1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2017 Benjamin Herrenschmidt, IBM Corporation. 4 */ 5 6 #define pr_fmt(fmt) "xive-kvm: " fmt 7 8 #include <linux/kernel.h> 9 #include <linux/kvm_host.h> 10 #include <linux/err.h> 11 #include <linux/gfp.h> 12 #include <linux/spinlock.h> 13 #include <linux/delay.h> 14 #include <linux/percpu.h> 15 #include <linux/cpumask.h> 16 #include <linux/uaccess.h> 17 #include <linux/irqdomain.h> 18 #include <asm/kvm_book3s.h> 19 #include <asm/kvm_ppc.h> 20 #include <asm/hvcall.h> 21 #include <asm/xics.h> 22 #include <asm/xive.h> 23 #include <asm/xive-regs.h> 24 #include <asm/debug.h> 25 #include <asm/time.h> 26 #include <asm/opal.h> 27 28 #include <linux/debugfs.h> 29 #include <linux/seq_file.h> 30 31 #include "book3s_xive.h" 32 33 34 /* 35 * Virtual mode variants of the hcalls for use on radix/radix 36 * with AIL. They require the VCPU's VP to be "pushed" 37 * 38 * We still instantiate them here because we use some of the 39 * generated utility functions as well in this file. 40 */ 41 #define XIVE_RUNTIME_CHECKS 42 #define X_PFX xive_vm_ 43 #define X_STATIC static 44 #define X_STAT_PFX stat_vm_ 45 #define __x_tima xive_tima 46 #define __x_eoi_page(xd) ((void __iomem *)((xd)->eoi_mmio)) 47 #define __x_trig_page(xd) ((void __iomem *)((xd)->trig_mmio)) 48 #define __x_writeb __raw_writeb 49 #define __x_readw __raw_readw 50 #define __x_readq __raw_readq 51 #define __x_writeq __raw_writeq 52 53 #include "book3s_xive_template.c" 54 55 /* 56 * We leave a gap of a couple of interrupts in the queue to 57 * account for the IPI and additional safety guard. 58 */ 59 #define XIVE_Q_GAP 2 60 61 static bool kvmppc_xive_vcpu_has_save_restore(struct kvm_vcpu *vcpu) 62 { 63 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 64 65 /* Check enablement at VP level */ 66 return xc->vp_cam & TM_QW1W2_HO; 67 } 68 69 bool kvmppc_xive_check_save_restore(struct kvm_vcpu *vcpu) 70 { 71 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 72 struct kvmppc_xive *xive = xc->xive; 73 74 if (xive->flags & KVMPPC_XIVE_FLAG_SAVE_RESTORE) 75 return kvmppc_xive_vcpu_has_save_restore(vcpu); 76 77 return true; 78 } 79 80 /* 81 * Push a vcpu's context to the XIVE on guest entry. 82 * This assumes we are in virtual mode (MMU on) 83 */ 84 void kvmppc_xive_push_vcpu(struct kvm_vcpu *vcpu) 85 { 86 void __iomem *tima = local_paca->kvm_hstate.xive_tima_virt; 87 u64 pq; 88 89 /* 90 * Nothing to do if the platform doesn't have a XIVE 91 * or this vCPU doesn't have its own XIVE context 92 * (e.g. because it's not using an in-kernel interrupt controller). 93 */ 94 if (!tima || !vcpu->arch.xive_cam_word) 95 return; 96 97 eieio(); 98 if (!kvmppc_xive_vcpu_has_save_restore(vcpu)) 99 __raw_writeq(vcpu->arch.xive_saved_state.w01, tima + TM_QW1_OS); 100 __raw_writel(vcpu->arch.xive_cam_word, tima + TM_QW1_OS + TM_WORD2); 101 vcpu->arch.xive_pushed = 1; 102 eieio(); 103 104 /* 105 * We clear the irq_pending flag. There is a small chance of a 106 * race vs. the escalation interrupt happening on another 107 * processor setting it again, but the only consequence is to 108 * cause a spurious wakeup on the next H_CEDE, which is not an 109 * issue. 110 */ 111 vcpu->arch.irq_pending = 0; 112 113 /* 114 * In single escalation mode, if the escalation interrupt is 115 * on, we mask it. 116 */ 117 if (vcpu->arch.xive_esc_on) { 118 pq = __raw_readq((void __iomem *)(vcpu->arch.xive_esc_vaddr + 119 XIVE_ESB_SET_PQ_01)); 120 mb(); 121 122 /* 123 * We have a possible subtle race here: The escalation 124 * interrupt might have fired and be on its way to the 125 * host queue while we mask it, and if we unmask it 126 * early enough (re-cede right away), there is a 127 * theorical possibility that it fires again, thus 128 * landing in the target queue more than once which is 129 * a big no-no. 130 * 131 * Fortunately, solving this is rather easy. If the 132 * above load setting PQ to 01 returns a previous 133 * value where P is set, then we know the escalation 134 * interrupt is somewhere on its way to the host. In 135 * that case we simply don't clear the xive_esc_on 136 * flag below. It will be eventually cleared by the 137 * handler for the escalation interrupt. 138 * 139 * Then, when doing a cede, we check that flag again 140 * before re-enabling the escalation interrupt, and if 141 * set, we abort the cede. 142 */ 143 if (!(pq & XIVE_ESB_VAL_P)) 144 /* Now P is 0, we can clear the flag */ 145 vcpu->arch.xive_esc_on = 0; 146 } 147 } 148 EXPORT_SYMBOL_GPL(kvmppc_xive_push_vcpu); 149 150 /* 151 * Pull a vcpu's context from the XIVE on guest exit. 152 * This assumes we are in virtual mode (MMU on) 153 */ 154 void kvmppc_xive_pull_vcpu(struct kvm_vcpu *vcpu) 155 { 156 void __iomem *tima = local_paca->kvm_hstate.xive_tima_virt; 157 158 if (!vcpu->arch.xive_pushed) 159 return; 160 161 /* 162 * Should not have been pushed if there is no tima 163 */ 164 if (WARN_ON(!tima)) 165 return; 166 167 eieio(); 168 /* First load to pull the context, we ignore the value */ 169 __raw_readl(tima + TM_SPC_PULL_OS_CTX); 170 /* Second load to recover the context state (Words 0 and 1) */ 171 if (!kvmppc_xive_vcpu_has_save_restore(vcpu)) 172 vcpu->arch.xive_saved_state.w01 = __raw_readq(tima + TM_QW1_OS); 173 174 /* Fixup some of the state for the next load */ 175 vcpu->arch.xive_saved_state.lsmfb = 0; 176 vcpu->arch.xive_saved_state.ack = 0xff; 177 vcpu->arch.xive_pushed = 0; 178 eieio(); 179 } 180 EXPORT_SYMBOL_GPL(kvmppc_xive_pull_vcpu); 181 182 void kvmppc_xive_rearm_escalation(struct kvm_vcpu *vcpu) 183 { 184 void __iomem *esc_vaddr = (void __iomem *)vcpu->arch.xive_esc_vaddr; 185 186 if (!esc_vaddr) 187 return; 188 189 /* we are using XIVE with single escalation */ 190 191 if (vcpu->arch.xive_esc_on) { 192 /* 193 * If we still have a pending escalation, abort the cede, 194 * and we must set PQ to 10 rather than 00 so that we don't 195 * potentially end up with two entries for the escalation 196 * interrupt in the XIVE interrupt queue. In that case 197 * we also don't want to set xive_esc_on to 1 here in 198 * case we race with xive_esc_irq(). 199 */ 200 vcpu->arch.ceded = 0; 201 /* 202 * The escalation interrupts are special as we don't EOI them. 203 * There is no need to use the load-after-store ordering offset 204 * to set PQ to 10 as we won't use StoreEOI. 205 */ 206 __raw_readq(esc_vaddr + XIVE_ESB_SET_PQ_10); 207 } else { 208 vcpu->arch.xive_esc_on = true; 209 mb(); 210 __raw_readq(esc_vaddr + XIVE_ESB_SET_PQ_00); 211 } 212 mb(); 213 } 214 EXPORT_SYMBOL_GPL(kvmppc_xive_rearm_escalation); 215 216 /* 217 * This is a simple trigger for a generic XIVE IRQ. This must 218 * only be called for interrupts that support a trigger page 219 */ 220 static bool xive_irq_trigger(struct xive_irq_data *xd) 221 { 222 /* This should be only for MSIs */ 223 if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI)) 224 return false; 225 226 /* Those interrupts should always have a trigger page */ 227 if (WARN_ON(!xd->trig_mmio)) 228 return false; 229 230 out_be64(xd->trig_mmio, 0); 231 232 return true; 233 } 234 235 static irqreturn_t xive_esc_irq(int irq, void *data) 236 { 237 struct kvm_vcpu *vcpu = data; 238 239 vcpu->arch.irq_pending = 1; 240 smp_mb(); 241 if (vcpu->arch.ceded) 242 kvmppc_fast_vcpu_kick(vcpu); 243 244 /* Since we have the no-EOI flag, the interrupt is effectively 245 * disabled now. Clearing xive_esc_on means we won't bother 246 * doing so on the next entry. 247 * 248 * This also allows the entry code to know that if a PQ combination 249 * of 10 is observed while xive_esc_on is true, it means the queue 250 * contains an unprocessed escalation interrupt. We don't make use of 251 * that knowledge today but might (see comment in book3s_hv_rmhandler.S) 252 */ 253 vcpu->arch.xive_esc_on = false; 254 255 /* This orders xive_esc_on = false vs. subsequent stale_p = true */ 256 smp_wmb(); /* goes with smp_mb() in cleanup_single_escalation */ 257 258 return IRQ_HANDLED; 259 } 260 261 int kvmppc_xive_attach_escalation(struct kvm_vcpu *vcpu, u8 prio, 262 bool single_escalation) 263 { 264 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 265 struct xive_q *q = &xc->queues[prio]; 266 char *name = NULL; 267 int rc; 268 269 /* Already there ? */ 270 if (xc->esc_virq[prio]) 271 return 0; 272 273 /* Hook up the escalation interrupt */ 274 xc->esc_virq[prio] = irq_create_mapping(NULL, q->esc_irq); 275 if (!xc->esc_virq[prio]) { 276 pr_err("Failed to map escalation interrupt for queue %d of VCPU %d\n", 277 prio, xc->server_num); 278 return -EIO; 279 } 280 281 if (single_escalation) 282 name = kasprintf(GFP_KERNEL, "kvm-%d-%d", 283 vcpu->kvm->arch.lpid, xc->server_num); 284 else 285 name = kasprintf(GFP_KERNEL, "kvm-%d-%d-%d", 286 vcpu->kvm->arch.lpid, xc->server_num, prio); 287 if (!name) { 288 pr_err("Failed to allocate