xref: /openbmc/linux/arch/powerpc/kvm/book3s_xive.c (revision 8795a739)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2017 Benjamin Herrenschmidt, IBM Corporation.
4  */
5 
6 #define pr_fmt(fmt) "xive-kvm: " fmt
7 
8 #include <linux/kernel.h>
9 #include <linux/kvm_host.h>
10 #include <linux/err.h>
11 #include <linux/gfp.h>
12 #include <linux/spinlock.h>
13 #include <linux/delay.h>
14 #include <linux/percpu.h>
15 #include <linux/cpumask.h>
16 #include <linux/uaccess.h>
17 #include <asm/kvm_book3s.h>
18 #include <asm/kvm_ppc.h>
19 #include <asm/hvcall.h>
20 #include <asm/xics.h>
21 #include <asm/xive.h>
22 #include <asm/xive-regs.h>
23 #include <asm/debug.h>
24 #include <asm/debugfs.h>
25 #include <asm/time.h>
26 #include <asm/opal.h>
27 
28 #include <linux/debugfs.h>
29 #include <linux/seq_file.h>
30 
31 #include "book3s_xive.h"
32 
33 
34 /*
35  * Virtual mode variants of the hcalls for use on radix/radix
36  * with AIL. They require the VCPU's VP to be "pushed"
37  *
38  * We still instantiate them here because we use some of the
39  * generated utility functions as well in this file.
40  */
41 #define XIVE_RUNTIME_CHECKS
42 #define X_PFX xive_vm_
43 #define X_STATIC static
44 #define X_STAT_PFX stat_vm_
45 #define __x_tima		xive_tima
46 #define __x_eoi_page(xd)	((void __iomem *)((xd)->eoi_mmio))
47 #define __x_trig_page(xd)	((void __iomem *)((xd)->trig_mmio))
48 #define __x_writeb	__raw_writeb
49 #define __x_readw	__raw_readw
50 #define __x_readq	__raw_readq
51 #define __x_writeq	__raw_writeq
52 
53 #include "book3s_xive_template.c"
54 
55 /*
56  * We leave a gap of a couple of interrupts in the queue to
57  * account for the IPI and additional safety guard.
58  */
59 #define XIVE_Q_GAP	2
60 
61 /*
62  * Push a vcpu's context to the XIVE on guest entry.
63  * This assumes we are in virtual mode (MMU on)
64  */
65 void kvmppc_xive_push_vcpu(struct kvm_vcpu *vcpu)
66 {
67 	void __iomem *tima = local_paca->kvm_hstate.xive_tima_virt;
68 	u64 pq;
69 
70 	/*
71 	 * Nothing to do if the platform doesn't have a XIVE
72 	 * or this vCPU doesn't have its own XIVE context
73 	 * (e.g. because it's not using an in-kernel interrupt controller).
74 	 */
75 	if (!tima || !vcpu->arch.xive_cam_word)
76 		return;
77 
78 	eieio();
79 	__raw_writeq(vcpu->arch.xive_saved_state.w01, tima + TM_QW1_OS);
80 	__raw_writel(vcpu->arch.xive_cam_word, tima + TM_QW1_OS + TM_WORD2);
81 	vcpu->arch.xive_pushed = 1;
82 	eieio();
83 
84 	/*
85 	 * We clear the irq_pending flag. There is a small chance of a
86 	 * race vs. the escalation interrupt happening on another
87 	 * processor setting it again, but the only consequence is to
88 	 * cause a spurious wakeup on the next H_CEDE, which is not an
89 	 * issue.
90 	 */
91 	vcpu->arch.irq_pending = 0;
92 
93 	/*
94 	 * In single escalation mode, if the escalation interrupt is
95 	 * on, we mask it.
96 	 */
97 	if (vcpu->arch.xive_esc_on) {
98 		pq = __raw_readq((void __iomem *)(vcpu->arch.xive_esc_vaddr +
99 						  XIVE_ESB_SET_PQ_01));
100 		mb();
101 
102 		/*
103 		 * We have a possible subtle race here: The escalation
104 		 * interrupt might have fired and be on its way to the
105 		 * host queue while we mask it, and if we unmask it
106 		 * early enough (re-cede right away), there is a
107 		 * theorical possibility that it fires again, thus
108 		 * landing in the target queue more than once which is
109 		 * a big no-no.
110 		 *
111 		 * Fortunately, solving this is rather easy. If the
112 		 * above load setting PQ to 01 returns a previous
113 		 * value where P is set, then we know the escalation
114 		 * interrupt is somewhere on its way to the host. In
115 		 * that case we simply don't clear the xive_esc_on
116 		 * flag below. It will be eventually cleared by the
117 		 * handler for the escalation interrupt.
118 		 *
119 		 * Then, when doing a cede, we check that flag again
120 		 * before re-enabling the escalation interrupt, and if
121 		 * set, we abort the cede.
122 		 */
123 		if (!(pq & XIVE_ESB_VAL_P))
124 			/* Now P is 0, we can clear the flag */
125 			vcpu->arch.xive_esc_on = 0;
126 	}
127 }
128 EXPORT_SYMBOL_GPL(kvmppc_xive_push_vcpu);
129 
130 /*
131  * This is a simple trigger for a generic XIVE IRQ. This must
132  * only be called for interrupts that support a trigger page
133  */
134 static bool xive_irq_trigger(struct xive_irq_data *xd)
135 {
136 	/* This should be only for MSIs */
137 	if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
138 		return false;
139 
140 	/* Those interrupts should always have a trigger page */
141 	if (WARN_ON(!xd->trig_mmio))
142 		return false;
143 
144 	out_be64(xd->trig_mmio, 0);
145 
146 	return true;
147 }
148 
149 static irqreturn_t xive_esc_irq(int irq, void *data)
150 {
151 	struct kvm_vcpu *vcpu = data;
152 
153 	vcpu->arch.irq_pending = 1;
154 	smp_mb();
155 	if (vcpu->arch.ceded)
156 		kvmppc_fast_vcpu_kick(vcpu);
157 
158 	/* Since we have the no-EOI flag, the interrupt is effectively
159 	 * disabled now. Clearing xive_esc_on means we won't bother
160 	 * doing so on the next entry.
161 	 *
162 	 * This also allows the entry code to know that if a PQ combination
163 	 * of 10 is observed while xive_esc_on is true, it means the queue
164 	 * contains an unprocessed escalation interrupt. We don't make use of
165 	 * that knowledge today but might (see comment in book3s_hv_rmhandler.S)
166 	 */
167 	vcpu->arch.xive_esc_on = false;
168 
169 	/* This orders xive_esc_on = false vs. subsequent stale_p = true */
170 	smp_wmb();	/* goes with smp_mb() in cleanup_single_escalation */
171 
172 	return IRQ_HANDLED;
173 }
174 
175 int kvmppc_xive_attach_escalation(struct kvm_vcpu *vcpu, u8 prio,
176 				  bool single_escalation)
177 {
178 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
179 	struct xive_q *q = &xc->queues[prio];
180 	char *name = NULL;
181 	int rc;
182 
183 	/* Already there ? */
184 	if (xc->esc_virq[prio])
185 		return 0;
186 
187 	/* Hook up the escalation interrupt */
188 	xc->esc_virq[prio] = irq_create_mapping(NULL, q->esc_irq);
189 	if (!xc->esc_virq[prio]) {
190 		pr_err("Failed to map escalation interrupt for queue %d of VCPU %d\n",
191 		       prio, xc->server_num);
192 		return -EIO;
193 	}
194 
195 	if (single_escalation)
196 		name = kasprintf(GFP_KERNEL, "kvm-%d-%d",
197 				 vcpu->kvm->arch.lpid, xc->server_num);
198 	else
199 		name = kasprintf(GFP_KERNEL, "kvm-%d-%d-%d",
200 				 vcpu->kvm->arch.lpid, xc->server_num, prio);
201 	if (!name) {
202 		pr_err("Failed to allocate escalation irq name for queue %d of VCPU %d\n",
203 		       prio, xc->server_num);
204 		rc = -ENOMEM;
205 		goto error;
206 	}
207 
208 	pr_devel("Escalation %s irq %d (prio %d)\n", name, xc->esc_virq[prio], prio);
209 
210 	rc = request_irq(xc->esc_virq[prio], xive_esc_irq,
211 			 IRQF_NO_THREAD, name, vcpu);
212 	if (rc) {
213 		pr_err("Failed to request escalation interrupt for queue %d of VCPU %d\n",
214 		       prio, xc->server_num);
215 		goto error;
216 	}
217 	xc->esc_virq_names[prio] = name;
218 
219 	/* In single escalation mode, we grab the ESB MMIO of the
220 	 * interrupt and mask it. Also populate the VCPU v/raddr
221 	 * of the ESB page for use by asm entry/exit code. Finally
222 	 * set the XIVE_IRQ_NO_EOI flag which will prevent the
223 	 * core code from performing an EOI on the escalation
224 	 * interrupt, thus leaving it effectively masked after
225 	 * it fires once.
