ICP,
1582 	 * in which case, treat it as pending
1583 	 */
1584 	if (xive->delayed_irqs && xive_check_delayed_irq(xive, irq)) {
1585 		val |= KVM_XICS_PENDING;
1586 		pr_devel("  Found delayed ! forcing PENDING !\n");
1587 	}
1588 
1589 	/* Cleanup the SW state */
1590 	state->old_p = false;
1591 	state->old_q = false;
1592 	state->lsi = false;
1593 	state->asserted = false;
1594 
1595 	/* Restore LSI state */
1596 	if (val & KVM_XICS_LEVEL_SENSITIVE) {
1597 		state->lsi = true;
1598 		if (val & KVM_XICS_PENDING)
1599 			state->asserted = true;
1600 		pr_devel("  LSI ! Asserted=%d\n", state->asserted);
1601 	}
1602 
1603 	/*
1604 	 * Restore P and Q. If the interrupt was pending, we
1605 	 * force Q and !P, which will trigger a resend.
1606 	 *
1607 	 * That means that a guest that had both an interrupt
1608 	 * pending (queued) and Q set will restore with only
1609 	 * one instance of that interrupt instead of 2, but that
1610 	 * is perfectly fine as coalescing interrupts that haven't
1611 	 * been presented yet is always allowed.
1612 	 */
1613 	if (val & KVM_XICS_PRESENTED && !(val & KVM_XICS_PENDING))
1614 		state->old_p = true;
1615 	if (val & KVM_XICS_QUEUED || val & KVM_XICS_PENDING)
1616 		state->old_q = true;
1617 
1618 	pr_devel("  P=%d, Q=%d\n", state->old_p, state->old_q);
1619 
1620 	/*
1621 	 * If the interrupt was unmasked, update guest priority and
1622 	 * perform the appropriate state transition and do a
1623 	 * re-trigger if necessary.
1624 	 */
1625 	if (val & KVM_XICS_MASKED) {
1626 		pr_devel("  masked, saving prio\n");
1627 		state->guest_priority = MASKED;
1628 		state->saved_priority = guest_prio;
1629 	} else {
1630 		pr_devel("  unmasked, restoring to prio %d\n", guest_prio);
1631 		xive_finish_unmask(xive, sb, state, guest_prio);
1632 		state->saved_priority = guest_prio;
1633 	}
1634 
1635 	/* Increment the number of valid sources and mark this one valid */
1636 	if (!state->valid)
1637 		xive->src_count++;
1638 	state->valid = true;
1639 
1640 	return 0;
1641 }
1642 
1643 int kvmppc_xive_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1644 			bool line_status)
1645 {
1646 	struct kvmppc_xive *xive = kvm->arch.xive;
1647 	struct kvmppc_xive_src_block *sb;
1648 	struct kvmppc_xive_irq_state *state;
1649 	u16 idx;
1650 
1651 	if (!xive)
1652 		return -ENODEV;
1653 
1654 	sb = kvmppc_xive_find_source(xive, irq, &idx);
1655 	if (!sb)
1656 		return -EINVAL;
1657 
1658 	/* Perform locklessly .... (we need to do some RCUisms here...) */
1659 	state = &sb->irq_state[idx];
1660 	if (!state->valid)
1661 		return -EINVAL;
1662 
1663 	/* We don't allow a trigger on a passed-through interrupt */
1664 	if (state->pt_number)
1665 		return -EINVAL;
1666 
1667 	if ((level == 1 && state->lsi) || level == KVM_INTERRUPT_SET_LEVEL)
1668 		state->asserted = 1;
1669 	else if (level == 0 || level == KVM_INTERRUPT_UNSET) {
