1 /* 2 * Copyright 2017 Benjamin Herrenschmidt, IBM Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License, version 2, as 6 * published by the Free Software Foundation. 7 */ 8 9 #define pr_fmt(fmt) "xive-kvm: " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/kvm_host.h> 13 #include <linux/err.h> 14 #include <linux/gfp.h> 15 #include <linux/spinlock.h> 16 #include <linux/delay.h> 17 #include <linux/percpu.h> 18 #include <linux/cpumask.h> 19 #include <linux/uaccess.h> 20 #include <asm/kvm_book3s.h> 21 #include <asm/kvm_ppc.h> 22 #include <asm/hvcall.h> 23 #include <asm/xics.h> 24 #include <asm/xive.h> 25 #include <asm/xive-regs.h> 26 #include <asm/debug.h> 27 #include <asm/debugfs.h> 28 #include <asm/time.h> 29 #include <asm/opal.h> 30 31 #include <linux/debugfs.h> 32 #include <linux/seq_file.h> 33 34 #include "book3s_xive.h" 35 36 37 /* 38 * Virtual mode variants of the hcalls for use on radix/radix 39 * with AIL. They require the VCPU's VP to be "pushed" 40 * 41 * We still instanciate them here because we use some of the 42 * generated utility functions as well in this file. 43 */ 44 #define XIVE_RUNTIME_CHECKS 45 #define X_PFX xive_vm_ 46 #define X_STATIC static 47 #define X_STAT_PFX stat_vm_ 48 #define __x_tima xive_tima 49 #define __x_eoi_page(xd) ((void __iomem *)((xd)->eoi_mmio)) 50 #define __x_trig_page(xd) ((void __iomem *)((xd)->trig_mmio)) 51 #define __x_writeb __raw_writeb 52 #define __x_readw __raw_readw 53 #define __x_readq __raw_readq 54 #define __x_writeq __raw_writeq 55 56 #include "book3s_xive_template.c" 57 58 /* 59 * We leave a gap of a couple of interrupts in the queue to 60 * account for the IPI and additional safety guard. 61 */ 62 #define XIVE_Q_GAP 2 63 64 /* 65 * This is a simple trigger for a generic XIVE IRQ. This must 66 * only be called for interrupts that support a trigger page 67 */ 68 static bool xive_irq_trigger(struct xive_irq_data *xd) 69 { 70 /* This should be only for MSIs */ 71 if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI)) 72 return false; 73 74 /* Those interrupts should always have a trigger page */ 75 if (WARN_ON(!xd->trig_mmio)) 76 return false; 77 78 out_be64(xd->trig_mmio, 0); 79 80 return true; 81 } 82 83 static irqreturn_t xive_esc_irq(int irq, void *data) 84 { 85 struct kvm_vcpu *vcpu = data; 86 87 vcpu->arch.irq_pending = 1; 88 smp_mb(); 89 if (vcpu->arch.ceded) 90 kvmppc_fast_vcpu_kick(vcpu); 91 92 /* Since we have the no-EOI flag, the interrupt is effectively 93 * disabled now. Clearing xive_esc_on means we won't bother 94 * doing so on the next entry. 95 * 96 * This also allows the entry code to know that if a PQ combination 97 * of 10 is observed while xive_esc_on is true, it means the queue 98 * contains an unprocessed escalation interrupt. We don't make use of 99 * that knowledge today but might (see comment in book3s_hv_rmhandler.S) 100 */ 101 vcpu->arch.xive_esc_on = false; 102 103 return IRQ_HANDLED; 104 } 105 106 static int xive_attach_escalation(struct kvm_vcpu *vcpu, u8 prio) 107 { 108 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 109 struct xive_q *q = &xc->queues[prio]; 110 char *name = NULL; 111 int rc; 112 113 /* Already there ? */ 114 if (xc->esc_virq[prio]) 115 return 0; 116 117 /* Hook up the escalation interrupt */ 118 xc->esc_virq[prio] = irq_create_mapping(NULL, q->esc_irq); 119 if (!xc->esc_virq[prio]) { 120 pr_err("Failed to map escalation interrupt for queue %d of VCPU %d\n", 121 prio, xc->server_num); 122 return -EIO; 123 } 124 125 if (xc->xive->single_escalation) 126 name = kasprintf(GFP_KERNEL, "kvm-%d-%d", 127 vcpu->kvm->arch.lpid, xc->server_num); 128 else 129 name = kasprintf(GFP_KERNEL, "kvm-%d-%d-%d", 130 vcpu->kvm->arch.lpid, xc->server_num, prio); 131 if (!name) { 132 pr_err("Failed to allocate escalation irq name for queue %d of VCPU %d\n", 133 prio, xc->server_num); 134 rc = -ENOMEM; 135 goto error; 136 } 137 138 pr_devel("Escalation %s irq %d (prio %d)\n", name, xc->esc_virq[prio], prio); 139 140 rc = request_irq(xc->esc_virq[prio], xive_esc_irq, 141 IRQF_NO_THREAD, name, vcpu); 142 if (rc) { 143 pr_err("Failed to request escalation interrupt for queue %d of VCPU %d\n", 144 prio, xc->server_num); 145 goto error; 146 } 147 xc->esc_virq_names[prio] = name; 148 149 /* In single escalation mode, we grab the ESB MMIO of the 150 * interrupt and mask it. Also populate the VCPU v/raddr 151 * of the ESB page for use by asm entry/exit code. Finally 152 * set the XIVE_IRQ_NO_EOI flag which will prevent the 153 * core code from performing an EOI on the escalation 154 * interrupt, thus leaving it effectively masked after 155 * it fires once. 156 */ 157 if (xc->xive->single_escalation) { 158 struct irq_data *d = irq_get_irq_data(xc->esc_virq[prio]); 159 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 160 161 xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01); 162 vcpu->arch.xive_esc_raddr = xd->eoi_page; 163 vcpu->arch.xive_esc_vaddr = (__force u64)xd->eoi_mmio; 164 xd->flags |= XIVE_IRQ_NO_EOI; 165 } 166 167 return 0; 168 error: 169 irq_dispose_mapping(xc->esc_virq[prio]); 170 xc->esc_virq[prio] = 0; 171 kfree(name); 172 return rc; 173 } 174 175 static int xive_provision_queue(struct kvm_vcpu *vcpu, u8 prio) 176 { 177 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 178 struct kvmppc_xive *xive = xc->xive; 179 struct xive_q *q = &xc->queues[prio]; 180 void *qpage; 181 int rc; 182 183 if (WARN_ON(q->qpage)) 184 return 0; 185 186 /* Allocate the queue and retrieve infos on current node for now */ 187 qpage = (__be32 *)__get_free_pages(GFP_KERNEL, xive->q_page_order); 188 if (!qpage) { 189 pr_err("Failed to allocate queue %d for VCPU %d\n", 190 prio, xc->server_num); 191 return -ENOMEM;; 192 } 193 memset(qpage, 0, 1 << xive->q_order); 194 195 /* 196 * Reconfigure the queue. This will set q->qpage only once the 197 * queue is fully configured. This is a requirement for prio 0 198 * as we will stop doing EOIs for every IPI as soon as we observe 199 * qpage being non-NULL, and instead will only EOI when we receive 200 * corresponding queue 0 entries 201 */ 202 rc = xive_native_configure_queue(xc->vp_id, q, prio, qpage, 203 xive->q_order, true); 204 if (rc) 205 pr_err("Failed to configure queue %d for VCPU %d\n", 206 prio, xc->server_num); 207 return rc; 208 } 209 210 /* Called with kvm_lock held */ 211 static int xive_check_provisioning(struct kvm *kvm, u8 prio) 212 { 213 struct kvmppc_xive *xive = kvm->arch.xive; 214 struct kvm_vcpu *vcpu; 215 int i, rc; 216 217 lockdep_assert_held(&kvm->lock); 218 219 /* Already provisioned ? */ 220 if (xive->qmap & (1 << prio)) 221 return 0; 222 223 pr_devel("Provisioning prio... %d\n", prio); 224 225 /* Provision each VCPU and enable escalations if needed */ 226 kvm_for_each_vcpu(i, vcpu, kvm) { 227 if (!vcpu->arch.xive_vcpu) 228 continue; 229 rc = xive_provision_queue(vcpu, prio); 230 if (rc == 0 && !xive->single_escalation) 231 xive_attach_escalation(vcpu, prio); 232 if (rc) 233 return rc; 234 } 235 236 /* Order previous stores and mark it as provisioned */ 237 mb(); 238 xive->qmap |= (1 << prio); 239 return 0; 240 } 241 242 static void xive_inc_q_pending(struct kvm *kvm, u32 server, u8 prio) 243 { 244 struct kvm_vcpu *vcpu; 245 struct kvmppc_xive_vcpu *xc; 246 struct xive_q *q; 247 248 /* Locate target server */ 249 vcpu = kvmppc_xive_find_server(kvm, server); 250 if (!vcpu) { 251 pr_warn("%s: Can't find server %d\n", __func__, server); 252 return; 253 } 254 xc = vcpu->arch.xive_vcpu; 255 if (WARN_ON(!xc)) 256 return; 257 258 q = &xc->queues[prio]; 259 atomic_inc(&q->pending_count); 260 } 261 262 static int xive_try_pick_queue(struct kvm_vcpu *vcpu, u8 prio) 263 { 264 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 265 struct xive_q *q; 266 u32 max; 267 268 if (WARN_ON(!xc)) 269 return -ENXIO; 270 if (!xc->valid) 271 return -ENXIO; 272 273 q = &xc->queues[prio]; 274 if (WARN_ON(!q->qpage)) 275 return -ENXIO; 276 277 /* Calculate max number of interrupts in that queue. */ 278 max = (q->msk + 1) - XIVE_Q_GAP; 279 return atomic_add_unless(&q->count, 1, max) ? 