escalation irq name for queue %d of VCPU %d\n", 289 prio, xc->server_num); 290 rc = -ENOMEM; 291 goto error; 292 } 293 294 pr_devel("Escalation %s irq %d (prio %d)\n", name, xc->esc_virq[prio], prio); 295 296 rc = request_irq(xc->esc_virq[prio], xive_esc_irq, 297 IRQF_NO_THREAD, name, vcpu); 298 if (rc) { 299 pr_err("Failed to request escalation interrupt for queue %d of VCPU %d\n", 300 prio, xc->server_num); 301 goto error; 302 } 303 xc->esc_virq_names[prio] = name; 304 305 /* In single escalation mode, we grab the ESB MMIO of the 306 * interrupt and mask it. Also populate the VCPU v/raddr 307 * of the ESB page for use by asm entry/exit code. Finally 308 * set the XIVE_IRQ_FLAG_NO_EOI flag which will prevent the 309 * core code from performing an EOI on the escalation 310 * interrupt, thus leaving it effectively masked after 311 * it fires once. 312 */ 313 if (single_escalation) { 314 struct irq_data *d = irq_get_irq_data(xc->esc_virq[prio]); 315 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 316 317 xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01); 318 vcpu->arch.xive_esc_raddr = xd->eoi_page; 319 vcpu->arch.xive_esc_vaddr = (__force u64)xd->eoi_mmio; 320 xd->flags |= XIVE_IRQ_FLAG_NO_EOI; 321 } 322 323 return 0; 324 error: 325 irq_dispose_mapping(xc->esc_virq[prio]); 326 xc->esc_virq[prio] = 0; 327 kfree(name); 328 return rc; 329 } 330 331 static int xive_provision_queue(struct kvm_vcpu *vcpu, u8 prio) 332 { 333 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 334 struct kvmppc_xive *xive = xc->xive; 335 struct xive_q *q = &xc->queues[prio]; 336 void *qpage; 337 int rc; 338 339 if (WARN_ON(q->qpage)) 340 return 0; 341 342 /* Allocate the queue and retrieve infos on current node for now */ 343 qpage = (__be32 *)__get_free_pages(GFP_KERNEL, xive->q_page_order); 344 if (!qpage) { 345 pr_err("Failed to allocate queue %d for VCPU %d\n", 346 prio, xc->server_num); 347 return -ENOMEM; 348 } 349 memset(qpage, 0, 1 << xive->q_order); 350 351 /* 352 * Reconfigure the queue. This will set q->qpage only once the 353 * queue is fully configured. This is a requirement for prio 0 354 * as we will stop doing EOIs for every IPI as soon as we observe 355 * qpage being non-NULL, and instead will only EOI when we receive 356 * corresponding queue 0 entries 357 */ 358 rc = xive_native_configure_queue(xc->vp_id, q, prio, qpage, 359 xive->q_order, true); 360 if (rc) 361 pr_err("Failed to configure queue %d for VCPU %d\n", 362 prio, xc->server_num); 363 return rc; 364 } 365 366 /* Called with xive->lock held */ 367 static int xive_check_provisioning(struct kvm *kvm, u8 prio) 368 { 369 struct kvmppc_xive *xive = kvm->arch.xive; 370 struct kvm_vcpu *vcpu; 371 unsigned long i; 372 int rc; 373 374 lockdep_assert_held(&xive->lock); 375 376 /* Already provisioned ? */ 377 if (xive->qmap & (1 << prio)) 378 return 0; 379 380 pr_devel("Provisioning prio... %d\n", prio); 381 382 /* Provision each VCPU and enable escalations if needed */ 383 kvm_for_each_vcpu(i, vcpu, kvm) { 384 if (!vcpu->arch.xive_vcpu) 385 continue; 386 rc = xive_provision_queue(vcpu, prio); 387 if (rc == 0 && !kvmppc_xive_has_single_escalation(xive)) 388 kvmppc_xive_attach_escalation(vcpu, prio, 389 kvmppc_xive_has_single_escalation(xive)); 390 if (rc) 391 return rc; 392 } 393 394 /* Order previous stores and mark it as provisioned */ 395 mb(); 396 xive->qmap |= (1 << prio); 397 return 0; 398 } 399 400 static void xive_inc_q_pending(struct kvm *kvm, u32 server, u8 prio) 401 { 402 struct kvm_vcpu *vcpu; 403 struct kvmppc_xive_vcpu *xc; 404 struct xive_q *q; 405 406 /* Locate target server */ 407 vcpu = kvmppc_xive_find_server(kvm, server); 408 if (!vcpu) { 409 pr_warn("%s: Can't find server %d\n", __func__, server); 410 return; 411 } 412 xc = vcpu->arch.xive_vcpu; 413 if (WARN_ON(!xc)) 414 return; 415 416 q = &xc->queues[prio]; 417 atomic_inc(&q->pending_count); 418 } 419 420 static int xive_try_pick_queue(struct kvm_vcpu *vcpu, u8 prio) 421 { 422 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 423 struct xive_q *q; 424 u32 max; 425 426 if (WARN_ON(!xc)) 427 return -ENXIO; 428 if (!xc->valid) 429 return -ENXIO; 430 431 q = &xc->queues[prio]; 432 if (WARN_ON(!q->qpage)) 433 return -ENXIO; 434 435 /* Calculate max number of interrupts in that queue. */ 436 max = (q->msk + 1) - XIVE_Q_GAP; 437 return atomic_add_unless(&q->count, 1, max) ? 0 : -EBUSY; 438 } 439 440 int kvmppc_xive_select_target(struct kvm *kvm, u32 *server, u8 prio) 441 { 442 struct kvm_vcpu *vcpu; 443 unsigned long i; 444 int rc; 445 446 /* Locate target server */ 447 vcpu = kvmppc_xive_find_server(kvm, *server); 448 if (!vcpu) { 449 pr_devel("Can't find server %d\n", *server); 450 return -EINVAL; 451 } 452 453 pr_devel("Finding irq target on 0x%x/%d...\n", *server, prio); 454 455 /* Try pick it */ 456 rc = xive_try_pick_queue(vcpu, prio); 457 if (rc == 0) 458 return rc; 459 460 pr_devel(" .. failed, looking up candidate...\n"); 461 462 /* Failed, pick another VCPU */ 463 kvm_for_each_vcpu(i, vcpu, kvm) { 464 if (!vcpu->arch.xive_vcpu) 465 continue; 466 rc = xive_try_pick_queue(vcpu, prio); 467 if (rc == 0) { 468 *server = vcpu->arch.xive_vcpu->server_num; 469 pr_devel(" found on 0x%x/%d\n", *server, prio); 470 return rc; 471 } 472 } 473 pr_devel(" no available target !\n"); 474 475 /* No available target ! */ 476 return -EBUSY; 477 } 478 479 static u8 xive_lock_and_mask(struct kvmppc_xive *xive, 480 struct kvmppc_xive_src_block *sb, 481 struct kvmppc_xive_irq_state *state) 482 { 483 struct xive_irq_data *xd; 484 u32 hw_num; 485 u8 old_prio; 486 u64 val; 487 488 /* 489 * Take the lock, set masked, try again if racing 490 * with H_EOI 491 */ 492 for (;;) { 493 arch_spin_lock(&sb->lock); 494 old_prio = state->guest_priority; 495 state->guest_priority = MASKED; 496 mb(); 497 if (!state->in_eoi) 498 break; 499 state->guest_priority = old_prio; 500 arch_spin_unlock(&sb->lock); 501 } 502 503 /* No change ? Bail */ 504 if (old_prio == MASKED) 505 return old_prio; 506 507 /* Get the right irq */ 508 kvmppc_xive_select_irq(state, &hw_num, &xd); 509 510 /* Set PQ to 10, return old P and old Q and remember them */ 511 val = xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_10); 512 state->old_p = !!(val & 2); 513 state->old_q = !!(val & 1); 514 515 /* 516 * Synchronize hardware to sensure the queues are updated when 517 * masking 518 */ 519 xive_native_sync_source(hw_num); 520 521 return old_prio; 522 } 523 524 static void xive_lock_for_unmask(struct kvmppc_xive_src_block *sb, 525 struct kvmppc_xive_irq_state *state) 526 { 527 /* 528 * Take the lock try again if racing with H_EOI 529 */ 530 for (;;) { 531 arch_spin_lock(&sb->lock); 532 if (!state->in_eoi) 533 break; 534 arch_spin_unlock(&sb->lock); 535 } 536 } 537 538 static void xive_finish_unmask(struct kvmppc_xive *xive, 539 struct kvmppc_xive_src_block *sb, 540 struct kvmppc_xive_irq_state *state, 541 u8 prio) 542 { 543 struct xive_irq_data *xd; 544 u32 hw_num; 545 546 /* If we aren't changing a thing, move on */ 547 if (state->guest_priority != MASKED) 548 goto bail; 549 550 /* Get the right irq */ 551 kvmppc_xive_select_irq(state, &hw_num, &xd); 552 553 /* Old Q set, set PQ to 11 */ 554 if (state->old_q) 555 xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_11); 556 557 /* 558 * If not old P, then perform an "effective" EOI, 559 * on the source. This will handle the cases where 560 * FW EOI is needed. 561 */ 562 if (!state->old_p) 563 xive_vm_source_eoi(hw_num, xd); 564 565 /* Synchronize ordering and mark unmasked */ 566 mb(); 567 bail: 568 state->guest_priority = prio; 569 } 570 571 /* 572 * Target an interrupt to a given server/prio, this will fallback 573 * to another server if necessary and perform the HW targetting 574 * updates as needed 575 * 576 * NOTE: Must be called with the state lock held 577 */ 578 static int xive_target_interrupt(struct kvm *kvm, 579 struct kvmppc_xive_irq_state *state, 580 u32 server, u8 prio) 581 { 582 struct kvmppc_xive *xive = kvm->arch.xive; 583 u32 hw_num; 584 int rc; 585 586 /* 587 * This will return a tentative server and actual 588 * priority. The count for that new target will have 589 * already been incremented. 590 */ 591 rc = kvmppc_xive_select_target(kvm, &server, prio); 592 593 /* 594 * We failed to find a target ? Not much we can do 595 * at least until we support the GIQ. 596 */ 597 if (rc) 598 return rc; 599 600 /* 601 * Increment the old queue pending count if there 602 * was one so that the old queue count gets adjusted later 603 * when observed to be empty. 