1670 		state->asserted = 0;
1671 		return 0;
1672 	}
1673 
1674 	/* Trigger the IPI */
1675 	xive_irq_trigger(&state->ipi_data);
1676 
1677 	return 0;
1678 }
1679 
1680 static int xive_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1681 {
1682 	struct kvmppc_xive *xive = dev->private;
1683 
1684 	/* We honor the existing XICS ioctl */
1685 	switch (attr->group) {
1686 	case KVM_DEV_XICS_GRP_SOURCES:
1687 		return xive_set_source(xive, attr->attr, attr->addr);
1688 	}
1689 	return -ENXIO;
1690 }
1691 
1692 static int xive_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1693 {
1694 	struct kvmppc_xive *xive = dev->private;
1695 
1696 	/* We honor the existing XICS ioctl */
1697 	switch (attr->group) {
1698 	case KVM_DEV_XICS_GRP_SOURCES:
1699 		return xive_get_source(xive, attr->attr, attr->addr);
1700 	}
1701 	return -ENXIO;
1702 }
1703 
1704 static int xive_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1705 {
1706 	/* We honor the same limits as XICS, at least for now */
1707 	switch (attr->group) {
1708 	case KVM_DEV_XICS_GRP_SOURCES:
1709 		if (attr->attr >= KVMPPC_XICS_FIRST_IRQ &&
1710 		    attr->attr < KVMPPC_XICS_NR_IRQS)
1711 			return 0;
1712 		break;
1713 	}
1714 	return -ENXIO;
1715 }
1716 
1717 static void kvmppc_xive_cleanup_irq(u32 hw_num, struct xive_irq_data *xd)
1718 {
1719 	xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01);
1720 	xive_native_configure_irq(hw_num, 0, MASKED, 0);
1721 	xive_cleanup_irq_data(xd);
1722 }
1723 
1724 static void kvmppc_xive_free_sources(struct kvmppc_xive_src_block *sb)
1725 {
1726 	int i;
1727 
1728 	for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
1729 		struct kvmppc_xive_irq_state *state = &sb->irq_state[i];
1730 
1731 		if (!state->valid)
1732 			continue;
1733 
1734 		kvmppc_xive_cleanup_irq(state->ipi_number, &state->ipi_data);
1735 		xive_native_free_irq(state->ipi_number);
1736 
1737 		/* Pass-through, cleanup too */
1738 		if (state->pt_number)
1739 			kvmppc_xive_cleanup_irq(state->pt_number, state->pt_data);
1740 
1741 		state->valid = false;
1742 	}
1743 }
1744 
1745 static void kvmppc_xive_free(struct kvm_device *dev)
1746 {
1747 	struct kvmppc_xive *xive = dev->private;
1748 	struct kvm *kvm = xive->kvm;
1749 	int i;
1750 
1751 	debugfs_remove(xive->dentry);
1752 
1753 	if (kvm)
1754 		kvm->arch.xive = NULL;
1755 
1756 	/* Mask and free interrupts */
1757 	for (i = 0; i <= xive->max_sbid; i++) {
1758 		if (xive->src_blocks[i])
1759 			kvmppc_xive_free_sources(xive->src_blocks[i]);
1760 		kfree(xive->src_blocks[i]);
1761 		xive->src_blocks[i] = NULL;
1762 	}
1763 
1764 	if (xive->vp_base != XIVE_INVALID_VP)
1765 		xive_native_free_vp_block(xive->vp_base);
1766 
1767 
1768 	kfree(xive);
1769 	kfree(dev);
1770 }
1771 
1772 static int kvmppc_xive_create(struct kvm_device *dev, u32 type)
1773 {
1774 	struct kvmppc_xive *xive;