226 	 */
227 	if (single_escalation) {
228 		struct irq_data *d = irq_get_irq_data(xc->esc_virq[prio]);
229 		struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
230 
231 		xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01);
232 		vcpu->arch.xive_esc_raddr = xd->eoi_page;
233 		vcpu->arch.xive_esc_vaddr = (__force u64)xd->eoi_mmio;
234 		xd->flags |= XIVE_IRQ_NO_EOI;
235 	}
236 
237 	return 0;
238 error:
239 	irq_dispose_mapping(xc->esc_virq[prio]);
240 	xc->esc_virq[prio] = 0;
241 	kfree(name);
242 	return rc;
243 }
244 
245 static int xive_provision_queue(struct kvm_vcpu *vcpu, u8 prio)
246 {
247 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
248 	struct kvmppc_xive *xive = xc->xive;
249 	struct xive_q *q =  &xc->queues[prio];
250 	void *qpage;
251 	int rc;
252 
253 	if (WARN_ON(q->qpage))
254 		return 0;
255 
256 	/* Allocate the queue and retrieve infos on current node for now */
257 	qpage = (__be32 *)__get_free_pages(GFP_KERNEL, xive->q_page_order);
258 	if (!qpage) {
259 		pr_err("Failed to allocate queue %d for VCPU %d\n",
260 		       prio, xc->server_num);
261 		return -ENOMEM;
262 	}
263 	memset(qpage, 0, 1 << xive->q_order);
264 
265 	/*
266 	 * Reconfigure the queue. This will set q->qpage only once the
267 	 * queue is fully configured. This is a requirement for prio 0
268 	 * as we will stop doing EOIs for every IPI as soon as we observe
269 	 * qpage being non-NULL, and instead will only EOI when we receive
270 	 * corresponding queue 0 entries
271 	 */
272 	rc = xive_native_configure_queue(xc->vp_id, q, prio, qpage,
273 					 xive->q_order, true);
274 	if (rc)
275 		pr_err("Failed to configure queue %d for VCPU %d\n",
276 		       prio, xc->server_num);
277 	return rc;
278 }
279 
280 /* Called with xive->lock held */
281 static int xive_check_provisioning(struct kvm *kvm, u8 prio)
282 {
283 	struct kvmppc_xive *xive = kvm->arch.xive;
284 	struct kvm_vcpu *vcpu;
285 	int i, rc;
286 
287 	lockdep_assert_held(&xive->lock);
288 
289 	/* Already provisioned ? */
290 	if (xive->qmap & (1 << prio))
291 		return 0;
292 
293 	pr_devel("Provisioning prio... %d\n", prio);
294 
295 	/* Provision each VCPU and enable escalations if needed */
296 	kvm_for_each_vcpu(i, vcpu, kvm) {
297 		if (!vcpu->arch.xive_vcpu)
298 			continue;
299 		rc = xive_provision_queue(vcpu, prio);
300 		if (rc == 0 && !xive->single_escalation)
301 			kvmppc_xive_attach_escalation(vcpu, prio,
302 						      xive->single_escalation);
303 		if (rc)
304 			return rc;
305 	}
306 
307 	/* Order previous stores and mark it as provisioned */
308 	mb();
309 	xive->qmap |= (1 << prio);
310 	return 0;
311 }
312 
313 static void xive_inc_q_pending(struct kvm *kvm, u32 server, u8 prio)
314 {
315 	struct kvm_vcpu *vcpu;
316 	struct kvmppc_xive_vcpu *xc;
317 	struct xive_q *q;
318 
319 	/* Locate target server */
320 	vcpu = kvmppc_xive_find_server(kvm, server);
321 	if (!vcpu) {
322 		pr_warn("%s: Can't find server %d\n", __func__, server);
323 		return;
324 	}
325 	xc = vcpu->arch.xive_vcpu;
326 	if (WARN_ON(!xc))
327 		return;
328 
329 	q = &xc->queues[prio];
330 	atomic_inc(&q->pending_count);
331 }
332 
333 static int xive_try_pick_queue(struct kvm_vcpu *vcpu, u8 prio)
334 {
335 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
336 	struct xive_q *q;
337 	u32 max;
338 
339 	if (WARN_ON(!xc))
340 		return -ENXIO;
341 	if (!xc->valid)
342 		return -ENXIO;
343 
344 	q = &xc->queues[prio];
345 	if (WARN_ON(!q->qpage))
346 		return -ENXIO;
347 
348 	/* Calculate max number of interrupts in that queue. */
349 	max = (q->msk + 1) - XIVE_Q_GAP;
350 	return atomic_add_unless(&q->count, 1, max) ? 0 : -EBUSY;
351 }
352 
353 int kvmppc_xive_select_target(struct kvm *kvm, u32 *server, u8 prio)
354 {
355 	struct kvm_vcpu *vcpu;
356 	int i, rc;
357 
358 	/* Locate target server */
359 	vcpu = kvmppc_xive_find_server(kvm, *server);
360 	if (!vcpu) {
361 		pr_devel("Can't find server %d\n", *server);
362 		return -EINVAL;
363 	}
364 
365 	pr_devel("Finding irq target on 0x%x/%d...\n", *server, prio);
366 
367 	/* Try pick it */
368 	rc = xive_try_pick_queue(vcpu, prio);
369 	if (rc == 0)
370 		return rc;
371 
372 	pr_devel(" .. failed, looking up candidate...\n");
373 
374 	/* Failed, pick another VCPU */
375 	kvm_for_each_vcpu(i, vcpu, kvm) {
376 		if (!vcpu->arch.xive_vcpu)
377 			continue;
378 		rc = xive_try_pick_queue(vcpu, prio);
379 		if (rc == 0) {
380 			*server = vcpu->arch.xive_vcpu->server_num;
381 			pr_devel("  found on 0x%x/%d\n", *server, prio);
382 			return rc;
383 		}
384 	}
385 	pr_devel("  no available target !\n");
386 
387 	/* No available target ! */
388 	return -EBUSY;
389 }
390 
391 static u8 xive_lock_and_mask(struct kvmppc_xive *xive,
392 			     struct kvmppc_xive_src_block *sb,
393 			     struct kvmppc_xive_irq_state *state)
394 {
395 	struct xive_irq_data *xd;
396 	u32 hw_num;
397 	u8 old_prio;
398 	u64 val;
399 
400 	/*
401 	 * Take the lock, set masked, try again if racing
402 	 * with H_EOI
403 	 */
404 	for (;;) {
405 		arch_spin_lock(&sb->lock);
406 		old_prio = state->guest_priority;
407 		state->guest_priority = MASKED;
408 		mb();
409 		if (!state->in_eoi)
410 			break;
411 		state->guest_priority = old_prio;
412 		arch_spin_unlock(&sb->lock);
413 	}
414 
415 	/* No change ? Bail */
416 	if (old_prio == MASKED)
417 		return old_prio;
418 
419 	/* Get the right irq */
420 	kvmppc_xive_select_irq(state, &hw_num, &xd);
421 
422 	/*
423 	 * If the interrupt is marked as needing masking via
424 	 * firmware, we do it here. Firmware masking however
425 	 * is "lossy", it won't return the old p and q bits
426 	 * and won't set the interrupt to a state where it will
427 	 * record queued ones. If this is an issue we should do
428 	 * lazy masking instead.
429 	 *
430 	 * For now, we work around this in unmask by forcing
431 	 * an interrupt whenever we unmask a non-LSI via FW
432 	 * (if ever).
433 	 */
434 	if (xd->flags & OPAL_XIVE_IRQ_MASK_VIA_FW) {
435 		xive_native_configure_irq(hw_num,
436 				kvmppc_xive_vp(xive, state->act_server),
437 				MASKED, state->number);
438 		/* set old_p so we can track if an H_EOI was done */
439 		state->old_p = true;
440 		state->old_q = false;
441 	} else {
442 		/* Set PQ to 10, return old P and old Q and remember them */
443 		val = xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_10);
444 		state->old_p = !!(val & 2);
445 		state->old_q = !!(val & 1);
446 
447 		/*
448 		 * Synchronize hardware to sensure the queues are updated
449 		 * when masking
450 		 */
451 		xive_native_sync_source(hw_num);
452 	}
453 
454 	return old_prio;
455 }
456 
457 static void xive_lock_for_unmask(struct kvmppc_xive_src_block *sb,
458 				 struct kvmppc_xive_irq_state *state)
459 {
460 	/*
461 	 * Take the lock try again if racing with H_EOI
462 	 */
463 	for (;;) {
464 		arch_spin_lock(&sb->lock);
465 		if (!state->in_eoi)
466 			break;
467 		arch_spin_unlock(&sb->lock);
468 	}
469 }
470 
471 static void xive_finish_unmask(struct kvmppc_xive *xive,
472 			       struct kvmppc_xive_src_block *sb,
473 			       struct kvmppc_xive_irq_state *state,
474 			       u8 prio)
475 {
476 	struct xive_irq_data *xd;
477 	u32 hw_num;
478 
479 	/* If we aren't changing a thing, move on */
480 	if (state->guest_priority != MASKED)
481 		goto bail;
482 
483 	/* Get the right irq */
484 	kvmppc_xive_select_irq(state, &hw_num, &xd);
485 
486 	/*
487 	 * See command in xive_lock_and_mask() concerning masking
488 	 * via firmware.
