1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2017 Benjamin Herrenschmidt, IBM Corporation. 4 */ 5 6 #define pr_fmt(fmt) "xive-kvm: " fmt 7 8 #include <linux/kernel.h> 9 #include <linux/kvm_host.h> 10 #include <linux/err.h> 11 #include <linux/gfp.h> 12 #include <linux/spinlock.h> 13 #include <linux/delay.h> 14 #include <linux/percpu.h> 15 #include <linux/cpumask.h> 16 #include <linux/uaccess.h> 17 #include <linux/irqdomain.h> 18 #include <asm/kvm_book3s.h> 19 #include <asm/kvm_ppc.h> 20 #include <asm/hvcall.h> 21 #include <asm/xics.h> 22 #include <asm/xive.h> 23 #include <asm/xive-regs.h> 24 #include <asm/debug.h> 25 #include <asm/time.h> 26 #include <asm/opal.h> 27 28 #include <linux/debugfs.h> 29 #include <linux/seq_file.h> 30 31 #include "book3s_xive.h" 32 33 #define __x_eoi_page(xd) ((void __iomem *)((xd)->eoi_mmio)) 34 #define __x_trig_page(xd) ((void __iomem *)((xd)->trig_mmio)) 35 36 /* Dummy interrupt used when taking interrupts out of a queue in H_CPPR */ 37 #define XICS_DUMMY 1 38 39 static void xive_vm_ack_pending(struct kvmppc_xive_vcpu *xc) 40 { 41 u8 cppr; 42 u16 ack; 43 44 /* 45 * Ensure any previous store to CPPR is ordered vs. 46 * the subsequent loads from PIPR or ACK. 47 */ 48 eieio(); 49 50 /* Perform the acknowledge OS to register cycle. */ 51 ack = be16_to_cpu(__raw_readw(xive_tima + TM_SPC_ACK_OS_REG)); 52 53 /* Synchronize subsequent queue accesses */ 54 mb(); 55 56 /* XXX Check grouping level */ 57 58 /* Anything ? */ 59 if (!((ack >> 8) & TM_QW1_NSR_EO)) 60 return; 61 62 /* Grab CPPR of the most favored pending interrupt */ 63 cppr = ack & 0xff; 64 if (cppr < 8) 65 xc->pending |= 1 << cppr; 66 67 /* Check consistency */ 68 if (cppr >= xc->hw_cppr) 69 pr_warn("KVM-XIVE: CPU %d odd ack CPPR, got %d at %d\n", 70 smp_processor_id(), cppr, xc->hw_cppr); 71 72 /* 73 * Update our image of the HW CPPR. We don't yet modify 74 * xc->cppr, this will be done as we scan for interrupts 75 * in the queues. 76 */ 77 xc->hw_cppr = cppr; 78 } 79 80 static u8 xive_vm_esb_load(struct xive_irq_data *xd, u32 offset) 81 { 82 u64 val; 83 84 if (offset == XIVE_ESB_SET_PQ_10 && xd->flags & XIVE_IRQ_FLAG_STORE_EOI) 85 offset |= XIVE_ESB_LD_ST_MO; 86 87 val = __raw_readq(__x_eoi_page(xd) + offset); 88 #ifdef __LITTLE_ENDIAN__ 89 val >>= 64-8; 90 #endif 91 return (u8)val; 92 } 93 94 95 static void xive_vm_source_eoi(u32 hw_irq, struct xive_irq_data *xd) 96 { 97 /* If the XIVE supports the new "store EOI facility, use it */ 98 if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI) 99 __raw_writeq(0, __x_eoi_page(xd) + XIVE_ESB_STORE_EOI); 100 else if (xd->flags & XIVE_IRQ_FLAG_LSI) { 101 /* 102 * For LSIs the HW EOI cycle is used rather than PQ bits, 103 * as they are automatically re-triggred in HW when still 104 * pending. 105 */ 106 __raw_readq(__x_eoi_page(xd) + XIVE_ESB_LOAD_EOI); 107 } else { 108 uint64_t eoi_val; 109 110 /* 111 * Otherwise for EOI, we use the special MMIO that does 112 * a clear of both P and Q and returns the old Q, 113 * except for LSIs where we use the "EOI cycle" special 114 * load. 115 * 116 * This allows us to then do a re-trigger if Q was set 117 * rather than synthetizing an interrupt in software 118 */ 119 eoi_val = xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_00); 120 121 /* Re-trigger if needed */ 122 if ((eoi_val & 1) && __x_trig_page(xd)) 123 __raw_writeq(0, __x_trig_page(xd)); 124 } 125 } 126 127 enum { 128 scan_fetch, 129 scan_poll, 130 scan_eoi, 131 }; 132 133 static u32 xive_vm_scan_interrupts(struct kvmppc_xive_vcpu *xc, 134 u8 pending, int scan_type) 135 { 136 u32 hirq = 0; 137 u8 prio = 0xff; 138 139 /* Find highest pending priority */ 140 while ((xc->mfrr != 0xff || pending != 0) && hirq == 0) { 141 struct xive_q *q; 142 u32 idx, toggle; 143 __be32 *qpage; 144 145 /* 146 * If pending is 0 this will return 0xff which is what 147 * we want 148 */ 149 prio = ffs(pending) - 1; 150 151 /* Don't scan past the guest cppr */ 152 if (prio >= xc->cppr || prio > 7) { 153 if (xc->mfrr < xc->cppr) { 154 prio = xc->mfrr; 155 hirq = XICS_IPI; 156 } 157 break; 158 } 159 160 /* Grab queue and pointers */ 161 q = &xc->queues[prio]; 162 idx = q->idx; 163 toggle = q->toggle; 164 165 /* 166 * Snapshot the queue page. The test further down for EOI 167 * must use the same "copy" that was used by __xive_read_eq 168 * since qpage can be set concurrently and we don't want 169 * to miss an EOI. 170 */ 171 qpage = READ_ONCE(q->qpage); 172 173 skip_ipi: 174 /* 175 * Try to fetch from the queue. Will return 0 for a 176 * non-queueing priority (ie, qpage = 0). 177 */ 178 hirq = __xive_read_eq(qpage, q->msk, &idx, &toggle); 179 180 /* 181 * If this was a signal for an MFFR change done by 182 * H_IPI we skip it. Additionally, if we were fetching 183 * we EOI it now, thus re-enabling reception of a new 184 * such signal. 185 * 186 * We also need to do that if prio is 0 and we had no 187 * page for the queue. In this case, we have non-queued 188 * IPI that needs to be EOId. 189 * 190 * This is safe because if we have another pending MFRR 191 * change that wasn't observed above, the Q bit will have 192 * been set and another occurrence of the IPI will trigger. 193 */ 194 if (hirq == XICS_IPI || (prio == 0 && !qpage)) { 195 if (scan_type == scan_fetch) { 196 xive_vm_source_eoi(xc->vp_ipi, 197 &xc->vp_ipi_data); 198 q->idx = idx; 199 q->toggle = toggle; 200 } 201 /* Loop back on same queue with updated idx/toggle */ 202 WARN_ON(hirq && hirq != XICS_IPI); 203 if (hirq) 204 goto skip_ipi; 205 } 206 207 /* If it's the dummy interrupt, continue searching */ 208 if (hirq == XICS_DUMMY) 209 goto skip_ipi; 210 211 /* Clear the pending bit if the queue is now empty */ 212 if (!hirq) { 213 pending &= ~(1 << prio); 214 215 /* 216 * Check if the queue count needs adjusting due to 217 * interrupts being moved away. 218 */ 219 if (atomic_read(&q->pending_count)) { 220 int p = atomic_xchg(&q->pending_count, 0); 221 222 if (p) { 223 WARN_ON(p > atomic_read(&q->count)); 224 atomic_sub(p, &q->count); 225 } 226 } 227 } 228 229 /* 230 * If the most favoured prio we found pending is less 231 * favored (or equal) than a pending IPI, we return 232 * the IPI instead. 233 */ 234 if (prio >= xc->mfrr && xc->mfrr < xc->cppr) { 235 prio = xc->mfrr; 236 hirq = XICS_IPI; 237 break; 238 } 239 240 /* If fetching, update queue pointers */ 241 if (scan_type == scan_fetch) { 242 q->idx = idx; 243 q->toggle = toggle; 244 } 245 } 246 247 /* If we are just taking a "peek", do nothing else */ 248 if (scan_type == scan_poll) 249 return hirq; 250 251 /* Update the pending bits */ 252 xc->pending = pending; 253 254 /* 255 * If this is an EOI that's it, no CPPR adjustment done here, 256 * all we needed was cleanup the stale pending bits and check 257 * if there's anything left. 258 */ 259 if (scan_type == scan_eoi) 260 return hirq; 261 262 /* 263 * If we found an interrupt, adjust what the guest CPPR should 264 * be as if we had just fetched that interrupt from HW. 265 * 266 * Note: This can only make xc->cppr smaller as the previous 267 * loop will only exit with hirq != 0 if prio is lower than 268 * the current xc->cppr. Thus we don't need to re-check xc->mfrr 269 * for pending IPIs. 270 */ 271 if (hirq) 272 xc->cppr = prio; 273 /* 274 * If it was an IPI the HW CPPR might have been lowered too much 275 * as the HW interrupt we use for IPIs is routed to priority 0. 276 * 277 * We re-sync it here. 278 */ 279 if (xc->cppr != xc->hw_cppr) { 280 xc->hw_cppr = xc->cppr; 281 __raw_writeb(xc->cppr, xive_tima + TM_QW1_OS + TM_CPPR); 282 } 283 284 return hirq; 285 } 286 287 static unsigned long xive_vm_h_xirr(struct kvm_vcpu *vcpu) 288 { 289 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 290 u8 old_cppr; 291 u32 hirq; 292 293 pr_devel("H_XIRR\n"); 294 295 xc->stat_vm_h_xirr++; 296 297 /* First collect pending bits from HW */ 298 xive_vm_ack_pending(xc); 299 300 pr_devel(" new pending=0x%02x hw_cppr=%d cppr=%d\n", 301 xc->pending, xc->hw_cppr, xc->cppr); 302 303 /* Grab previous CPPR and reverse map it */ 304 old_cppr = xive_prio_to_guest(xc->cppr); 305 306 /* Scan for actual interrupts */ 307 hirq = xive_vm_scan_interrupts(xc, xc->pending, scan_fetch); 308 309 pr_devel(" got hirq=0x%x hw_cppr=%d cppr=%d\n", 310 hirq, xc->hw_cppr, xc->cppr); 311 312 /* That should never hit */ 313 if (hirq & 0xff000000) 314 pr_warn("XIVE: Weird guest interrupt number 0x%08x\n", hirq); 315 316 /* 317 * XXX We could check if the interrupt is masked here and 318 * filter it. If we chose to do so, we would need to do: 319 * 320 * if (masked) { 321 * lock(); 322 * if (masked) { 323 * old_Q = true; 324 * hirq = 0; 325 * } 326 * unlock(); 327 * } 328 */ 329 330 /* Return interrupt and old CPPR in GPR4 */ 331 vcpu->arch.regs.gpr[4] = hirq | (old_cppr << 24); 332 333 return H_SUCCESS; 334 } 335 336 static unsigned long xive_vm_h_ipoll(struct kvm_vcpu *vcpu, unsigned long server) 337 { 338 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 339 u8 pending = xc->pending; 340 u32 hirq; 341 342 pr_devel("H_IPOLL(server=%ld)\n", server); 343 344 xc->stat_vm_h_ipoll++; 345 346 /* Grab the target VCPU if not the current one */ 347 if (xc->server_num != server) { 348 vcpu = kvmppc_xive_find_server(vcpu->kvm, server); 349 if (!vcpu) 350 return H_PARAMETER; 351 xc = vcpu->arch.xive_vcpu; 352 353 /* Scan all priorities */ 354 pending = 0xff; 355 } else { 356 /* Grab pending interrupt if any */ 357 __be64 qw1 = __raw_readq(xive_tima + TM_QW1_OS); 358 u8 pipr = be64_to_cpu(qw1) & 0xff; 359 360 if (pipr < 8) 361 pending |= 1 << pipr; 362 } 363 364 hirq = xive_vm_scan_interrupts(xc, pending, scan_poll); 365 366 /* Return interrupt and old CPPR in GPR4 */ 367 vcpu->arch.regs.gpr[4] = hirq | (xc->cppr << 24); 368 369 return H_SUCCESS; 370 } 371 372 static void xive_vm_push_pending_to_hw(struct kvmppc_xive_vcpu *xc) 373 { 374 u8 pending, prio; 375 376 pending = xc->pending; 377 if (xc->mfrr != 0xff) { 378 if (xc->mfrr < 8) 379 pending |= 1 << xc->mfrr; 380 else 381 pending |= 0x80; 382 } 383 if (!pending) 384 return; 385 prio = ffs(pending) - 1; 386 387 __raw_writeb(prio, xive_tima + TM_SPC_SET_OS_PENDING); 388 } 389 390 static void xive_vm_scan_for_rerouted_irqs(struct kvmppc_xive *xive, 391 struct kvmppc_xive_vcpu *xc) 392 { 393 unsigned int prio; 394 395 /* For each priority that is now masked */ 396 for (prio = xc->cppr; prio < KVMPPC_XIVE_Q_COUNT; prio++) { 397 struct xive_q *q = &xc->queues[prio]; 398 struct kvmppc_xive_irq_state *state; 399 struct kvmppc_xive_src_block *sb; 400 u32 idx, toggle, entry, irq, hw_num; 401 struct xive_irq_data *xd; 402 __be32 *qpage; 403 u16 src; 404 405 idx = q->idx; 406 toggle = q->toggle; 407 qpage = READ_ONCE(q->qpage); 408 if (!qpage) 409 continue; 410 411 /* For each interrupt in the queue */ 412 for (;;) { 413 entry = be32_to_cpup(qpage + idx); 414 415 /* No more ? */ 416 if ((entry >> 31) == toggle) 417 break; 418 irq = entry & 0x7fffffff; 419 420 /* Skip dummies and IPIs */ 421 if (irq == XICS_DUMMY || irq == XICS_IPI) 422 goto next; 423 sb = kvmppc_xive_find_source(xive, irq, &src); 424 if (!sb) 425 goto next; 426 state = &sb->irq_state[src]; 427 428 /* Has it been rerouted ? */ 429 if (xc->server_num == state->act_server) 430 goto next; 431 432 /* 433 * Allright, it *has* been re-routed, kill it from 434 * the queue. 