0 : -EBUSY; 280 } 281 282 static int xive_select_target(struct kvm *kvm, u32 *server, u8 prio) 283 { 284 struct kvm_vcpu *vcpu; 285 int i, rc; 286 287 /* Locate target server */ 288 vcpu = kvmppc_xive_find_server(kvm, *server); 289 if (!vcpu) { 290 pr_devel("Can't find server %d\n", *server); 291 return -EINVAL; 292 } 293 294 pr_devel("Finding irq target on 0x%x/%d...\n", *server, prio); 295 296 /* Try pick it */ 297 rc = xive_try_pick_queue(vcpu, prio); 298 if (rc == 0) 299 return rc; 300 301 pr_devel(" .. failed, looking up candidate...\n"); 302 303 /* Failed, pick another VCPU */ 304 kvm_for_each_vcpu(i, vcpu, kvm) { 305 if (!vcpu->arch.xive_vcpu) 306 continue; 307 rc = xive_try_pick_queue(vcpu, prio); 308 if (rc == 0) { 309 *server = vcpu->arch.xive_vcpu->server_num; 310 pr_devel(" found on 0x%x/%d\n", *server, prio); 311 return rc; 312 } 313 } 314 pr_devel(" no available target !\n"); 315 316 /* No available target ! */ 317 return -EBUSY; 318 } 319 320 static u8 xive_lock_and_mask(struct kvmppc_xive *xive, 321 struct kvmppc_xive_src_block *sb, 322 struct kvmppc_xive_irq_state *state) 323 { 324 struct xive_irq_data *xd; 325 u32 hw_num; 326 u8 old_prio; 327 u64 val; 328 329 /* 330 * Take the lock, set masked, try again if racing 331 * with H_EOI 332 */ 333 for (;;) { 334 arch_spin_lock(&sb->lock); 335 old_prio = state->guest_priority; 336 state->guest_priority = MASKED; 337 mb(); 338 if (!state->in_eoi) 339 break; 340 state->guest_priority = old_prio; 341 arch_spin_unlock(&sb->lock); 342 } 343 344 /* No change ? Bail */ 345 if (old_prio == MASKED) 346 return old_prio; 347 348 /* Get the right irq */ 349 kvmppc_xive_select_irq(state, &hw_num, &xd); 350 351 /* 352 * If the interrupt is marked as needing masking via 353 * firmware, we do it here. Firmware masking however 354 * is "lossy", it won't return the old p and q bits 355 * and won't set the interrupt to a state where it will 356 * record queued ones. If this is an issue we should do 357 * lazy masking instead. 358 * 359 * For now, we work around this in unmask by forcing 360 * an interrupt whenever we unmask a non-LSI via FW 361 * (if ever). 362 */ 363 if (xd->flags & OPAL_XIVE_IRQ_MASK_VIA_FW) { 364 xive_native_configure_irq(hw_num, 365 xive->vp_base + state->act_server, 366 MASKED, state->number); 367 /* set old_p so we can track if an H_EOI was done */ 368 state->old_p = true; 369 state->old_q = false; 370 } else { 371 /* Set PQ to 10, return old P and old Q and remember them */ 372 val = xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_10); 373 state->old_p = !!(val & 2); 374 state->old_q = !!(val & 1); 375 376 /* 377 * Synchronize hardware to sensure the queues are updated 378 * when masking 379 */ 380 xive_native_sync_source(hw_num); 381 } 382 383 return old_prio; 384 } 385 386 static void xive_lock_for_unmask(struct kvmppc_xive_src_block *sb, 387 struct kvmppc_xive_irq_state *state) 388 { 389 /* 390 * Take the lock try again if racing with H_EOI 391 */ 392 for (;;) { 393 arch_spin_lock(&sb->lock); 394 if (!state->in_eoi) 395 break; 396 arch_spin_unlock(&sb->lock); 397 } 398 } 399 400 static void xive_finish_unmask(struct kvmppc_xive *xive, 401 struct kvmppc_xive_src_block *sb, 402 struct kvmppc_xive_irq_state *state, 403 u8 prio) 404 { 405 struct xive_irq_data *xd; 406 u32 hw_num; 407 408 /* If we aren't changing a thing, move on */ 409 if (state->guest_priority != MASKED) 410 goto bail; 411 412 /* Get the right irq */ 413 kvmppc_xive_select_irq(state, &hw_num, &xd); 414 415 /* 416 * See command in xive_lock_and_mask() concerning masking 417 * via firmware. 418 */ 419 if (xd->flags & OPAL_XIVE_IRQ_MASK_VIA_FW) { 420 xive_native_configure_irq(hw_num, 421 xive->vp_base + state->act_server, 422 state->act_priority, state->number); 423 /* If an EOI is needed, do it here */ 424 if (!state->old_p) 425 xive_vm_source_eoi(hw_num, xd); 426 /* If this is not an LSI, force a trigger */ 427 if (!(xd->flags & OPAL_XIVE_IRQ_LSI)) 428 xive_irq_trigger(xd); 429 goto bail; 430 } 431 432 /* Old Q set, set PQ to 11 */ 433 if (state->old_q) 434 xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_11); 435 436 /* 437 * If not old P, then perform an "effective" EOI, 438 * on the source. This will handle the cases where 439 * FW EOI is needed. 440 */ 441 if (!state->old_p) 442 xive_vm_source_eoi(hw_num, xd); 443 444 /* Synchronize ordering and mark unmasked */ 445 mb(); 446 bail: 447 state->guest_priority = prio; 448 } 449 450 /* 451 * Target an interrupt to a given server/prio, this will fallback 452 * to another server if necessary and perform the HW targetting 453 * updates as needed 454 * 455 * NOTE: Must be called with the state lock held 456 */ 457 static int xive_target_interrupt(struct kvm *kvm, 458 struct kvmppc_xive_irq_state *state, 459 u32 server, u8 prio) 460 { 461 struct kvmppc_xive *xive = kvm->arch.xive; 462 u32 hw_num; 463 int rc; 464 465 /* 466 * This will return a tentative server and actual 467 * priority. The count for that new target will have 468 * already been incremented. 469 */ 470 rc = xive_select_target(kvm, &server, prio); 471 472 /* 473 * We failed to find a target ? Not much we can do 474 * at least until we support the GIQ. 475 */ 476 if (rc) 477 return rc; 478 479 /* 480 * Increment the old queue pending count if there 481 * was one so that the old queue count gets adjusted later 482 * when observed to be empty. 483 */ 484 if (state->act_priority != MASKED) 485 xive_inc_q_pending(kvm, 486 state->act_server, 487 state->act_priority); 488 /* 489 * Update state and HW 490 */ 491 state->act_priority = prio; 492 state->act_server = server; 493 494 /* Get the right irq */ 495 kvmppc_xive_select_irq(state, &hw_num, NULL); 496 497 return xive_native_configure_irq(hw_num, 498 xive->vp_base + server, 499 prio, state->number); 500 } 501 502 /* 503 * Targetting rules: In order to avoid losing track of 504 * pending interrupts accross mask and unmask, which would 505 * allow queue overflows, we implement the following rules: 506 * 507 * - Unless it was never enabled (or we run out of capacity) 508 * an interrupt is always targetted at a valid server/queue 509 * pair even when "masked" by the guest. This pair tends to 510 * be the last one used but it can be changed under some 511 * circumstances. That allows us to separate targetting 512 * from masking, we only handle accounting during (re)targetting, 513 * this also allows us to let an interrupt drain into its target 514 * queue after masking, avoiding complex schemes to remove 515 * interrupts out of remote processor queues. 