1775 	struct kvm *kvm = dev->kvm;
1776 	int ret = 0;
1777 
1778 	pr_devel("Creating xive for partition\n");
1779 
1780 	xive = kzalloc(sizeof(*xive), GFP_KERNEL);
1781 	if (!xive)
1782 		return -ENOMEM;
1783 
1784 	dev->private = xive;
1785 	xive->dev = dev;
1786 	xive->kvm = kvm;
1787 
1788 	/* Already there ? */
1789 	if (kvm->arch.xive)
1790 		ret = -EEXIST;
1791 	else
1792 		kvm->arch.xive = xive;
1793 
1794 	/* We use the default queue size set by the host */
1795 	xive->q_order = xive_native_default_eq_shift();
1796 	if (xive->q_order < PAGE_SHIFT)
1797 		xive->q_page_order = 0;
1798 	else
1799 		xive->q_page_order = xive->q_order - PAGE_SHIFT;
1800 
1801 	/* Allocate a bunch of VPs */
1802 	xive->vp_base = xive_native_alloc_vp_block(KVM_MAX_VCPUS);
1803 	pr_devel("VP_Base=%x\n", xive->vp_base);
1804 
1805 	if (xive->vp_base == XIVE_INVALID_VP)
1806 		ret = -ENOMEM;
1807 
1808 	xive->single_escalation = xive_native_has_single_escalation();
1809 
1810 	if (ret) {
1811 		kfree(xive);
1812 		return ret;
1813 	}
1814 
1815 	return 0;
1816 }
1817 
1818 
1819 static int xive_debug_show(struct seq_file *m, void *private)
1820 {
1821 	struct kvmppc_xive *xive = m->private;
1822 	struct kvm *kvm = xive->kvm;
1823 	struct kvm_vcpu *vcpu;
1824 	u64 t_rm_h_xirr = 0;
1825 	u64 t_rm_h_ipoll = 0;
1826 	u64 t_rm_h_cppr = 0;
1827 	u64 t_rm_h_eoi = 0;
1828 	u64 t_rm_h_ipi = 0;
1829 	u64 t_vm_h_xirr = 0;
1830 	u64 t_vm_h_ipoll = 0;
1831 	u64 t_vm_h_cppr = 0;
1832 	u64 t_vm_h_eoi = 0;
1833 	u64 t_vm_h_ipi = 0;
1834 	unsigned int i;
1835 
1836 	if (!kvm)
1837 		return 0;
1838 
1839 	seq_printf(m, "=========\nVCPU state\n=========\n");
1840 
1841 	kvm_for_each_vcpu(i, vcpu, kvm) {
1842 		struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1843 		unsigned int i;
1844 
1845 		if (!xc)
1846 			continue;
1847 
1848 		seq_printf(m, "cpu server %#x CPPR:%#x HWCPPR:%#x"
1849 			   " MFRR:%#x PEND:%#x h_xirr: R=%lld V=%lld\n",
1850 			   xc->server_num, xc->cppr, xc->hw_cppr,
1851 			   xc->mfrr, xc->pending,
1852 			   xc->stat_rm_h_xirr, xc->stat_vm_h_xirr);
1853 		for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1854 			struct xive_q *q = &xc->queues[i];
1855 			u32 i0, i1, idx;
1856 
1857 			if (!q->qpage && !xc->esc_virq[i])
1858 				continue;
1859 
1860 			seq_printf(m, " [q%d]: ", i);
1861 
1862 			if (q->qpage) {
1863 				idx = q->idx;
1864 				i0 = be32_to_cpup(q->qpage + idx);
1865 				idx = (idx + 1) & q->msk;
1866 				i1 = be32_to_cpup(q->qpage + idx);
1867 				seq_printf(m, "T=%d %08x %08x... \n", q->toggle, i0, i1);
1868 			}
1869 			if (xc->esc_virq[i]) {
1870 				struct irq_data *d = irq_get_irq_data(xc->esc_virq[i]);
1871 				struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
1872 				u64 pq = xive_vm_esb_load(xd, XIVE_ESB_GET);
1873 				seq_printf(m, "E:%c%c I(%d:%llx:%llx)",