489 	 */
490 	if (xd->flags & OPAL_XIVE_IRQ_MASK_VIA_FW) {
491 		xive_native_configure_irq(hw_num,
492 				kvmppc_xive_vp(xive, state->act_server),
493 				state->act_priority, state->number);
494 		/* If an EOI is needed, do it here */
495 		if (!state->old_p)
496 			xive_vm_source_eoi(hw_num, xd);
497 		/* If this is not an LSI, force a trigger */
498 		if (!(xd->flags & OPAL_XIVE_IRQ_LSI))
499 			xive_irq_trigger(xd);
500 		goto bail;
501 	}
502 
503 	/* Old Q set, set PQ to 11 */
504 	if (state->old_q)
505 		xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_11);
506 
507 	/*
508 	 * If not old P, then perform an "effective" EOI,
509 	 * on the source. This will handle the cases where
510 	 * FW EOI is needed.
511 	 */
512 	if (!state->old_p)
513 		xive_vm_source_eoi(hw_num, xd);
514 
515 	/* Synchronize ordering and mark unmasked */
516 	mb();
517 bail:
518 	state->guest_priority = prio;
519 }
520 
521 /*
522  * Target an interrupt to a given server/prio, this will fallback
523  * to another server if necessary and perform the HW targetting
524  * updates as needed
525  *
526  * NOTE: Must be called with the state lock held
527  */
528 static int xive_target_interrupt(struct kvm *kvm,
529 				 struct kvmppc_xive_irq_state *state,
530 				 u32 server, u8 prio)
531 {
532 	struct kvmppc_xive *xive = kvm->arch.xive;
533 	u32 hw_num;
534 	int rc;
535 
536 	/*
537 	 * This will return a tentative server and actual
538 	 * priority. The count for that new target will have
539 	 * already been incremented.
540 	 */
541 	rc = kvmppc_xive_select_target(kvm, &server, prio);
542 
543 	/*
544 	 * We failed to find a target ? Not much we can do
545 	 * at least until we support the GIQ.
546 	 */
547 	if (rc)
548 		return rc;
549 
550 	/*
551 	 * Increment the old queue pending count if there
552 	 * was one so that the old queue count gets adjusted later
553 	 * when observed to be empty.
554 	 */
555 	if (state->act_priority != MASKED)
556 		xive_inc_q_pending(kvm,
557 				   state->act_server,
558 				   state->act_priority);
559 	/*
560 	 * Update state and HW
561 	 */
562 	state->act_priority = prio;
563 	state->act_server = server;
564 
565 	/* Get the right irq */
566 	kvmppc_xive_select_irq(state, &hw_num, NULL);
567 
568 	return xive_native_configure_irq(hw_num,
569 					 kvmppc_xive_vp(xive, server),
570 					 prio, state->number);
571 }
572 
573 /*
574  * Targetting rules: In order to avoid losing track of
575  * pending interrupts accross mask and unmask, which would
576  * allow queue overflows, we implement the following rules:
577  *
578  *  - Unless it was never enabled (or we run out of capacity)
579  *    an interrupt is always targetted at a valid server/queue
580  *    pair even when "masked" by the guest. This pair tends to
581  *    be the last one used but it can be changed under some
582  *    circumstances. That allows us to separate targetting
583  *    from masking, we only handle accounting during (re)targetting,
584  *    this also allows us to let an interrupt drain into its target
585  *    queue after masking, avoiding complex schemes to remove
586  *    interrupts out of remote processor queues.
587  *
588  *  - When masking, we set PQ to 10 and save the previous value
589  *    of P and Q.
590  *
591  *  - When unmasking, if saved Q was set, we set PQ to 11
592  *    otherwise we leave PQ to the HW state which will be either
593  *    10 if nothing happened or 11 if the interrupt fired while
594  *    masked. Effectively we are OR'ing the previous Q into the
595  *    HW Q.
596  *
597  *    Then if saved P is clear, we do an effective EOI (Q->P->Trigger)
598  *    which will unmask the interrupt and shoot a new one if Q was
599  *    set.
600  *
601  *    Otherwise (saved P is set) we leave PQ unchanged (so 10 or 11,
602  *    effectively meaning an H_EOI from the guest is still expected
603  *    for that interrupt).
604  *
605  *  - If H_EOI occurs while masked, we clear the saved P.
606  *
607  *  - When changing target, we account on the new target and
608  *    increment a separate "pending" counter on the old one.
609  *    This pending counter will be used to decrement the old
610  *    target's count when its queue has been observed empty.
611  */
612 
613 int kvmppc_xive_set_xive(struct kvm *kvm, u32 irq, u32 server,
614 			 u32 priority)
615 {
616 	struct kvmppc_xive *xive = kvm->arch.xive;
617 	struct kvmppc_xive_src_block *sb;
618 	struct kvmppc_xive_irq_state *state;
619 	u8 new_act_prio;
620 	int rc = 0;
621 	u16 idx;
622 
623 	if (!xive)
624 		return -ENODEV;
625 
626 	pr_devel("set_xive ! irq 0x%x server 0x%x prio %d\n",
627 		 irq, server, priority);
628 
629 	/* First, check provisioning of queues */
630 	if (priority != MASKED) {
631 		mutex_lock(&xive->lock);
632 		rc = xive_check_provisioning(xive->kvm,
633 			      xive_prio_from_guest(priority));
634 		mutex_unlock(&xive->lock);
635 	}
636 	if (rc) {
637 		pr_devel("  provisioning failure %d !\n", rc);
638 		return rc;
639 	}
640 
641 	sb = kvmppc_xive_find_source(xive, irq, &idx);
642 	if (!sb)
643 		return -EINVAL;
644 	state = &sb->irq_state[idx];
645 
646 	/*
647 	 * We first handle masking/unmasking since the locking
648 	 * might need to be retried due to EOIs, we'll handle
649 	 * targetting changes later. These functions will return
650 	 * with the SB lock held.
651 	 *
652 	 * xive_lock_and_mask() will also set state->guest_priority
653 	 * but won't otherwise change other fields of the state.
654 	 *
655 	 * xive_lock_for_unmask will not actually unmask, this will
656 	 * be done later by xive_finish_unmask() once the targetting
657 	 * has been done, so we don't try to unmask an interrupt
658 	 * that hasn't yet been targetted.
659 	 */
660 	if (priority == MASKED)
661 		xive_lock_and_mask(xive, sb, state);
662 	else
663 		xive_lock_for_unmask(sb, state);
664 
665 
666 	/*
667 	 * Then we handle targetting.
668 	 *
669 	 * First calculate a new "actual priority"
670 	 */
671 	new_act_prio = state->act_priority;
672 	if (priority != MASKED)
673 		new_act_prio = xive_prio_from_guest(priority);
674 
675 	pr_devel(" new_act_prio=%x act_server=%x act_prio=%x\n",
676 		 new_act_prio, state->act_server, state->act_priority);
677 
678 	/*
679 	 * Then check if we actually need to change anything,
680 	 *
681 	 * The condition for re-targetting the interrupt is that
682 	 * we have a valid new priority (new_act_prio is not 0xff)
683 	 * and either the server or the priority changed.
684 	 *
685 	 * Note: If act_priority was ff and the new priority is
686 	 *       also ff, we don't do anything and leave the interrupt
687 	 *       untargetted. An attempt of doing an int_on on an
688 	 *       untargetted interrupt will fail. If that is a problem
689 	 *       we could initialize interrupts with valid default
690 	 */
691 
692 	if (new_act_prio != MASKED &&
693 	    (state->act_server != server ||
694 	     state->act_priority != new_act_prio))
695 		rc = xive_target_interrupt(kvm, state, server, new_act_prio);
696 
697 	/*
698 	 * Perform the final unmasking of the interrupt source
699 	 * if necessary
700 	 */
701 	if (priority != MASKED)
702 		xive_finish_unmask(xive, sb, state, priority);
703 
704 	/*
705 	 * Finally Update saved_priority to match. Only int_on/off
706 	 * set this field to a different value.
707 	 */
708 	state->saved_priority = priority;
709 
710 	arch_spin_unlock(&sb->lock);
711 	return rc;
712 }
713 
714 int kvmppc_xive_get_xive(struct kvm *kvm, u32 irq, u32 *server,
715 			 u32 *priority)
716 {
717 	struct kvmppc_xive *xive = kvm->arch.xive;
718 	struct kvmppc_xive_src_block *sb;
719 	struct kvmppc_xive_irq_state *state;
720 	u16 idx;
721 
722 	if (!xive)
723 		return -ENODEV;
724 
725 	sb = kvmppc_xive_find_source(xive, irq, &idx);
726 	if (!sb)
727 		return -EINVAL;
728 	state = &sb->irq_state[idx];
729 	arch_spin_lock(&sb->lock);
730 	*server = state->act_server;
731 	*priority = state->guest_priority;
732 	arch_spin_unlock(&sb->lock);
733 
734 	return 0;
735 }
736 
737 int kvmppc_xive_int_on(struct kvm *kvm, u32 irq)
738 {
739 	struct kvmppc_xive *xive = kvm->arch.xive;
740 	struct kvmppc_xive_src_block *sb;
741 	struct kvmppc_xive_irq_state *state;
742 	u16 idx;
743 
744 	if (!xive)
745 		return -ENODEV;
746 
747 	sb = kvmppc_xive_find_source(xive, irq, &idx);
748 	if (!sb)
749 		return -EINVAL;
750 	state = &sb->irq_state[idx];
751 
752 	pr_devel("int_on(irq=0x%x)\n", irq);
753 
754 	/*
755 	 * Check if interrupt was not targetted
756 	 */
757 	if (state->act_priority == MASKED) {
758 		pr_devel("int_on on untargetted interrupt\n");
759 		return -EINVAL;
760 	}
761 
762 	/* If saved_priority is 0xff, do nothing */
763 	if (state->saved_priority == MASKED)
764 		return 0;
765 
766 	/*
767 	 * Lock and unmask it.