516 * 517 * - When masking, we set PQ to 10 and save the previous value 518 * of P and Q. 519 * 520 * - When unmasking, if saved Q was set, we set PQ to 11 521 * otherwise we leave PQ to the HW state which will be either 522 * 10 if nothing happened or 11 if the interrupt fired while 523 * masked. Effectively we are OR'ing the previous Q into the 524 * HW Q. 525 * 526 * Then if saved P is clear, we do an effective EOI (Q->P->Trigger) 527 * which will unmask the interrupt and shoot a new one if Q was 528 * set. 529 * 530 * Otherwise (saved P is set) we leave PQ unchanged (so 10 or 11, 531 * effectively meaning an H_EOI from the guest is still expected 532 * for that interrupt). 533 * 534 * - If H_EOI occurs while masked, we clear the saved P. 535 * 536 * - When changing target, we account on the new target and 537 * increment a separate "pending" counter on the old one. 538 * This pending counter will be used to decrement the old 539 * target's count when its queue has been observed empty. 540 */ 541 542 int kvmppc_xive_set_xive(struct kvm *kvm, u32 irq, u32 server, 543 u32 priority) 544 { 545 struct kvmppc_xive *xive = kvm->arch.xive; 546 struct kvmppc_xive_src_block *sb; 547 struct kvmppc_xive_irq_state *state; 548 u8 new_act_prio; 549 int rc = 0; 550 u16 idx; 551 552 if (!xive) 553 return -ENODEV; 554 555 pr_devel("set_xive ! irq 0x%x server 0x%x prio %d\n", 556 irq, server, priority); 557 558 /* First, check provisioning of queues */ 559 if (priority != MASKED) 560 rc = xive_check_provisioning(xive->kvm, 561 xive_prio_from_guest(priority)); 562 if (rc) { 563 pr_devel(" provisioning failure %d !\n", rc); 564 return rc; 565 } 566 567 sb = kvmppc_xive_find_source(xive, irq, &idx); 568 if (!sb) 569 return -EINVAL; 570 state = &sb->irq_state[idx]; 571 572 /* 573 * We first handle masking/unmasking since the locking 574 * might need to be retried due to EOIs, we'll handle 575 * targetting changes later. These functions will return 576 * with the SB lock held. 577 * 578 * xive_lock_and_mask() will also set state->guest_priority 579 * but won't otherwise change other fields of the state. 580 * 581 * xive_lock_for_unmask will not actually unmask, this will 582 * be done later by xive_finish_unmask() once the targetting 583 * has been done, so we don't try to unmask an interrupt 584 * that hasn't yet been targetted. 585 */ 586 if (priority == MASKED) 587 xive_lock_and_mask(xive, sb, state); 588 else 589 xive_lock_for_unmask(sb, state); 590 591 592 /* 593 * Then we handle targetting. 594 * 595 * First calculate a new "actual priority" 596 */ 597 new_act_prio = state->act_priority; 598 if (priority != MASKED) 599 new_act_prio = xive_prio_from_guest(priority); 600 601 pr_devel(" new_act_prio=%x act_server=%x act_prio=%x\n", 602 new_act_prio, state->act_server, state->act_priority); 603 604 /* 605 * Then check if we actually need to change anything, 606 * 607 * The condition for re-targetting the interrupt is that 608 * we have a valid new priority (new_act_prio is not 0xff) 609 * and either the server or the priority changed. 610 * 611 * Note: If act_priority was ff and the new priority is 612 * also ff, we don't do anything and leave the interrupt 613 * untargetted. An attempt of doing an int_on on an 614 * untargetted interrupt will fail. If that is a problem 615 * we could initialize interrupts with valid default 616 */ 617 618 if (new_act_prio != MASKED && 619 (state->act_server != server || 620 state->act_priority != new_act_prio)) 621 rc = xive_target_interrupt(kvm, state, server, new_act_prio); 622 623 /* 624 * Perform the final unmasking of the interrupt source 625 * if necessary 626 */ 627 if (priority != MASKED) 628 xive_finish_unmask(xive, sb, state, priority); 629 630 /* 631 * Finally Update saved_priority to match. Only int_on/off 632 * set this field to a different value. 633 */ 634 state->saved_priority = priority; 635 636 arch_spin_unlock(&sb->lock); 637 return rc; 638 } 639 640 int kvmppc_xive_get_xive(struct kvm *kvm, u32 irq, u32 *server, 641 u32 *priority) 642 { 643 struct kvmppc_xive *xive = kvm->arch.xive; 644 struct kvmppc_xive_src_block *sb; 645 struct kvmppc_xive_irq_state *state; 646 u16 idx; 647 648 if (!xive) 649 return -ENODEV; 650 651 sb = kvmppc_xive_find_source(xive, irq, &idx); 652 if (!sb) 653 return -EINVAL; 654 state = &sb->irq_state[idx]; 655 arch_spin_lock(&sb->lock); 656 *server = state->act_server; 657 *priority = state->guest_priority; 658 arch_spin_unlock(&sb->lock); 659 660 return 0; 661 } 662 663 int kvmppc_xive_int_on(struct kvm *kvm, u32 irq) 664 { 665 struct kvmppc_xive *xive = kvm->arch.xive; 666 struct kvmppc_xive_src_block *sb; 667 struct kvmppc_xive_irq_state *state; 668 u16 idx; 669 670 if (!xive) 671 return -ENODEV; 672 673 sb = kvmppc_xive_find_source(xive, irq, &idx); 674 if (!sb) 675 return -EINVAL; 676 state = &sb->irq_state[idx]; 677 678 pr_devel("int_on(irq=0x%x)\n", irq); 679 680 /* 681 * Check if interrupt was not targetted 682 */ 683 if (state->act_priority == MASKED) { 684 pr_devel("int_on on untargetted interrupt\n"); 685 return -EINVAL; 686 } 687 688 /* If saved_priority is 0xff, do nothing */ 689 if (state->saved_priority == MASKED) 690 return 0; 691 692 /* 693 * Lock and unmask it. 694 */ 695 xive_lock_for_unmask(sb, state); 696 xive_finish_unmask(xive, sb, state, state->saved_priority); 697 arch_spin_unlock(&sb->lock); 698 699 return 0; 700 } 701 702 int kvmppc_xive_int_off(struct kvm *kvm, u32 irq) 703 { 704 struct kvmppc_xive *xive = kvm->arch.xive; 705 struct kvmppc_xive_src_block *sb; 706 struct kvmppc_xive_irq_state *state; 707 u16 idx; 708 709 if (!xive) 710 return -ENODEV; 711 712 sb = kvmppc_xive_find_source(xive, irq, &idx); 713 if (!sb) 714 return -EINVAL; 715 state = &sb->irq_state[idx]; 716 717 pr_devel("int_off(irq=0x%x)\n", irq); 718 719 /* 720 * Lock and mask 721 */ 722 state->saved_priority = xive_lock_and_mask(xive, sb, state); 723 arch_spin_unlock(&sb->lock); 724 725 return 0; 726 } 727 728 static bool xive_restore_pending_irq(struct kvmppc_xive *xive, u32 irq) 729 { 730 struct kvmppc_xive_src_block *sb; 731 struct kvmppc_xive_irq_state *state; 732 u16 idx; 733 734 sb = kvmppc_xive_find_source(xive, irq, &idx); 735 if (!sb) 736 return false; 737 state = &sb->irq_state[idx]; 738 if (!state->valid) 739 return false; 740 741 /* 742 * Trigger the IPI. This assumes we never restore a pass-through 743 * interrupt which should be safe enough 744 */ 745 xive_irq_trigger(&state->ipi_data); 746 747 return true; 748 } 749 750 u64 kvmppc_xive_get_icp(struct kvm_vcpu *vcpu) 751 { 752 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 753 754 if (!xc) 755 return 0; 756 757 /* Return the per-cpu state for state saving/migration */ 758 return (u64)xc->cppr << KVM_REG_PPC_ICP_CPPR_SHIFT | 759 (u64)xc->mfrr << KVM_REG_PPC_ICP_MFRR_SHIFT | 760 (u64)0xff << KVM_REG_PPC_ICP_PPRI_SHIFT; 761 } 762 763 int kvmppc_xive_set_icp(struct kvm_vcpu *vcpu, u64 icpval) 764 { 765 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 766 struct kvmppc_xive *xive = vcpu->kvm->arch.xive; 767 u8 cppr, mfrr; 768 u32 xisr; 769 770 if (!xc || !xive) 771 return -ENOENT; 772 773 /* Grab individual state fields. We don't use pending_pri */ 774 cppr = icpval >> KVM_REG_PPC_ICP_CPPR_SHIFT; 775 xisr = (icpval >> KVM_REG_PPC_ICP_XISR_SHIFT) & 776 KVM_REG_PPC_ICP_XISR_MASK; 777 mfrr = icpval >> KVM_REG_PPC_ICP_MFRR_SHIFT; 778 779 pr_devel("set_icp vcpu %d cppr=0x%x mfrr=0x%x xisr=0x%x\n", 780 xc->server_num, cppr, mfrr, xisr); 781 782 /* 783 * We can't update the state of a "pushed" VCPU, but that 784 * shouldn't happen. 