435 */ 436 qpage[idx] = cpu_to_be32((entry & 0x80000000) | XICS_DUMMY); 437 438 /* Find the HW interrupt */ 439 kvmppc_xive_select_irq(state, &hw_num, &xd); 440 441 /* If it's not an LSI, set PQ to 11 the EOI will force a resend */ 442 if (!(xd->flags & XIVE_IRQ_FLAG_LSI)) 443 xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_11); 444 445 /* EOI the source */ 446 xive_vm_source_eoi(hw_num, xd); 447 448 next: 449 idx = (idx + 1) & q->msk; 450 if (idx == 0) 451 toggle ^= 1; 452 } 453 } 454 } 455 456 static int xive_vm_h_cppr(struct kvm_vcpu *vcpu, unsigned long cppr) 457 { 458 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 459 struct kvmppc_xive *xive = vcpu->kvm->arch.xive; 460 u8 old_cppr; 461 462 pr_devel("H_CPPR(cppr=%ld)\n", cppr); 463 464 xc->stat_vm_h_cppr++; 465 466 /* Map CPPR */ 467 cppr = xive_prio_from_guest(cppr); 468 469 /* Remember old and update SW state */ 470 old_cppr = xc->cppr; 471 xc->cppr = cppr; 472 473 /* 474 * Order the above update of xc->cppr with the subsequent 475 * read of xc->mfrr inside push_pending_to_hw() 476 */ 477 smp_mb(); 478 479 if (cppr > old_cppr) { 480 /* 481 * We are masking less, we need to look for pending things 482 * to deliver and set VP pending bits accordingly to trigger 483 * a new interrupt otherwise we might miss MFRR changes for 484 * which we have optimized out sending an IPI signal. 485 */ 486 xive_vm_push_pending_to_hw(xc); 487 } else { 488 /* 489 * We are masking more, we need to check the queue for any 490 * interrupt that has been routed to another CPU, take 491 * it out (replace it with the dummy) and retrigger it. 492 * 493 * This is necessary since those interrupts may otherwise 494 * never be processed, at least not until this CPU restores 495 * its CPPR. 496 * 497 * This is in theory racy vs. HW adding new interrupts to 498 * the queue. In practice this works because the interesting 499 * cases are when the guest has done a set_xive() to move the 500 * interrupt away, which flushes the xive, followed by the 501 * target CPU doing a H_CPPR. So any new interrupt coming into 502 * the queue must still be routed to us and isn't a source 503 * of concern. 504 */ 505 xive_vm_scan_for_rerouted_irqs(xive, xc); 506 } 507 508 /* Apply new CPPR */ 509 xc->hw_cppr = cppr; 510 __raw_writeb(cppr, xive_tima + TM_QW1_OS + TM_CPPR); 511 512 return H_SUCCESS; 513 } 514 515 static int xive_vm_h_eoi(struct kvm_vcpu *vcpu, unsigned long xirr) 516 { 517 struct kvmppc_xive *xive = vcpu->kvm->arch.xive; 518 struct kvmppc_xive_src_block *sb; 519 struct kvmppc_xive_irq_state *state; 520 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 521 struct xive_irq_data *xd; 522 u8 new_cppr = xirr >> 24; 523 u32 irq = xirr & 0x00ffffff, hw_num; 524 u16 src; 525 int rc = 0; 526 527 pr_devel("H_EOI(xirr=%08lx)\n", xirr); 528 529 xc->stat_vm_h_eoi++; 530 531 xc->cppr = xive_prio_from_guest(new_cppr); 532 533 /* 534 * IPIs are synthetized from MFRR and thus don't need 535 * any special EOI handling. The underlying interrupt 536 * used to signal MFRR changes is EOId when fetched from 537 * the queue. 538 */ 539 if (irq == XICS_IPI || irq == 0) { 540 /* 541 * This barrier orders the setting of xc->cppr vs. 542 * subsquent test of xc->mfrr done inside 543 * scan_interrupts and push_pending_to_hw 544 */ 545 smp_mb(); 546 goto bail; 547 } 548 549 /* Find interrupt source */ 550 sb = kvmppc_xive_find_source(xive, irq, &src); 551 if (!sb) { 552 pr_devel(" source not found !\n"); 553 rc = H_PARAMETER; 554 /* Same as above */ 555 smp_mb(); 556 goto bail; 557 } 558 state = &sb->irq_state[src]; 559 kvmppc_xive_select_irq(state, &hw_num, &xd); 560 561 state->in_eoi = true; 562 563 /* 564 * This barrier orders both setting of in_eoi above vs, 565 * subsequent test of guest_priority, and the setting 566 * of xc->cppr vs. subsquent test of xc->mfrr done inside 567 * scan_interrupts and push_pending_to_hw 568 */ 569 smp_mb(); 570 571 again: 572 if (state->guest_priority == MASKED) { 573 arch_spin_lock(&sb->lock); 574 if (state->guest_priority != MASKED) { 575 arch_spin_unlock(&sb->lock); 576 goto again; 577 } 578 pr_devel(" EOI on saved P...\n"); 579 580 /* Clear old_p, that will cause unmask to perform an EOI */ 581 state->old_p = false; 582 583 arch_spin_unlock(&sb->lock); 584 } else { 585 pr_devel(" EOI on source...\n"); 586 587 /* Perform EOI on the source */ 588 xive_vm_source_eoi(hw_num, xd); 589 590 /* If it's an emulated LSI, check level and resend */ 591 if (state->lsi && state->asserted) 592 __raw_writeq(0, __x_trig_page(xd)); 593 594 } 595 596 /* 597 * This barrier orders the above guest_priority check 598 * and spin_lock/unlock with clearing in_eoi below. 599 * 600 * It also has to be a full mb() as it must ensure 601 * the MMIOs done in source_eoi() are completed before 602 * state->in_eoi is visible. 603 */ 604 mb(); 605 state->in_eoi = false; 606 bail: 607 608 /* Re-evaluate pending IRQs and update HW */ 609 xive_vm_scan_interrupts(xc, xc->pending, scan_eoi); 610 xive_vm_push_pending_to_hw(xc); 611 pr_devel(" after scan pending=%02x\n", xc->pending); 612 613 /* Apply new CPPR */ 614 xc->hw_cppr = xc->cppr; 615 __raw_writeb(xc->cppr, xive_tima + TM_QW1_OS + TM_CPPR); 616 617 return rc; 618 } 619 620 static int xive_vm_h_ipi(struct kvm_vcpu *vcpu, unsigned long server, 621 unsigned long mfrr) 622 { 623 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 624 625 pr_devel("H_IPI(server=%08lx,mfrr=%ld)\n", server, mfrr); 626 627 xc->stat_vm_h_ipi++; 628 629 /* Find target */ 630 vcpu = kvmppc_xive_find_server(vcpu->kvm, server); 631 if (!vcpu) 632 return H_PARAMETER; 633 xc = vcpu->arch.xive_vcpu; 634 635 /* Locklessly write over MFRR */ 636 xc->mfrr = mfrr; 637 638 /* 639 * The load of xc->cppr below and the subsequent MMIO store 640 * to the IPI must happen after the above mfrr update is 641 * globally visible so that: 642 * 643 * - Synchronize with another CPU doing an H_EOI or a H_CPPR 644 * updating xc->cppr then reading xc->mfrr. 645 * 646 * - The target of the IPI sees the xc->mfrr update 647 */ 648 mb(); 649 650 /* Shoot the IPI if most favored than target cppr */ 651 if (mfrr < xc->cppr) 652 __raw_writeq(0, __x_trig_page(&xc->vp_ipi_data)); 653 654 return H_SUCCESS; 655 } 656 657 /* 658 * We leave a gap of a couple of interrupts in the queue to 659 * account for the IPI and additional safety guard. 660 */ 661 #define XIVE_Q_GAP 2 662 663 static bool kvmppc_xive_vcpu_has_save_restore(struct kvm_vcpu *vcpu) 664 { 665 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 666 667 /* Check enablement at VP level */ 668 return xc->vp_cam & TM_QW1W2_HO; 669 } 670 671 bool kvmppc_xive_check_save_restore(struct kvm_vcpu *vcpu) 672 { 673 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 674 struct kvmppc_xive *xive = xc->xive; 675 676 if (xive->flags & KVMPPC_XIVE_FLAG_SAVE_RESTORE) 677 return kvmppc_xive_vcpu_has_save_restore(vcpu); 678 679 return true; 680 } 681 682 /* 683 * Push a vcpu's context to the XIVE on guest entry. 684 * This assumes we are in virtual mode (MMU on) 685 */ 686 void kvmppc_xive_push_vcpu(struct kvm_vcpu *vcpu) 687 { 688 void __iomem *tima = local_paca->kvm_hstate.xive_tima_virt; 689 u64 pq; 690 691 /* 692 * Nothing to do if the platform doesn't have a XIVE 693 * or this vCPU doesn't have its own XIVE context 694 * (e.g. because it's not using an in-kernel interrupt controller). 695 */ 696 if (!tima || !vcpu->arch.xive_cam_word) 697 return; 698 699 eieio(); 700 if (!kvmppc_xive_vcpu_has_save_restore(vcpu)) 701 __raw_writeq(vcpu->arch.xive_saved_state.w01, tima + TM_QW1_OS); 702 __raw_writel(vcpu->arch.xive_cam_word, tima + TM_QW1_OS + TM_WORD2); 703 vcpu->arch.xive_pushed = 1; 704 eieio(); 705 706 /* 707 * We clear the irq_pending flag. There is a small chance of a 708 * race vs. the escalation interrupt happening on another 709 * processor setting it again, but the only consequence is to 710 * cause a spurious wakeup on the next H_CEDE, which is not an 711 * issue. 712 */ 713 vcpu->arch.irq_pending = 0; 714 715 /* 716 * In single escalation mode, if the escalation interrupt is 717 * on, we mask it. 718 */ 719 if (vcpu->arch.xive_esc_on) { 720 pq = __raw_readq((void __iomem *)(vcpu->arch.xive_esc_vaddr + 721 XIVE_ESB_SET_PQ_01)); 722 mb(); 723 724 /* 725 * We have a possible subtle race here: The escalation 726 * interrupt might have fired and be on its way to the 727 * host queue while we mask it, and if we unmask it 728 * early enough (re-cede right away), there is a 729 * theoretical possibility that it fires again, thus 730 * landing in the target queue more than once which is 731 * a big no-no. 732 * 733 * Fortunately, solving this is rather easy. If the 734 * above load setting PQ to 01 returns a previous 735 * value where P is set, then we know the escalation 736 * interrupt is somewhere on its way to the host. In 737 * that case we simply don't clear the xive_esc_on 738 * flag below. It will be eventually cleared by the 739 * handler for the escalation interrupt. 740 * 741 * Then, when doing a cede, we check that flag again 742 * before re-enabling the escalation interrupt, and if 743 * set, we abort the cede. 744 */ 745 if (!(pq & XIVE_ESB_VAL_P)) 746 /* Now P is 0, we can clear the flag */ 747 vcpu->arch.xive_esc_on = 0; 748 } 749 } 750 EXPORT_SYMBOL_GPL(kvmppc_xive_push_vcpu); 751 752 /* 753 * Pull a vcpu's context from the XIVE on guest exit. 754 * This assumes we are in virtual mode (MMU on) 755 */ 756 void kvmppc_xive_pull_vcpu(struct kvm_vcpu *vcpu) 757 { 758 void __iomem *tima = local_paca->kvm_hstate.xive_tima_virt; 759 760 if (!vcpu->arch.xive_pushed) 761 return; 762 763 /* 764 * Should not have been pushed if there is no tima 765 */ 766 if (WARN_ON(!tima)) 767 return; 768 769 eieio(); 770 /* First load to pull the context, we ignore the value */ 771 __raw_readl(tima + TM_SPC_PULL_OS_CTX); 772 /* Second load to recover the context state (Words 0 and 1) */ 773 if (!kvmppc_xive_vcpu_has_save_restore(vcpu)) 774 vcpu->arch.xive_saved_state.w01 = __raw_readq(tima + TM_QW1_OS); 775 776 /* Fixup some of the state for the next load */ 777 vcpu->arch.xive_saved_state.lsmfb = 0; 778 vcpu->arch.xive_saved_state.ack = 0xff; 779 vcpu->arch.xive_pushed = 0; 780 eieio(); 781 } 782 EXPORT_SYMBOL_GPL(kvmppc_xive_pull_vcpu); 783 784 bool kvmppc_xive_rearm_escalation(struct kvm_vcpu *vcpu) 785 { 786 void __iomem *esc_vaddr = (void __iomem *)vcpu->arch.xive_esc_vaddr; 787 bool ret = true; 788 789 if (!esc_vaddr) 790 return ret; 791 792 /* we are using XIVE with single escalation */ 793 794 if (vcpu->arch.xive_esc_on) { 795 /* 796 * If we still have a pending escalation, abort the cede, 797 * and we must set PQ to 10 rather than 00 so that we don't 798 * potentially end up with two entries for the escalation 799 * interrupt in the XIVE interrupt queue. In that case 800 * we also don't want to set xive_esc_on to 1 here in 801 * case we race with xive_esc_irq(). 