768 	 */
769 	xive_lock_for_unmask(sb, state);
770 	xive_finish_unmask(xive, sb, state, state->saved_priority);
771 	arch_spin_unlock(&sb->lock);
772 
773 	return 0;
774 }
775 
776 int kvmppc_xive_int_off(struct kvm *kvm, u32 irq)
777 {
778 	struct kvmppc_xive *xive = kvm->arch.xive;
779 	struct kvmppc_xive_src_block *sb;
780 	struct kvmppc_xive_irq_state *state;
781 	u16 idx;
782 
783 	if (!xive)
784 		return -ENODEV;
785 
786 	sb = kvmppc_xive_find_source(xive, irq, &idx);
787 	if (!sb)
788 		return -EINVAL;
789 	state = &sb->irq_state[idx];
790 
791 	pr_devel("int_off(irq=0x%x)\n", irq);
792 
793 	/*
794 	 * Lock and mask
795 	 */
796 	state->saved_priority = xive_lock_and_mask(xive, sb, state);
797 	arch_spin_unlock(&sb->lock);
798 
799 	return 0;
800 }
801 
802 static bool xive_restore_pending_irq(struct kvmppc_xive *xive, u32 irq)
803 {
804 	struct kvmppc_xive_src_block *sb;
805 	struct kvmppc_xive_irq_state *state;
806 	u16 idx;
807 
808 	sb = kvmppc_xive_find_source(xive, irq, &idx);
809 	if (!sb)
810 		return false;
811 	state = &sb->irq_state[idx];
812 	if (!state->valid)
813 		return false;
814 
815 	/*
816 	 * Trigger the IPI. This assumes we never restore a pass-through
817 	 * interrupt which should be safe enough
818 	 */
819 	xive_irq_trigger(&state->ipi_data);
820 
821 	return true;
822 }
823 
824 u64 kvmppc_xive_get_icp(struct kvm_vcpu *vcpu)
825 {
826 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
827 
828 	if (!xc)
829 		return 0;
830 
831 	/* Return the per-cpu state for state saving/migration */
832 	return (u64)xc->cppr << KVM_REG_PPC_ICP_CPPR_SHIFT |
833 	       (u64)xc->mfrr << KVM_REG_PPC_ICP_MFRR_SHIFT |
834 	       (u64)0xff << KVM_REG_PPC_ICP_PPRI_SHIFT;
835 }
836 
837 int kvmppc_xive_set_icp(struct kvm_vcpu *vcpu, u64 icpval)
838 {
839 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
840 	struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
841 	u8 cppr, mfrr;
842 	u32 xisr;
843 
844 	if (!xc || !xive)
845 		return -ENOENT;
846 
847 	/* Grab individual state fields. We don't use pending_pri */
848 	cppr = icpval >> KVM_REG_PPC_ICP_CPPR_SHIFT;
849 	xisr = (icpval >> KVM_REG_PPC_ICP_XISR_SHIFT) &
850 		KVM_REG_PPC_ICP_XISR_MASK;
851 	mfrr = icpval >> KVM_REG_PPC_ICP_MFRR_SHIFT;
852 
853 	pr_devel("set_icp vcpu %d cppr=0x%x mfrr=0x%x xisr=0x%x\n",
854 		 xc->server_num, cppr, mfrr, xisr);
855 
856 	/*
857 	 * We can't update the state of a "pushed" VCPU, but that
858 	 * shouldn't happen because the vcpu->mutex makes running a
859 	 * vcpu mutually exclusive with doing one_reg get/set on it.
860 	 */
861 	if (WARN_ON(vcpu->arch.xive_pushed))
862 		return -EIO;
863 
864 	/* Update VCPU HW saved state */
865 	vcpu->arch.xive_saved_state.cppr = cppr;
866 	xc->hw_cppr = xc->cppr = cppr;
867 
868 	/*
869 	 * Update MFRR state. If it's not 0xff, we mark the VCPU as
870 	 * having a pending MFRR change, which will re-evaluate the
871 	 * target. The VCPU will thus potentially get a spurious
872 	 * interrupt but that's not a big deal.
873 	 */
874 	xc->mfrr = mfrr;
875 	if (mfrr < cppr)
876 		xive_irq_trigger(&xc->vp_ipi_data);
877 
878 	/*
879 	 * Now saved XIRR is "interesting". It means there's something in
880 	 * the legacy "1 element" queue... for an IPI we simply ignore it,
881 	 * as the MFRR restore will handle that. For anything else we need
882 	 * to force a resend of the source.
883 	 * However the source may not have been setup yet. If that's the
884 	 * case, we keep that info and increment a counter in the xive to
885 	 * tell subsequent xive_set_source() to go look.
886 	 */
887 	if (xisr > XICS_IPI && !xive_restore_pending_irq(xive, xisr)) {
888 		xc->delayed_irq = xisr;
889 		xive->delayed_irqs++;
890 		pr_devel("  xisr restore delayed\n");
891 	}
892 
893 	return 0;
894 }
895 
896 int kvmppc_xive_set_mapped(struct kvm *kvm, unsigned long guest_irq,
897 			   struct irq_desc *host_desc)
898 {
899 	struct kvmppc_xive *xive = kvm->arch.xive;
900 	struct kvmppc_xive_src_block *sb;
901 	struct kvmppc_xive_irq_state *state;
902 	struct irq_data *host_data = irq_desc_get_irq_data(host_desc);
903 	unsigned int host_irq = irq_desc_get_irq(host_desc);
904 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(host_data);
905 	u16 idx;
906 	u8 prio;
907 	int rc;
908 
909 	if (!xive)
910 		return -ENODEV;
911 
912 	pr_devel("set_mapped girq 0x%lx host HW irq 0x%x...\n",guest_irq, hw_irq);
913 
914 	sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
915 	if (!sb)
916 		return -EINVAL;
917 	state = &sb->irq_state[idx];
918 
919 	/*
920 	 * Mark the passed-through interrupt as going to a VCPU,
921 	 * this will prevent further EOIs and similar operations
922 	 * from the XIVE code. It will also mask the interrupt
923 	 * to either PQ=10 or 11 state, the latter if the interrupt
924 	 * is pending. This will allow us to unmask or retrigger it
925 	 * after routing it to the guest with a simple EOI.
926 	 *
927 	 * The "state" argument is a "token", all it needs is to be
928 	 * non-NULL to switch to passed-through or NULL for the
929 	 * other way around. We may not yet have an actual VCPU
930 	 * target here and we don't really care.
931 	 */
932 	rc = irq_set_vcpu_affinity(host_irq, state);
933 	if (rc) {
934 		pr_err("Failed to set VCPU affinity for irq %d\n", host_irq);
935 		return rc;
936 	}
937 
938 	/*
939 	 * Mask and read state of IPI. We need to know if its P bit
940 	 * is set as that means it's potentially already using a
941 	 * queue entry in the target
942 	 */
943 	prio = xive_lock_and_mask(xive, sb, state);
944 	pr_devel(" old IPI prio %02x P:%d Q:%d\n", prio,
945 		 state->old_p, state->old_q);
946 
947 	/* Turn the IPI hard off */
948 	xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
949 
950 	/*
951 	 * Reset ESB guest mapping. Needed when ESB pages are exposed
952 	 * to the guest in XIVE native mode
953 	 */
954 	if (xive->ops && xive->ops->reset_mapped)
955 		xive->ops->reset_mapped(kvm, guest_irq);
956 
957 	/* Grab info about irq */
958 	state->pt_number = hw_irq;
959 	state->pt_data = irq_data_get_irq_handler_data(host_data);
960 
961 	/*
962 	 * Configure the IRQ to match the existing configuration of
963 	 * the IPI if it was already targetted. Otherwise this will
964 	 * mask the interrupt in a lossy way (act_priority is 0xff)
965 	 * which is fine for a never started interrupt.