604 */ 605 if (state->act_priority != MASKED) 606 xive_inc_q_pending(kvm, 607 state->act_server, 608 state->act_priority); 609 /* 610 * Update state and HW 611 */ 612 state->act_priority = prio; 613 state->act_server = server; 614 615 /* Get the right irq */ 616 kvmppc_xive_select_irq(state, &hw_num, NULL); 617 618 return xive_native_configure_irq(hw_num, 619 kvmppc_xive_vp(xive, server), 620 prio, state->number); 621 } 622 623 /* 624 * Targetting rules: In order to avoid losing track of 625 * pending interrupts accross mask and unmask, which would 626 * allow queue overflows, we implement the following rules: 627 * 628 * - Unless it was never enabled (or we run out of capacity) 629 * an interrupt is always targetted at a valid server/queue 630 * pair even when "masked" by the guest. This pair tends to 631 * be the last one used but it can be changed under some 632 * circumstances. That allows us to separate targetting 633 * from masking, we only handle accounting during (re)targetting, 634 * this also allows us to let an interrupt drain into its target 635 * queue after masking, avoiding complex schemes to remove 636 * interrupts out of remote processor queues. 637 * 638 * - When masking, we set PQ to 10 and save the previous value 639 * of P and Q. 640 * 641 * - When unmasking, if saved Q was set, we set PQ to 11 642 * otherwise we leave PQ to the HW state which will be either 643 * 10 if nothing happened or 11 if the interrupt fired while 644 * masked. Effectively we are OR'ing the previous Q into the 645 * HW Q. 646 * 647 * Then if saved P is clear, we do an effective EOI (Q->P->Trigger) 648 * which will unmask the interrupt and shoot a new one if Q was 649 * set. 650 * 651 * Otherwise (saved P is set) we leave PQ unchanged (so 10 or 11, 652 * effectively meaning an H_EOI from the guest is still expected 653 * for that interrupt). 654 * 655 * - If H_EOI occurs while masked, we clear the saved P. 656 * 657 * - When changing target, we account on the new target and 658 * increment a separate "pending" counter on the old one. 659 * This pending counter will be used to decrement the old 660 * target's count when its queue has been observed empty. 661 */ 662 663 int kvmppc_xive_set_xive(struct kvm *kvm, u32 irq, u32 server, 664 u32 priority) 665 { 666 struct kvmppc_xive *xive = kvm->arch.xive; 667 struct kvmppc_xive_src_block *sb; 668 struct kvmppc_xive_irq_state *state; 669 u8 new_act_prio; 670 int rc = 0; 671 u16 idx; 672 673 if (!xive) 674 return -ENODEV; 675 676 pr_devel("set_xive ! irq 0x%x server 0x%x prio %d\n", 677 irq, server, priority); 678 679 /* First, check provisioning of queues */ 680 if (priority != MASKED) { 681 mutex_lock(&xive->lock); 682 rc = xive_check_provisioning(xive->kvm, 683 xive_prio_from_guest(priority)); 684 mutex_unlock(&xive->lock); 685 } 686 if (rc) { 687 pr_devel(" provisioning failure %d !\n", rc); 688 return rc; 689 } 690 691 sb = kvmppc_xive_find_source(xive, irq, &idx); 692 if (!sb) 693 return -EINVAL; 694 state = &sb->irq_state[idx]; 695 696 /* 697 * We first handle masking/unmasking since the locking 698 * might need to be retried due to EOIs, we'll handle 699 * targetting changes later. These functions will return 700 * with the SB lock held. 701 * 702 * xive_lock_and_mask() will also set state->guest_priority 703 * but won't otherwise change other fields of the state. 704 * 705 * xive_lock_for_unmask will not actually unmask, this will 706 * be done later by xive_finish_unmask() once the targetting 707 * has been done, so we don't try to unmask an interrupt 708 * that hasn't yet been targetted. 709 */ 710 if (priority == MASKED) 711 xive_lock_and_mask(xive, sb, state); 712 else 713 xive_lock_for_unmask(sb, state); 714 715 716 /* 717 * Then we handle targetting. 718 * 719 * First calculate a new "actual priority" 720 */ 721 new_act_prio = state->act_priority; 722 if (priority != MASKED) 723 new_act_prio = xive_prio_from_guest(priority); 724 725 pr_devel(" new_act_prio=%x act_server=%x act_prio=%x\n", 726 new_act_prio, state->act_server, state->act_priority); 727 728 /* 729 * Then check if we actually need to change anything, 730 * 731 * The condition for re-targetting the interrupt is that 732 * we have a valid new priority (new_act_prio is not 0xff) 733 * and either the server or the priority changed. 734 * 735 * Note: If act_priority was ff and the new priority is 736 * also ff, we don't do anything and leave the interrupt 737 * untargetted. An attempt of doing an int_on on an 738 * untargetted interrupt will fail. If that is a problem 739 * we could initialize interrupts with valid default 740 */ 741 742 if (new_act_prio != MASKED && 743 (state->act_server != server || 744 state->act_priority != new_act_prio)) 745 rc = xive_target_interrupt(kvm, state, server, new_act_prio); 746 747 /* 748 * Perform the final unmasking of the interrupt source 749 * if necessary 750 */ 751 if (priority != MASKED) 752 xive_finish_unmask(xive, sb, state, priority); 753 754 /* 755 * Finally Update saved_priority to match. Only int_on/off 756 * set this field to a different value. 757 */ 758 state->saved_priority = priority; 759 760 arch_spin_unlock(&sb->lock); 761 return rc; 762 } 763 764 int kvmppc_xive_get_xive(struct kvm *kvm, u32 irq, u32 *server, 765 u32 *priority) 766 { 767 struct kvmppc_xive *xive = kvm->arch.xive; 768 struct kvmppc_xive_src_block *sb; 769 struct kvmppc_xive_irq_state *state; 770 u16 idx; 771 772 if (!xive) 773 return -ENODEV; 774 775 sb = kvmppc_xive_find_source(xive, irq, &idx); 776 if (!sb) 777 return -EINVAL; 778 state = &sb->irq_state[idx]; 779 arch_spin_lock(&sb->lock); 780 *server = state->act_server; 781 *priority = state->guest_priority; 782 arch_spin_unlock(&sb->lock); 783 784 return 0; 785 } 786 787 int kvmppc_xive_int_on(struct kvm *kvm, u32 irq) 788 { 789 struct kvmppc_xive *xive = kvm->arch.xive; 790 struct kvmppc_xive_src_block *sb; 791 struct kvmppc_xive_irq_state *state; 792 u16 idx; 793 794 if (!xive) 795 return -ENODEV; 796 797 sb = kvmppc_xive_find_source(xive, irq, &idx); 798 if (!sb) 799 return -EINVAL; 800 state = &sb->irq_state[idx]; 801 802 pr_devel("int_on(irq=0x%x)\n", irq); 803 804 /* 805 * Check if interrupt was not targetted 806 */ 807 if (state->act_priority == MASKED) { 808 pr_devel("int_on on untargetted interrupt\n"); 809 return -EINVAL; 810 } 811 812 /* If saved_priority is 0xff, do nothing */ 813 if (state->saved_priority == MASKED) 814 return 0; 815 816 /* 817 * Lock and unmask it. 818 */ 819 xive_lock_for_unmask(sb, state); 820 xive_finish_unmask(xive, sb, state, state->saved_priority); 821 arch_spin_unlock(&sb->lock); 822 823 return 0; 824 } 825 826 int kvmppc_xive_int_off(struct kvm *kvm, u32 irq) 827 { 828 struct kvmppc_xive *xive = kvm->arch.xive; 829 struct kvmppc_xive_src_block *sb; 830 struct kvmppc_xive_irq_state *state; 831 u16 idx; 832 833 if (!xive) 834 return -ENODEV; 835 836 sb = kvmppc_xive_find_source(xive, irq, &idx); 837 if (!sb) 838 return -EINVAL; 839 state = &sb->irq_state[idx]; 840 841 pr_devel("int_off(irq=0x%x)\n", irq); 842 843 /* 844 * Lock and mask 845 */ 846 state->saved_priority = xive_lock_and_mask(xive, sb, state); 847 arch_spin_unlock(&sb->lock); 848 849 return 0; 850 } 851 852 static bool xive_restore_pending_irq(struct kvmppc_xive *xive, u32 irq) 853 { 854 struct kvmppc_xive_src_block *sb; 855 struct kvmppc_xive_irq_state *state; 856 u16 idx; 857 858 sb = kvmppc_xive_find_source(xive, irq, &idx); 859 if (!sb) 860 return false; 861 state = &sb->irq_state[idx]; 862 if (!state->valid) 863 return false; 864 865 /* 866 * Trigger the IPI. This assumes we never restore a pass-through 867 * interrupt which should be safe enough 868 */ 869 xive_irq_trigger(&state->ipi_data); 870 871 return true; 872 } 873 874 u64 kvmppc_xive_get_icp(struct kvm_vcpu *vcpu) 875 { 876 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 877 878 if (!xc) 879 return 0; 880 881 /* Return the per-cpu state for state saving/migration */ 882 return (u64)xc->cppr << KVM_REG_PPC_ICP_CPPR_SHIFT | 883 (u64)xc->mfrr << KVM_REG_PPC_ICP_MFRR_SHIFT | 884 (u64)0xff << KVM_REG_PPC_ICP_PPRI_SHIFT; 885 } 886 887 int kvmppc_xive_set_icp(struct kvm_vcpu *vcpu, u64 icpval) 888 { 889 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 890 struct kvmppc_xive *xive = vcpu->kvm->arch.xive; 891 u8 cppr, mfrr; 892 u32 xisr; 893 894 if (!xc || !xive) 895 return -ENOENT; 896 897 /* Grab individual state fields. We don't use pending_pri */ 898 cppr = icpval >> KVM_REG_PPC_ICP_CPPR_SHIFT; 899 xisr = (icpval >> KVM_REG_PPC_ICP_XISR_SHIFT) & 900 KVM_REG_PPC_ICP_XISR_MASK; 901 mfrr = icpval >> KVM_REG_PPC_ICP_MFRR_SHIFT; 902 903 pr_devel("set_icp vcpu %d cppr=0x%x mfrr=0x%x xisr=0x%x\n", 904 xc->server_num, cppr, mfrr, xisr); 905 906 /* 907 * We can't update the state of a "pushed" VCPU, but that 908 * shouldn't happen because the vcpu->mutex makes running a 909 * vcpu mutually exclusive with doing one_reg get/set on it. 910 */ 911 if (WARN_ON(vcpu->arch.xive_pushed)) 912 return -EIO; 913 914 /* Update VCPU HW saved state */ 915 vcpu->arch.xive_saved_state.cppr = cppr; 916 xc->hw_cppr = xc->cppr = cppr; 917 918 /* 919 * Update MFRR state. If it's not 0xff, we mark the VCPU as 920 * having a pending MFRR change, which will re-evaluate the 921 * target. The VCPU will thus potentially get a spurious 922 * interrupt but that's not a big deal. 923 */ 924 xc->mfrr = mfrr; 925 if (mfrr < cppr) 926 xive_irq_trigger(&xc->vp_ipi_data); 927 928 /* 929 * Now saved XIRR is "interesting". It means there's something in 930 * the legacy "1 element" queue... for an IPI we simply ignore it, 931 * as the MFRR restore will handle that. For anything else we need 932 * to force a resend of the source. 