802 */ 803 ret = false; 804 /* 805 * The escalation interrupts are special as we don't EOI them. 806 * There is no need to use the load-after-store ordering offset 807 * to set PQ to 10 as we won't use StoreEOI. 808 */ 809 __raw_readq(esc_vaddr + XIVE_ESB_SET_PQ_10); 810 } else { 811 vcpu->arch.xive_esc_on = true; 812 mb(); 813 __raw_readq(esc_vaddr + XIVE_ESB_SET_PQ_00); 814 } 815 mb(); 816 817 return ret; 818 } 819 EXPORT_SYMBOL_GPL(kvmppc_xive_rearm_escalation); 820 821 /* 822 * This is a simple trigger for a generic XIVE IRQ. This must 823 * only be called for interrupts that support a trigger page 824 */ 825 static bool xive_irq_trigger(struct xive_irq_data *xd) 826 { 827 /* This should be only for MSIs */ 828 if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI)) 829 return false; 830 831 /* Those interrupts should always have a trigger page */ 832 if (WARN_ON(!xd->trig_mmio)) 833 return false; 834 835 out_be64(xd->trig_mmio, 0); 836 837 return true; 838 } 839 840 static irqreturn_t xive_esc_irq(int irq, void *data) 841 { 842 struct kvm_vcpu *vcpu = data; 843 844 vcpu->arch.irq_pending = 1; 845 smp_mb(); 846 if (vcpu->arch.ceded || vcpu->arch.nested) 847 kvmppc_fast_vcpu_kick(vcpu); 848 849 /* Since we have the no-EOI flag, the interrupt is effectively 850 * disabled now. Clearing xive_esc_on means we won't bother 851 * doing so on the next entry. 852 * 853 * This also allows the entry code to know that if a PQ combination 854 * of 10 is observed while xive_esc_on is true, it means the queue 855 * contains an unprocessed escalation interrupt. We don't make use of 856 * that knowledge today but might (see comment in book3s_hv_rmhandler.S) 857 */ 858 vcpu->arch.xive_esc_on = false; 859 860 /* This orders xive_esc_on = false vs. subsequent stale_p = true */ 861 smp_wmb(); /* goes with smp_mb() in cleanup_single_escalation */ 862 863 return IRQ_HANDLED; 864 } 865 866 int kvmppc_xive_attach_escalation(struct kvm_vcpu *vcpu, u8 prio, 867 bool single_escalation) 868 { 869 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 870 struct xive_q *q = &xc->queues[prio]; 871 char *name = NULL; 872 int rc; 873 874 /* Already there ? */ 875 if (xc->esc_virq[prio]) 876 return 0; 877 878 /* Hook up the escalation interrupt */ 879 xc->esc_virq[prio] = irq_create_mapping(NULL, q->esc_irq); 880 if (!xc->esc_virq[prio]) { 881 pr_err("Failed to map escalation interrupt for queue %d of VCPU %d\n", 882 prio, xc->server_num); 883 return -EIO; 884 } 885 886 if (single_escalation) 887 name = kasprintf(GFP_KERNEL, "kvm-%d-%d", 888 vcpu->kvm->arch.lpid, xc->server_num); 889 else 890 name = kasprintf(GFP_KERNEL, "kvm-%d-%d-%d", 891 vcpu->kvm->arch.lpid, xc->server_num, prio); 892 if (!name) { 893 pr_err("Failed to allocate escalation irq name for queue %d of VCPU %d\n", 894 prio, xc->server_num); 895 rc = -ENOMEM; 896 goto error; 897 } 898 899 pr_devel("Escalation %s irq %d (prio %d)\n", name, xc->esc_virq[prio], prio); 900 901 rc = request_irq(xc->esc_virq[prio], xive_esc_irq, 902 IRQF_NO_THREAD, name, vcpu); 903 if (rc) { 904 pr_err("Failed to request escalation interrupt for queue %d of VCPU %d\n", 905 prio, xc->server_num); 906 goto error; 907 } 908 xc->esc_virq_names[prio] = name; 909 910 /* In single escalation mode, we grab the ESB MMIO of the 911 * interrupt and mask it. Also populate the VCPU v/raddr 912 * of the ESB page for use by asm entry/exit code. Finally 913 * set the XIVE_IRQ_FLAG_NO_EOI flag which will prevent the 914 * core code from performing an EOI on the escalation 915 * interrupt, thus leaving it effectively masked after 916 * it fires once. 917 */ 918 if (single_escalation) { 919 struct irq_data *d = irq_get_irq_data(xc->esc_virq[prio]); 920 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 921 922 xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01); 923 vcpu->arch.xive_esc_raddr = xd->eoi_page; 924 vcpu->arch.xive_esc_vaddr = (__force u64)xd->eoi_mmio; 925 xd->flags |= XIVE_IRQ_FLAG_NO_EOI; 926 } 927 928 return 0; 929 error: 930 irq_dispose_mapping(xc->esc_virq[prio]); 931 xc->esc_virq[prio] = 0; 932 kfree(name); 933 return rc; 934 } 935 936 static int xive_provision_queue(struct kvm_vcpu *vcpu, u8 prio) 937 { 938 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 939 struct kvmppc_xive *xive = xc->xive; 940 struct xive_q *q = &xc->queues[prio]; 941 void *qpage; 942 int rc; 943 944 if (WARN_ON(q->qpage)) 945 return 0; 946 947 /* Allocate the queue and retrieve infos on current node for now */ 948 qpage = (__be32 *)__get_free_pages(GFP_KERNEL, xive->q_page_order); 949 if (!qpage) { 950 pr_err("Failed to allocate queue %d for VCPU %d\n", 951 prio, xc->server_num); 952 return -ENOMEM; 953 } 954 memset(qpage, 0, 1 << xive->q_order); 955 956 /* 957 * Reconfigure the queue. This will set q->qpage only once the 958 * queue is fully configured. This is a requirement for prio 0 959 * as we will stop doing EOIs for every IPI as soon as we observe 960 * qpage being non-NULL, and instead will only EOI when we receive 961 * corresponding queue 0 entries 962 */ 963 rc = xive_native_configure_queue(xc->vp_id, q, prio, qpage, 964 xive->q_order, true); 965 if (rc) 966 pr_err("Failed to configure queue %d for VCPU %d\n", 967 prio, xc->server_num); 968 return rc; 969 } 970 971 /* Called with xive->lock held */ 972 static int xive_check_provisioning(struct kvm *kvm, u8 prio) 973 { 974 struct kvmppc_xive *xive = kvm->arch.xive; 975 struct kvm_vcpu *vcpu; 976 unsigned long i; 977 int rc; 978 979 lockdep_assert_held(&xive->lock); 980 981 /* Already provisioned ? */ 982 if (xive->qmap & (1 << prio)) 983 return 0; 984 985 pr_devel("Provisioning prio... %d\n", prio); 986 987 /* Provision each VCPU and enable escalations if needed */ 988 kvm_for_each_vcpu(i, vcpu, kvm) { 989 if (!vcpu->arch.xive_vcpu) 990 continue; 991 rc = xive_provision_queue(vcpu, prio); 992 if (rc == 0 && !kvmppc_xive_has_single_escalation(xive)) 993 kvmppc_xive_attach_escalation(vcpu, prio, 994 kvmppc_xive_has_single_escalation(xive)); 995 if (rc) 996 return rc; 997 } 998 999 /* Order previous stores and mark it as provisioned */ 1000 mb(); 1001 xive->qmap |= (1 << prio); 1002 return 0; 1003 } 1004 1005 static void xive_inc_q_pending(struct kvm *kvm, u32 server, u8 prio) 1006 { 1007 struct kvm_vcpu *vcpu; 1008 struct kvmppc_xive_vcpu *xc; 1009 struct xive_q *q; 1010 1011 /* Locate target server */ 1012 vcpu = kvmppc_xive_find_server(kvm, server); 1013 if (!vcpu) { 1014 pr_warn("%s: Can't find server %d\n", __func__, server); 1015 return; 1016 } 1017 xc = vcpu->arch.xive_vcpu; 1018 if (WARN_ON(!xc)) 1019 return; 1020 1021 q = &xc->queues[prio]; 1022 atomic_inc(&q->pending_count); 1023 } 1024 1025 static int xive_try_pick_queue(struct kvm_vcpu *vcpu, u8 prio) 1026 { 1027 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 1028 struct xive_q *q; 1029 u32 max; 1030 1031 if (WARN_ON(!xc)) 1032 return -ENXIO; 1033 if (!xc->valid) 1034 return -ENXIO; 1035 1036 q = &xc->queues[prio]; 1037 if (WARN_ON(!q->qpage)) 1038 return -ENXIO; 1039 1040 /* Calculate max number of interrupts in that queue. */ 1041 max = (q->msk + 1) - XIVE_Q_GAP; 1042 return atomic_add_unless(&q->count, 1, max) ? 0 : -EBUSY; 1043 } 1044 1045 int kvmppc_xive_select_target(struct kvm *kvm, u32 *server, u8 prio) 1046 { 1047 struct kvm_vcpu *vcpu; 1048 unsigned long i; 1049 int rc; 1050 1051 /* Locate target server */ 1052 vcpu = kvmppc_xive_find_server(kvm, *server); 1053 if (!vcpu) { 1054 pr_devel("Can't find server %d\n", *server); 1055 return -EINVAL; 1056 } 1057 1058 pr_devel("Finding irq target on 0x%x/%d...\n", *server, prio); 1059 1060 /* Try pick it */ 1061 rc = xive_try_pick_queue(vcpu, prio); 1062 if (rc == 0) 1063 return rc; 1064 1065 pr_devel(" .. failed, looking up candidate...\n"); 1066 1067 /* Failed, pick another VCPU */ 1068 kvm_for_each_vcpu(i, vcpu, kvm) { 1069 if (!vcpu->arch.xive_vcpu) 1070 continue; 1071 rc = xive_try_pick_queue(vcpu, prio); 1072 if (rc == 0) { 1073 *server = vcpu->arch.xive_vcpu->server_num; 1074 pr_devel(" found on 0x%x/%d\n", *server, prio); 1075 return rc; 1076 } 1077 } 1078 pr_devel(" no available target !\n"); 1079 1080 /* No available target ! */ 1081 return -EBUSY; 1082 } 1083 1084 static u8 xive_lock_and_mask(struct kvmppc_xive *xive, 1085 struct kvmppc_xive_src_block *sb, 1086 struct kvmppc_xive_irq_state *state) 1087 { 1088 struct xive_irq_data *xd; 1089 u32 hw_num; 1090 u8 old_prio; 1091 u64 val; 1092 1093 /* 1094 * Take the lock, set masked, try again if racing 1095 * with H_EOI 1096 */ 1097 for (;;) { 1098 arch_spin_lock(&sb->lock); 1099 old_prio = state->guest_priority; 1100 state->guest_priority = MASKED; 1101 mb(); 1102 if (!state->in_eoi) 1103 break; 1104 state->guest_priority = old_prio; 1105 arch_spin_unlock(&sb->lock); 1106 } 1107 1108 /* No change ? Bail */ 1109 if (old_prio == MASKED) 1110 return old_prio; 1111 1112 /* Get the right irq */ 1113 kvmppc_xive_select_irq(state, &hw_num, &xd); 1114 1115 /* Set PQ to 10, return old P and old Q and remember them */ 1116 val = xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_10); 1117 state->old_p = !!(val & 2); 1118 state->old_q = !!(val & 1); 1119 1120 /* 1121 * Synchronize hardware to sensure the queues are updated when 1122 * masking 1123 */ 1124 xive_native_sync_source(hw_num); 1125 1126 return old_prio; 1127 } 1128 1129 static void xive_lock_for_unmask(struct kvmppc_xive_src_block *sb, 1130 struct kvmppc_xive_irq_state *state) 1131 { 1132 /* 1133 * Take the lock try again if racing with H_EOI 1134 */ 1135 for (;;) { 1136 arch_spin_lock(&sb->lock); 1137 if (!state->in_eoi) 1138 break; 1139 arch_spin_unlock(&sb->lock); 1140 } 1141 } 1142 1143 static void xive_finish_unmask(struct kvmppc_xive *xive, 1144 struct kvmppc_xive_src_block *sb, 1145 struct kvmppc_xive_irq_state *state, 1146 u8 prio) 1147 { 1148 struct xive_irq_data *xd; 1149 u32 hw_num; 1150 1151 /* If we aren't changing a thing, move on */ 1152 if (state->guest_priority != MASKED) 1153 goto bail; 1154 1155 /* Get the right irq */ 1156 kvmppc_xive_select_irq(state, &hw_num, &xd); 1157 1158 /* Old Q set, set PQ to 11 */ 1159 if (state->old_q) 1160 xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_11); 1161 1162 /* 1163 * If not old P, then perform an "effective" EOI, 1164 * on the source. This will handle the cases where 1165 * FW EOI is needed. 