785 */ 786 if (WARN_ON(vcpu->arch.xive_pushed)) 787 return -EIO; 788 789 /* Update VCPU HW saved state */ 790 vcpu->arch.xive_saved_state.cppr = cppr; 791 xc->hw_cppr = xc->cppr = cppr; 792 793 /* 794 * Update MFRR state. If it's not 0xff, we mark the VCPU as 795 * having a pending MFRR change, which will re-evaluate the 796 * target. The VCPU will thus potentially get a spurious 797 * interrupt but that's not a big deal. 798 */ 799 xc->mfrr = mfrr; 800 if (mfrr < cppr) 801 xive_irq_trigger(&xc->vp_ipi_data); 802 803 /* 804 * Now saved XIRR is "interesting". It means there's something in 805 * the legacy "1 element" queue... for an IPI we simply ignore it, 806 * as the MFRR restore will handle that. For anything else we need 807 * to force a resend of the source. 808 * However the source may not have been setup yet. If that's the 809 * case, we keep that info and increment a counter in the xive to 810 * tell subsequent xive_set_source() to go look. 811 */ 812 if (xisr > XICS_IPI && !xive_restore_pending_irq(xive, xisr)) { 813 xc->delayed_irq = xisr; 814 xive->delayed_irqs++; 815 pr_devel(" xisr restore delayed\n"); 816 } 817 818 return 0; 819 } 820 821 int kvmppc_xive_set_mapped(struct kvm *kvm, unsigned long guest_irq, 822 struct irq_desc *host_desc) 823 { 824 struct kvmppc_xive *xive = kvm->arch.xive; 825 struct kvmppc_xive_src_block *sb; 826 struct kvmppc_xive_irq_state *state; 827 struct irq_data *host_data = irq_desc_get_irq_data(host_desc); 828 unsigned int host_irq = irq_desc_get_irq(host_desc); 829 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(host_data); 830 u16 idx; 831 u8 prio; 832 int rc; 833 834 if (!xive) 835 return -ENODEV; 836 837 pr_devel("set_mapped girq 0x%lx host HW irq 0x%x...\n",guest_irq, hw_irq); 838 839 sb = kvmppc_xive_find_source(xive, guest_irq, &idx); 840 if (!sb) 841 return -EINVAL; 842 state = &sb->irq_state[idx]; 843 844 /* 845 * Mark the passed-through interrupt as going to a VCPU, 846 * this will prevent further EOIs and similar operations 847 * from the XIVE code. It will also mask the interrupt 848 * to either PQ=10 or 11 state, the latter if the interrupt 849 * is pending. This will allow us to unmask or retrigger it 850 * after routing it to the guest with a simple EOI. 851 * 852 * The "state" argument is a "token", all it needs is to be 853 * non-NULL to switch to passed-through or NULL for the 854 * other way around. We may not yet have an actual VCPU 855 * target here and we don't really care. 856 */ 857 rc = irq_set_vcpu_affinity(host_irq, state); 858 if (rc) { 859 pr_err("Failed to set VCPU affinity for irq %d\n", host_irq); 860 return rc; 861 } 862 863 /* 864 * Mask and read state of IPI. We need to know if its P bit 865 * is set as that means it's potentially already using a 866 * queue entry in the target 867 */ 868 prio = xive_lock_and_mask(xive, sb, state); 869 pr_devel(" old IPI prio %02x P:%d Q:%d\n", prio, 870 state->old_p, state->old_q); 871 872 /* Turn the IPI hard off */ 873 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01); 874 875 /* Grab info about irq */ 876 state->pt_number = hw_irq; 877 state->pt_data = irq_data_get_irq_handler_data(host_data); 878 879 /* 880 * Configure the IRQ to match the existing configuration of 881 * the IPI if it was already targetted. Otherwise this will 882 * mask the interrupt in a lossy way (act_priority is 0xff) 883 * which is fine for a never started interrupt. 884 */ 885 xive_native_configure_irq(hw_irq, 886 xive->vp_base + state->act_server, 887 state->act_priority, state->number); 888 889 /* 890 * We do an EOI to enable the interrupt (and retrigger if needed) 891 * if the guest has the interrupt unmasked and the P bit was *not* 892 * set in the IPI. If it was set, we know a slot may still be in 893 * use in the target queue thus we have to wait for a guest 894 * originated EOI 895 */ 896 if (prio != MASKED && !state->old_p) 897 xive_vm_source_eoi(hw_irq, state->pt_data); 898 899 /* Clear old_p/old_q as they are no longer relevant */ 900 state->old_p = state->old_q = false; 901 902 /* Restore guest prio (unlocks EOI) */ 903 mb(); 904 state->guest_priority = prio; 905 arch_spin_unlock(&sb->lock); 906 907 return 0; 908 } 909 EXPORT_SYMBOL_GPL(kvmppc_xive_set_mapped); 910 911 int kvmppc_xive_clr_mapped(struct kvm *kvm, unsigned long guest_irq, 912 struct irq_desc *host_desc) 913 { 914 struct kvmppc_xive *xive = kvm->arch.xive; 915 struct kvmppc_xive_src_block *sb; 916 struct kvmppc_xive_irq_state *state; 917 unsigned int host_irq = irq_desc_get_irq(host_desc); 918 u16 idx; 919 u8 prio; 920 int rc; 921 922 if (!xive) 923 return -ENODEV; 924 925 pr_devel("clr_mapped girq 0x%lx...\n", guest_irq); 926 927 sb = kvmppc_xive_find_source(xive, guest_irq, &idx); 928 if (!sb) 929 return -EINVAL; 930 state = &sb->irq_state[idx]; 931 932 /* 933 * Mask and read state of IRQ. We need to know if its P bit 934 * is set as that means it's potentially already using a 935 * queue entry in the target 936 */ 937 prio = xive_lock_and_mask(xive, sb, state); 938 pr_devel(" old IRQ prio %02x P:%d Q:%d\n", prio, 939 state->old_p, state->old_q); 940 941 /* 942 * If old_p is set, the interrupt is pending, we switch it to 943 * PQ=11. This will force a resend in the host so the interrupt 944 * isn't lost to whatver host driver may pick it up 945 */ 946 if (state->old_p) 947 xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_11); 948 949 /* Release the passed-through interrupt to the host */ 950 rc = irq_set_vcpu_affinity(host_irq, NULL); 951 if (rc) { 952 pr_err("Failed to clr VCPU affinity for irq %d\n", host_irq); 953 return rc; 954 } 955 956 /* Forget about the IRQ */ 957 state->pt_number = 0; 958 state->pt_data = NULL; 959 960 /* Reconfigure the IPI */ 961 xive_native_configure_irq(state->ipi_number, 962 xive->vp_base + state->act_server, 963 state->act_priority, state->number); 964 965 /* 966 * If old_p is set (we have a queue entry potentially 967 * occupied) or the interrupt is masked, we set the IPI 968 * to PQ=10 state. Otherwise we just re-enable it (PQ=00). 