966 	 */
967 	xive_native_configure_irq(hw_irq,
968 				  kvmppc_xive_vp(xive, state->act_server),
969 				  state->act_priority, state->number);
970 
971 	/*
972 	 * We do an EOI to enable the interrupt (and retrigger if needed)
973 	 * if the guest has the interrupt unmasked and the P bit was *not*
974 	 * set in the IPI. If it was set, we know a slot may still be in
975 	 * use in the target queue thus we have to wait for a guest
976 	 * originated EOI
977 	 */
978 	if (prio != MASKED && !state->old_p)
979 		xive_vm_source_eoi(hw_irq, state->pt_data);
980 
981 	/* Clear old_p/old_q as they are no longer relevant */
982 	state->old_p = state->old_q = false;
983 
984 	/* Restore guest prio (unlocks EOI) */
985 	mb();
986 	state->guest_priority = prio;
987 	arch_spin_unlock(&sb->lock);
988 
989 	return 0;
990 }
991 EXPORT_SYMBOL_GPL(kvmppc_xive_set_mapped);
992 
993 int kvmppc_xive_clr_mapped(struct kvm *kvm, unsigned long guest_irq,
994 			   struct irq_desc *host_desc)
995 {
996 	struct kvmppc_xive *xive = kvm->arch.xive;
997 	struct kvmppc_xive_src_block *sb;
998 	struct kvmppc_xive_irq_state *state;
999 	unsigned int host_irq = irq_desc_get_irq(host_desc);
1000 	u16 idx;
1001 	u8 prio;
1002 	int rc;
1003 
1004 	if (!xive)
1005 		return -ENODEV;
1006 
1007 	pr_devel("clr_mapped girq 0x%lx...\n", guest_irq);
1008 
1009 	sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
1010 	if (!sb)
1011 		return -EINVAL;
1012 	state = &sb->irq_state[idx];
1013 
1014 	/*
1015 	 * Mask and read state of IRQ. We need to know if its P bit
1016 	 * is set as that means it's potentially already using a
1017 	 * queue entry in the target
1018 	 */
1019 	prio = xive_lock_and_mask(xive, sb, state);
1020 	pr_devel(" old IRQ prio %02x P:%d Q:%d\n", prio,
1021 		 state->old_p, state->old_q);
1022 
1023 	/*
1024 	 * If old_p is set, the interrupt is pending, we switch it to
1025 	 * PQ=11. This will force a resend in the host so the interrupt
1026 	 * isn't lost to whatver host driver may pick it up
1027 	 */
1028 	if (state->old_p)
1029 		xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_11);
1030 
1031 	/* Release the passed-through interrupt to the host */
1032 	rc = irq_set_vcpu_affinity(host_irq, NULL);
1033 	if (rc) {
1034 		pr_err("Failed to clr VCPU affinity for irq %d\n", host_irq);
1035 		return rc;
1036 	}
1037 
1038 	/* Forget about the IRQ */
1039 	state->pt_number = 0;
1040 	state->pt_data = NULL;
1041 
1042 	/*
1043 	 * Reset ESB guest mapping. Needed when ESB pages are exposed
1044 	 * to the guest in XIVE native mode
1045 	 */
1046 	if (xive->ops && xive->ops->reset_mapped) {
1047 		xive->ops->reset_mapped(kvm, guest_irq);
1048 	}
1049 
1050 	/* Reconfigure the IPI */
1051 	xive_native_configure_irq(state->ipi_number,
1052 				  kvmppc_xive_vp(xive, state->act_server),
1053 				  state->act_priority, state->number);
1054 
1055 	/*
1056 	 * If old_p is set (we have a queue entry potentially
1057 	 * occupied) or the interrupt is masked, we set the IPI
1058 	 * to PQ=10 state. Otherwise we just re-enable it (PQ=00).
1059 	 */
1060 	if (prio == MASKED || state->old_p)
1061 		xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_10);
1062 	else
1063 		xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_00);
1064 
1065 	/* Restore guest prio (unlocks EOI) */
1066 	mb();
1067 	state->guest_priority = prio;
1068 	arch_spin_unlock(&sb->lock);
1069 
1070 	return 0;
1071 }
1072 EXPORT_SYMBOL_GPL(kvmppc_xive_clr_mapped);
1073 
1074 void kvmppc_xive_disable_vcpu_interrupts(struct kvm_vcpu *vcpu)
1075 {
1076 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1077 	struct kvm *kvm = vcpu->kvm;
1078 	struct kvmppc_xive *xive = kvm->arch.xive;
1079 	int i, j;
1080 
1081 	for (i = 0; i <= xive->max_sbid; i++) {
1082 		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1083 
1084 		if (!sb)
1085 			continue;
1086 		for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) {
1087 			struct kvmppc_xive_irq_state *state = &sb->irq_state[j];
1088 
1089 			if (!state->valid)
1090 				continue;
1091 			if (state->act_priority == MASKED)
1092 				continue;
1093 			if (state->act_server != xc->server_num)
1094 				continue;
1095 
1096 			/* Clean it up */
1097 			arch_spin_lock(&sb->lock);
1098 			state->act_priority = MASKED;
1099 			xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
1100 			xive_native_configure_irq(state->ipi_number, 0, MASKED, 0);
1101 			if (state->pt_number) {
1102 				xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_01);
1103 				xive_native_configure_irq(state->pt_number, 0, MASKED, 0);
1104 			}
1105 			arch_spin_unlock(&sb->lock);
1106 		}
1107 	}
1108 
1109 	/* Disable vcpu's escalation interrupt */
1110 	if (vcpu->arch.xive_esc_on) {
1111 		__raw_readq((void __iomem *)(vcpu->arch.xive_esc_vaddr +
1112 					     XIVE_ESB_SET_PQ_01));
1113 		vcpu->arch.xive_esc_on = false;
1114 	}
1115 
1116 	/*
1117 	 * Clear pointers to escalation interrupt ESB.
1118 	 * This is safe because the vcpu->mutex is held, preventing
1119 	 * any other CPU from concurrently executing a KVM_RUN ioctl.
1120 	 */
1121 	vcpu->arch.xive_esc_vaddr = 0;
1122 	vcpu->arch.xive_esc_raddr = 0;
1123 }
1124 
1125 /*
1126  * In single escalation mode, the escalation interrupt is marked so
1127  * that EOI doesn't re-enable it, but just sets the stale_p flag to
1128  * indicate that the P bit has already been dealt with.  However, the
1129  * assembly code that enters the guest sets PQ to 00 without clearing
1130  * stale_p (because it has no easy way to address it).  Hence we have
1131  * to adjust stale_p before shutting down the interrupt.
1132  */
1133 void xive_cleanup_single_escalation(struct kvm_vcpu *vcpu,
1134 				    struct kvmppc_xive_vcpu *xc, int irq)
1135 {
1136 	struct irq_data *d = irq_get_irq_data(irq);
1137 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
1138 
1139 	/*
1140 	 * This slightly odd sequence gives the right result
1141 	 * (i.e. stale_p set if xive_esc_on is false) even if
1142 	 * we race with xive_esc_irq() and xive_irq_eoi().