1166 */ 1167 if (!state->old_p) 1168 xive_vm_source_eoi(hw_num, xd); 1169 1170 /* Synchronize ordering and mark unmasked */ 1171 mb(); 1172 bail: 1173 state->guest_priority = prio; 1174 } 1175 1176 /* 1177 * Target an interrupt to a given server/prio, this will fallback 1178 * to another server if necessary and perform the HW targetting 1179 * updates as needed 1180 * 1181 * NOTE: Must be called with the state lock held 1182 */ 1183 static int xive_target_interrupt(struct kvm *kvm, 1184 struct kvmppc_xive_irq_state *state, 1185 u32 server, u8 prio) 1186 { 1187 struct kvmppc_xive *xive = kvm->arch.xive; 1188 u32 hw_num; 1189 int rc; 1190 1191 /* 1192 * This will return a tentative server and actual 1193 * priority. The count for that new target will have 1194 * already been incremented. 1195 */ 1196 rc = kvmppc_xive_select_target(kvm, &server, prio); 1197 1198 /* 1199 * We failed to find a target ? Not much we can do 1200 * at least until we support the GIQ. 1201 */ 1202 if (rc) 1203 return rc; 1204 1205 /* 1206 * Increment the old queue pending count if there 1207 * was one so that the old queue count gets adjusted later 1208 * when observed to be empty. 1209 */ 1210 if (state->act_priority != MASKED) 1211 xive_inc_q_pending(kvm, 1212 state->act_server, 1213 state->act_priority); 1214 /* 1215 * Update state and HW 1216 */ 1217 state->act_priority = prio; 1218 state->act_server = server; 1219 1220 /* Get the right irq */ 1221 kvmppc_xive_select_irq(state, &hw_num, NULL); 1222 1223 return xive_native_configure_irq(hw_num, 1224 kvmppc_xive_vp(xive, server), 1225 prio, state->number); 1226 } 1227 1228 /* 1229 * Targetting rules: In order to avoid losing track of 1230 * pending interrupts across mask and unmask, which would 1231 * allow queue overflows, we implement the following rules: 1232 * 1233 * - Unless it was never enabled (or we run out of capacity) 1234 * an interrupt is always targetted at a valid server/queue 1235 * pair even when "masked" by the guest. This pair tends to 1236 * be the last one used but it can be changed under some 1237 * circumstances. That allows us to separate targetting 1238 * from masking, we only handle accounting during (re)targetting, 1239 * this also allows us to let an interrupt drain into its target 1240 * queue after masking, avoiding complex schemes to remove 1241 * interrupts out of remote processor queues. 1242 * 1243 * - When masking, we set PQ to 10 and save the previous value 1244 * of P and Q. 1245 * 1246 * - When unmasking, if saved Q was set, we set PQ to 11 1247 * otherwise we leave PQ to the HW state which will be either 1248 * 10 if nothing happened or 11 if the interrupt fired while 1249 * masked. Effectively we are OR'ing the previous Q into the 1250 * HW Q. 1251 * 1252 * Then if saved P is clear, we do an effective EOI (Q->P->Trigger) 1253 * which will unmask the interrupt and shoot a new one if Q was 1254 * set. 1255 * 1256 * Otherwise (saved P is set) we leave PQ unchanged (so 10 or 11, 1257 * effectively meaning an H_EOI from the guest is still expected 1258 * for that interrupt). 1259 * 1260 * - If H_EOI occurs while masked, we clear the saved P. 1261 * 1262 * - When changing target, we account on the new target and 1263 * increment a separate "pending" counter on the old one. 1264 * This pending counter will be used to decrement the old 1265 * target's count when its queue has been observed empty. 1266 */ 1267 1268 int kvmppc_xive_set_xive(struct kvm *kvm, u32 irq, u32 server, 1269 u32 priority) 1270 { 1271 struct kvmppc_xive *xive = kvm->arch.xive; 1272 struct kvmppc_xive_src_block *sb; 1273 struct kvmppc_xive_irq_state *state; 1274 u8 new_act_prio; 1275 int rc = 0; 1276 u16 idx; 1277 1278 if (!xive) 1279 return -ENODEV; 1280 1281 pr_devel("set_xive ! irq 0x%x server 0x%x prio %d\n", 1282 irq, server, priority); 1283 1284 /* First, check provisioning of queues */ 1285 if (priority != MASKED) { 1286 mutex_lock(&xive->lock); 1287 rc = xive_check_provisioning(xive->kvm, 1288 xive_prio_from_guest(priority)); 1289 mutex_unlock(&xive->lock); 1290 } 1291 if (rc) { 1292 pr_devel(" provisioning failure %d !\n", rc); 1293 return rc; 1294 } 1295 1296 sb = kvmppc_xive_find_source(xive, irq, &idx); 1297 if (!sb) 1298 return -EINVAL; 1299 state = &sb->irq_state[idx]; 1300 1301 /* 1302 * We first handle masking/unmasking since the locking 1303 * might need to be retried due to EOIs, we'll handle 1304 * targetting changes later. These functions will return 1305 * with the SB lock held. 1306 * 1307 * xive_lock_and_mask() will also set state->guest_priority 1308 * but won't otherwise change other fields of the state. 1309 * 1310 * xive_lock_for_unmask will not actually unmask, this will 1311 * be done later by xive_finish_unmask() once the targetting 1312 * has been done, so we don't try to unmask an interrupt 1313 * that hasn't yet been targetted. 1314 */ 1315 if (priority == MASKED) 1316 xive_lock_and_mask(xive, sb, state); 1317 else 1318 xive_lock_for_unmask(sb, state); 1319 1320 1321 /* 1322 * Then we handle targetting. 1323 * 1324 * First calculate a new "actual priority" 1325 */ 1326 new_act_prio = state->act_priority; 1327 if (priority != MASKED) 1328 new_act_prio = xive_prio_from_guest(priority); 1329 1330 pr_devel(" new_act_prio=%x act_server=%x act_prio=%x\n", 1331 new_act_prio, state->act_server, state->act_priority); 1332 1333 /* 1334 * Then check if we actually need to change anything, 1335 * 1336 * The condition for re-targetting the interrupt is that 1337 * we have a valid new priority (new_act_prio is not 0xff) 1338 * and either the server or the priority changed. 1339 * 1340 * Note: If act_priority was ff and the new priority is 1341 * also ff, we don't do anything and leave the interrupt 1342 * untargetted. An attempt of doing an int_on on an 1343 * untargetted interrupt will fail. If that is a problem 1344 * we could initialize interrupts with valid default 1345 */ 1346 1347 if (new_act_prio != MASKED && 1348 (state->act_server != server || 1349 state->act_priority != new_act_prio)) 1350 rc = xive_target_interrupt(kvm, state, server, new_act_prio); 1351 1352 /* 1353 * Perform the final unmasking of the interrupt source 1354 * if necessary 1355 */ 1356 if (priority != MASKED) 1357 xive_finish_unmask(xive, sb, state, priority); 1358 1359 /* 1360 * Finally Update saved_priority to match. Only int_on/off 1361 * set this field to a different value. 1362 */ 1363 state->saved_priority = priority; 1364 1365 arch_spin_unlock(&sb->lock); 1366 return rc; 1367 } 1368 1369 int kvmppc_xive_get_xive(struct kvm *kvm, u32 irq, u32 *server, 1370 u32 *priority) 1371 { 1372 struct kvmppc_xive *xive = kvm->arch.xive; 1373 struct kvmppc_xive_src_block *sb; 1374 struct kvmppc_xive_irq_state *state; 1375 u16 idx; 1376 1377 if (!xive) 1378 return -ENODEV; 1379 1380 sb = kvmppc_xive_find_source(xive, irq, &idx); 1381 if (!sb) 1382 return -EINVAL; 1383 state = &sb->irq_state[idx]; 1384 arch_spin_lock(&sb->lock); 1385 *server = state->act_server; 1386 *priority = state->guest_priority; 1387 arch_spin_unlock(&sb->lock); 1388 1389 return 0; 1390 } 1391 1392 int kvmppc_xive_int_on(struct kvm *kvm, u32 irq) 1393 { 1394 struct kvmppc_xive *xive = kvm->arch.xive; 1395 struct kvmppc_xive_src_block *sb; 1396 struct kvmppc_xive_irq_state *state; 1397 u16 idx; 1398 1399 if (!xive) 1400 return -ENODEV; 1401 1402 sb = kvmppc_xive_find_source(xive, irq, &idx); 1403 if (!sb) 1404 return -EINVAL; 1405 state = &sb->irq_state[idx]; 1406 1407 pr_devel("int_on(irq=0x%x)\n", irq); 1408 1409 /* 1410 * Check if interrupt was not targetted 1411 */ 1412 if (state->act_priority == MASKED) { 1413 pr_devel("int_on on untargetted interrupt\n"); 1414 return -EINVAL; 1415 } 1416 1417 /* If saved_priority is 0xff, do nothing */ 1418 if (state->saved_priority == MASKED) 1419 return 0; 1420 1421 /* 1422 * Lock and unmask it. 1423 */ 1424 xive_lock_for_unmask(sb, state); 1425 xive_finish_unmask(xive, sb, state, state->saved_priority); 1426 arch_spin_unlock(&sb->lock); 1427 1428 return 0; 1429 } 1430 1431 int kvmppc_xive_int_off(struct kvm *kvm, u32 irq) 1432 { 1433 struct kvmppc_xive *xive = kvm->arch.xive; 1434 struct kvmppc_xive_src_block *sb; 1435 struct kvmppc_xive_irq_state *state; 1436 u16 idx; 1437 1438 if (!xive) 1439 return -ENODEV; 1440 1441 sb = kvmppc_xive_find_source(xive, irq, &idx); 1442 if (!sb) 1443 return -EINVAL; 1444 state = &sb->irq_state[idx]; 1445 1446 pr_devel("int_off(irq=0x%x)\n", irq); 1447 1448 /* 1449 * Lock and mask 1450 */ 1451 state->saved_priority = xive_lock_and_mask(xive, sb, state); 1452 arch_spin_unlock(&sb->lock); 1453 1454 return 0; 1455 } 1456 1457 static bool xive_restore_pending_irq(struct kvmppc_xive *xive, u32 irq) 1458 { 1459 struct kvmppc_xive_src_block *sb; 1460 struct kvmppc_xive_irq_state *state; 1461 u16 idx; 1462 1463 sb = kvmppc_xive_find_source(xive, irq, &idx); 1464 if (!sb) 1465 return false; 1466 state = &sb->irq_state[idx]; 1467 if (!state->valid) 1468 return false; 1469 1470 /* 1471 * Trigger the IPI. This assumes we never restore a pass-through 1472 * interrupt which should be safe enough 1473 */ 1474 xive_irq_trigger(&state->ipi_data); 1475 1476 return true; 1477 } 1478 1479 u64 kvmppc_xive_get_icp(struct kvm_vcpu *vcpu) 1480 { 1481 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 1482 1483 if (!xc) 1484 return 0; 1485 1486 /* Return the per-cpu state for state saving/migration */ 1487 return (u64)xc->cppr << KVM_REG_PPC_ICP_CPPR_SHIFT | 1488 (u64)xc->mfrr << KVM_REG_PPC_ICP_MFRR_SHIFT | 1489 (u64)0xff << KVM_REG_PPC_ICP_PPRI_SHIFT; 1490 } 1491 1492 int kvmppc_xive_set_icp(struct kvm_vcpu *vcpu, u64 icpval) 1493 { 1494 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 1495 struct kvmppc_xive *xive = vcpu->kvm->arch.xive; 1496 u8 cppr, mfrr; 1497 u32 xisr; 1498 1499 if (!xc || !xive) 1500 return -ENOENT; 1501 1502 /* Grab individual state fields. We don't use pending_pri */ 1503 cppr = icpval >> KVM_REG_PPC_ICP_CPPR_SHIFT; 1504 xisr = (icpval >> KVM_REG_PPC_ICP_XISR_SHIFT) & 1505 KVM_REG_PPC_ICP_XISR_MASK; 1506 mfrr = icpval >> KVM_REG_PPC_ICP_MFRR_SHIFT; 1507 1508 pr_devel("set_icp vcpu %d cppr=0x%x mfrr=0x%x xisr=0x%x\n", 1509 xc->server_num, cppr, mfrr, xisr); 1510 1511 /* 1512 * We can't update the state of a "pushed" VCPU, but that 1513 * shouldn't happen because the vcpu->mutex makes running a 1514 * vcpu mutually exclusive with doing one_reg get/set on it. 1515 */ 1516 if (WARN_ON(vcpu->arch.xive_pushed)) 1517 return -EIO; 1518 1519 /* Update VCPU HW saved state */ 1520 vcpu->arch.xive_saved_state.cppr = cppr; 1521 xc->hw_cppr = xc->cppr = cppr; 1522 1523 /* 1524 * Update MFRR state. If it's not 0xff, we mark the VCPU as 1525 * having a pending MFRR change, which will re-evaluate the 1526 * target. The VCPU will thus potentially get a spurious 1527 * interrupt but that's not a big deal. 1528 */ 1529 xc->mfrr = mfrr; 1530 if (mfrr < cppr) 1531 xive_irq_trigger(&xc->vp_ipi_data); 1532 1533 /* 1534 * Now saved XIRR is "interesting". It means there's something in 1535 * the legacy "1 element" queue... for an IPI we simply ignore it, 1536 * as the MFRR restore will handle that. For anything else we need 1537 * to force a resend of the source. 