969 */ 970 if (prio == MASKED || state->old_p) 971 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_10); 972 else 973 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_00); 974 975 /* Restore guest prio (unlocks EOI) */ 976 mb(); 977 state->guest_priority = prio; 978 arch_spin_unlock(&sb->lock); 979 980 return 0; 981 } 982 EXPORT_SYMBOL_GPL(kvmppc_xive_clr_mapped); 983 984 static void kvmppc_xive_disable_vcpu_interrupts(struct kvm_vcpu *vcpu) 985 { 986 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 987 struct kvm *kvm = vcpu->kvm; 988 struct kvmppc_xive *xive = kvm->arch.xive; 989 int i, j; 990 991 for (i = 0; i <= xive->max_sbid; i++) { 992 struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; 993 994 if (!sb) 995 continue; 996 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) { 997 struct kvmppc_xive_irq_state *state = &sb->irq_state[j]; 998 999 if (!state->valid) 1000 continue; 1001 if (state->act_priority == MASKED) 1002 continue; 1003 if (state->act_server != xc->server_num) 1004 continue; 1005 1006 /* Clean it up */ 1007 arch_spin_lock(&sb->lock); 1008 state->act_priority = MASKED; 1009 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01); 1010 xive_native_configure_irq(state->ipi_number, 0, MASKED, 0); 1011 if (state->pt_number) { 1012 xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_01); 1013 xive_native_configure_irq(state->pt_number, 0, MASKED, 0); 1014 } 1015 arch_spin_unlock(&sb->lock); 1016 } 1017 } 1018 } 1019 1020 void kvmppc_xive_cleanup_vcpu(struct kvm_vcpu *vcpu) 1021 { 1022 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 1023 struct kvmppc_xive *xive = xc->xive; 1024 int i; 1025 1026 pr_devel("cleanup_vcpu(cpu=%d)\n", xc->server_num); 1027 1028 /* Ensure no interrupt is still routed to that VP */ 1029 xc->valid = false; 1030 kvmppc_xive_disable_vcpu_interrupts(vcpu); 1031 1032 /* Mask the VP IPI */ 1033 xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_01); 1034 1035 /* Disable the VP */ 1036 xive_native_disable_vp(xc->vp_id); 1037 1038 /* Free the queues & associated interrupts */ 1039 for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) { 1040 struct xive_q *q = &xc->queues[i]; 1041 1042 /* Free the escalation irq */ 1043 if (xc->esc_virq[i]) { 1044 free_irq(xc->esc_virq[i], vcpu); 1045 irq_dispose_mapping(xc->esc_virq[i]); 1046 kfree(xc->esc_virq_names[i]); 1047 } 1048 /* Free the queue */ 1049 xive_native_disable_queue(xc->vp_id, q, i); 1050 if (q->qpage) { 1051 free_pages((unsigned long)q->qpage, 1052 xive->q_page_order); 1053 q->qpage = NULL; 1054 } 1055 } 1056 1057 /* Free the IPI */ 1058 if (xc->vp_ipi) { 1059 xive_cleanup_irq_data(&xc->vp_ipi_data); 1060 xive_native_free_irq(xc->vp_ipi); 1061 } 1062 /* Free the VP */ 1063 kfree(xc); 1064 } 1065 1066 int kvmppc_xive_connect_vcpu(struct kvm_device *dev, 1067 struct kvm_vcpu *vcpu, u32 cpu) 1068 { 1069 struct kvmppc_xive *xive = dev->private; 1070 struct kvmppc_xive_vcpu *xc; 1071 int i, r = -EBUSY; 1072 1073 pr_devel("connect_vcpu(cpu=%d)\n", cpu); 1074 1075 if (dev->ops != &kvm_xive_ops) { 1076 pr_devel("Wrong ops !\n"); 1077 return -EPERM; 1078 } 1079 if (xive->kvm != vcpu->kvm) 1080 return -EPERM; 1081 if (vcpu->arch.irq_type) 1082 return -EBUSY; 1083 if (kvmppc_xive_find_server(vcpu->kvm, cpu)) { 1084 pr_devel("Duplicate !\n"); 1085 return -EEXIST; 1086 } 1087 if (cpu >= KVM_MAX_VCPUS) { 1088 pr_devel("Out of bounds !\n"); 1089 return -EINVAL; 1090 } 1091 xc = kzalloc(sizeof(*xc), GFP_KERNEL); 1092 if (!xc) 1093 return -ENOMEM; 1094 1095 /* We need to synchronize with queue provisioning */ 1096 mutex_lock(&vcpu->kvm->lock); 1097 vcpu->arch.xive_vcpu = xc; 1098 xc->xive = xive; 1099 xc->vcpu = vcpu; 1100 xc->server_num = cpu; 1101 xc->vp_id = xive->vp_base + cpu; 1102 xc->mfrr = 0xff; 1103 xc->valid = true; 1104 1105 r = xive_native_get_vp_info(xc->vp_id, &xc->vp_cam, &xc->vp_chip_id); 1106 if (r) 1107 goto bail; 1108 1109 /* Configure VCPU fields for use by assembly push/pull */ 1110 vcpu->arch.xive_saved_state.w01 = cpu_to_be64(0xff000000); 1111 vcpu->arch.xive_cam_word = cpu_to_be32(xc->vp_cam | TM_QW1W2_VO); 1112 1113 /* Allocate IPI */ 1114 xc->vp_ipi = xive_native_alloc_irq(); 1115 if (!xc->vp_ipi) { 1116 pr_err("Failed to allocate xive irq for VCPU IPI\n"); 1117 r = -EIO; 1118 goto bail; 1119 } 1120 pr_devel(" IPI=0x%x\n", xc->vp_ipi); 1121 1122 r = xive_native_populate_irq_data(xc->vp_ipi, &xc->vp_ipi_data); 1123 if (r) 1124 goto bail; 1125 1126 /* 1127 * Enable the VP first as the single escalation mode will 1128 * affect escalation interrupts numbering 1129 */ 1130 r = xive_native_enable_vp(xc->vp_id, xive->single_escalation); 1131 if (r) { 1132 pr_err("Failed to enable VP in OPAL, err %d\n", r); 1133 goto bail; 1134 } 1135 1136 /* 1137 * Initialize queues. Initially we set them all for no queueing 1138 * and we enable escalation for queue 0 only which we'll use for 1139 * our mfrr change notifications. If the VCPU is hot-plugged, we 1140 * do handle provisioning however based on the existing "map" 1141 * of enabled queues. 1142 */ 1143 for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) { 1144 struct xive_q *q = &xc->queues[i]; 1145 1146 /* Single escalation, no queue 7 */ 1147 if (i == 7 && xive->single_escalation) 1148 break; 1149 1150 /* Is queue already enabled ? Provision it */ 1151 if (xive->qmap & (1 << i)) { 1152 r = xive_provision_queue(vcpu, i); 1153 if (r == 0 && !xive->single_escalation) 1154 xive_attach_escalation(vcpu, i); 1155 if (r) 1156 goto bail; 1157 } else { 1158 r = xive_native_configure_queue(xc->vp_id, 1159 q, i, NULL, 0, true); 1160 if (r) { 1161 pr_err("Failed to configure queue %d for VCPU %d\n", 1162 i, cpu); 1163 goto bail; 1164 } 1165 } 1166 } 1167 1168 /* If not done above, attach priority 0 escalation */ 1169 r = xive_attach_escalation(vcpu, 0); 1170 if (r) 1171 goto bail; 1172 1173 /* Route the IPI */ 1174 r = xive_native_configure_irq(xc->vp_ipi, xc->vp_id, 0, XICS_IPI); 1175 if (!r) 1176 xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_00); 1177 1178 bail: 1179 mutex_unlock(&vcpu->kvm->lock); 1180 if (r) { 1181 kvmppc_xive_cleanup_vcpu(vcpu); 1182 return r; 1183 } 1184 1185 vcpu->arch.irq_type = KVMPPC_IRQ_XICS; 1186 return 0; 1187 } 1188 1189 /* 1190 * Scanning of queues before/after migration save 1191 */ 1192 static void xive_pre_save_set_queued(struct kvmppc_xive *xive, u32 irq) 1193 { 1194 struct kvmppc_xive_src_block *sb; 1195 struct kvmppc_xive_irq_state *state; 1196 u16 idx; 1197 1198 sb = kvmppc_xive_find_source(xive, irq, &idx); 1199 if (!sb) 1200 return; 1201 1202 state = &sb->irq_state[idx]; 1203 1204 /* Some sanity checking */ 1205 if (!state->valid) { 1206 pr_err("invalid irq 0x%x in cpu queue!\n", irq); 1207 return; 1208 } 1209 1210 /* 1211 * If the interrupt is in a queue it should have P set. 1212 * We warn so that gets reported. A backtrace isn't useful 1213 * so no need to use a WARN_ON. 1214 */ 1215 if (!state->saved_p) 1216 pr_err("Interrupt 0x%x is marked in a queue but P not set !