1143 	 */
1144 	xd->stale_p = false;
1145 	smp_mb();		/* paired with smb_wmb in xive_esc_irq */
1146 	if (!vcpu->arch.xive_esc_on)
1147 		xd->stale_p = true;
1148 }
1149 
1150 void kvmppc_xive_cleanup_vcpu(struct kvm_vcpu *vcpu)
1151 {
1152 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1153 	struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
1154 	int i;
1155 
1156 	if (!kvmppc_xics_enabled(vcpu))
1157 		return;
1158 
1159 	if (!xc)
1160 		return;
1161 
1162 	pr_devel("cleanup_vcpu(cpu=%d)\n", xc->server_num);
1163 
1164 	/* Ensure no interrupt is still routed to that VP */
1165 	xc->valid = false;
1166 	kvmppc_xive_disable_vcpu_interrupts(vcpu);
1167 
1168 	/* Mask the VP IPI */
1169 	xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_01);
1170 
1171 	/* Free escalations */
1172 	for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1173 		if (xc->esc_virq[i]) {
1174 			if (xc->xive->single_escalation)
1175 				xive_cleanup_single_escalation(vcpu, xc,
1176 							xc->esc_virq[i]);
1177 			free_irq(xc->esc_virq[i], vcpu);
1178 			irq_dispose_mapping(xc->esc_virq[i]);
1179 			kfree(xc->esc_virq_names[i]);
1180 		}
1181 	}
1182 
1183 	/* Disable the VP */
1184 	xive_native_disable_vp(xc->vp_id);
1185 
1186 	/* Clear the cam word so guest entry won't try to push context */
1187 	vcpu->arch.xive_cam_word = 0;
1188 
1189 	/* Free the queues */
1190 	for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1191 		struct xive_q *q = &xc->queues[i];
1192 
1193 		xive_native_disable_queue(xc->vp_id, q, i);
1194 		if (q->qpage) {
1195 			free_pages((unsigned long)q->qpage,
1196 				   xive->q_page_order);
1197 			q->qpage = NULL;
1198 		}
1199 	}
1200 
1201 	/* Free the IPI */
1202 	if (xc->vp_ipi) {
1203 		xive_cleanup_irq_data(&xc->vp_ipi_data);
1204 		xive_native_free_irq(xc->vp_ipi);
1205 	}
1206 	/* Free the VP */
1207 	kfree(xc);
1208 
1209 	/* Cleanup the vcpu */
1210 	vcpu->arch.irq_type = KVMPPC_IRQ_DEFAULT;
1211 	vcpu->arch.xive_vcpu = NULL;
1212 }
1213 
1214 int kvmppc_xive_connect_vcpu(struct kvm_device *dev,
1215 			     struct kvm_vcpu *vcpu, u32 cpu)
1216 {
1217 	struct kvmppc_xive *xive = dev->private;
1218 	struct kvmppc_xive_vcpu *xc;
1219 	int i, r = -EBUSY;
1220 
1221 	pr_devel("connect_vcpu(cpu=%d)\n", cpu);
1222 
1223 	if (dev->ops != &kvm_xive_ops) {
1224 		pr_devel("Wrong ops !\n");
1225 		return -EPERM;
1226 	}
1227 	if (xive->kvm != vcpu->kvm)
1228 		return -EPERM;
1229 	if (vcpu->arch.irq_type != KVMPPC_IRQ_DEFAULT)
1230 		return -EBUSY;
1231 	if (kvmppc_xive_find_server(vcpu->kvm, cpu)) {
1232 		pr_devel("Duplicate !\n");
1233 		return -EEXIST;
1234 	}
1235 	if (cpu >= (KVM_MAX_VCPUS * vcpu->kvm->arch.emul_smt_mode)) {
1236 		pr_devel("Out of bounds !\n");
1237 		return -EINVAL;
1238 	}
1239 	xc = kzalloc(sizeof(*xc), GFP_KERNEL);
1240 	if (!xc)
1241 		return -ENOMEM;
1242 
1243 	/* We need to synchronize with queue provisioning */
1244 	mutex_lock(&xive->lock);
1245 	vcpu->arch.xive_vcpu = xc;
1246 	xc->xive = xive;
1247 	xc->vcpu = vcpu;
1248 	xc->server_num = cpu;
1249 	xc->vp_id = kvmppc_xive_vp(xive, cpu);
1250 	xc->mfrr = 0xff;
1251 	xc->valid = true;
1252 
1253 	r = xive_native_get_vp_info(xc->vp_id, &xc->vp_cam, &xc->vp_chip_id);
1254 	if (r)
1255 		goto bail;
1256 
1257 	/* Configure VCPU fields for use by assembly push/pull */
1258 	vcpu->arch.xive_saved_state.w01 = cpu_to_be64(0xff000000);
1259 	vcpu->arch.xive_cam_word = cpu_to_be32(xc->vp_cam | TM_QW1W2_VO);
1260 
1261 	/* Allocate IPI */
1262 	xc->vp_ipi = xive_native_alloc_irq();
1263 	if (!xc->vp_ipi) {
1264 		pr_err("Failed to allocate xive irq for VCPU IPI\n");
1265 		r = -EIO;
1266 		goto bail;
1267 	}
1268 	pr_devel(" IPI=0x%x\n", xc->vp_ipi);
1269 
1270 	r = xive_native_populate_irq_data(xc->vp_ipi, &xc->vp_ipi_data);
1271 	if (r)
1272 		goto bail;
1273 
1274 	/*
1275 	 * Enable the VP first as the single escalation mode will
1276 	 * affect escalation interrupts numbering
1277 	 */
1278 	r = xive_native_enable_vp(xc->vp_id, xive->single_escalation);
1279 	if (r) {
1280 		pr_err("Failed to enable VP in OPAL, err %d\n", r);
1281 		goto bail;
1282 	}
1283 
1284 	/*
1285 	 * Initialize queues. Initially we set them all for no queueing
1286 	 * and we enable escalation for queue 0 only which we'll use for
1287 	 * our mfrr change notifications. If the VCPU is hot-plugged, we
1288 	 * do handle provisioning however based on the existing "map"
1289 	 * of enabled queues.
1290 	 */
1291 	for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1292 		struct xive_q *q = &xc->queues[i];
1293 
1294 		/* Single escalation, no queue 7 */
1295 		if (i == 7 && xive->single_escalation)
1296 			break;
1297 
1298 		/* Is queue already enabled ? Provision it */
1299 		if (xive->qmap & (1 << i)) {
1300 			r = xive_provision_queue(vcpu, i);
1301 			if (r == 0 && !xive->single_escalation)
1302 				kvmppc_xive_attach_escalation(
1303 					vcpu, i, xive->single_escalation);
1304 			if (r)
1305 				goto bail;
1306 		} else {
1307 			r = xive_native_configure_queue(xc->vp_id,
1308 							q, i, NULL, 0, true);
1309 			if (r) {
1310 				pr_err("Failed to configure queue %d for VCPU %d\n",
1311 				       i, cpu);
1312 				goto bail;
1313 			}
1314 		}
1315 	}
1316 
1317 	/* If not done above, attach priority 0 escalation */
1318 	r = kvmppc_xive_attach_escalation(vcpu, 0, xive->single_escalation);
1319 	if (r)
1320 		goto bail;
1321 
1322 	/* Route the IPI */
1323 	r = xive_native_configure_irq(xc->vp_ipi, xc->vp_id, 0, XICS_IPI);
1324 	if (!r)
1325 		xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_00);
1326 
1327 bail:
1328 	mutex_unlock(&xive->lock);
1329 	if (r) {
1330 		kvmppc_xive_cleanup_vcpu(vcpu);
1331 		return r;
1332 	}
1333 
1334 	vcpu->arch.irq_type = KVMPPC_IRQ_XICS;
1335 	return 0;
1336 }
1337 
1338 /*
1339  * Scanning of queues before/after migration save
1340  */
1341 static void xive_pre_save_set_queued(struct kvmppc_xive *xive, u32 irq)
1342 {
1343 	struct kvmppc_xive_src_block *sb;
1344 	struct kvmppc_xive_irq_state *state;
1345 	u16 idx;
1346 
1347 	sb = kvmppc_xive_find_source(xive, irq, &idx);
1348 	if (!sb)
1349 		return;
1350 
1351 	state = &sb->irq_state[idx];
1352 
1353 	/* Some sanity checking */
1354 	if (!state->valid) {
1355 		pr_err("invalid irq 0x%x in cpu queue!\n", irq);
1356 		return;
1357 	}
1358 
1359 	/*
1360 	 * If the interrupt is in a queue it should have P set.
1361 	 * We warn so that gets reported. A backtrace isn't useful
1362 	 * so no need to use a WARN_ON.
1363 	 */
1364 	if (!state->saved_p)
1365 		pr_err("Interrupt 0x%x is marked in a queue but P not set !\n", irq);
1366 
1367 	/* Set flag */
1368 	state->in_queue = true;
1369 }
1370 
1371 static void xive_pre_save_mask_irq(struct kvmppc_xive *xive,
1372 				   struct kvmppc_xive_src_block *sb,
1373 				   u32 irq)
1374 {
1375 	struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
1376 
1377 	if (!state->valid)
1378 		return;
1379 
1380 	/* Mask and save state, this will also sync HW queues */
1381 	state->saved_scan_prio = xive_lock_and_mask(xive, sb, state);
1382 
1383 	/* Transfer P and Q */
1384 	state->saved_p = state->old_p;
1385 	state->saved_q = state->old_q;
1386 
1387 	/* Unlock */
1388 	arch_spin_unlock(&sb->lock);
1389 }
1390 
1391 static void xive_pre_save_unmask_irq(struct kvmppc_xive *xive,
1392 				     struct kvmppc_xive_src_block *sb,
1393 				     u32 irq)
1394 {
1395 	struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
1396 
1397 	if (!state->valid)
1398 		return;
1399 
1400 	/*
1401 	 * Lock / exclude EOI (not technically necessary if the
1402 	 * guest isn't running concurrently. If this becomes a
1403 	 * performance issue we can probably remove the lock.