1538 * However the source may not have been setup yet. If that's the 1539 * case, we keep that info and increment a counter in the xive to 1540 * tell subsequent xive_set_source() to go look. 1541 */ 1542 if (xisr > XICS_IPI && !xive_restore_pending_irq(xive, xisr)) { 1543 xc->delayed_irq = xisr; 1544 xive->delayed_irqs++; 1545 pr_devel(" xisr restore delayed\n"); 1546 } 1547 1548 return 0; 1549 } 1550 1551 int kvmppc_xive_set_mapped(struct kvm *kvm, unsigned long guest_irq, 1552 unsigned long host_irq) 1553 { 1554 struct kvmppc_xive *xive = kvm->arch.xive; 1555 struct kvmppc_xive_src_block *sb; 1556 struct kvmppc_xive_irq_state *state; 1557 struct irq_data *host_data = 1558 irq_domain_get_irq_data(irq_get_default_host(), host_irq); 1559 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(host_data); 1560 u16 idx; 1561 u8 prio; 1562 int rc; 1563 1564 if (!xive) 1565 return -ENODEV; 1566 1567 pr_debug("%s: GIRQ 0x%lx host IRQ %ld XIVE HW IRQ 0x%x\n", 1568 __func__, guest_irq, host_irq, hw_irq); 1569 1570 sb = kvmppc_xive_find_source(xive, guest_irq, &idx); 1571 if (!sb) 1572 return -EINVAL; 1573 state = &sb->irq_state[idx]; 1574 1575 /* 1576 * Mark the passed-through interrupt as going to a VCPU, 1577 * this will prevent further EOIs and similar operations 1578 * from the XIVE code. It will also mask the interrupt 1579 * to either PQ=10 or 11 state, the latter if the interrupt 1580 * is pending. This will allow us to unmask or retrigger it 1581 * after routing it to the guest with a simple EOI. 1582 * 1583 * The "state" argument is a "token", all it needs is to be 1584 * non-NULL to switch to passed-through or NULL for the 1585 * other way around. We may not yet have an actual VCPU 1586 * target here and we don't really care. 1587 */ 1588 rc = irq_set_vcpu_affinity(host_irq, state); 1589 if (rc) { 1590 pr_err("Failed to set VCPU affinity for host IRQ %ld\n", host_irq); 1591 return rc; 1592 } 1593 1594 /* 1595 * Mask and read state of IPI. We need to know if its P bit 1596 * is set as that means it's potentially already using a 1597 * queue entry in the target 1598 */ 1599 prio = xive_lock_and_mask(xive, sb, state); 1600 pr_devel(" old IPI prio %02x P:%d Q:%d\n", prio, 1601 state->old_p, state->old_q); 1602 1603 /* Turn the IPI hard off */ 1604 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01); 1605 1606 /* 1607 * Reset ESB guest mapping. Needed when ESB pages are exposed 1608 * to the guest in XIVE native mode 1609 */ 1610 if (xive->ops && xive->ops->reset_mapped) 1611 xive->ops->reset_mapped(kvm, guest_irq); 1612 1613 /* Grab info about irq */ 1614 state->pt_number = hw_irq; 1615 state->pt_data = irq_data_get_irq_handler_data(host_data); 1616 1617 /* 1618 * Configure the IRQ to match the existing configuration of 1619 * the IPI if it was already targetted. Otherwise this will 1620 * mask the interrupt in a lossy way (act_priority is 0xff) 1621 * which is fine for a never started interrupt. 1622 */ 1623 xive_native_configure_irq(hw_irq, 1624 kvmppc_xive_vp(xive, state->act_server), 1625 state->act_priority, state->number); 1626 1627 /* 1628 * We do an EOI to enable the interrupt (and retrigger if needed) 1629 * if the guest has the interrupt unmasked and the P bit was *not* 1630 * set in the IPI. If it was set, we know a slot may still be in 1631 * use in the target queue thus we have to wait for a guest 1632 * originated EOI 1633 */ 1634 if (prio != MASKED && !state->old_p) 1635 xive_vm_source_eoi(hw_irq, state->pt_data); 1636 1637 /* Clear old_p/old_q as they are no longer relevant */ 1638 state->old_p = state->old_q = false; 1639 1640 /* Restore guest prio (unlocks EOI) */ 1641 mb(); 1642 state->guest_priority = prio; 1643 arch_spin_unlock(&sb->lock); 1644 1645 return 0; 1646 } 1647 EXPORT_SYMBOL_GPL(kvmppc_xive_set_mapped); 1648 1649 int kvmppc_xive_clr_mapped(struct kvm *kvm, unsigned long guest_irq, 1650 unsigned long host_irq) 1651 { 1652 struct kvmppc_xive *xive = kvm->arch.xive; 1653 struct kvmppc_xive_src_block *sb; 1654 struct kvmppc_xive_irq_state *state; 1655 u16 idx; 1656 u8 prio; 1657 int rc; 1658 1659 if (!xive) 1660 return -ENODEV; 1661 1662 pr_debug("%s: GIRQ 0x%lx host IRQ %ld\n", __func__, guest_irq, host_irq); 1663 1664 sb = kvmppc_xive_find_source(xive, guest_irq, &idx); 1665 if (!sb) 1666 return -EINVAL; 1667 state = &sb->irq_state[idx]; 1668 1669 /* 1670 * Mask and read state of IRQ. We need to know if its P bit 1671 * is set as that means it's potentially already using a 1672 * queue entry in the target 1673 */ 1674 prio = xive_lock_and_mask(xive, sb, state); 1675 pr_devel(" old IRQ prio %02x P:%d Q:%d\n", prio, 1676 state->old_p, state->old_q); 1677 1678 /* 1679 * If old_p is set, the interrupt is pending, we switch it to 1680 * PQ=11. This will force a resend in the host so the interrupt 1681 * isn't lost to whatever host driver may pick it up 1682 */ 1683 if (state->old_p) 1684 xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_11); 1685 1686 /* Release the passed-through interrupt to the host */ 1687 rc = irq_set_vcpu_affinity(host_irq, NULL); 1688 if (rc) { 1689 pr_err("Failed to clr VCPU affinity for host IRQ %ld\n", host_irq); 1690 return rc; 1691 } 1692 1693 /* Forget about the IRQ */ 1694 state->pt_number = 0; 1695 state->pt_data = NULL; 1696 1697 /* 1698 * Reset ESB guest mapping. Needed when ESB pages are exposed 1699 * to the guest in XIVE native mode 1700 */ 1701 if (xive->ops && xive->ops->reset_mapped) { 1702 xive->ops->reset_mapped(kvm, guest_irq); 1703 } 1704 1705 /* Reconfigure the IPI */ 1706 xive_native_configure_irq(state->ipi_number, 1707 kvmppc_xive_vp(xive, state->act_server), 1708 state->act_priority, state->number); 1709 1710 /* 1711 * If old_p is set (we have a queue entry potentially 1712 * occupied) or the interrupt is masked, we set the IPI 1713 * to PQ=10 state. Otherwise we just re-enable it (PQ=00). 1714 */ 1715 if (prio == MASKED || state->old_p) 1716 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_10); 1717 else 1718 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_00); 1719 1720 /* Restore guest prio (unlocks EOI) */ 1721 mb(); 1722 state->guest_priority = prio; 1723 arch_spin_unlock(&sb->lock); 1724 1725 return 0; 1726 } 1727 EXPORT_SYMBOL_GPL(kvmppc_xive_clr_mapped); 1728 1729 void kvmppc_xive_disable_vcpu_interrupts(struct kvm_vcpu *vcpu) 1730 { 1731 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 1732 struct kvm *kvm = vcpu->kvm; 1733 struct kvmppc_xive *xive = kvm->arch.xive; 1734 int i, j; 1735 1736 for (i = 0; i <= xive->max_sbid; i++) { 1737 struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; 1738 1739 if (!sb) 1740 continue; 1741 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) { 1742 struct kvmppc_xive_irq_state *state = &sb->irq_state[j]; 1743 1744 if (!state->valid) 1745 continue; 1746 if (state->act_priority == MASKED) 1747 continue; 1748 if (state->act_server != xc->server_num) 1749 continue; 1750 1751 /* Clean it up */ 1752 arch_spin_lock(&sb->lock); 1753 state->act_priority = MASKED; 1754 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01); 1755 xive_native_configure_irq(state->ipi_number, 0, MASKED, 0); 1756 if (state->pt_number) { 1757 xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_01); 1758 xive_native_configure_irq(state->pt_number, 0, MASKED, 0); 1759 } 1760 arch_spin_unlock(&sb->lock); 1761 } 1762 } 1763 1764 /* Disable vcpu's escalation interrupt */ 1765 if (vcpu->arch.xive_esc_on) { 1766 __raw_readq((void __iomem *)(vcpu->arch.xive_esc_vaddr + 1767 XIVE_ESB_SET_PQ_01)); 1768 vcpu->arch.xive_esc_on = false; 1769 } 1770 1771 /* 1772 * Clear pointers to escalation interrupt ESB. 1773 * This is safe because the vcpu->mutex is held, preventing 1774 * any other CPU from concurrently executing a KVM_RUN ioctl. 1775 */ 1776 vcpu->arch.xive_esc_vaddr = 0; 1777 vcpu->arch.xive_esc_raddr = 0; 1778 } 1779 1780 /* 1781 * In single escalation mode, the escalation interrupt is marked so 1782 * that EOI doesn't re-enable it, but just sets the stale_p flag to 1783 * indicate that the P bit has already been dealt with. However, the 1784 * assembly code that enters the guest sets PQ to 00 without clearing 1785 * stale_p (because it has no easy way to address it). Hence we have 1786 * to adjust stale_p before shutting down the interrupt. 1787 */ 1788 void xive_cleanup_single_escalation(struct kvm_vcpu *vcpu, 1789 struct kvmppc_xive_vcpu *xc, int irq) 1790 { 1791 struct irq_data *d = irq_get_irq_data(irq); 1792 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 1793 1794 /* 1795 * This slightly odd sequence gives the right result 1796 * (i.e. stale_p set if xive_esc_on is false) even if 1797 * we race with xive_esc_irq() and xive_irq_eoi(). 1798 */ 1799 xd->stale_p = false; 1800 smp_mb(); /* paired with smb_wmb in xive_esc_irq */ 1801 if (!vcpu->arch.xive_esc_on) 1802 xd->stale_p = true; 1803 } 1804 1805 void kvmppc_xive_cleanup_vcpu(struct kvm_vcpu *vcpu) 1806 { 1807 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 1808 struct kvmppc_xive *xive = vcpu->kvm->arch.xive; 1809 int i; 1810 1811 if (!kvmppc_xics_enabled(vcpu)) 1812 return; 1813 1814 if (!xc) 1815 return; 1816 1817 pr_devel("cleanup_vcpu(cpu=%d)\n", xc->server_num); 1818 1819 /* Ensure no interrupt is still routed to that VP */ 1820 xc->valid = false; 1821 kvmppc_xive_disable_vcpu_interrupts(vcpu); 1822 1823 /* Mask the VP IPI */ 1824 xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_01); 1825 1826 /* Free escalations */ 1827 for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) { 1828 if (xc->esc_virq[i]) { 1829 if (kvmppc_xive_has_single_escalation(xc->xive)) 1830 xive_cleanup_single_escalation(vcpu, xc, 1831 xc->esc_virq[i]); 1832 free_irq(xc->esc_virq[i], vcpu); 1833 irq_dispose_mapping(xc->esc_virq[i]); 1834 kfree(xc->esc_virq_names[i]); 1835 } 1836 } 1837 1838 /* Disable the VP */ 1839 xive_native_disable_vp(xc->vp_id); 1840 1841 /* Clear the cam word so guest entry won't try to push context */ 1842 vcpu->arch.xive_cam_word = 0; 1843 1844 /* Free the queues */ 1845 for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) { 1846 struct xive_q *q = &xc->queues[i]; 1847 1848 xive_native_disable_queue(xc->vp_id, q, i); 1849 if (q->qpage) { 1850 free_pages((unsigned long)q->qpage, 1851 xive->q_page_order); 1852 q->qpage = NULL; 1853 } 1854 } 1855 1856 /* Free the IPI */ 1857 if (xc->vp_ipi) { 1858 xive_cleanup_irq_data(&xc->vp_ipi_data); 1859 xive_native_free_irq(xc->vp_ipi); 1860 } 1861 /* Free the VP */ 1862 kfree(xc); 1863 1864 /* Cleanup the vcpu */ 1865 vcpu->arch.irq_type = KVMPPC_IRQ_DEFAULT; 1866 vcpu->arch.xive_vcpu = NULL; 1867 } 1868 1869 static bool kvmppc_xive_vcpu_id_valid(struct kvmppc_xive *xive, u32 cpu) 1870 { 1871 /* We have a block of xive->nr_servers VPs. We just need to check 1872 * packed vCPU ids are below that. 1873 */ 1874 return kvmppc_pack_vcpu_id(xive->kvm, cpu) < xive->nr_servers; 1875 } 1876 1877 int kvmppc_xive_compute_vp_id(struct kvmppc_xive *xive, u32 cpu, u32 *vp) 1878 { 1879 u32 vp_id; 1880 1881 if (!kvmppc_xive_vcpu_id_valid(xive, cpu)) { 1882 pr_devel("Out of bounds !