\n", irq); 1217 1218 /* Set flag */ 1219 state->in_queue = true; 1220 } 1221 1222 static void xive_pre_save_mask_irq(struct kvmppc_xive *xive, 1223 struct kvmppc_xive_src_block *sb, 1224 u32 irq) 1225 { 1226 struct kvmppc_xive_irq_state *state = &sb->irq_state[irq]; 1227 1228 if (!state->valid) 1229 return; 1230 1231 /* Mask and save state, this will also sync HW queues */ 1232 state->saved_scan_prio = xive_lock_and_mask(xive, sb, state); 1233 1234 /* Transfer P and Q */ 1235 state->saved_p = state->old_p; 1236 state->saved_q = state->old_q; 1237 1238 /* Unlock */ 1239 arch_spin_unlock(&sb->lock); 1240 } 1241 1242 static void xive_pre_save_unmask_irq(struct kvmppc_xive *xive, 1243 struct kvmppc_xive_src_block *sb, 1244 u32 irq) 1245 { 1246 struct kvmppc_xive_irq_state *state = &sb->irq_state[irq]; 1247 1248 if (!state->valid) 1249 return; 1250 1251 /* 1252 * Lock / exclude EOI (not technically necessary if the 1253 * guest isn't running concurrently. If this becomes a 1254 * performance issue we can probably remove the lock. 1255 */ 1256 xive_lock_for_unmask(sb, state); 1257 1258 /* Restore mask/prio if it wasn't masked */ 1259 if (state->saved_scan_prio != MASKED) 1260 xive_finish_unmask(xive, sb, state, state->saved_scan_prio); 1261 1262 /* Unlock */ 1263 arch_spin_unlock(&sb->lock); 1264 } 1265 1266 static void xive_pre_save_queue(struct kvmppc_xive *xive, struct xive_q *q) 1267 { 1268 u32 idx = q->idx; 1269 u32 toggle = q->toggle; 1270 u32 irq; 1271 1272 do { 1273 irq = __xive_read_eq(q->qpage, q->msk, &idx, &toggle); 1274 if (irq > XICS_IPI) 1275 xive_pre_save_set_queued(xive, irq); 1276 } while(irq); 1277 } 1278 1279 static void xive_pre_save_scan(struct kvmppc_xive *xive) 1280 { 1281 struct kvm_vcpu *vcpu = NULL; 1282 int i, j; 1283 1284 /* 1285 * See comment in xive_get_source() about how this 1286 * work. Collect a stable state for all interrupts 1287 */ 1288 for (i = 0; i <= xive->max_sbid; i++) { 1289 struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; 1290 if (!sb) 1291 continue; 1292 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) 1293 xive_pre_save_mask_irq(xive, sb, j); 1294 } 1295 1296 /* Then scan the queues and update the "in_queue" flag */ 1297 kvm_for_each_vcpu(i, vcpu, xive->kvm) { 1298 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 1299 if (!xc) 1300 continue; 1301 for (j = 0; j < KVMPPC_XIVE_Q_COUNT; j++) { 1302 if (xc->queues[j].qpage) 1303 xive_pre_save_queue(xive, &xc->queues[j]); 1304 } 1305 } 1306 1307 /* Finally restore interrupt states */ 1308 for (i = 0; i <= xive->max_sbid; i++) { 1309 struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; 1310 if (!sb) 1311 continue; 1312 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) 1313 xive_pre_save_unmask_irq(xive, sb, j); 1314 } 1315 } 1316 1317 static void xive_post_save_scan(struct kvmppc_xive *xive) 1318 { 1319 u32 i, j; 1320 1321 /* Clear all the in_queue flags */ 1322 for (i = 0; i <= xive->max_sbid; i++) { 1323 struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; 1324 if (!sb) 1325 continue; 1326 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) 1327 sb->irq_state[j].in_queue = false; 1328 } 1329 1330 /* Next get_source() will do a new scan */ 1331 xive->saved_src_count = 0; 1332 } 1333 1334 /* 1335 * This returns the source configuration and state to user space. 1336 */ 1337 static int xive_get_source(struct kvmppc_xive *xive, long irq, u64 addr) 1338 { 1339 struct kvmppc_xive_src_block *sb; 1340 struct kvmppc_xive_irq_state *state; 1341 u64 __user *ubufp = (u64 __user *) addr; 1342 u64 val, prio; 1343 u16 idx; 1344 1345 sb = kvmppc_xive_find_source(xive, irq, &idx); 1346 if (!sb) 1347 return -ENOENT; 1348 1349 state = &sb->irq_state[idx]; 1350 1351 if (!state->valid) 1352 return -ENOENT; 1353 1354 pr_devel("get_source(%ld)...\n", irq); 1355 1356 /* 1357 * So to properly save the state into something that looks like a 1358 * XICS migration stream we cannot treat interrupts individually. 1359 * 1360 * We need, instead, mask them all (& save their previous PQ state) 1361 * to get a stable state in the HW, then sync them to ensure that 1362 * any interrupt that had already fired hits its queue, and finally 1363 * scan all the queues to collect which interrupts are still present 1364 * in the queues, so we can set the "pending" flag on them and 1365 * they can be resent on restore. 1366 * 1367 * So we do it all when the "first" interrupt gets saved, all the 1368 * state is collected at that point, the rest of xive_get_source() 1369 * will merely collect and convert that state to the expected 1370 * userspace bit mask. 1371 */ 1372 if (xive->saved_src_count == 0) 1373 xive_pre_save_scan(xive); 1374 xive->saved_src_count++; 1375 1376 /* Convert saved state into something compatible with xics */ 1377 val = state->act_server; 1378 prio = state->saved_scan_prio; 1379 1380 if (prio == MASKED) { 1381 val |= KVM_XICS_MASKED; 1382 prio = state->saved_priority; 1383 } 1384 val |= prio << KVM_XICS_PRIORITY_SHIFT; 1385 if (state->lsi) { 1386 val |= KVM_XICS_LEVEL_SENSITIVE; 1387 if (state->saved_p) 1388 val |= KVM_XICS_PENDING; 1389 } else { 1390 if (state->saved_p) 1391 val |= KVM_XICS_PRESENTED; 1392 1393 if (state->saved_q) 1394 val |= KVM_XICS_QUEUED; 1395 1396 /* 1397 * We mark it pending (which will attempt a re-delivery) 1398 * if we are in a queue *or* we were masked and had 1399 * Q set which is equivalent to the XICS "masked pending" 1400 * state 1401 */ 1402 if (state->in_queue || (prio == MASKED && state->saved_q)) 1403 val |= KVM_XICS_PENDING; 1404 } 1405 1406 /* 1407 * If that was the last interrupt saved, reset the 1408 * in_queue flags 1409 */ 1410 if (xive->saved_src_count == xive->src_count) 1411 xive_post_save_scan(xive); 1412 1413 /* Copy the result to userspace */ 1414 if (put_user(val, ubufp)) 1415 return -EFAULT; 1416 1417 return 0; 1418 } 1419 1420 static struct kvmppc_xive_src_block *xive_create_src_block(struct kvmppc_xive *xive, 1421 int irq) 1422 { 1423 struct kvm *kvm = xive->kvm; 1424 struct kvmppc_xive_src_block *sb; 1425 int i, bid; 1426 1427 bid = irq >> KVMPPC_XICS_ICS_SHIFT; 1428 1429 mutex_lock(&kvm->lock); 1430 1431 /* block already exists - somebody else got here first */ 1432 if (xive->src_blocks[bid]) 1433 goto out; 1434 1435 /* Create the ICS */ 1436 sb = kzalloc(sizeof(*sb), GFP_KERNEL); 1437 if (!sb) 1438 goto out; 1439 1440 sb->id = bid; 1441 1442 for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) { 1443 sb->irq_state[i].number = (bid << KVMPPC_XICS_ICS_SHIFT) | i; 1444 sb->irq_state[i].guest_priority = MASKED; 1445 sb->irq_state[i].saved_priority = MASKED; 1446 sb->irq_state[i].act_priority = MASKED; 1447 } 1448 smp_wmb(); 1449 xive->src_blocks[bid] = sb; 1450 1451 if (bid > xive->max_sbid) 1452 xive->max_sbid = bid; 1453 1454 out: 1455 mutex_unlock(&kvm->lock); 1456 return xive->src_blocks[bid]; 1457 } 1458 1459 static bool xive_check_delayed_irq(struct kvmppc_xive *xive, u32 irq) 1460 { 1461 struct kvm *kvm = xive->kvm; 1462 struct kvm_vcpu *vcpu = NULL; 1463 int i; 1464 1465 kvm_for_each_vcpu(i, vcpu, kvm) { 1466 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 1467 1468 if (!xc) 1469 continue; 1470 1471 if (xc->delayed_irq == irq) { 1472 xc->delayed_irq = 0; 1473 xive->delayed_irqs--; 1474 return true; 1475 } 1476 } 1477 return false; 1478 } 1479 1480 static int xive_set_source(struct kvmppc_xive *xive, long irq, u64 addr) 1481 { 1482 struct kvmppc_xive_src_block *sb; 1483 struct kvmppc_xive_irq_state *state; 1484 u64 __user *ubufp = (u64 __user *) addr; 1485 u16 idx; 1486 u64 val; 1487 u8 act_prio, guest_prio; 1488 u32 server; 1489 int rc = 0; 1490 1491 if (irq < KVMPPC_XICS_FIRST_IRQ || irq >= KVMPPC_XICS_NR_IRQS) 1492 return -ENOENT; 1493 1494 pr_devel("set_source(irq=0x%lx)\n", irq); 1495 1496 /* Find the source */ 1497 sb = kvmppc_xive_find_source(xive, irq, &idx); 1498 if (!sb) { 1499 pr_devel("No source, creating source block...