1404 	 */
1405 	xive_lock_for_unmask(sb, state);
1406 
1407 	/* Restore mask/prio if it wasn't masked */
1408 	if (state->saved_scan_prio != MASKED)
1409 		xive_finish_unmask(xive, sb, state, state->saved_scan_prio);
1410 
1411 	/* Unlock */
1412 	arch_spin_unlock(&sb->lock);
1413 }
1414 
1415 static void xive_pre_save_queue(struct kvmppc_xive *xive, struct xive_q *q)
1416 {
1417 	u32 idx = q->idx;
1418 	u32 toggle = q->toggle;
1419 	u32 irq;
1420 
1421 	do {
1422 		irq = __xive_read_eq(q->qpage, q->msk, &idx, &toggle);
1423 		if (irq > XICS_IPI)
1424 			xive_pre_save_set_queued(xive, irq);
1425 	} while(irq);
1426 }
1427 
1428 static void xive_pre_save_scan(struct kvmppc_xive *xive)
1429 {
1430 	struct kvm_vcpu *vcpu = NULL;
1431 	int i, j;
1432 
1433 	/*
1434 	 * See comment in xive_get_source() about how this
1435 	 * work. Collect a stable state for all interrupts
1436 	 */
1437 	for (i = 0; i <= xive->max_sbid; i++) {
1438 		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1439 		if (!sb)
1440 			continue;
1441 		for (j = 0;  j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1442 			xive_pre_save_mask_irq(xive, sb, j);
1443 	}
1444 
1445 	/* Then scan the queues and update the "in_queue" flag */
1446 	kvm_for_each_vcpu(i, vcpu, xive->kvm) {
1447 		struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1448 		if (!xc)
1449 			continue;
1450 		for (j = 0; j < KVMPPC_XIVE_Q_COUNT; j++) {
1451 			if (xc->queues[j].qpage)
1452 				xive_pre_save_queue(xive, &xc->queues[j]);
1453 		}
1454 	}
1455 
1456 	/* Finally restore interrupt states */
1457 	for (i = 0; i <= xive->max_sbid; i++) {
1458 		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1459 		if (!sb)
1460 			continue;
1461 		for (j = 0;  j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1462 			xive_pre_save_unmask_irq(xive, sb, j);
1463 	}
1464 }
1465 
1466 static void xive_post_save_scan(struct kvmppc_xive *xive)
1467 {
1468 	u32 i, j;
1469 
1470 	/* Clear all the in_queue flags */
1471 	for (i = 0; i <= xive->max_sbid; i++) {
1472 		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1473 		if (!sb)
1474 			continue;
1475 		for (j = 0;  j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1476 			sb->irq_state[j].in_queue = false;
1477 	}
1478 
1479 	/* Next get_source() will do a new scan */
1480 	xive->saved_src_count = 0;
1481 }
1482 
1483 /*
1484  * This returns the source configuration and state to user space.
1485  */
1486 static int xive_get_source(struct kvmppc_xive *xive, long irq, u64 addr)
1487 {
1488 	struct kvmppc_xive_src_block *sb;
1489 	struct kvmppc_xive_irq_state *state;
1490 	u64 __user *ubufp = (u64 __user *) addr;
1491 	u64 val, prio;
1492 	u16 idx;
1493 
1494 	sb = kvmppc_xive_find_source(xive, irq, &idx);
1495 	if (!sb)
1496 		return -ENOENT;
1497 
1498 	state = &sb->irq_state[idx];
1499 
1500 	if (!state->valid)
1501 		return -ENOENT;
1502 
1503 	pr_devel("get_source(%ld)...\n", irq);
1504 
1505 	/*
1506 	 * So to properly save the state into something that looks like a
1507 	 * XICS migration stream we cannot treat interrupts individually.
1508 	 *
1509 	 * We need, instead, mask them all (& save their previous PQ state)
1510 	 * to get a stable state in the HW, then sync them to ensure that
1511 	 * any interrupt that had already fired hits its queue, and finally
1512 	 * scan all the queues to collect which interrupts are still present
1513 	 * in the queues, so we can set the "pending" flag on them and
1514 	 * they can be resent on restore.
1515 	 *
1516 	 * So we do it all when the "first" interrupt gets saved, all the
1517 	 * state is collected at that point, the rest of xive_get_source()
1518 	 * will merely collect and convert that state to the expected
1519 	 * userspace bit mask.
1520 	 */
1521 	if (xive->saved_src_count == 0)
1522 		xive_pre_save_scan(xive);
1523 	xive->saved_src_count++;
1524 
1525 	/* Convert saved state into something compatible with xics */
1526 	val = state->act_server;
1527 	prio = state->saved_scan_prio;
1528 
1529 	if (prio == MASKED) {
1530 		val |= KVM_XICS_MASKED;
1531 		prio = state->saved_priority;
1532 	}
1533 	val |= prio << KVM_XICS_PRIORITY_SHIFT;
1534 	if (state->lsi) {
1535 		val |= KVM_XICS_LEVEL_SENSITIVE;
1536 		if (state->saved_p)
1537 			val |= KVM_XICS_PENDING;
1538 	} else {
1539 		if (state->saved_p)
1540 			val |= KVM_XICS_PRESENTED;
1541 
1542 		if (state->saved_q)
1543 			val |= KVM_XICS_QUEUED;
1544 
1545 		/*
1546 		 * We mark it pending (which will attempt a re-delivery)
1547 		 * if we are in a queue *or* we were masked and had
1548 		 * Q set which is equivalent to the XICS "masked pending"
1549 		 * state
1550 		 */
1551 		if (state->in_queue || (prio == MASKED && state->saved_q))
1552 			val |= KVM_XICS_PENDING;
1553 	}
1554 
1555 	/*
1556 	 * If that was the last interrupt saved, reset the
1557 	 * in_queue flags
1558 	 */
1559 	if (xive->saved_src_count == xive->src_count)
1560 		xive_post_save_scan(xive);
1561 
1562 	/* Copy the result to userspace */
1563 	if (put_user(val, ubufp))
1564 		return -EFAULT;
1565 
1566 	return 0;
1567 }
1568 
1569 struct kvmppc_xive_src_block *kvmppc_xive_create_src_block(
1570 	struct kvmppc_xive *xive, int irq)
1571 {
1572 	struct kvmppc_xive_src_block *sb;
1573 	int i, bid;
1574 
1575 	bid = irq >> KVMPPC_XICS_ICS_SHIFT;
1576 
1577 	mutex_lock(&xive->lock);
1578 
1579 	/* block already exists - somebody else got here first */
1580 	if (xive->src_blocks[bid])
1581 		goto out;
1582 
1583 	/* Create the ICS */
1584 	sb = kzalloc(sizeof(*sb), GFP_KERNEL);
1585 	if (!sb)
1586 		goto out;
1587 
1588 	sb->id = bid;
1589 
1590 	for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
1591 		sb->irq_state[i].number = (bid << KVMPPC_XICS_ICS_SHIFT) | i;
1592 		sb->irq_state[i].eisn = 0;
1593 		sb->irq_state[i].guest_priority = MASKED;
1594 		sb->irq_state[i].saved_priority = MASKED;
1595 		sb->irq_state[i].act_priority = MASKED;
1596 	}
1597 	smp_wmb();
1598 	xive->src_blocks[bid] = sb;
1599 
1600 	if (bid > xive->max_sbid)
1601 		xive->max_sbid = bid;
1602 
1603 out:
1604 	mutex_unlock(&xive->lock);
1605 	return xive->src_blocks[bid];
1606 }
1607 
1608 static bool xive_check_delayed_irq(struct kvmppc_xive *xive, u32 irq)
1609 {
1610 	struct kvm *kvm = xive->kvm;
1611 	struct kvm_vcpu *vcpu = NULL;
1612 	int i;
1613 
1614 	kvm_for_each_vcpu(i, vcpu, kvm) {
1615 		struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1616 
1617 		if (!xc)
1618 			continue;
1619 
1620 		if (xc->delayed_irq == irq) {
1621 			xc->delayed_irq = 0;
1622 			xive->delayed_irqs--;
1623 			return true;
1624 		}
1625 	}
1626 	return false;
1627 }
1628 
1629 static int xive_set_source(struct kvmppc_xive *xive, long irq, u64 addr)
1630 {
1631 	struct kvmppc_xive_src_block *sb;
1632 	struct kvmppc_xive_irq_state *state;
1633 	u64 __user *ubufp = (u64 __user *) addr;
1634 	u16 idx;
1635 	u64 val;
1636 	u8 act_prio, guest_prio;
1637 	u32 server;
1638 	int rc = 0;
1639 
1640 	if (irq < KVMPPC_XICS_FIRST_IRQ || irq >= KVMPPC_XICS_NR_IRQS)
1641 		return -ENOENT;
1642 
1643 	pr_devel("set_source(irq=0x%lx)\n", irq);
1644 
1645 	/* Find the source */
1646 	sb = kvmppc_xive_find_source(xive, irq, &idx);
1647 	if (!sb) {
1648 		pr_devel("No source, creating source block...\n");
1649 		sb = kvmppc_xive_create_src_block(xive, irq);
1650 		if (!sb) {
1651 			pr_devel("Failed to create block...\n");
1652 			return -ENOMEM;
1653 		}
1654 	}
1655 	state = &sb->irq_state[idx];
1656 
1657 	/* Read user passed data */
1658 	if (get_user(val, ubufp)) {
1659 		pr_devel("fault getting user info !\n");
1660 		return -EFAULT;
1661 	}
1662 
1663 	server = val & KVM_XICS_DESTINATION_MASK;
1664 	guest_prio = val >> KVM_XICS_PRIORITY_SHIFT;
1665 
1666 	pr_devel("  val=0x016%llx (server=0x%x, guest_prio=%d)\n",
1667 		 val, server, guest_prio);
1668 
1669 	/*
1670 	 * If the source doesn't already have an IPI, allocate
1671 	 * one and get the corresponding data
1672 	 */
1673 	if (!state->ipi_number) {
1674 		state->ipi_number = xive_native_alloc_irq();
1675 		if (state->ipi_number == 0) {
1676 			pr_devel("Failed to allocate IPI !\n");
1677 			return -ENOMEM;
1678 		}
1679 		xive_native_populate_irq_data(state->ipi_number, &state->ipi_data);
1680 		pr_devel(" src_ipi=0x%x\n", state->ipi_number);
1681 	}
1682 
1683 	/*
1684 	 * We use lock_and_mask() to set us in the right masked
1685 	 * state. We will override that state from the saved state
1686 	 * further down, but this will handle the cases of interrupts
1687 	 * that need FW masking. We set the initial guest_priority to
1688 	 * 0 before calling it to ensure it actually performs the masking.