\n"); 1883 return -EINVAL; 1884 } 1885 1886 if (xive->vp_base == XIVE_INVALID_VP) { 1887 xive->vp_base = xive_native_alloc_vp_block(xive->nr_servers); 1888 pr_devel("VP_Base=%x nr_servers=%d\n", xive->vp_base, xive->nr_servers); 1889 1890 if (xive->vp_base == XIVE_INVALID_VP) 1891 return -ENOSPC; 1892 } 1893 1894 vp_id = kvmppc_xive_vp(xive, cpu); 1895 if (kvmppc_xive_vp_in_use(xive->kvm, vp_id)) { 1896 pr_devel("Duplicate !\n"); 1897 return -EEXIST; 1898 } 1899 1900 *vp = vp_id; 1901 1902 return 0; 1903 } 1904 1905 int kvmppc_xive_connect_vcpu(struct kvm_device *dev, 1906 struct kvm_vcpu *vcpu, u32 cpu) 1907 { 1908 struct kvmppc_xive *xive = dev->private; 1909 struct kvmppc_xive_vcpu *xc; 1910 int i, r = -EBUSY; 1911 u32 vp_id; 1912 1913 pr_devel("connect_vcpu(cpu=%d)\n", cpu); 1914 1915 if (dev->ops != &kvm_xive_ops) { 1916 pr_devel("Wrong ops !\n"); 1917 return -EPERM; 1918 } 1919 if (xive->kvm != vcpu->kvm) 1920 return -EPERM; 1921 if (vcpu->arch.irq_type != KVMPPC_IRQ_DEFAULT) 1922 return -EBUSY; 1923 1924 /* We need to synchronize with queue provisioning */ 1925 mutex_lock(&xive->lock); 1926 1927 r = kvmppc_xive_compute_vp_id(xive, cpu, &vp_id); 1928 if (r) 1929 goto bail; 1930 1931 xc = kzalloc(sizeof(*xc), GFP_KERNEL); 1932 if (!xc) { 1933 r = -ENOMEM; 1934 goto bail; 1935 } 1936 1937 vcpu->arch.xive_vcpu = xc; 1938 xc->xive = xive; 1939 xc->vcpu = vcpu; 1940 xc->server_num = cpu; 1941 xc->vp_id = vp_id; 1942 xc->mfrr = 0xff; 1943 xc->valid = true; 1944 1945 r = xive_native_get_vp_info(xc->vp_id, &xc->vp_cam, &xc->vp_chip_id); 1946 if (r) 1947 goto bail; 1948 1949 if (!kvmppc_xive_check_save_restore(vcpu)) { 1950 pr_err("inconsistent save-restore setup for VCPU %d\n", cpu); 1951 r = -EIO; 1952 goto bail; 1953 } 1954 1955 /* Configure VCPU fields for use by assembly push/pull */ 1956 vcpu->arch.xive_saved_state.w01 = cpu_to_be64(0xff000000); 1957 vcpu->arch.xive_cam_word = cpu_to_be32(xc->vp_cam | TM_QW1W2_VO); 1958 1959 /* Allocate IPI */ 1960 xc->vp_ipi = xive_native_alloc_irq(); 1961 if (!xc->vp_ipi) { 1962 pr_err("Failed to allocate xive irq for VCPU IPI\n"); 1963 r = -EIO; 1964 goto bail; 1965 } 1966 pr_devel(" IPI=0x%x\n", xc->vp_ipi); 1967 1968 r = xive_native_populate_irq_data(xc->vp_ipi, &xc->vp_ipi_data); 1969 if (r) 1970 goto bail; 1971 1972 /* 1973 * Enable the VP first as the single escalation mode will 1974 * affect escalation interrupts numbering 1975 */ 1976 r = xive_native_enable_vp(xc->vp_id, kvmppc_xive_has_single_escalation(xive)); 1977 if (r) { 1978 pr_err("Failed to enable VP in OPAL, err %d\n", r); 1979 goto bail; 1980 } 1981 1982 /* 1983 * Initialize queues. Initially we set them all for no queueing 1984 * and we enable escalation for queue 0 only which we'll use for 1985 * our mfrr change notifications. If the VCPU is hot-plugged, we 1986 * do handle provisioning however based on the existing "map" 1987 * of enabled queues. 1988 */ 1989 for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) { 1990 struct xive_q *q = &xc->queues[i]; 1991 1992 /* Single escalation, no queue 7 */ 1993 if (i == 7 && kvmppc_xive_has_single_escalation(xive)) 1994 break; 1995 1996 /* Is queue already enabled ? Provision it */ 1997 if (xive->qmap & (1 << i)) { 1998 r = xive_provision_queue(vcpu, i); 1999 if (r == 0 && !kvmppc_xive_has_single_escalation(xive)) 2000 kvmppc_xive_attach_escalation( 2001 vcpu, i, kvmppc_xive_has_single_escalation(xive)); 2002 if (r) 2003 goto bail; 2004 } else { 2005 r = xive_native_configure_queue(xc->vp_id, 2006 q, i, NULL, 0, true); 2007 if (r) { 2008 pr_err("Failed to configure queue %d for VCPU %d\n", 2009 i, cpu); 2010 goto bail; 2011 } 2012 } 2013 } 2014 2015 /* If not done above, attach priority 0 escalation */ 2016 r = kvmppc_xive_attach_escalation(vcpu, 0, kvmppc_xive_has_single_escalation(xive)); 2017 if (r) 2018 goto bail; 2019 2020 /* Route the IPI */ 2021 r = xive_native_configure_irq(xc->vp_ipi, xc->vp_id, 0, XICS_IPI); 2022 if (!r) 2023 xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_00); 2024 2025 bail: 2026 mutex_unlock(&xive->lock); 2027 if (r) { 2028 kvmppc_xive_cleanup_vcpu(vcpu); 2029 return r; 2030 } 2031 2032 vcpu->arch.irq_type = KVMPPC_IRQ_XICS; 2033 return 0; 2034 } 2035 2036 /* 2037 * Scanning of queues before/after migration save 2038 */ 2039 static void xive_pre_save_set_queued(struct kvmppc_xive *xive, u32 irq) 2040 { 2041 struct kvmppc_xive_src_block *sb; 2042 struct kvmppc_xive_irq_state *state; 2043 u16 idx; 2044 2045 sb = kvmppc_xive_find_source(xive, irq, &idx); 2046 if (!sb) 2047 return; 2048 2049 state = &sb->irq_state[idx]; 2050 2051 /* Some sanity checking */ 2052 if (!state->valid) { 2053 pr_err("invalid irq 0x%x in cpu queue!\n", irq); 2054 return; 2055 } 2056 2057 /* 2058 * If the interrupt is in a queue it should have P set. 2059 * We warn so that gets reported. A backtrace isn't useful 2060 * so no need to use a WARN_ON. 2061 */ 2062 if (!state->saved_p) 2063 pr_err("Interrupt 0x%x is marked in a queue but P not set !\n", irq); 2064 2065 /* Set flag */ 2066 state->in_queue = true; 2067 } 2068 2069 static void xive_pre_save_mask_irq(struct kvmppc_xive *xive, 2070 struct kvmppc_xive_src_block *sb, 2071 u32 irq) 2072 { 2073 struct kvmppc_xive_irq_state *state = &sb->irq_state[irq]; 2074 2075 if (!state->valid) 2076 return; 2077 2078 /* Mask and save state, this will also sync HW queues */ 2079 state->saved_scan_prio = xive_lock_and_mask(xive, sb, state); 2080 2081 /* Transfer P and Q */ 2082 state->saved_p = state->old_p; 2083 state->saved_q = state->old_q; 2084 2085 /* Unlock */ 2086 arch_spin_unlock(&sb->lock); 2087 } 2088 2089 static void xive_pre_save_unmask_irq(struct kvmppc_xive *xive, 2090 struct kvmppc_xive_src_block *sb, 2091 u32 irq) 2092 { 2093 struct kvmppc_xive_irq_state *state = &sb->irq_state[irq]; 2094 2095 if (!state->valid) 2096 return; 2097 2098 /* 2099 * Lock / exclude EOI (not technically necessary if the 2100 * guest isn't running concurrently. If this becomes a 2101 * performance issue we can probably remove the lock. 2102 */ 2103 xive_lock_for_unmask(sb, state); 2104 2105 /* Restore mask/prio if it wasn't masked */ 2106 if (state->saved_scan_prio != MASKED) 2107 xive_finish_unmask(xive, sb, state, state->saved_scan_prio); 2108 2109 /* Unlock */ 2110 arch_spin_unlock(&sb->lock); 2111 } 2112 2113 static void xive_pre_save_queue(struct kvmppc_xive *xive, struct xive_q *q) 2114 { 2115 u32 idx = q->idx; 2116 u32 toggle = q->toggle; 2117 u32 irq; 2118 2119 do { 2120 irq = __xive_read_eq(q->qpage, q->msk, &idx, &toggle); 2121 if (irq > XICS_IPI) 2122 xive_pre_save_set_queued(xive, irq); 2123 } while(irq); 2124 } 2125 2126 static void xive_pre_save_scan(struct kvmppc_xive *xive) 2127 { 2128 struct kvm_vcpu *vcpu = NULL; 2129 unsigned long i; 2130 int j; 2131 2132 /* 2133 * See comment in xive_get_source() about how this 2134 * work. Collect a stable state for all interrupts 2135 */ 2136 for (i = 0; i <= xive->max_sbid; i++) { 2137 struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; 2138 if (!sb) 2139 continue; 2140 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) 2141 xive_pre_save_mask_irq(xive, sb, j); 2142 } 2143 2144 /* Then scan the queues and update the "in_queue" flag */ 2145 kvm_for_each_vcpu(i, vcpu, xive->kvm) { 2146 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 2147 if (!xc) 2148 continue; 2149 for (j = 0; j < KVMPPC_XIVE_Q_COUNT; j++) { 2150 if (xc->queues[j].qpage) 2151 xive_pre_save_queue(xive, &xc->queues[j]); 2152 } 2153 } 2154 2155 /* Finally restore interrupt states */ 2156 for (i = 0; i <= xive->max_sbid; i++) { 2157 struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; 2158 if (!sb) 2159 continue; 2160 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) 2161 xive_pre_save_unmask_irq(xive, sb, j); 2162 } 2163 } 2164 2165 static void xive_post_save_scan(struct kvmppc_xive *xive) 2166 { 2167 u32 i, j; 2168 2169 /* Clear all the in_queue flags */ 2170 for (i = 0; i <= xive->max_sbid; i++) { 2171 struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; 2172 if (!sb) 2173 continue; 2174 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) 2175 sb->irq_state[j].in_queue = false; 2176 } 2177 2178 /* Next get_source() will do a new scan */ 2179 xive->saved_src_count = 0; 2180 } 2181 2182 /* 2183 * This returns the source configuration and state to user space. 2184 */ 2185 static int xive_get_source(struct kvmppc_xive *xive, long irq, u64 addr) 2186 { 2187 struct kvmppc_xive_src_block *sb; 2188 struct kvmppc_xive_irq_state *state; 2189 u64 __user *ubufp = (u64 __user *) addr; 2190 u64 val, prio; 2191 u16 idx; 2192 2193 sb = kvmppc_xive_find_source(xive, irq, &idx); 2194 if (!sb) 2195 return -ENOENT; 2196 2197 state = &sb->irq_state[idx]; 2198 2199 if (!state->valid) 2200 return -ENOENT; 2201 2202 pr_devel("get_source(%ld)...\n", irq); 2203 2204 /* 2205 * So to properly save the state into something that looks like a 2206 * XICS migration stream we cannot treat interrupts individually. 2207 * 2208 * We need, instead, mask them all (& save their previous PQ state) 2209 * to get a stable state in the HW, then sync them to ensure that 2210 * any interrupt that had already fired hits its queue, and finally 2211 * scan all the queues to collect which interrupts are still present 2212 * in the queues, so we can set the "pending" flag on them and 2213 * they can be resent on restore. 