933 * However the source may not have been setup yet. If that's the 934 * case, we keep that info and increment a counter in the xive to 935 * tell subsequent xive_set_source() to go look. 936 */ 937 if (xisr > XICS_IPI && !xive_restore_pending_irq(xive, xisr)) { 938 xc->delayed_irq = xisr; 939 xive->delayed_irqs++; 940 pr_devel(" xisr restore delayed\n"); 941 } 942 943 return 0; 944 } 945 946 int kvmppc_xive_set_mapped(struct kvm *kvm, unsigned long guest_irq, 947 unsigned long host_irq) 948 { 949 struct kvmppc_xive *xive = kvm->arch.xive; 950 struct kvmppc_xive_src_block *sb; 951 struct kvmppc_xive_irq_state *state; 952 struct irq_data *host_data = 953 irq_domain_get_irq_data(irq_get_default_host(), host_irq); 954 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(host_data); 955 u16 idx; 956 u8 prio; 957 int rc; 958 959 if (!xive) 960 return -ENODEV; 961 962 pr_debug("%s: GIRQ 0x%lx host IRQ %ld XIVE HW IRQ 0x%x\n", 963 __func__, guest_irq, host_irq, hw_irq); 964 965 sb = kvmppc_xive_find_source(xive, guest_irq, &idx); 966 if (!sb) 967 return -EINVAL; 968 state = &sb->irq_state[idx]; 969 970 /* 971 * Mark the passed-through interrupt as going to a VCPU, 972 * this will prevent further EOIs and similar operations 973 * from the XIVE code. It will also mask the interrupt 974 * to either PQ=10 or 11 state, the latter if the interrupt 975 * is pending. This will allow us to unmask or retrigger it 976 * after routing it to the guest with a simple EOI. 977 * 978 * The "state" argument is a "token", all it needs is to be 979 * non-NULL to switch to passed-through or NULL for the 980 * other way around. We may not yet have an actual VCPU 981 * target here and we don't really care. 982 */ 983 rc = irq_set_vcpu_affinity(host_irq, state); 984 if (rc) { 985 pr_err("Failed to set VCPU affinity for host IRQ %ld\n", host_irq); 986 return rc; 987 } 988 989 /* 990 * Mask and read state of IPI. We need to know if its P bit 991 * is set as that means it's potentially already using a 992 * queue entry in the target 993 */ 994 prio = xive_lock_and_mask(xive, sb, state); 995 pr_devel(" old IPI prio %02x P:%d Q:%d\n", prio, 996 state->old_p, state->old_q); 997 998 /* Turn the IPI hard off */ 999 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01); 1000 1001 /* 1002 * Reset ESB guest mapping. Needed when ESB pages are exposed 1003 * to the guest in XIVE native mode 1004 */ 1005 if (xive->ops && xive->ops->reset_mapped) 1006 xive->ops->reset_mapped(kvm, guest_irq); 1007 1008 /* Grab info about irq */ 1009 state->pt_number = hw_irq; 1010 state->pt_data = irq_data_get_irq_handler_data(host_data); 1011 1012 /* 1013 * Configure the IRQ to match the existing configuration of 1014 * the IPI if it was already targetted. Otherwise this will 1015 * mask the interrupt in a lossy way (act_priority is 0xff) 1016 * which is fine for a never started interrupt. 1017 */ 1018 xive_native_configure_irq(hw_irq, 1019 kvmppc_xive_vp(xive, state->act_server), 1020 state->act_priority, state->number); 1021 1022 /* 1023 * We do an EOI to enable the interrupt (and retrigger if needed) 1024 * if the guest has the interrupt unmasked and the P bit was *not* 1025 * set in the IPI. If it was set, we know a slot may still be in 1026 * use in the target queue thus we have to wait for a guest 1027 * originated EOI 1028 */ 1029 if (prio != MASKED && !state->old_p) 1030 xive_vm_source_eoi(hw_irq, state->pt_data); 1031 1032 /* Clear old_p/old_q as they are no longer relevant */ 1033 state->old_p = state->old_q = false; 1034 1035 /* Restore guest prio (unlocks EOI) */ 1036 mb(); 1037 state->guest_priority = prio; 1038 arch_spin_unlock(&sb->lock); 1039 1040 return 0; 1041 } 1042 EXPORT_SYMBOL_GPL(kvmppc_xive_set_mapped); 1043 1044 int kvmppc_xive_clr_mapped(struct kvm *kvm, unsigned long guest_irq, 1045 unsigned long host_irq) 1046 { 1047 struct kvmppc_xive *xive = kvm->arch.xive; 1048 struct kvmppc_xive_src_block *sb; 1049 struct kvmppc_xive_irq_state *state; 1050 u16 idx; 1051 u8 prio; 1052 int rc; 1053 1054 if (!xive) 1055 return -ENODEV; 1056 1057 pr_debug("%s: GIRQ 0x%lx host IRQ %ld\n", __func__, guest_irq, host_irq); 1058 1059 sb = kvmppc_xive_find_source(xive, guest_irq, &idx); 1060 if (!sb) 1061 return -EINVAL; 1062 state = &sb->irq_state[idx]; 1063 1064 /* 1065 * Mask and read state of IRQ. We need to know if its P bit 1066 * is set as that means it's potentially already using a 1067 * queue entry in the target 1068 */ 1069 prio = xive_lock_and_mask(xive, sb, state); 1070 pr_devel(" old IRQ prio %02x P:%d Q:%d\n", prio, 1071 state->old_p, state->old_q); 1072 1073 /* 1074 * If old_p is set, the interrupt is pending, we switch it to 1075 * PQ=11. This will force a resend in the host so the interrupt 1076 * isn't lost to whatver host driver may pick it up 1077 */ 1078 if (state->old_p) 1079 xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_11); 1080 1081 /* Release the passed-through interrupt to the host */ 1082 rc = irq_set_vcpu_affinity(host_irq, NULL); 1083 if (rc) { 1084 pr_err("Failed to clr VCPU affinity for host IRQ %ld\n", host_irq); 1085 return rc; 1086 } 1087 1088 /* Forget about the IRQ */ 1089 state->pt_number = 0; 1090 state->pt_data = NULL; 1091 1092 /* 1093 * Reset ESB guest mapping. Needed when ESB pages are exposed 1094 * to the guest in XIVE native mode 1095 */ 1096 if (xive->ops && xive->ops->reset_mapped) { 1097 xive->ops->reset_mapped(kvm, guest_irq); 1098 } 1099 1100 /* Reconfigure the IPI */ 1101 xive_native_configure_irq(state->ipi_number, 1102 kvmppc_xive_vp(xive, state->act_server), 1103 state->act_priority, state->number); 1104 1105 /* 1106 * If old_p is set (we have a queue entry potentially 1107 * occupied) or the interrupt is masked, we set the IPI 1108 * to PQ=10 state. Otherwise we just re-enable it (PQ=00). 1109 */ 1110 if (prio == MASKED || state->old_p) 1111 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_10); 1112 else 1113 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_00); 1114 1115 /* Restore guest prio (unlocks EOI) */ 1116 mb(); 1117 state->guest_priority = prio; 1118 arch_spin_unlock(&sb->lock); 1119 1120 return 0; 1121 } 1122 EXPORT_SYMBOL_GPL(kvmppc_xive_clr_mapped); 1123 1124 void kvmppc_xive_disable_vcpu_interrupts(struct kvm_vcpu *vcpu) 1125 { 1126 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 1127 struct kvm *kvm = vcpu->kvm; 1128 struct kvmppc_xive *xive = kvm->arch.xive; 1129 int i, j; 1130 1131 for (i = 0; i <= xive->max_sbid; i++) { 1132 struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; 1133 1134 if (!sb) 1135 continue; 1136 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) { 1137 struct kvmppc_xive_irq_state *state = &sb->irq_state[j]; 1138 1139 if (!state->valid) 1140 continue; 1141 if (state->act_priority == MASKED) 1142 continue; 1143 if (state->act_server != xc->server_num) 1144 continue; 1145 1146 /* Clean it up */ 1147 arch_spin_lock(&sb->lock); 1148 state->act_priority = MASKED; 1149 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01); 1150 xive_native_configure_irq(state->ipi_number, 0, MASKED, 0); 1151 if (state->pt_number) { 1152 xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_01); 1153 xive_native_configure_irq(state->pt_number, 0, MASKED, 0); 1154 } 1155 arch_spin_unlock(&sb->lock); 1156 } 1157 } 1158 1159 /* Disable vcpu's escalation interrupt */ 1160 if (vcpu->arch.xive_esc_on) { 1161 __raw_readq((void __iomem *)(vcpu->arch.xive_esc_vaddr + 1162 XIVE_ESB_SET_PQ_01)); 1163 vcpu->arch.xive_esc_on = false; 1164 } 1165 1166 /* 1167 * Clear pointers to escalation interrupt ESB. 1168 * This is safe because the vcpu->mutex is held, preventing 1169 * any other CPU from concurrently executing a KVM_RUN ioctl. 1170 */ 1171 vcpu->arch.xive_esc_vaddr = 0; 1172 vcpu->arch.xive_esc_raddr = 0; 1173 } 1174 1175 /* 1176 * In single escalation mode, the escalation interrupt is marked so 1177 * that EOI doesn't re-enable it, but just sets the stale_p flag to 1178 * indicate that the P bit has already been dealt with. However, the 1179 * assembly code that enters the guest sets PQ to 00 without clearing 1180 * stale_p (because it has no easy way to address it). Hence we have 1181 * to adjust stale_p before shutting down the interrupt. 