1874 					   (pq & XIVE_ESB_VAL_P) ? 'P' : 'p',
1875 					   (pq & XIVE_ESB_VAL_Q) ? 'Q' : 'q',
1876 					   xc->esc_virq[i], pq, xd->eoi_page);
1877 				seq_printf(m, "\n");
1878 			}
1879 		}
1880 
1881 		t_rm_h_xirr += xc->stat_rm_h_xirr;
1882 		t_rm_h_ipoll += xc->stat_rm_h_ipoll;
1883 		t_rm_h_cppr += xc->stat_rm_h_cppr;
1884 		t_rm_h_eoi += xc->stat_rm_h_eoi;
1885 		t_rm_h_ipi += xc->stat_rm_h_ipi;
1886 		t_vm_h_xirr += xc->stat_vm_h_xirr;
1887 		t_vm_h_ipoll += xc->stat_vm_h_ipoll;
1888 		t_vm_h_cppr += xc->stat_vm_h_cppr;
1889 		t_vm_h_eoi += xc->stat_vm_h_eoi;
1890 		t_vm_h_ipi += xc->stat_vm_h_ipi;
1891 	}
1892 
1893 	seq_printf(m, "Hcalls totals\n");
1894 	seq_printf(m, " H_XIRR  R=%10lld V=%10lld\n", t_rm_h_xirr, t_vm_h_xirr);
1895 	seq_printf(m, " H_IPOLL R=%10lld V=%10lld\n", t_rm_h_ipoll, t_vm_h_ipoll);
1896 	seq_printf(m, " H_CPPR  R=%10lld V=%10lld\n", t_rm_h_cppr, t_vm_h_cppr);
1897 	seq_printf(m, " H_EOI   R=%10lld V=%10lld\n", t_rm_h_eoi, t_vm_h_eoi);
1898 	seq_printf(m, " H_IPI   R=%10lld V=%10lld\n", t_rm_h_ipi, t_vm_h_ipi);
1899 
1900 	return 0;
1901 }
1902 
1903 static int xive_debug_open(struct inode *inode, struct file *file)
1904 {
1905 	return single_open(file, xive_debug_show, inode->i_private);
1906 }
1907 
1908 static const struct file_operations xive_debug_fops = {
1909 	.open = xive_debug_open,
1910 	.read = seq_read,
1911 	.llseek = seq_lseek,
1912 	.release = single_release,
1913 };
1914 
1915 static void xive_debugfs_init(struct kvmppc_xive *xive)
1916 {
1917 	char *name;
1918 
1919 	name = kasprintf(GFP_KERNEL, "kvm-xive-%p", xive);
1920 	if (!name) {
1921 		pr_err("%s: no memory for name\n", __func__);
1922 		return;
1923 	}
1924 
1925 	xive->dentry = debugfs_create_file(name, S_IRUGO, powerpc_debugfs_root,
1926 					   xive, &xive_debug_fops);
1927 
1928 	pr_debug("%s: created %s\n", __func__, name);
1929 	kfree(name);
1930 }
1931 
1932 static void kvmppc_xive_init(struct kvm_device *dev)
1933 {
1934 	struct kvmppc_xive *xive = (struct kvmppc_xive *)dev->private;
1935 
1936 	/* Register some debug interfaces */
1937 	xive_debugfs_init(xive);
1938 }
1939 
1940 struct kvm_device_ops kvm_xive_ops = {
1941 	.name = "kvm-xive",
1942 	.create = kvmppc_xive_create,
1943 	.init = kvmppc_xive_init,
1944 	.destroy = kvmppc_xive_free,
1945 	.set_attr = xive_set_attr,
1946 	.get_attr = xive_get_attr,
1947 	.has_attr = xive_has_attr,
1948 };
1949 
1950 void kvmppc_xive_init_module(void)
1951 {
1952 	__xive_vm_h_xirr = xive_vm_h_xirr;
1953 	__xive_vm_h_ipoll = xive_vm_h_ipoll;
1954 	__xive_vm_h_ipi = xive_vm_h_ipi;
1955 	__xive_vm_h_cppr = xive_vm_h_cppr;
1956 	__xive_vm_h_eoi = xive_vm_h_eoi;
1957 }
1958 
1959 void kvmppc_xive_exit_module(void)
1960 {
1961 	__xive_vm_h_xirr = NULL;
1962 	__xive_vm_h_ipoll = NULL;
1963 	__xive_vm_h_ipi = NULL;
1964 	__xive_vm_h_cppr = NULL;
1965 	__xive_vm_h_eoi = NULL;
1966 }
1967