2214 * 2215 * So we do it all when the "first" interrupt gets saved, all the 2216 * state is collected at that point, the rest of xive_get_source() 2217 * will merely collect and convert that state to the expected 2218 * userspace bit mask. 2219 */ 2220 if (xive->saved_src_count == 0) 2221 xive_pre_save_scan(xive); 2222 xive->saved_src_count++; 2223 2224 /* Convert saved state into something compatible with xics */ 2225 val = state->act_server; 2226 prio = state->saved_scan_prio; 2227 2228 if (prio == MASKED) { 2229 val |= KVM_XICS_MASKED; 2230 prio = state->saved_priority; 2231 } 2232 val |= prio << KVM_XICS_PRIORITY_SHIFT; 2233 if (state->lsi) { 2234 val |= KVM_XICS_LEVEL_SENSITIVE; 2235 if (state->saved_p) 2236 val |= KVM_XICS_PENDING; 2237 } else { 2238 if (state->saved_p) 2239 val |= KVM_XICS_PRESENTED; 2240 2241 if (state->saved_q) 2242 val |= KVM_XICS_QUEUED; 2243 2244 /* 2245 * We mark it pending (which will attempt a re-delivery) 2246 * if we are in a queue *or* we were masked and had 2247 * Q set which is equivalent to the XICS "masked pending" 2248 * state 2249 */ 2250 if (state->in_queue || (prio == MASKED && state->saved_q)) 2251 val |= KVM_XICS_PENDING; 2252 } 2253 2254 /* 2255 * If that was the last interrupt saved, reset the 2256 * in_queue flags 2257 */ 2258 if (xive->saved_src_count == xive->src_count) 2259 xive_post_save_scan(xive); 2260 2261 /* Copy the result to userspace */ 2262 if (put_user(val, ubufp)) 2263 return -EFAULT; 2264 2265 return 0; 2266 } 2267 2268 struct kvmppc_xive_src_block *kvmppc_xive_create_src_block( 2269 struct kvmppc_xive *xive, int irq) 2270 { 2271 struct kvmppc_xive_src_block *sb; 2272 int i, bid; 2273 2274 bid = irq >> KVMPPC_XICS_ICS_SHIFT; 2275 2276 mutex_lock(&xive->lock); 2277 2278 /* block already exists - somebody else got here first */ 2279 if (xive->src_blocks[bid]) 2280 goto out; 2281 2282 /* Create the ICS */ 2283 sb = kzalloc(sizeof(*sb), GFP_KERNEL); 2284 if (!sb) 2285 goto out; 2286 2287 sb->id = bid; 2288 2289 for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) { 2290 sb->irq_state[i].number = (bid << KVMPPC_XICS_ICS_SHIFT) | i; 2291 sb->irq_state[i].eisn = 0; 2292 sb->irq_state[i].guest_priority = MASKED; 2293 sb->irq_state[i].saved_priority = MASKED; 2294 sb->irq_state[i].act_priority = MASKED; 2295 } 2296 smp_wmb(); 2297 xive->src_blocks[bid] = sb; 2298 2299 if (bid > xive->max_sbid) 2300 xive->max_sbid = bid; 2301 2302 out: 2303 mutex_unlock(&xive->lock); 2304 return xive->src_blocks[bid]; 2305 } 2306 2307 static bool xive_check_delayed_irq(struct kvmppc_xive *xive, u32 irq) 2308 { 2309 struct kvm *kvm = xive->kvm; 2310 struct kvm_vcpu *vcpu = NULL; 2311 unsigned long i; 2312 2313 kvm_for_each_vcpu(i, vcpu, kvm) { 2314 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 2315 2316 if (!xc) 2317 continue; 2318 2319 if (xc->delayed_irq == irq) { 2320 xc->delayed_irq = 0; 2321 xive->delayed_irqs--; 2322 return true; 2323 } 2324 } 2325 return false; 2326 } 2327 2328 static int xive_set_source(struct kvmppc_xive *xive, long irq, u64 addr) 2329 { 2330 struct kvmppc_xive_src_block *sb; 2331 struct kvmppc_xive_irq_state *state; 2332 u64 __user *ubufp = (u64 __user *) addr; 2333 u16 idx; 2334 u64 val; 2335 u8 act_prio, guest_prio; 2336 u32 server; 2337 int rc = 0; 2338 2339 if (irq < KVMPPC_XICS_FIRST_IRQ || irq >= KVMPPC_XICS_NR_IRQS) 2340 return -ENOENT; 2341 2342 pr_devel("set_source(irq=0x%lx)\n", irq); 2343 2344 /* Find the source */ 2345 sb = kvmppc_xive_find_source(xive, irq, &idx); 2346 if (!sb) { 2347 pr_devel("No source, creating source block...\n"); 2348 sb = kvmppc_xive_create_src_block(xive, irq); 2349 if (!sb) { 2350 pr_devel("Failed to create block...\n"); 2351 return -ENOMEM; 2352 } 2353 } 2354 state = &sb->irq_state[idx]; 2355 2356 /* Read user passed data */ 2357 if (get_user(val, ubufp)) { 2358 pr_devel("fault getting user info !\n"); 2359 return -EFAULT; 2360 } 2361 2362 server = val & KVM_XICS_DESTINATION_MASK; 2363 guest_prio = val >> KVM_XICS_PRIORITY_SHIFT; 2364 2365 pr_devel(" val=0x016%llx (server=0x%x, guest_prio=%d)\n", 2366 val, server, guest_prio); 2367 2368 /* 2369 * If the source doesn't already have an IPI, allocate 2370 * one and get the corresponding data 2371 */ 2372 if (!state->ipi_number) { 2373 state->ipi_number = xive_native_alloc_irq(); 2374 if (state->ipi_number == 0) { 2375 pr_devel("Failed to allocate IPI !\n"); 2376 return -ENOMEM; 2377 } 2378 xive_native_populate_irq_data(state->ipi_number, &state->ipi_data); 2379 pr_devel(" src_ipi=0x%x\n", state->ipi_number); 2380 } 2381 2382 /* 2383 * We use lock_and_mask() to set us in the right masked 2384 * state. We will override that state from the saved state 2385 * further down, but this will handle the cases of interrupts 2386 * that need FW masking. We set the initial guest_priority to 2387 * 0 before calling it to ensure it actually performs the masking. 2388 */ 2389 state->guest_priority = 0; 2390 xive_lock_and_mask(xive, sb, state); 2391 2392 /* 2393 * Now, we select a target if we have one. If we don't we 2394 * leave the interrupt untargetted. It means that an interrupt 2395 * can become "untargetted" accross migration if it was masked 2396 * by set_xive() but there is little we can do about it. 2397 */ 2398 2399 /* First convert prio and mark interrupt as untargetted */ 2400 act_prio = xive_prio_from_guest(guest_prio); 2401 state->act_priority = MASKED; 2402 2403 /* 2404 * We need to drop the lock due to the mutex below. Hopefully 2405 * nothing is touching that interrupt yet since it hasn't been 2406 * advertized to a running guest yet 2407 */ 2408 arch_spin_unlock(&sb->lock); 2409 2410 /* If we have a priority target the interrupt */ 2411 if (act_prio != MASKED) { 2412 /* First, check provisioning of queues */ 2413 mutex_lock(&xive->lock); 2414 rc = xive_check_provisioning(xive->kvm, act_prio); 2415 mutex_unlock(&xive->lock); 2416 2417 /* Target interrupt */ 2418 if (rc == 0) 2419 rc = xive_target_interrupt(xive->kvm, state, 2420 server, act_prio); 2421 /* 2422 * If provisioning or targetting failed, leave it 2423 * alone and masked. It will remain disabled until 2424 * the guest re-targets it. 2425 */ 2426 } 2427 2428 /* 2429 * Find out if this was a delayed irq stashed in an ICP, 2430 * in which case, treat it as pending 2431 */ 2432 if (xive->delayed_irqs && xive_check_delayed_irq(xive, irq)) { 2433 val |= KVM_XICS_PENDING; 2434 pr_devel(" Found delayed ! forcing PENDING !\n"); 2435 } 2436 2437 /* Cleanup the SW state */ 2438 state->old_p = false; 2439 state->old_q = false; 2440 state->lsi = false; 2441 state->asserted = false; 2442 2443 /* Restore LSI state */ 2444 if (val & KVM_XICS_LEVEL_SENSITIVE) { 2445 state->lsi = true; 2446 if (val & KVM_XICS_PENDING) 2447 state->asserted = true; 2448 pr_devel(" LSI ! Asserted=%d\n", state->asserted); 2449 } 2450 2451 /* 2452 * Restore P and Q. If the interrupt was pending, we 2453 * force Q and !P, which will trigger a resend. 2454 * 2455 * That means that a guest that had both an interrupt 2456 * pending (queued) and Q set will restore with only 2457 * one instance of that interrupt instead of 2, but that 2458 * is perfectly fine as coalescing interrupts that haven't 2459 * been presented yet is always allowed. 2460 */ 2461 if (val & KVM_XICS_PRESENTED && !(val & KVM_XICS_PENDING)) 2462 state->old_p = true; 2463 if (val & KVM_XICS_QUEUED || val & KVM_XICS_PENDING) 2464 state->old_q = true; 2465 2466 pr_devel(" P=%d, Q=%d\n", state->old_p, state->old_q); 2467 2468 /* 2469 * If the interrupt was unmasked, update guest priority and 2470 * perform the appropriate state transition and do a 2471 * re-trigger if necessary. 2472 */ 2473 if (val & KVM_XICS_MASKED) { 2474 pr_devel(" masked, saving prio\n"); 2475 state->guest_priority = MASKED; 2476 state->saved_priority = guest_prio; 2477 } else { 2478 pr_devel(" unmasked, restoring to prio %d\n", guest_prio); 2479 xive_finish_unmask(xive, sb, state, guest_prio); 2480 state->saved_priority = guest_prio; 2481 } 2482 2483 /* Increment the number of valid sources and mark this one valid */ 2484 if (!state->valid) 2485 xive->src_count++; 2486 state->valid = true; 2487 2488 return 0; 2489 } 2490 2491 int kvmppc_xive_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 2492 bool line_status) 2493 { 2494 struct kvmppc_xive *xive = kvm->arch.xive; 2495 struct kvmppc_xive_src_block *sb; 2496 struct kvmppc_xive_irq_state *state; 2497 u16 idx; 2498 2499 if (!xive) 2500 return -ENODEV; 2501 2502 sb = kvmppc_xive_find_source(xive, irq, &idx); 2503 if (!sb) 2504 return -EINVAL; 2505 2506 /* Perform locklessly .... (we need to do some RCUisms here...) */ 2507 state = &sb->irq_state[idx]; 2508 if (!state->valid) 2509 return -EINVAL; 2510 2511 /* We don't allow a trigger on a passed-through interrupt */ 2512 if (state->pt_number) 2513 return -EINVAL; 2514 2515 if ((level == 1 && state->lsi) || level == KVM_INTERRUPT_SET_LEVEL) 2516 state->asserted = true; 2517 else if (level == 0 || level == KVM_INTERRUPT_UNSET) { 2518 state->asserted = false; 2519 return 0; 2520 } 2521 2522 /* Trigger the IPI */ 2523 xive_irq_trigger(&state->ipi_data); 2524 2525 return 0; 2526 } 2527 2528 int kvmppc_xive_set_nr_servers(struct kvmppc_xive *xive, u64 addr) 2529 { 2530 u32 __user *ubufp = (u32 __user *) addr; 2531 u32 nr_servers; 2532 int rc = 0; 2533 2534 if (get_user(nr_servers, ubufp)) 2535 return -EFAULT; 2536 2537 pr_devel("%s nr_servers=%u\n", __func__, nr_servers); 2538 2539 if (!nr_servers || nr_servers > KVM_MAX_VCPU_IDS) 2540 return -EINVAL; 2541 2542 mutex_lock(&xive->lock); 2543 if (xive->vp_base != XIVE_INVALID_VP) 2544 /* The VP block is allocated once and freed when the device 2545 * is released. Better not allow to change its size since its 2546 * used by connect_vcpu to validate vCPU ids are valid (eg, 2547 * setting it back to a higher value could allow connect_vcpu 2548 * to come up with a VP id that goes beyond the VP block, which 2549 * is likely to cause a crash in OPAL). 2550 */ 2551 rc = -EBUSY; 2552 else if (nr_servers > KVM_MAX_VCPUS) 2553 /* We don't need more servers. Higher vCPU ids get packed 2554 * down below KVM_MAX_VCPUS by kvmppc_pack_vcpu_id(). 2555 */ 2556 xive->nr_servers = KVM_MAX_VCPUS; 2557 else 2558 xive->nr_servers = nr_servers; 2559 2560 mutex_unlock(&xive->lock); 2561 2562 return rc; 2563 } 2564 2565 static int xive_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 2566 { 2567 struct kvmppc_xive *xive = dev->private; 2568 2569 /* We honor the existing XICS ioctl */ 2570 switch (attr->group) { 2571 case KVM_DEV_XICS_GRP_SOURCES: 2572 return xive_set_source(xive, attr->attr, attr->addr); 2573 case KVM_DEV_XICS_GRP_CTRL: 2574 switch (attr->attr) { 2575 case KVM_DEV_XICS_NR_SERVERS: 2576 return kvmppc_xive_set_nr_servers(xive, attr->addr); 2577 } 2578 } 2579 return -ENXIO; 2580 } 2581 2582 static int xive_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 2583 { 2584 struct kvmppc_xive *xive = dev->private; 2585 2586 /* We honor the existing XICS ioctl */ 2587 switch (attr->group) { 2588 case KVM_DEV_XICS_GRP_SOURCES: 2589 return xive_get_source(xive, attr->attr, attr->addr); 2590 } 2591 return -ENXIO; 2592 } 2593 2594 static int xive_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 2595 { 2596 /* We honor the same limits as XICS, at least for now */ 2597 switch (attr->group) { 2598 case KVM_DEV_XICS_GRP_SOURCES: 2599 if (attr->attr >= KVMPPC_XICS_FIRST_IRQ && 2600 attr->attr < KVMPPC_XICS_NR_IRQS) 2601 return 0; 2602 break; 2603 case KVM_DEV_XICS_GRP_CTRL: 2604 switch (attr->attr) { 2605 case KVM_DEV_XICS_NR_SERVERS: 2606 return 0; 2607 } 2608 } 2609 return -ENXIO; 2610 } 2611 2612 static void kvmppc_xive_cleanup_irq(u32 hw_num, struct xive_irq_data *xd) 2613 { 2614 xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01); 2615 xive_native_configure_irq(hw_num, 0, MASKED, 0); 2616 } 2617 2618 void kvmppc_xive_free_sources(struct kvmppc_xive_src_block *sb) 2619 { 2620 int i; 2621 2622 for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) { 2623 struct kvmppc_xive_irq_state *state = &sb->irq_state[i]; 2624 2625 if (!state->valid) 2626 continue; 2627 2628 kvmppc_xive_cleanup_irq(state->ipi_number, &state->ipi_data); 2629 xive_cleanup_irq_data(&state->ipi_data); 2630 xive_native_free_irq(state->ipi_number); 2631 2632 /* Pass-through, cleanup too but keep IRQ hw data */ 2633 if (state->pt_number) 2634 kvmppc_xive_cleanup_irq(state->pt_number, state->pt_data); 2635 2636 state->valid = false; 2637 } 2638 } 2639 2640 /* 2641 * Called when device fd is closed. kvm->lock is held. 2642 */ 2643 static void kvmppc_xive_release(struct kvm_device *dev) 2644 { 2645 struct kvmppc_xive *xive = dev->private; 2646 struct kvm *kvm = xive->kvm; 2647 struct kvm_vcpu *vcpu; 2648 unsigned long i; 2649 2650 pr_devel("Releasing xive device\n"); 2651 2652 /* 2653 * Since this is the device release function, we know that 2654 * userspace does not have any open fd referring to the 2655 * device. Therefore there can not be any of the device 2656 * attribute set/get functions being executed concurrently, 2657 * and similarly, the connect_vcpu and set/clr_mapped 2658 * functions also cannot be being executed. 