1182 */ 1183 void xive_cleanup_single_escalation(struct kvm_vcpu *vcpu, 1184 struct kvmppc_xive_vcpu *xc, int irq) 1185 { 1186 struct irq_data *d = irq_get_irq_data(irq); 1187 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 1188 1189 /* 1190 * This slightly odd sequence gives the right result 1191 * (i.e. stale_p set if xive_esc_on is false) even if 1192 * we race with xive_esc_irq() and xive_irq_eoi(). 1193 */ 1194 xd->stale_p = false; 1195 smp_mb(); /* paired with smb_wmb in xive_esc_irq */ 1196 if (!vcpu->arch.xive_esc_on) 1197 xd->stale_p = true; 1198 } 1199 1200 void kvmppc_xive_cleanup_vcpu(struct kvm_vcpu *vcpu) 1201 { 1202 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 1203 struct kvmppc_xive *xive = vcpu->kvm->arch.xive; 1204 int i; 1205 1206 if (!kvmppc_xics_enabled(vcpu)) 1207 return; 1208 1209 if (!xc) 1210 return; 1211 1212 pr_devel("cleanup_vcpu(cpu=%d)\n", xc->server_num); 1213 1214 /* Ensure no interrupt is still routed to that VP */ 1215 xc->valid = false; 1216 kvmppc_xive_disable_vcpu_interrupts(vcpu); 1217 1218 /* Mask the VP IPI */ 1219 xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_01); 1220 1221 /* Free escalations */ 1222 for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) { 1223 if (xc->esc_virq[i]) { 1224 if (kvmppc_xive_has_single_escalation(xc->xive)) 1225 xive_cleanup_single_escalation(vcpu, xc, 1226 xc->esc_virq[i]); 1227 free_irq(xc->esc_virq[i], vcpu); 1228 irq_dispose_mapping(xc->esc_virq[i]); 1229 kfree(xc->esc_virq_names[i]); 1230 } 1231 } 1232 1233 /* Disable the VP */ 1234 xive_native_disable_vp(xc->vp_id); 1235 1236 /* Clear the cam word so guest entry won't try to push context */ 1237 vcpu->arch.xive_cam_word = 0; 1238 1239 /* Free the queues */ 1240 for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) { 1241 struct xive_q *q = &xc->queues[i]; 1242 1243 xive_native_disable_queue(xc->vp_id, q, i); 1244 if (q->qpage) { 1245 free_pages((unsigned long)q->qpage, 1246 xive->q_page_order); 1247 q->qpage = NULL; 1248 } 1249 } 1250 1251 /* Free the IPI */ 1252 if (xc->vp_ipi) { 1253 xive_cleanup_irq_data(&xc->vp_ipi_data); 1254 xive_native_free_irq(xc->vp_ipi); 1255 } 1256 /* Free the VP */ 1257 kfree(xc); 1258 1259 /* Cleanup the vcpu */ 1260 vcpu->arch.irq_type = KVMPPC_IRQ_DEFAULT; 1261 vcpu->arch.xive_vcpu = NULL; 1262 } 1263 1264 static bool kvmppc_xive_vcpu_id_valid(struct kvmppc_xive *xive, u32 cpu) 1265 { 1266 /* We have a block of xive->nr_servers VPs. We just need to check 1267 * packed vCPU ids are below that. 1268 */ 1269 return kvmppc_pack_vcpu_id(xive->kvm, cpu) < xive->nr_servers; 1270 } 1271 1272 int kvmppc_xive_compute_vp_id(struct kvmppc_xive *xive, u32 cpu, u32 *vp) 1273 { 1274 u32 vp_id; 1275 1276 if (!kvmppc_xive_vcpu_id_valid(xive, cpu)) { 1277 pr_devel("Out of bounds !\n"); 1278 return -EINVAL; 1279 } 1280 1281 if (xive->vp_base == XIVE_INVALID_VP) { 1282 xive->vp_base = xive_native_alloc_vp_block(xive->nr_servers); 1283 pr_devel("VP_Base=%x nr_servers=%d\n", xive->vp_base, xive->nr_servers); 1284 1285 if (xive->vp_base == XIVE_INVALID_VP) 1286 return -ENOSPC; 1287 } 1288 1289 vp_id = kvmppc_xive_vp(xive, cpu); 1290 if (kvmppc_xive_vp_in_use(xive->kvm, vp_id)) { 1291 pr_devel("Duplicate !\n"); 1292 return -EEXIST; 1293 } 1294 1295 *vp = vp_id; 1296 1297 return 0; 1298 } 1299 1300 int kvmppc_xive_connect_vcpu(struct kvm_device *dev, 1301 struct kvm_vcpu *vcpu, u32 cpu) 1302 { 1303 struct kvmppc_xive *xive = dev->private; 1304 struct kvmppc_xive_vcpu *xc; 1305 int i, r = -EBUSY; 1306 u32 vp_id; 1307 1308 pr_devel("connect_vcpu(cpu=%d)\n", cpu); 1309 1310 if (dev->ops != &kvm_xive_ops) { 1311 pr_devel("Wrong ops !\n"); 1312 return -EPERM; 1313 } 1314 if (xive->kvm != vcpu->kvm) 1315 return -EPERM; 1316 if (vcpu->arch.irq_type != KVMPPC_IRQ_DEFAULT) 1317 return -EBUSY; 1318 1319 /* We need to synchronize with queue provisioning */ 1320 mutex_lock(&xive->lock); 1321 1322 r = kvmppc_xive_compute_vp_id(xive, cpu, &vp_id); 1323 if (r) 1324 goto bail; 1325 1326 xc = kzalloc(sizeof(*xc), GFP_KERNEL); 1327 if (!xc) { 1328 r = -ENOMEM; 1329 goto bail; 1330 } 1331 1332 vcpu->arch.xive_vcpu = xc; 1333 xc->xive = xive; 1334 xc->vcpu = vcpu; 1335 xc->server_num = cpu; 1336 xc->vp_id = vp_id; 1337 xc->mfrr = 0xff; 1338 xc->valid = true; 1339 1340 r = xive_native_get_vp_info(xc->vp_id, &xc->vp_cam, &xc->vp_chip_id); 1341 if (r) 1342 goto bail; 1343 1344 if (!kvmppc_xive_check_save_restore(vcpu)) { 1345 pr_err("inconsistent save-restore setup for VCPU %d\n", cpu); 1346 r = -EIO; 1347 goto bail; 1348 } 1349 1350 /* Configure VCPU fields for use by assembly push/pull */ 1351 vcpu->arch.xive_saved_state.w01 = cpu_to_be64(0xff000000); 1352 vcpu->arch.xive_cam_word = cpu_to_be32(xc->vp_cam | TM_QW1W2_VO); 1353 1354 /* Allocate IPI */ 1355 xc->vp_ipi = xive_native_alloc_irq(); 1356 if (!xc->vp_ipi) { 1357 pr_err("Failed to allocate xive irq for VCPU IPI\n"); 1358 r = -EIO; 1359 goto bail; 1360 } 1361 pr_devel(" IPI=0x%x\n", xc->vp_ipi); 1362 1363 r = xive_native_populate_irq_data(xc->vp_ipi, &xc->vp_ipi_data); 1364 if (r) 1365 goto bail; 1366 1367 /* 1368 * Enable the VP first as the single escalation mode will 1369 * affect escalation interrupts numbering 1370 */ 1371 r = xive_native_enable_vp(xc->vp_id, kvmppc_xive_has_single_escalation(xive)); 1372 if (r) { 1373 pr_err("Failed to enable VP in OPAL, err %d\n", r); 1374 goto bail; 1375 } 1376 1377 /* 1378 * Initialize queues. Initially we set them all for no queueing 1379 * and we enable escalation for queue 0 only which we'll use for 1380 * our mfrr change notifications. If the VCPU is hot-plugged, we 1381 * do handle provisioning however based on the existing "map" 1382 * of enabled queues. 1383 */ 1384 for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) { 1385 struct xive_q *q = &xc->queues[i]; 1386 1387 /* Single escalation, no queue 7 */ 1388 if (i == 7 && kvmppc_xive_has_single_escalation(xive)) 1389 break; 1390 1391 /* Is queue already enabled ? Provision it */ 1392 if (xive->qmap & (1 << i)) { 1393 r = xive_provision_queue(vcpu, i); 1394 if (r == 0 && !kvmppc_xive_has_single_escalation(xive)) 1395 kvmppc_xive_attach_escalation( 1396 vcpu, i, kvmppc_xive_has_single_escalation(xive)); 1397 if (r) 1398 goto bail; 1399 } else { 1400 r = xive_native_configure_queue(xc->vp_id, 1401 q, i, NULL, 0, true); 1402 if (r) { 1403 pr_err("Failed to configure queue %d for VCPU %d\n", 1404 i, cpu); 1405 goto bail; 1406 } 1407 } 1408 } 1409 1410 /* If not done above, attach priority 0 escalation */ 1411 r = kvmppc_xive_attach_escalation(vcpu, 0, kvmppc_xive_has_single_escalation(xive)); 1412 if (r) 1413 goto bail; 1414 1415 /* Route the IPI */ 1416 r = xive_native_configure_irq(xc->vp_ipi, xc->vp_id, 0, XICS_IPI); 1417 if (!r) 1418 xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_00); 1419 1420 bail: 1421 mutex_unlock(&xive->lock); 1422 if (r) { 1423 kvmppc_xive_cleanup_vcpu(vcpu); 1424 return r; 1425 } 1426 1427 vcpu->arch.irq_type = KVMPPC_IRQ_XICS; 1428 return 0; 1429 } 1430 1431 /* 1432 * Scanning of queues before/after migration save 1433 */ 1434 static void xive_pre_save_set_queued(struct kvmppc_xive *xive, u32 irq) 1435 { 1436 struct kvmppc_xive_src_block *sb; 1437 struct kvmppc_xive_irq_state *state; 1438 u16 idx; 1439 1440 sb = kvmppc_xive_find_source(xive, irq, &idx); 1441 if (!sb) 1442 return; 1443 1444 state = &sb->irq_state[idx]; 1445 1446 /* Some sanity checking */ 1447 if (!state->valid) { 1448 pr_err("invalid irq 0x%x in cpu queue!\n", irq); 1449 return; 1450 } 1451 1452 /* 1453 * If the interrupt is in a queue it should have P set. 1454 * We warn so that gets reported. A backtrace isn't useful 1455 * so no need to use a WARN_ON. 1456 */ 1457 if (!state->saved_p) 1458 pr_err("Interrupt 0x%x is marked in a queue but P not set !