\n"); 1500 sb = xive_create_src_block(xive, irq); 1501 if (!sb) { 1502 pr_devel("Failed to create block...\n"); 1503 return -ENOMEM; 1504 } 1505 } 1506 state = &sb->irq_state[idx]; 1507 1508 /* Read user passed data */ 1509 if (get_user(val, ubufp)) { 1510 pr_devel("fault getting user info !\n"); 1511 return -EFAULT; 1512 } 1513 1514 server = val & KVM_XICS_DESTINATION_MASK; 1515 guest_prio = val >> KVM_XICS_PRIORITY_SHIFT; 1516 1517 pr_devel(" val=0x016%llx (server=0x%x, guest_prio=%d)\n", 1518 val, server, guest_prio); 1519 1520 /* 1521 * If the source doesn't already have an IPI, allocate 1522 * one and get the corresponding data 1523 */ 1524 if (!state->ipi_number) { 1525 state->ipi_number = xive_native_alloc_irq(); 1526 if (state->ipi_number == 0) { 1527 pr_devel("Failed to allocate IPI !\n"); 1528 return -ENOMEM; 1529 } 1530 xive_native_populate_irq_data(state->ipi_number, &state->ipi_data); 1531 pr_devel(" src_ipi=0x%x\n", state->ipi_number); 1532 } 1533 1534 /* 1535 * We use lock_and_mask() to set us in the right masked 1536 * state. We will override that state from the saved state 1537 * further down, but this will handle the cases of interrupts 1538 * that need FW masking. We set the initial guest_priority to 1539 * 0 before calling it to ensure it actually performs the masking. 1540 */ 1541 state->guest_priority = 0; 1542 xive_lock_and_mask(xive, sb, state); 1543 1544 /* 1545 * Now, we select a target if we have one. If we don't we 1546 * leave the interrupt untargetted. It means that an interrupt 1547 * can become "untargetted" accross migration if it was masked 1548 * by set_xive() but there is little we can do about it. 1549 */ 1550 1551 /* First convert prio and mark interrupt as untargetted */ 1552 act_prio = xive_prio_from_guest(guest_prio); 1553 state->act_priority = MASKED; 1554 1555 /* 1556 * We need to drop the lock due to the mutex below. Hopefully 1557 * nothing is touching that interrupt yet since it hasn't been 1558 * advertized to a running guest yet 1559 */ 1560 arch_spin_unlock(&sb->lock); 1561 1562 /* If we have a priority target the interrupt */ 1563 if (act_prio != MASKED) { 1564 /* First, check provisioning of queues */ 1565 mutex_lock(&xive->kvm->lock); 1566 rc = xive_check_provisioning(xive->kvm, act_prio); 1567 mutex_unlock(&xive->kvm->lock); 1568 1569 /* Target interrupt */ 1570 if (rc == 0) 1571 rc = xive_target_interrupt(xive->kvm, state, 1572 server, act_prio); 1573 /* 1574 * If provisioning or targetting failed, leave it 1575 * alone and masked. It will remain disabled until 1576 * the guest re-targets it. 1577 */ 1578 } 1579 1580 /* 1581 * Find out if this was a delayed irq stashed in an ICP, 1582 * in which case, treat it as pending 1583 */ 1584 if (xive->delayed_irqs && xive_check_delayed_irq(xive, irq)) { 1585 val |= KVM_XICS_PENDING; 1586 pr_devel(" Found delayed ! forcing PENDING !\n"); 1587 } 1588 1589 /* Cleanup the SW state */ 1590 state->old_p = false; 1591 state->old_q = false; 1592 state->lsi = false; 1593 state->asserted = false; 1594 1595 /* Restore LSI state */ 1596 if (val & KVM_XICS_LEVEL_SENSITIVE) { 1597 state->lsi = true; 1598 if (val & KVM_XICS_PENDING) 1599 state->asserted = true; 1600 pr_devel(" LSI ! Asserted=%d\n", state->asserted); 1601 } 1602 1603 /* 1604 * Restore P and Q. If the interrupt was pending, we 1605 * force Q and !P, which will trigger a resend. 1606 * 1607 * That means that a guest that had both an interrupt 1608 * pending (queued) and Q set will restore with only 1609 * one instance of that interrupt instead of 2, but that 1610 * is perfectly fine as coalescing interrupts that haven't 1611 * been presented yet is always allowed. 1612 */ 1613 if (val & KVM_XICS_PRESENTED && !(val & KVM_XICS_PENDING)) 1614 state->old_p = true; 1615 if (val & KVM_XICS_QUEUED || val & KVM_XICS_PENDING) 1616 state->old_q = true; 1617 1618 pr_devel(" P=%d, Q=%d\n", state->old_p, state->old_q); 1619 1620 /* 1621 * If the interrupt was unmasked, update guest priority and 1622 * perform the appropriate state transition and do a 1623 * re-trigger if necessary. 1624 */ 1625 if (val & KVM_XICS_MASKED) { 1626 pr_devel(" masked, saving prio\n"); 1627 state->guest_priority = MASKED; 1628 state->saved_priority = guest_prio; 1629 } else { 1630 pr_devel(" unmasked, restoring to prio %d\n", guest_prio); 1631 xive_finish_unmask(xive, sb, state, guest_prio); 1632 state->saved_priority = guest_prio; 1633 } 1634 1635 /* Increment the number of valid sources and mark this one valid */ 1636 if (!state->valid) 1637 xive->src_count++; 1638 state->valid = true; 1639 1640 return 0; 1641 } 1642 1643 int kvmppc_xive_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1644 bool line_status) 1645 { 1646 struct kvmppc_xive *xive = kvm->arch.xive; 1647 struct kvmppc_xive_src_block *sb; 1648 struct kvmppc_xive_irq_state *state; 1649 u16 idx; 1650 1651 if (!xive) 1652 return -ENODEV; 1653 1654 sb = kvmppc_xive_find_source(xive, irq, &idx); 1655 if (!sb) 1656 return -EINVAL; 1657 1658 /* Perform locklessly .... (we need to do some RCUisms here...) */ 1659 state = &sb->irq_state[idx]; 1660 if (!state->valid) 1661 return -EINVAL; 1662 1663 /* We don't allow a trigger on a passed-through interrupt */ 1664 if (state->pt_number) 1665 return -EINVAL; 1666 1667 if ((level == 1 && state->lsi) || level == KVM_INTERRUPT_SET_LEVEL) 1668 state->asserted = 1; 1669 else if (level == 0 || level == KVM_INTERRUPT_UNSET) { 1670 state->asserted = 0; 1671 return 0; 1672 } 1673 1674 /* Trigger the IPI */ 1675 xive_irq_trigger(&state->ipi_data); 1676 1677 return 0; 1678 } 1679 1680 static int xive_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 1681 { 1682 struct kvmppc_xive *xive = dev->private; 1683 1684 /* We honor the existing XICS ioctl */ 1685 switch (attr->group) { 1686 case KVM_DEV_XICS_GRP_SOURCES: 1687 return xive_set_source(xive, attr->attr, attr->addr); 1688 } 1689 return -ENXIO; 1690 } 1691 1692 static int xive_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 1693 { 1694 struct kvmppc_xive *xive = dev->private; 1695 1696 /* We honor the existing XICS ioctl */ 1697 switch (attr->group) { 1698 case KVM_DEV_XICS_GRP_SOURCES: 1699 return xive_get_source(xive, attr->attr, attr->addr); 1700 } 1701 return -ENXIO; 1702 } 1703 1704 static int xive_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 1705 { 1706 /* We honor the same limits as XICS, at least for now */ 1707 switch (attr->group) { 1708 case KVM_DEV_XICS_GRP_SOURCES: 1709 if (attr->attr >= KVMPPC_XICS_FIRST_IRQ && 1710 attr->attr < KVMPPC_XICS_NR_IRQS) 1711 return 0; 1712 break; 1713 } 1714 return -ENXIO; 1715 } 1716 1717 static void kvmppc_xive_cleanup_irq(u32 hw_num, struct xive_irq_data *xd) 1718 { 1719 xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01); 1720 xive_native_configure_irq(hw_num, 0, MASKED, 0); 1721 xive_cleanup_irq_data(xd); 1722 } 1723 1724 static void kvmppc_xive_free_sources(struct kvmppc_xive_src_block *sb) 1725 { 1726 int i; 1727 1728 for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) { 1729 struct kvmppc_xive_irq_state *state = &sb->irq_state[i]; 1730 1731 if (!state->valid) 1732 continue; 1733 1734 kvmppc_xive_cleanup_irq(state->ipi_number, &state->ipi_data); 1735 xive_native_free_irq(state->ipi_number); 1736 1737 /* Pass-through, cleanup too */ 1738 if (state->pt_number) 1739 kvmppc_xive_cleanup_irq(state->pt_number, state->pt_data); 1740 1741 state->valid = false; 1742 } 1743 } 1744 1745 static void kvmppc_xive_free(struct kvm_device *dev) 1746 { 1747 struct kvmppc_xive *xive = dev->private; 1748 struct kvm *kvm = xive->kvm; 1749 int i; 1750 1751 debugfs_remove(xive->dentry); 1752 1753 if (kvm) 1754 kvm->arch.xive = NULL; 1755 1756 /* Mask and free interrupts */ 1757 for (i = 0; i <= xive->max_sbid; i++) { 1758 if (xive->src_blocks[i]) 1759 kvmppc_xive_free_sources(xive->src_blocks[i]); 1760 kfree(xive->src_blocks[i]); 1761 xive->src_blocks[i] = NULL; 1762 } 1763 1764 if (xive->vp_base != XIVE_INVALID_VP) 1765 xive_native_free_vp_block(xive->vp_base); 1766 1767 1768 kfree(xive); 1769 kfree(dev); 1770 } 1771 1772 static int kvmppc_xive_create(struct kvm_device *dev, u32 type) 1773 { 1774 struct kvmppc_xive *xive; 1775 struct kvm *kvm = dev->kvm; 1776 int ret = 0; 1777 1778 pr_devel("Creating xive for partition\n"); 1779 1780 xive = kzalloc(sizeof(*xive), GFP_KERNEL); 1781 if (!xive) 1782 return -ENOMEM; 1783 1784 dev->private = xive; 1785 xive->dev = dev; 1786 xive->kvm = kvm; 1787 1788 /* Already there ? */ 1789 if (kvm->arch.xive) 1790 ret = -EEXIST; 1791 else 1792 kvm->arch.xive = xive; 1793 1794 /* We use the default queue size set by the host */ 1795 xive->q_order = xive_native_default_eq_shift(); 1796 if (xive->q_order < PAGE_SHIFT) 1797 xive->q_page_order = 0; 1798 else 1799 xive->q_page_order = xive->q_order - PAGE_SHIFT; 1800 1801 /* Allocate a bunch of VPs */ 1802 xive->vp_base = xive_native_alloc_vp_block(KVM_MAX_VCPUS); 1803 pr_devel("VP_Base=%x\n", xive->vp_base); 1804 1805 if (xive->vp_base == XIVE_INVALID_VP) 1806 ret = -ENOMEM; 1807 1808 xive->single_escalation = xive_native_has_single_escalation(); 1809 1810 if (ret) { 1811 kfree(xive); 1812 return ret; 1813 } 1814 1815 return 0; 1816 } 1817 1818 1819 static int xive_debug_show(struct seq_file *m, void *private) 1820 { 1821 struct kvmppc_xive *xive = m->private; 1822 struct kvm *kvm = xive->kvm; 1823 struct kvm_vcpu *vcpu; 1824 u64 t_rm_h_xirr = 0; 1825 u64 t_rm_h_ipoll = 0; 1826 u64 t_rm_h_cppr = 0; 1827 u64 t_rm_h_eoi = 0; 1828 u64 t_rm_h_ipi = 0; 1829 u64 t_vm_h_xirr = 0; 1830 u64 t_vm_h_ipoll = 0; 1831 u64 t_vm_h_cppr = 0; 1832 u64 t_vm_h_eoi = 0; 1833 u64 t_vm_h_ipi = 0; 1834 unsigned int i; 1835 1836 if (!kvm) 1837 return 0; 1838 1839 seq_printf(m, "=========\nVCPU state\n=========\n"); 1840 1841 kvm_for_each_vcpu(i, vcpu, kvm) { 1842 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 1843 unsigned int i; 1844 1845 if (!xc) 1846 continue; 1847 1848 seq_printf(m, "cpu server %#x CPPR:%#x HWCPPR:%#x" 1849 " MFRR:%#x PEND:%#x h_xirr: R=%lld V=%lld\n", 1850 xc->server_num, xc->cppr, xc->hw_cppr, 1851 xc->mfrr, xc->pending, 1852 xc->stat_rm_h_xirr, xc->stat_vm_h_xirr); 1853 for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) { 1854 struct xive_q *q = &xc->queues[i]; 1855 u32 i0, i1, idx; 1856 1857 if (!q->qpage && !xc->esc_virq[i]) 1858 continue; 1859 1860 seq_printf(m, " [q%d]: ", i); 1861 1862 if (q->qpage) { 1863 idx = q->idx; 1864 i0 = be32_to_cpup(q->qpage + idx); 1865 idx = (idx + 1) & q->msk; 1866 i1 = be32_to_cpup(q->qpage + idx); 1867 seq_printf(m, "T=%d %08x %08x... \n", q->toggle, i0, i1); 1868 } 1869 if (xc->esc_virq[i]) { 1870 struct irq_data *d = irq_get_irq_data(xc->esc_virq[i]); 1871 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 1872 u64 pq = xive_vm_esb_load(xd, XIVE_ESB_GET); 1873 seq_printf(m, "E:%c%c I(%d:%llx:%llx)", 1874 (pq & XIVE_ESB_VAL_P) ? 'P' : 'p', 1875 (pq & XIVE_ESB_VAL_Q) ? 'Q' : 'q', 1876 xc->esc_virq[i], pq, xd->eoi_page); 1877 seq_printf(m, "\n"); 1878 } 1879 } 1880 1881 t_rm_h_xirr += xc->stat_rm_h_xirr; 1882 t_rm_h_ipoll += xc->stat_rm_h_ipoll; 1883 t_rm_h_cppr += xc->stat_rm_h_cppr; 1884 t_rm_h_eoi += xc->stat_rm_h_eoi; 1885 t_rm_h_ipi += xc->stat_rm_h_ipi; 1886 t_vm_h_xirr += xc->stat_vm_h_xirr; 1887 t_vm_h_ipoll += xc->stat_vm_h_ipoll; 1888 t_vm_h_cppr += xc->stat_vm_h_cppr; 1889 t_vm_h_eoi += xc->stat_vm_h_eoi; 1890 t_vm_h_ipi += xc->stat_vm_h_ipi; 1891 } 1892 1893 seq_printf(m, "Hcalls totals\n"); 1894 seq_printf(m, " H_XIRR R=%10lld V=%10lld\n", t_rm_h_xirr, t_vm_h_xirr); 1895 seq_printf(m, " H_IPOLL R=%10lld V=%10lld\n", t_rm_h_ipoll, t_vm_h_ipoll); 1896 seq_printf(m, " H_CPPR R=%10lld V=%10lld\n", t_rm_h_cppr, t_vm_h_cppr); 1897 seq_printf(m, " H_EOI R=%10lld V=%10lld\n", t_rm_h_eoi, t_vm_h_eoi); 1898 seq_printf(m, " H_IPI R=%10lld V=%10lld\n", t_rm_h_ipi, t_vm_h_ipi); 1899 1900 return 0; 1901 } 1902 1903 static int xive_debug_open(struct inode *inode, struct file *file) 1904 { 1905 return single_open(file, xive_debug_show, inode->i_private); 1906 } 1907 1908 static const struct file_operations xive_debug_fops = { 1909 .open = xive_debug_open, 1910 .read = seq_read, 1911 .llseek = seq_lseek, 1912 .release = single_release, 1913 }; 1914 1915 static void xive_debugfs_init(struct kvmppc_xive *xive) 1916 { 1917 char *name; 1918 1919 name = kasprintf(GFP_KERNEL, "kvm-xive-%p", xive); 1920 if (!name) { 1921 pr_err("%s: no memory for name\n", __func__); 1922 return; 1923 } 1924 1925 xive->dentry = debugfs_create_file(name, S_IRUGO, powerpc_debugfs_root, 1926 xive, &xive_debug_fops); 1927 1928 pr_debug("%s: created %s\n", __func__, name); 1929 kfree(name); 1930 } 1931 1932 static void kvmppc_xive_init(struct kvm_device *dev) 1933 { 1934 struct kvmppc_xive *xive = (struct kvmppc_xive *)dev->private; 1935 1936 /* Register some debug interfaces */ 1937 xive_debugfs_init(xive); 1938 } 1939 1940 struct kvm_device_ops kvm_xive_ops = { 1941 .name = "kvm-xive", 1942 .create = kvmppc_xive_create, 1943 .init = kvmppc_xive_init, 1944 .destroy = kvmppc_xive_free, 1945 .set_attr = xive_set_attr, 1946 .get_attr = xive_get_attr, 1947 .has_attr = xive_has_attr, 1948 }; 1949 1950 void kvmppc_xive_init_module(void) 1951 { 1952 __xive_vm_h_xirr = xive_vm_h_xirr; 1953 __xive_vm_h_ipoll = xive_vm_h_ipoll; 1954 __xive_vm_h_ipi = xive_vm_h_ipi; 1955 __xive_vm_h_cppr = xive_vm_h_cppr; 1956 __xive_vm_h_eoi = xive_vm_h_eoi; 1957 } 1958 1959 void kvmppc_xive_exit_module(void) 1960 { 1961 __xive_vm_h_xirr = NULL; 1962 __xive_vm_h_ipoll = NULL; 1963 __xive_vm_h_ipi = NULL; 1964 __xive_vm_h_cppr = NULL; 1965 __xive_vm_h_eoi = NULL; 1966 } 1967