2659 */ 2660 2661 debugfs_remove(xive->dentry); 2662 2663 /* 2664 * We should clean up the vCPU interrupt presenters first. 2665 */ 2666 kvm_for_each_vcpu(i, vcpu, kvm) { 2667 /* 2668 * Take vcpu->mutex to ensure that no one_reg get/set ioctl 2669 * (i.e. kvmppc_xive_[gs]et_icp) can be done concurrently. 2670 * Holding the vcpu->mutex also means that the vcpu cannot 2671 * be executing the KVM_RUN ioctl, and therefore it cannot 2672 * be executing the XIVE push or pull code or accessing 2673 * the XIVE MMIO regions. 2674 */ 2675 mutex_lock(&vcpu->mutex); 2676 kvmppc_xive_cleanup_vcpu(vcpu); 2677 mutex_unlock(&vcpu->mutex); 2678 } 2679 2680 /* 2681 * Now that we have cleared vcpu->arch.xive_vcpu, vcpu->arch.irq_type 2682 * and vcpu->arch.xive_esc_[vr]addr on each vcpu, we are safe 2683 * against xive code getting called during vcpu execution or 2684 * set/get one_reg operations. 2685 */ 2686 kvm->arch.xive = NULL; 2687 2688 /* Mask and free interrupts */ 2689 for (i = 0; i <= xive->max_sbid; i++) { 2690 if (xive->src_blocks[i]) 2691 kvmppc_xive_free_sources(xive->src_blocks[i]); 2692 kfree(xive->src_blocks[i]); 2693 xive->src_blocks[i] = NULL; 2694 } 2695 2696 if (xive->vp_base != XIVE_INVALID_VP) 2697 xive_native_free_vp_block(xive->vp_base); 2698 2699 /* 2700 * A reference of the kvmppc_xive pointer is now kept under 2701 * the xive_devices struct of the machine for reuse. It is 2702 * freed when the VM is destroyed for now until we fix all the 2703 * execution paths. 2704 */ 2705 2706 kfree(dev); 2707 } 2708 2709 /* 2710 * When the guest chooses the interrupt mode (XICS legacy or XIVE 2711 * native), the VM will switch of KVM device. The previous device will 2712 * be "released" before the new one is created. 2713 * 2714 * Until we are sure all execution paths are well protected, provide a 2715 * fail safe (transitional) method for device destruction, in which 2716 * the XIVE device pointer is recycled and not directly freed. 2717 */ 2718 struct kvmppc_xive *kvmppc_xive_get_device(struct kvm *kvm, u32 type) 2719 { 2720 struct kvmppc_xive **kvm_xive_device = type == KVM_DEV_TYPE_XIVE ? 2721 &kvm->arch.xive_devices.native : 2722 &kvm->arch.xive_devices.xics_on_xive; 2723 struct kvmppc_xive *xive = *kvm_xive_device; 2724 2725 if (!xive) { 2726 xive = kzalloc(sizeof(*xive), GFP_KERNEL); 2727 *kvm_xive_device = xive; 2728 } else { 2729 memset(xive, 0, sizeof(*xive)); 2730 } 2731 2732 return xive; 2733 } 2734 2735 /* 2736 * Create a XICS device with XIVE backend. kvm->lock is held. 2737 */ 2738 static int kvmppc_xive_create(struct kvm_device *dev, u32 type) 2739 { 2740 struct kvmppc_xive *xive; 2741 struct kvm *kvm = dev->kvm; 2742 2743 pr_devel("Creating xive for partition\n"); 2744 2745 /* Already there ? */ 2746 if (kvm->arch.xive) 2747 return -EEXIST; 2748 2749 xive = kvmppc_xive_get_device(kvm, type); 2750 if (!xive) 2751 return -ENOMEM; 2752 2753 dev->private = xive; 2754 xive->dev = dev; 2755 xive->kvm = kvm; 2756 mutex_init(&xive->lock); 2757 2758 /* We use the default queue size set by the host */ 2759 xive->q_order = xive_native_default_eq_shift(); 2760 if (xive->q_order < PAGE_SHIFT) 2761 xive->q_page_order = 0; 2762 else 2763 xive->q_page_order = xive->q_order - PAGE_SHIFT; 2764 2765 /* VP allocation is delayed to the first call to connect_vcpu */ 2766 xive->vp_base = XIVE_INVALID_VP; 2767 /* KVM_MAX_VCPUS limits the number of VMs to roughly 64 per sockets 2768 * on a POWER9 system. 2769 */ 2770 xive->nr_servers = KVM_MAX_VCPUS; 2771 2772 if (xive_native_has_single_escalation()) 2773 xive->flags |= KVMPPC_XIVE_FLAG_SINGLE_ESCALATION; 2774 2775 if (xive_native_has_save_restore()) 2776 xive->flags |= KVMPPC_XIVE_FLAG_SAVE_RESTORE; 2777 2778 kvm->arch.xive = xive; 2779 return 0; 2780 } 2781 2782 int kvmppc_xive_xics_hcall(struct kvm_vcpu *vcpu, u32 req) 2783 { 2784 struct kvmppc_vcore *vc = vcpu->arch.vcore; 2785 2786 /* The VM should have configured XICS mode before doing XICS hcalls. */ 2787 if (!kvmppc_xics_enabled(vcpu)) 2788 return H_TOO_HARD; 2789 2790 switch (req) { 2791 case H_XIRR: 2792 return xive_vm_h_xirr(vcpu); 2793 case H_CPPR: 2794 return xive_vm_h_cppr(vcpu, kvmppc_get_gpr(vcpu, 4)); 2795 case H_EOI: 2796 return xive_vm_h_eoi(vcpu, kvmppc_get_gpr(vcpu, 4)); 2797 case H_IPI: 2798 return xive_vm_h_ipi(vcpu, kvmppc_get_gpr(vcpu, 4), 2799 kvmppc_get_gpr(vcpu, 5)); 2800 case H_IPOLL: 2801 return xive_vm_h_ipoll(vcpu, kvmppc_get_gpr(vcpu, 4)); 2802 case H_XIRR_X: 2803 xive_vm_h_xirr(vcpu); 2804 kvmppc_set_gpr(vcpu, 5, get_tb() + vc->tb_offset); 2805 return H_SUCCESS; 2806 } 2807 2808 return H_UNSUPPORTED; 2809 } 2810 EXPORT_SYMBOL_GPL(kvmppc_xive_xics_hcall); 2811 2812 int kvmppc_xive_debug_show_queues(struct seq_file *m, struct kvm_vcpu *vcpu) 2813 { 2814 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 2815 unsigned int i; 2816 2817 for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) { 2818 struct xive_q *q = &xc->queues[i]; 2819 u32 i0, i1, idx; 2820 2821 if (!q->qpage && !xc->esc_virq[i]) 2822 continue; 2823 2824 if (q->qpage) { 2825 seq_printf(m, " q[%d]: ", i); 2826 idx = q->idx; 2827 i0 = be32_to_cpup(q->qpage + idx); 2828 idx = (idx + 1) & q->msk; 2829 i1 = be32_to_cpup(q->qpage + idx); 2830 seq_printf(m, "T=%d %08x %08x...\n", q->toggle, 2831 i0, i1); 2832 } 2833 if (xc->esc_virq[i]) { 2834 struct irq_data *d = irq_get_irq_data(xc->esc_virq[i]); 2835 struct xive_irq_data *xd = 2836 irq_data_get_irq_handler_data(d); 2837 u64 pq = xive_vm_esb_load(xd, XIVE_ESB_GET); 2838 2839 seq_printf(m, " ESC %d %c%c EOI @%llx", 2840 xc->esc_virq[i], 2841 (pq & XIVE_ESB_VAL_P) ? 'P' : '-', 2842 (pq & XIVE_ESB_VAL_Q) ? 'Q' : '-', 2843 xd->eoi_page); 2844 seq_puts(m, "\n"); 2845 } 2846 } 2847 return 0; 2848 } 2849 2850 void kvmppc_xive_debug_show_sources(struct seq_file *m, 2851 struct kvmppc_xive_src_block *sb) 2852 { 2853 int i; 2854 2855 seq_puts(m, " LISN HW/CHIP TYPE PQ EISN CPU/PRIO\n"); 2856 for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) { 2857 struct kvmppc_xive_irq_state *state = &sb->irq_state[i]; 2858 struct xive_irq_data *xd; 2859 u64 pq; 2860 u32 hw_num; 2861 2862 if (!state->valid) 2863 continue; 2864 2865 kvmppc_xive_select_irq(state, &hw_num, &xd); 2866 2867 pq = xive_vm_esb_load(xd, XIVE_ESB_GET); 2868 2869 seq_printf(m, "%08x %08x/%02x", state->number, hw_num, 2870 xd->src_chip); 2871 if (state->lsi) 2872 seq_printf(m, " %cLSI", state->asserted ? '^' : ' '); 2873 else 2874 seq_puts(m, " MSI"); 2875 2876 seq_printf(m, " %s %c%c %08x % 4d/%d", 2877 state->ipi_number == hw_num ? "IPI" : " PT", 2878 pq & XIVE_ESB_VAL_P ? 'P' : '-', 2879 pq & XIVE_ESB_VAL_Q ? 'Q' : '-', 2880 state->eisn, state->act_server, 2881 state->act_priority); 2882 2883 seq_puts(m, "\n"); 2884 } 2885 } 2886 2887 static int xive_debug_show(struct seq_file *m, void *private) 2888 { 2889 struct kvmppc_xive *xive = m->private; 2890 struct kvm *kvm = xive->kvm; 2891 struct kvm_vcpu *vcpu; 2892 u64 t_rm_h_xirr = 0; 2893 u64 t_rm_h_ipoll = 0; 2894 u64 t_rm_h_cppr = 0; 2895 u64 t_rm_h_eoi = 0; 2896 u64 t_rm_h_ipi = 0; 2897 u64 t_vm_h_xirr = 0; 2898 u64 t_vm_h_ipoll = 0; 2899 u64 t_vm_h_cppr = 0; 2900 u64 t_vm_h_eoi = 0; 2901 u64 t_vm_h_ipi = 0; 2902 unsigned long i; 2903 2904 if (!kvm) 2905 return 0; 2906 2907 seq_puts(m, "=========\nVCPU state\n=========\n"); 2908 2909 kvm_for_each_vcpu(i, vcpu, kvm) { 2910 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 2911 2912 if (!xc) 2913 continue; 2914 2915 seq_printf(m, "VCPU %d: VP:%#x/%02x\n" 2916 " CPPR:%#x HWCPPR:%#x MFRR:%#x PEND:%#x h_xirr: R=%lld V=%lld\n", 2917 xc->server_num, xc->vp_id, xc->vp_chip_id, 2918 xc->cppr, xc->hw_cppr, 2919 xc->mfrr, xc->pending, 2920 xc->stat_rm_h_xirr, xc->stat_vm_h_xirr); 2921 2922 kvmppc_xive_debug_show_queues(m, vcpu); 2923 2924 t_rm_h_xirr += xc->stat_rm_h_xirr; 2925 t_rm_h_ipoll += xc->stat_rm_h_ipoll; 2926 t_rm_h_cppr += xc->stat_rm_h_cppr; 2927 t_rm_h_eoi += xc->stat_rm_h_eoi; 2928 t_rm_h_ipi += xc->stat_rm_h_ipi; 2929 t_vm_h_xirr += xc->stat_vm_h_xirr; 2930 t_vm_h_ipoll += xc->stat_vm_h_ipoll; 2931 t_vm_h_cppr += xc->stat_vm_h_cppr; 2932 t_vm_h_eoi += xc->stat_vm_h_eoi; 2933 t_vm_h_ipi += xc->stat_vm_h_ipi; 2934 } 2935 2936 seq_puts(m, "Hcalls totals\n"); 2937 seq_printf(m, " H_XIRR R=%10lld V=%10lld\n", t_rm_h_xirr, t_vm_h_xirr); 2938 seq_printf(m, " H_IPOLL R=%10lld V=%10lld\n", t_rm_h_ipoll, t_vm_h_ipoll); 2939 seq_printf(m, " H_CPPR R=%10lld V=%10lld\n", t_rm_h_cppr, t_vm_h_cppr); 2940 seq_printf(m, " H_EOI R=%10lld V=%10lld\n", t_rm_h_eoi, t_vm_h_eoi); 2941 seq_printf(m, " H_IPI R=%10lld V=%10lld\n", t_rm_h_ipi, t_vm_h_ipi); 2942 2943 seq_puts(m, "=========\nSources\n=========\n"); 2944 2945 for (i = 0; i <= xive->max_sbid; i++) { 2946 struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; 2947 2948 if (sb) { 2949 arch_spin_lock(&sb->lock); 2950 kvmppc_xive_debug_show_sources(m, sb); 2951 arch_spin_unlock(&sb->lock); 2952 } 2953 } 2954 2955 return 0; 2956 } 2957 2958 DEFINE_SHOW_ATTRIBUTE(xive_debug); 2959 2960 static void xive_debugfs_init(struct kvmppc_xive *xive) 2961 { 2962 xive->dentry = debugfs_create_file("xive", S_IRUGO, xive->kvm->debugfs_dentry, 2963 xive, &xive_debug_fops); 2964 2965 pr_debug("%s: created\n", __func__); 2966 } 2967 2968 static void kvmppc_xive_init(struct kvm_device *dev) 2969 { 2970 struct kvmppc_xive *xive = dev->private; 2971 2972 /* Register some debug interfaces */ 2973 xive_debugfs_init(xive); 2974 } 2975 2976 struct kvm_device_ops kvm_xive_ops = { 2977 .name = "kvm-xive", 2978 .create = kvmppc_xive_create, 2979 .init = kvmppc_xive_init, 2980 .release = kvmppc_xive_release, 2981 .set_attr = xive_set_attr, 2982 .get_attr = xive_get_attr, 2983 .has_attr = xive_has_attr, 2984 }; 2985