\n", irq); 1459 1460 /* Set flag */ 1461 state->in_queue = true; 1462 } 1463 1464 static void xive_pre_save_mask_irq(struct kvmppc_xive *xive, 1465 struct kvmppc_xive_src_block *sb, 1466 u32 irq) 1467 { 1468 struct kvmppc_xive_irq_state *state = &sb->irq_state[irq]; 1469 1470 if (!state->valid) 1471 return; 1472 1473 /* Mask and save state, this will also sync HW queues */ 1474 state->saved_scan_prio = xive_lock_and_mask(xive, sb, state); 1475 1476 /* Transfer P and Q */ 1477 state->saved_p = state->old_p; 1478 state->saved_q = state->old_q; 1479 1480 /* Unlock */ 1481 arch_spin_unlock(&sb->lock); 1482 } 1483 1484 static void xive_pre_save_unmask_irq(struct kvmppc_xive *xive, 1485 struct kvmppc_xive_src_block *sb, 1486 u32 irq) 1487 { 1488 struct kvmppc_xive_irq_state *state = &sb->irq_state[irq]; 1489 1490 if (!state->valid) 1491 return; 1492 1493 /* 1494 * Lock / exclude EOI (not technically necessary if the 1495 * guest isn't running concurrently. If this becomes a 1496 * performance issue we can probably remove the lock. 1497 */ 1498 xive_lock_for_unmask(sb, state); 1499 1500 /* Restore mask/prio if it wasn't masked */ 1501 if (state->saved_scan_prio != MASKED) 1502 xive_finish_unmask(xive, sb, state, state->saved_scan_prio); 1503 1504 /* Unlock */ 1505 arch_spin_unlock(&sb->lock); 1506 } 1507 1508 static void xive_pre_save_queue(struct kvmppc_xive *xive, struct xive_q *q) 1509 { 1510 u32 idx = q->idx; 1511 u32 toggle = q->toggle; 1512 u32 irq; 1513 1514 do { 1515 irq = __xive_read_eq(q->qpage, q->msk, &idx, &toggle); 1516 if (irq > XICS_IPI) 1517 xive_pre_save_set_queued(xive, irq); 1518 } while(irq); 1519 } 1520 1521 static void xive_pre_save_scan(struct kvmppc_xive *xive) 1522 { 1523 struct kvm_vcpu *vcpu = NULL; 1524 unsigned long i; 1525 int j; 1526 1527 /* 1528 * See comment in xive_get_source() about how this 1529 * work. Collect a stable state for all interrupts 1530 */ 1531 for (i = 0; i <= xive->max_sbid; i++) { 1532 struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; 1533 if (!sb) 1534 continue; 1535 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) 1536 xive_pre_save_mask_irq(xive, sb, j); 1537 } 1538 1539 /* Then scan the queues and update the "in_queue" flag */ 1540 kvm_for_each_vcpu(i, vcpu, xive->kvm) { 1541 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 1542 if (!xc) 1543 continue; 1544 for (j = 0; j < KVMPPC_XIVE_Q_COUNT; j++) { 1545 if (xc->queues[j].qpage) 1546 xive_pre_save_queue(xive, &xc->queues[j]); 1547 } 1548 } 1549 1550 /* Finally restore interrupt states */ 1551 for (i = 0; i <= xive->max_sbid; i++) { 1552 struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; 1553 if (!sb) 1554 continue; 1555 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) 1556 xive_pre_save_unmask_irq(xive, sb, j); 1557 } 1558 } 1559 1560 static void xive_post_save_scan(struct kvmppc_xive *xive) 1561 { 1562 u32 i, j; 1563 1564 /* Clear all the in_queue flags */ 1565 for (i = 0; i <= xive->max_sbid; i++) { 1566 struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; 1567 if (!sb) 1568 continue; 1569 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) 1570 sb->irq_state[j].in_queue = false; 1571 } 1572 1573 /* Next get_source() will do a new scan */ 1574 xive->saved_src_count = 0; 1575 } 1576 1577 /* 1578 * This returns the source configuration and state to user space. 1579 */ 1580 static int xive_get_source(struct kvmppc_xive *xive, long irq, u64 addr) 1581 { 1582 struct kvmppc_xive_src_block *sb; 1583 struct kvmppc_xive_irq_state *state; 1584 u64 __user *ubufp = (u64 __user *) addr; 1585 u64 val, prio; 1586 u16 idx; 1587 1588 sb = kvmppc_xive_find_source(xive, irq, &idx); 1589 if (!sb) 1590 return -ENOENT; 1591 1592 state = &sb->irq_state[idx]; 1593 1594 if (!state->valid) 1595 return -ENOENT; 1596 1597 pr_devel("get_source(%ld)...\n", irq); 1598 1599 /* 1600 * So to properly save the state into something that looks like a 1601 * XICS migration stream we cannot treat interrupts individually. 1602 * 1603 * We need, instead, mask them all (& save their previous PQ state) 1604 * to get a stable state in the HW, then sync them to ensure that 1605 * any interrupt that had already fired hits its queue, and finally 1606 * scan all the queues to collect which interrupts are still present 1607 * in the queues, so we can set the "pending" flag on them and 1608 * they can be resent on restore. 1609 * 1610 * So we do it all when the "first" interrupt gets saved, all the 1611 * state is collected at that point, the rest of xive_get_source() 1612 * will merely collect and convert that state to the expected 1613 * userspace bit mask. 1614 */ 1615 if (xive->saved_src_count == 0) 1616 xive_pre_save_scan(xive); 1617 xive->saved_src_count++; 1618 1619 /* Convert saved state into something compatible with xics */ 1620 val = state->act_server; 1621 prio = state->saved_scan_prio; 1622 1623 if (prio == MASKED) { 1624 val |= KVM_XICS_MASKED; 1625 prio = state->saved_priority; 1626 } 1627 val |= prio << KVM_XICS_PRIORITY_SHIFT; 1628 if (state->lsi) { 1629 val |= KVM_XICS_LEVEL_SENSITIVE; 1630 if (state->saved_p) 1631 val |= KVM_XICS_PENDING; 1632 } else { 1633 if (state->saved_p) 1634 val |= KVM_XICS_PRESENTED; 1635 1636 if (state->saved_q) 1637 val |= KVM_XICS_QUEUED; 1638 1639 /* 1640 * We mark it pending (which will attempt a re-delivery) 1641 * if we are in a queue *or* we were masked and had 1642 * Q set which is equivalent to the XICS "masked pending" 1643 * state 1644 */ 1645 if (state->in_queue || (prio == MASKED && state->saved_q)) 1646 val |= KVM_XICS_PENDING; 1647 } 1648 1649 /* 1650 * If that was the last interrupt saved, reset the 1651 * in_queue flags 1652 */ 1653 if (xive->saved_src_count == xive->src_count) 1654 xive_post_save_scan(xive); 1655 1656 /* Copy the result to userspace */ 1657 if (put_user(val, ubufp)) 1658 return -EFAULT; 1659 1660 return 0; 1661 } 1662 1663 struct kvmppc_xive_src_block *kvmppc_xive_create_src_block( 1664 struct kvmppc_xive *xive, int irq) 1665 { 1666 struct kvmppc_xive_src_block *sb; 1667 int i, bid; 1668 1669 bid = irq >> KVMPPC_XICS_ICS_SHIFT; 1670 1671 mutex_lock(&xive->lock); 1672 1673 /* block already exists - somebody else got here first */ 1674 if (xive->src_blocks[bid]) 1675 goto out; 1676 1677 /* Create the ICS */ 1678 sb = kzalloc(sizeof(*sb), GFP_KERNEL); 1679 if (!sb) 1680 goto out; 1681 1682 sb->id = bid; 1683 1684 for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) { 1685 sb->irq_state[i].number = (bid << KVMPPC_XICS_ICS_SHIFT) | i; 1686 sb->irq_state[i].eisn = 0; 1687 sb->irq_state[i].guest_priority = MASKED; 1688 sb->irq_state[i].saved_priority = MASKED; 1689 sb->irq_state[i].act_priority = MASKED; 1690 } 1691 smp_wmb(); 1692 xive->src_blocks[bid] = sb; 1693 1694 if (bid > xive->max_sbid) 1695 xive->max_sbid = bid; 1696 1697 out: 1698 mutex_unlock(&xive->lock); 1699 return xive->src_blocks[bid]; 1700 } 1701 1702 static bool xive_check_delayed_irq(struct kvmppc_xive *xive, u32 irq) 1703 { 1704 struct kvm *kvm = xive->kvm; 1705 struct kvm_vcpu *vcpu = NULL; 1706 unsigned long i; 1707 1708 kvm_for_each_vcpu(i, vcpu, kvm) { 1709 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 1710 1711 if (!xc) 1712 continue; 1713 1714 if (xc->delayed_irq == irq) { 1715 xc->delayed_irq = 0; 1716 xive->delayed_irqs--; 1717 return true; 1718 } 1719 } 1720 return false; 1721 } 1722 1723 static int xive_set_source(struct kvmppc_xive *xive, long irq, u64 addr) 1724 { 1725 struct kvmppc_xive_src_block *sb; 1726 struct kvmppc_xive_irq_state *state; 1727 u64 __user *ubufp = (u64 __user *) addr; 1728 u16 idx; 1729 u64 val; 1730 u8 act_prio, guest_prio; 1731 u32 server; 1732 int rc = 0; 1733 1734 if (irq < KVMPPC_XICS_FIRST_IRQ || irq >= KVMPPC_XICS_NR_IRQS) 1735 return -ENOENT; 1736 1737 pr_devel("set_source(irq=0x%lx)\n", irq); 1738 1739 /* Find the source */ 1740 sb = kvmppc_xive_find_source(xive, irq, &idx); 1741 if (!sb) { 1742 pr_devel("No source, creating source block...\n"); 1743 sb = kvmppc_xive_create_src_block(xive, irq); 1744 if (!sb) { 1745 pr_devel("Failed to create block...\n"); 1746 return -ENOMEM; 1747 } 1748 } 1749 state = &sb->irq_state[idx]; 1750 1751 /* Read user passed data */ 1752 if (get_user(val, ubufp)) { 1753 pr_devel("fault getting user info !\n"); 1754 return -EFAULT; 1755 } 1756 1757 server = val & KVM_XICS_DESTINATION_MASK; 1758 guest_prio = val >> KVM_XICS_PRIORITY_SHIFT; 1759 1760 pr_devel(" val=0x016%llx (server=0x%x, guest_prio=%d)\n", 1761 val, server, guest_prio); 1762 1763 /* 1764 * If the source doesn't already have an IPI, allocate 1765 * one and get the corresponding data 1766 */ 1767 if (!state->ipi_number) { 1768 state->ipi_number = xive_native_alloc_irq(); 1769 if (state->ipi_number == 0) { 1770 pr_devel("Failed to allocate IPI !\n"); 1771 return -ENOMEM; 1772 } 1773 xive_native_populate_irq_data(state->ipi_number, &state->ipi_data); 1774 pr_devel(" src_ipi=0x%x\n", state->ipi_number); 1775 } 1776 1777 /* 1778 * We use lock_and_mask() to set us in the right masked 1779 * state. We will override that state from the saved state 1780 * further down, but this will handle the cases of interrupts 1781 * that need FW masking. We set the initial guest_priority to 1782 * 0 before calling it to ensure it actually performs the masking. 1783 */ 1784 state->guest_priority = 0; 1785 xive_lock_and_mask(xive, sb, state); 1786 1787 /* 1788 * Now, we select a target if we have one. If we don't we 1789 * leave the interrupt untargetted. It means that an interrupt 1790 * can become "untargetted" accross migration if it was masked 1791 * by set_xive() but there is little we can do about it. 1792 */ 1793 1794 /* First convert prio and mark interrupt as untargetted */ 1795 act_prio = xive_prio_from_guest(guest_prio); 1796 state->act_priority = MASKED; 1797 1798 /* 1799 * We need to drop the lock due to the mutex below. Hopefully 1800 * nothing is touching that interrupt yet since it hasn't been 1801 * advertized to a running guest yet 1802 */ 1803 arch_spin_unlock(&sb->lock); 1804 1805 /* If we have a priority target the interrupt */ 1806 if (act_prio != MASKED) { 1807 /* First, check provisioning of queues */ 1808 mutex_lock(&xive->lock); 1809 rc = xive_check_provisioning(xive->kvm, act_prio); 1810 mutex_unlock(&xive->lock); 1811 1812 /* Target interrupt */ 1813 if (rc == 0) 1814 rc = xive_target_interrupt(xive->kvm, state, 1815 server, act_prio); 1816 /* 1817 * If provisioning or targetting failed, leave it 1818 * alone and masked. It will remain disabled until 1819 * the guest re-targets it. 1820 */ 1821 } 1822 1823 /* 1824 * Find out if this was a delayed irq stashed in an ICP, 1825 * in which case, treat it as pending 1826 */ 1827 if (xive->delayed_irqs && xive_check_delayed_irq(xive, irq)) { 1828 val |= KVM_XICS_PENDING; 1829 pr_devel(" Found delayed ! forcing PENDING !\n"); 1830 } 1831 1832 /* Cleanup the SW state */ 1833 state->old_p = false; 1834 state->old_q = false; 1835 state->lsi = false; 1836 state->asserted = false; 1837 1838 /* Restore LSI state */ 1839 if (val & KVM_XICS_LEVEL_SENSITIVE) { 1840 state->lsi = true; 1841 if (val & KVM_XICS_PENDING) 1842 state->asserted = true; 1843 pr_devel(" LSI ! Asserted=%d\n", state->asserted); 1844 } 1845 1846 /* 1847 * Restore P and Q. If the interrupt was pending, we 1848 * force Q and !P, which will trigger a resend. 1849 * 1850 * That means that a guest that had both an interrupt 1851 * pending (queued) and Q set will restore with only 1852 * one instance of that interrupt instead of 2, but that 1853 * is perfectly fine as coalescing interrupts that haven't 1854 * been presented yet is always allowed. 1855 */ 1856 if (val & KVM_XICS_PRESENTED && !(val & KVM_XICS_PENDING)) 1857 state->old_p = true; 1858 if (val & KVM_XICS_QUEUED || val & KVM_XICS_PENDING) 1859 state->old_q = true; 1860 1861 pr_devel(" P=%d, Q=%d\n", state->old_p, state->old_q); 1862 1863 /* 1864 * If the interrupt was unmasked, update guest priority and 1865 * perform the appropriate state transition and do a 1866 * re-trigger if necessary. 1867 */ 1868 if (val & KVM_XICS_MASKED) { 1869 pr_devel(" masked, saving prio\n"); 1870 state->guest_priority = MASKED; 1871 state->saved_priority = guest_prio; 1872 } else { 1873 pr_devel(" unmasked, restoring to prio %d\n", guest_prio); 1874 xive_finish_unmask(xive, sb, state, guest_prio); 1875 state->saved_priority = guest_prio; 1876 } 1877 1878 /* Increment the number of valid sources and mark this one valid */ 1879 if (!state->valid) 1880 xive->src_count++; 1881 state->valid = true; 1882 1883 return 0; 1884 } 1885 1886 int kvmppc_xive_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1887 bool line_status) 1888 { 1889 struct kvmppc_xive *xive = kvm->arch.xive; 1890 struct kvmppc_xive_src_block *sb; 1891 struct kvmppc_xive_irq_state *state; 1892 u16 idx; 1893 1894 if (!xive) 1895 return -ENODEV; 1896 1897 sb = kvmppc_xive_find_source(xive, irq, &idx); 1898 if (!sb) 1899 return -EINVAL; 1900 1901 /* Perform locklessly .... (we need to do some RCUisms here...) */ 1902 state = &sb->irq_state[idx]; 1903 if (!state->valid) 1904 return -EINVAL; 1905 1906 /* We don't allow a trigger on a passed-through interrupt */ 1907 if (state->pt_number) 1908 return -EINVAL; 1909 1910 if ((level == 1 && state->lsi) || level == KVM_INTERRUPT_SET_LEVEL) 1911 state->asserted = true; 1912 else if (level == 0 || level == KVM_INTERRUPT_UNSET) { 1913 state->asserted = false; 1914 return 0; 1915 } 1916 1917 /* Trigger the IPI */ 1918 xive_irq_trigger(&state->ipi_data); 1919 1920 return 0; 1921 } 1922 1923 int kvmppc_xive_set_nr_servers(struct kvmppc_xive *xive, u64 addr) 1924 { 1925 u32 __user *ubufp = (u32 __user *) addr; 1926 u32 nr_servers; 1927 int rc = 0; 1928 1929 if (get_user(nr_servers, ubufp)) 1930 return -EFAULT; 1931 1932 pr_devel("%s nr_servers=%u\n", __func__, nr_servers); 1933 1934 if (!nr_servers || nr_servers > KVM_MAX_VCPU_IDS) 1935 return -EINVAL; 1936 1937 mutex_lock(&xive->lock); 1938 if (xive->vp_base != XIVE_INVALID_VP) 1939 /* The VP block is allocated once and freed when the device 1940 * is released. Better not allow to change its size since its 1941 * used by connect_vcpu to validate vCPU ids are valid (eg, 1942 * setting it back to a higher value could allow connect_vcpu 1943 * to come up with a VP id that goes beyond the VP block, which 1944 * is likely to cause a crash in OPAL). 1945 */ 1946 rc = -EBUSY; 1947 else if (nr_servers > KVM_MAX_VCPUS) 1948 /* We don't need more servers. Higher vCPU ids get packed 1949 * down below KVM_MAX_VCPUS by kvmppc_pack_vcpu_id(). 1950 */ 1951 xive->nr_servers = KVM_MAX_VCPUS; 1952 else 1953 xive->nr_servers = nr_servers; 1954 1955 mutex_unlock(&xive->lock); 1956 1957 return rc; 1958 } 1959 1960 static int xive_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 1961 { 1962 struct kvmppc_xive *xive = dev->private; 1963 1964 /* We honor the existing XICS ioctl */ 1965 switch (attr->group) { 1966 case KVM_DEV_XICS_GRP_SOURCES: 1967 return xive_set_source(xive, attr->attr, attr->addr); 1968 case KVM_DEV_XICS_GRP_CTRL: 1969 switch (attr->attr) { 1970 case KVM_DEV_XICS_NR_SERVERS: 1971 return kvmppc_xive_set_nr_servers(xive, attr->addr); 1972 } 1973 } 1974 return -ENXIO; 1975 } 1976 1977 static int xive_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 1978 { 1979 struct kvmppc_xive *xive = dev->private; 1980 1981 /* We honor the existing XICS ioctl */ 1982 switch (attr->group) { 1983 case KVM_DEV_XICS_GRP_SOURCES: 1984 return xive_get_source(xive, attr->attr, attr->addr); 1985 } 1986 return -ENXIO; 1987 } 1988 1989 static int xive_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 1990 { 1991 /* We honor the same limits as XICS, at least for now */ 1992 switch (attr->group) { 1993 case KVM_DEV_XICS_GRP_SOURCES: 1994 if (attr->attr >= KVMPPC_XICS_FIRST_IRQ && 1995 attr->attr < KVMPPC_XICS_NR_IRQS) 1996 return 0; 1997 break; 1998 case KVM_DEV_XICS_GRP_CTRL: 1999 switch (attr->attr) { 2000 case KVM_DEV_XICS_NR_SERVERS: 2001 return 0; 2002 } 2003 } 2004 return -ENXIO; 2005 } 2006 2007 static void kvmppc_xive_cleanup_irq(u32 hw_num, struct xive_irq_data *xd) 2008 { 2009 xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01); 2010 xive_native_configure_irq(hw_num, 0, MASKED, 0); 2011 } 2012 2013 void kvmppc_xive_free_sources(struct kvmppc_xive_src_block *sb) 2014 { 2015 int i; 2016 2017 for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) { 2018 struct kvmppc_xive_irq_state *state = &sb->irq_state[i]; 2019 2020 if (!state->valid) 2021 continue; 2022 2023 kvmppc_xive_cleanup_irq(state->ipi_number, &state->ipi_data); 2024 xive_cleanup_irq_data(&state->ipi_data); 2025 xive_native_free_irq(state->ipi_number); 2026 2027 /* Pass-through, cleanup too but keep IRQ hw data */ 2028 if (state->pt_number) 2029 kvmppc_xive_cleanup_irq(state->pt_number, state->pt_data); 2030 2031 state->valid = false; 2032 } 2033 } 2034 2035 /* 2036 * Called when device fd is closed. kvm->lock is held. 2037 */ 2038 static void kvmppc_xive_release(struct kvm_device *dev) 2039 { 2040 struct kvmppc_xive *xive = dev->private; 2041 struct kvm *kvm = xive->kvm; 2042 struct kvm_vcpu *vcpu; 2043 unsigned long i; 2044 2045 pr_devel("Releasing xive device\n"); 2046 2047 /* 2048 * Since this is the device release function, we know that 2049 * userspace does not have any open fd referring to the 2050 * device. Therefore there can not be any of the device 2051 * attribute set/get functions being executed concurrently, 2052 * and similarly, the connect_vcpu and set/clr_mapped 2053 * functions also cannot be being executed. 2054 */ 2055 2056 debugfs_remove(xive->dentry); 2057 2058 /* 2059 * We should clean up the vCPU interrupt presenters first. 2060 */ 2061 kvm_for_each_vcpu(i, vcpu, kvm) { 2062 /* 2063 * Take vcpu->mutex to ensure that no one_reg get/set ioctl 2064 * (i.e. kvmppc_xive_[gs]et_icp) can be done concurrently. 2065 * Holding the vcpu->mutex also means that the vcpu cannot 2066 * be executing the KVM_RUN ioctl, and therefore it cannot 2067 * be executing the XIVE push or pull code or accessing 2068 * the XIVE MMIO regions. 2069 */ 2070 mutex_lock(&vcpu->mutex); 2071 kvmppc_xive_cleanup_vcpu(vcpu); 2072 mutex_unlock(&vcpu->mutex); 2073 } 2074 2075 /* 2076 * Now that we have cleared vcpu->arch.xive_vcpu, vcpu->arch.irq_type 2077 * and vcpu->arch.xive_esc_[vr]addr on each vcpu, we are safe 2078 * against xive code getting called during vcpu execution or 2079 * set/get one_reg operations. 2080 */ 2081 kvm->arch.xive = NULL; 2082 2083 /* Mask and free interrupts */ 2084 for (i = 0; i <= xive->max_sbid; i++) { 2085 if (xive->src_blocks[i]) 2086 kvmppc_xive_free_sources(xive->src_blocks[i]); 2087 kfree(xive->src_blocks[i]); 2088 xive->src_blocks[i] = NULL; 2089 } 2090 2091 if (xive->vp_base != XIVE_INVALID_VP) 2092 xive_native_free_vp_block(xive->vp_base); 2093 2094 /* 2095 * A reference of the kvmppc_xive pointer is now kept under 2096 * the xive_devices struct of the machine for reuse. It is 2097 * freed when the VM is destroyed for now until we fix all the 2098 * execution paths. 2099 */ 2100 2101 kfree(dev); 2102 } 2103 2104 /* 2105 * When the guest chooses the interrupt mode (XICS legacy or XIVE 2106 * native), the VM will switch of KVM device. The previous device will 2107 * be "released" before the new one is created. 2108 * 2109 * Until we are sure all execution paths are well protected, provide a 2110 * fail safe (transitional) method for device destruction, in which 2111 * the XIVE device pointer is recycled and not directly freed. 2112 */ 2113 struct kvmppc_xive *kvmppc_xive_get_device(struct kvm *kvm, u32 type) 2114 { 2115 struct kvmppc_xive **kvm_xive_device = type == KVM_DEV_TYPE_XIVE ? 2116 &kvm->arch.xive_devices.native : 2117 &kvm->arch.xive_devices.xics_on_xive; 2118 struct kvmppc_xive *xive = *kvm_xive_device; 2119 2120 if (!xive) { 2121 xive = kzalloc(sizeof(*xive), GFP_KERNEL); 2122 *kvm_xive_device = xive; 2123 } else { 2124 memset(xive, 0, sizeof(*xive)); 2125 } 2126 2127 return xive; 2128 } 2129 2130 /* 2131 * Create a XICS device with XIVE backend. kvm->lock is held. 2132 */ 2133 static int kvmppc_xive_create(struct kvm_device *dev, u32 type) 2134 { 2135 struct kvmppc_xive *xive; 2136 struct kvm *kvm = dev->kvm; 2137 2138 pr_devel("Creating xive for partition\n"); 2139 2140 /* Already there ? */ 2141 if (kvm->arch.xive) 2142 return -EEXIST; 2143 2144 xive = kvmppc_xive_get_device(kvm, type); 2145 if (!xive) 2146 return -ENOMEM; 2147 2148 dev->private = xive; 2149 xive->dev = dev; 2150 xive->kvm = kvm; 2151 mutex_init(&xive->lock); 2152 2153 /* We use the default queue size set by the host */ 2154 xive->q_order = xive_native_default_eq_shift(); 2155 if (xive->q_order < PAGE_SHIFT) 2156 xive->q_page_order = 0; 2157 else 2158 xive->q_page_order = xive->q_order - PAGE_SHIFT; 2159 2160 /* VP allocation is delayed to the first call to connect_vcpu */ 2161 xive->vp_base = XIVE_INVALID_VP; 2162 /* KVM_MAX_VCPUS limits the number of VMs to roughly 64 per sockets 2163 * on a POWER9 system. 2164 */ 2165 xive->nr_servers = KVM_MAX_VCPUS; 2166 2167 if (xive_native_has_single_escalation()) 2168 xive->flags |= KVMPPC_XIVE_FLAG_SINGLE_ESCALATION; 2169 2170 if (xive_native_has_save_restore()) 2171 xive->flags |= KVMPPC_XIVE_FLAG_SAVE_RESTORE; 2172 2173 kvm->arch.xive = xive; 2174 return 0; 2175 } 2176 2177 int kvmppc_xive_xics_hcall(struct kvm_vcpu *vcpu, u32 req) 2178 { 2179 struct kvmppc_vcore *vc = vcpu->arch.vcore; 2180 2181 /* The VM should have configured XICS mode before doing XICS hcalls. */ 2182 if (!kvmppc_xics_enabled(vcpu)) 2183 return H_TOO_HARD; 2184 2185 switch (req) { 2186 case H_XIRR: 2187 return xive_vm_h_xirr(vcpu); 2188 case H_CPPR: 2189 return xive_vm_h_cppr(vcpu, kvmppc_get_gpr(vcpu, 4)); 2190 case H_EOI: 2191 return xive_vm_h_eoi(vcpu, kvmppc_get_gpr(vcpu, 4)); 2192 case H_IPI: 2193 return xive_vm_h_ipi(vcpu, kvmppc_get_gpr(vcpu, 4), 2194 kvmppc_get_gpr(vcpu, 5)); 2195 case H_IPOLL: 2196 return xive_vm_h_ipoll(vcpu, kvmppc_get_gpr(vcpu, 4)); 2197 case H_XIRR_X: 2198 xive_vm_h_xirr(vcpu); 2199 kvmppc_set_gpr(vcpu, 5, get_tb() + vc->tb_offset); 2200 return H_SUCCESS; 2201 } 2202 2203 return H_UNSUPPORTED; 2204 } 2205 EXPORT_SYMBOL_GPL(kvmppc_xive_xics_hcall); 2206 2207 int kvmppc_xive_debug_show_queues(struct seq_file *m, struct kvm_vcpu *vcpu) 2208 { 2209 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 2210 unsigned int i; 2211 2212 for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) { 2213 struct xive_q *q = &xc->queues[i]; 2214 u32 i0, i1, idx; 2215 2216 if (!q->qpage && !xc->esc_virq[i]) 2217 continue; 2218 2219 if (q->qpage) { 2220 seq_printf(m, " q[%d]: ", i); 2221 idx = q->idx; 2222 i0 = be32_to_cpup(q->qpage + idx); 2223 idx = (idx + 1) & q->msk; 2224 i1 = be32_to_cpup(q->qpage + idx); 2225 seq_printf(m, "T=%d %08x %08x...\n", q->toggle, 2226 i0, i1); 2227 } 2228 if (xc->esc_virq[i]) { 2229 struct irq_data *d = irq_get_irq_data(xc->esc_virq[i]); 2230 struct xive_irq_data *xd = 2231 irq_data_get_irq_handler_data(d); 2232 u64 pq = xive_vm_esb_load(xd, XIVE_ESB_GET); 2233 2234 seq_printf(m, " ESC %d %c%c EOI @%llx", 2235 xc->esc_virq[i], 2236 (pq & XIVE_ESB_VAL_P) ? 'P' : '-', 2237 (pq & XIVE_ESB_VAL_Q) ? 'Q' : '-', 2238 xd->eoi_page); 2239 seq_puts(m, "\n"); 2240 } 2241 } 2242 return 0; 2243 } 2244 2245 void kvmppc_xive_debug_show_sources(struct seq_file *m, 2246 struct kvmppc_xive_src_block *sb) 2247 { 2248 int i; 2249 2250 seq_puts(m, " LISN HW/CHIP TYPE PQ EISN CPU/PRIO\n"); 2251 for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) { 2252 struct kvmppc_xive_irq_state *state = &sb->irq_state[i]; 2253 struct xive_irq_data *xd; 2254 u64 pq; 2255 u32 hw_num; 2256 2257 if (!state->valid) 2258 continue; 2259 2260 kvmppc_xive_select_irq(state, &hw_num, &xd); 2261 2262 pq = xive_vm_esb_load(xd, XIVE_ESB_GET); 2263 2264 seq_printf(m, "%08x %08x/%02x", state->number, hw_num, 2265 xd->src_chip); 2266 if (state->lsi) 2267 seq_printf(m, " %cLSI", state->asserted ? '^' : ' '); 2268 else 2269 seq_puts(m, " MSI"); 2270 2271 seq_printf(m, " %s %c%c %08x % 4d/%d", 2272 state->ipi_number == hw_num ? "IPI" : " PT", 2273 pq & XIVE_ESB_VAL_P ? 'P' : '-', 2274 pq & XIVE_ESB_VAL_Q ? 'Q' : '-', 2275 state->eisn, state->act_server, 2276 state->act_priority); 2277 2278 seq_puts(m, "\n"); 2279 } 2280 } 2281 2282 static int xive_debug_show(struct seq_file *m, void *private) 2283 { 2284 struct kvmppc_xive *xive = m->private; 2285 struct kvm *kvm = xive->kvm; 2286 struct kvm_vcpu *vcpu; 2287 u64 t_rm_h_xirr = 0; 2288 u64 t_rm_h_ipoll = 0; 2289 u64 t_rm_h_cppr = 0; 2290 u64 t_rm_h_eoi = 0; 2291 u64 t_rm_h_ipi = 0; 2292 u64 t_vm_h_xirr = 0; 2293 u64 t_vm_h_ipoll = 0; 2294 u64 t_vm_h_cppr = 0; 2295 u64 t_vm_h_eoi = 0; 2296 u64 t_vm_h_ipi = 0; 2297 unsigned long i; 2298 2299 if (!kvm) 2300 return 0; 2301 2302 seq_puts(m, "=========\nVCPU state\n=========\n"); 2303 2304 kvm_for_each_vcpu(i, vcpu, kvm) { 2305 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 2306 2307 if (!xc) 2308 continue; 2309 2310 seq_printf(m, "VCPU %d: VP:%#x/%02x\n" 2311 " CPPR:%#x HWCPPR:%#x MFRR:%#x PEND:%#x h_xirr: R=%lld V=%lld\n", 2312 xc->server_num, xc->vp_id, xc->vp_chip_id, 2313 xc->cppr, xc->hw_cppr, 2314 xc->mfrr, xc->pending, 2315 xc->stat_rm_h_xirr, xc->stat_vm_h_xirr); 2316 2317 kvmppc_xive_debug_show_queues(m, vcpu); 2318 2319 t_rm_h_xirr += xc->stat_rm_h_xirr; 2320 t_rm_h_ipoll += xc->stat_rm_h_ipoll; 2321 t_rm_h_cppr += xc->stat_rm_h_cppr; 2322 t_rm_h_eoi += xc->stat_rm_h_eoi; 2323 t_rm_h_ipi += xc->stat_rm_h_ipi; 2324 t_vm_h_xirr += xc->stat_vm_h_xirr; 2325 t_vm_h_ipoll += xc->stat_vm_h_ipoll; 2326 t_vm_h_cppr += xc->stat_vm_h_cppr; 2327 t_vm_h_eoi += xc->stat_vm_h_eoi; 2328 t_vm_h_ipi += xc->stat_vm_h_ipi; 2329 } 2330 2331 seq_puts(m, "Hcalls totals\n"); 2332 seq_printf(m, " H_XIRR R=%10lld V=%10lld\n", t_rm_h_xirr, t_vm_h_xirr); 2333 seq_printf(m, " H_IPOLL R=%10lld V=%10lld\n", t_rm_h_ipoll, t_vm_h_ipoll); 2334 seq_printf(m, " H_CPPR R=%10lld V=%10lld\n", t_rm_h_cppr, t_vm_h_cppr); 2335 seq_printf(m, " H_EOI R=%10lld V=%10lld\n", t_rm_h_eoi, t_vm_h_eoi); 2336 seq_printf(m, " H_IPI R=%10lld V=%10lld\n", t_rm_h_ipi, t_vm_h_ipi); 2337 2338 seq_puts(m, "=========\nSources\n=========\n"); 2339 2340 for (i = 0; i <= xive->max_sbid; i++) { 2341 struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; 2342 2343 if (sb) { 2344 arch_spin_lock(&sb->lock); 2345 kvmppc_xive_debug_show_sources(m, sb); 2346 arch_spin_unlock(&sb->lock); 2347 } 2348 } 2349 2350 return 0; 2351 } 2352 2353 DEFINE_SHOW_ATTRIBUTE(xive_debug); 2354 2355 static void xive_debugfs_init(struct kvmppc_xive *xive) 2356 { 2357 char *name; 2358 2359 name = kasprintf(GFP_KERNEL, "kvm-xive-%p", xive); 2360 if (!name) { 2361 pr_err("%s: no memory for name\n", __func__); 2362 return; 2363 } 2364 2365 xive->dentry = debugfs_create_file(name, S_IRUGO, arch_debugfs_dir, 2366 xive, &xive_debug_fops); 2367 2368 pr_debug("%s: created %s\n", __func__, name); 2369 kfree(name); 2370 } 2371 2372 static void kvmppc_xive_init(struct kvm_device *dev) 2373 { 2374 struct kvmppc_xive *xive = (struct kvmppc_xive *)dev->private; 2375 2376 /* Register some debug interfaces */ 2377 xive_debugfs_init(xive); 2378 } 2379 2380 struct kvm_device_ops kvm_xive_ops = { 2381 .name = "kvm-xive", 2382 .create = kvmppc_xive_create, 2383 .init = kvmppc_xive_init, 2384 .release = kvmppc_xive_release, 2385 .set_attr = xive_set_attr, 2386 .get_attr = xive_get_attr, 2387 .has_attr = xive_has_attr, 2388 }; 2389