1689 	 */
1690 	state->guest_priority = 0;
1691 	xive_lock_and_mask(xive, sb, state);
1692 
1693 	/*
1694 	 * Now, we select a target if we have one. If we don't we
1695 	 * leave the interrupt untargetted. It means that an interrupt
1696 	 * can become "untargetted" accross migration if it was masked
1697 	 * by set_xive() but there is little we can do about it.
1698 	 */
1699 
1700 	/* First convert prio and mark interrupt as untargetted */
1701 	act_prio = xive_prio_from_guest(guest_prio);
1702 	state->act_priority = MASKED;
1703 
1704 	/*
1705 	 * We need to drop the lock due to the mutex below. Hopefully
1706 	 * nothing is touching that interrupt yet since it hasn't been
1707 	 * advertized to a running guest yet
1708 	 */
1709 	arch_spin_unlock(&sb->lock);
1710 
1711 	/* If we have a priority target the interrupt */
1712 	if (act_prio != MASKED) {
1713 		/* First, check provisioning of queues */
1714 		mutex_lock(&xive->lock);
1715 		rc = xive_check_provisioning(xive->kvm, act_prio);
1716 		mutex_unlock(&xive->lock);
1717 
1718 		/* Target interrupt */
1719 		if (rc == 0)
1720 			rc = xive_target_interrupt(xive->kvm, state,
1721 						   server, act_prio);
1722 		/*
1723 		 * If provisioning or targetting failed, leave it
1724 		 * alone and masked. It will remain disabled until
1725 		 * the guest re-targets it.
1726 		 */
1727 	}
1728 
1729 	/*
1730 	 * Find out if this was a delayed irq stashed in an ICP,
1731 	 * in which case, treat it as pending
1732 	 */
1733 	if (xive->delayed_irqs && xive_check_delayed_irq(xive, irq)) {
1734 		val |= KVM_XICS_PENDING;
1735 		pr_devel("  Found delayed ! forcing PENDING !\n");
1736 	}
1737 
1738 	/* Cleanup the SW state */
1739 	state->old_p = false;
1740 	state->old_q = false;
1741 	state->lsi = false;
1742 	state->asserted = false;
1743 
1744 	/* Restore LSI state */
1745 	if (val & KVM_XICS_LEVEL_SENSITIVE) {
1746 		state->lsi = true;
1747 		if (val & KVM_XICS_PENDING)
1748 			state->asserted = true;
1749 		pr_devel("  LSI ! Asserted=%d\n", state->asserted);
1750 	}
1751 
1752 	/*
1753 	 * Restore P and Q. If the interrupt was pending, we
1754 	 * force Q and !P, which will trigger a resend.
1755 	 *
1756 	 * That means that a guest that had both an interrupt
1757 	 * pending (queued) and Q set will restore with only
1758 	 * one instance of that interrupt instead of 2, but that
1759 	 * is perfectly fine as coalescing interrupts that haven't
1760 	 * been presented yet is always allowed.
1761 	 */
1762 	if (val & KVM_XICS_PRESENTED && !(val & KVM_XICS_PENDING))
1763 		state->old_p = true;
1764 	if (val & KVM_XICS_QUEUED || val & KVM_XICS_PENDING)
1765 		state->old_q = true;
1766 
1767 	pr_devel("  P=%d, Q=%d\n", state->old_p, state->old_q);
1768 
1769 	/*
1770 	 * If the interrupt was unmasked, update guest priority and
1771 	 * perform the appropriate state transition and do a
1772 	 * re-trigger if necessary.
1773 	 */
1774 	if (val & KVM_XICS_MASKED) {
1775 		pr_devel("  masked, saving prio\n");
1776 		state->guest_priority = MASKED;
1777 		state->saved_priority = guest_prio;
1778 	} else {
1779 		pr_devel("  unmasked, restoring to prio %d\n", guest_prio);
1780 		xive_finish_unmask(xive, sb, state, guest_prio);
1781 		state->saved_priority = guest_prio;
1782 	}
1783 
1784 	/* Increment the number of valid sources and mark this one valid */
1785 	if (!state->valid)
1786 		xive->src_count++;
1787 	state->valid = true;
1788 
1789 	return 0;
1790 }
1791 
1792 int kvmppc_xive_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1793 			bool line_status)
1794 {
1795 	struct kvmppc_xive *xive = kvm->arch.xive;
1796 	struct kvmppc_xive_src_block *sb;
1797 	struct kvmppc_xive_irq_state *state;
1798 	u16 idx;
1799 
1800 	if (!xive)
1801 		return -ENODEV;
1802 
1803 	sb = kvmppc_xive_find_source(xive, irq, &idx);
1804 	if (!sb)
1805 		return -EINVAL;
1806 
1807 	/* Perform locklessly .... (we need to do some RCUisms here...) */
1808 	state = &sb->irq_state[idx];
1809 	if (!state->valid)
1810 		return -EINVAL;
1811 
1812 	/* We don't allow a trigger on a passed-through interrupt */
1813 	if (state->pt_number)
1814 		return -EINVAL;
1815 
1816 	if ((level == 1 && state->lsi) || level == KVM_INTERRUPT_SET_LEVEL)
1817 		state->asserted = 1;
1818 	else if (level == 0 || level == KVM_INTERRUPT_UNSET) {
1819 		state->asserted = 0;
1820 		return 0;
1821 	}
1822 
1823 	/* Trigger the IPI */
1824 	xive_irq_trigger(&state->ipi_data);
1825 
1826 	return 0;
1827 }
1828 
1829 static int xive_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1830 {
1831 	struct kvmppc_xive *xive = dev->private;
1832 
1833 	/* We honor the existing XICS ioctl */
1834 	switch (attr->group) {
1835 	case KVM_DEV_XICS_GRP_SOURCES:
1836 		return xive_set_source(xive, attr->attr, attr->addr);
1837 	}
1838 	return -ENXIO;
1839 }
1840 
1841 static int xive_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1842 {
1843 	struct kvmppc_xive *xive = dev->private;
1844 
1845 	/* We honor the existing XICS ioctl */
1846 	switch (attr->group) {
1847 	case KVM_DEV_XICS_GRP_SOURCES:
1848 		return xive_get_source(xive, attr->attr, attr->addr);
1849 	}
1850 	return -ENXIO;
1851 }
1852 
1853 static int xive_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1854 {
1855 	/* We honor the same limits as XICS, at least for now */
1856 	switch (attr->group) {
1857 	case KVM_DEV_XICS_GRP_SOURCES:
1858 		if (attr->attr >= KVMPPC_XICS_FIRST_IRQ &&
1859 		    attr->attr < KVMPPC_XICS_NR_IRQS)
1860 			return 0;
1861 		break;
1862 	}
1863 	return -ENXIO;
1864 }
1865 
1866 static void kvmppc_xive_cleanup_irq(u32 hw_num, struct xive_irq_data *xd)
1867 {
1868 	xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01);
1869 	xive_native_configure_irq(hw_num, 0, MASKED, 0);
1870 }
1871 
1872 void kvmppc_xive_free_sources(struct kvmppc_xive_src_block *sb)
1873 {
1874 	int i;
1875 
1876 	for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
1877 		struct kvmppc_xive_irq_state *state = &sb->irq_state[i];
1878 
1879 		if (!state->valid)
1880 			continue;
1881 
1882 		kvmppc_xive_cleanup_irq(state->ipi_number, &state->ipi_data);
1883 		xive_cleanup_irq_data(&state->ipi_data);
1884 		xive_native_free_irq(state->ipi_number);
1885 
1886 		/* Pass-through, cleanup too but keep IRQ hw data */
1887 		if (state->pt_number)
1888 			kvmppc_xive_cleanup_irq(state->pt_number, state->pt_data);
1889 
1890 		state->valid = false;
1891 	}
1892 }
1893 
1894 /*
1895  * Called when device fd is closed.  kvm->lock is held.
1896  */
1897 static void kvmppc_xive_release(struct kvm_device *dev)
1898 {
1899 	struct kvmppc_xive *xive = dev->private;
1900 	struct kvm *kvm = xive->kvm;
1901 	struct kvm_vcpu *vcpu;
1902 	int i;
1903 
1904 	pr_devel("Releasing xive device\n");
1905 
1906 	/*
1907 	 * Since this is the device release function, we know that
1908 	 * userspace does not have any open fd referring to the
1909 	 * device.  Therefore there can not be any of the device
1910 	 * attribute set/get functions being executed concurrently,
1911 	 * and similarly, the connect_vcpu and set/clr_mapped
1912 	 * functions also cannot be being executed.
1913 	 */
1914 
1915 	debugfs_remove(xive->dentry);
1916 
1917 	/*
1918 	 * We should clean up the vCPU interrupt presenters first.
1919 	 */
1920 	kvm_for_each_vcpu(i, vcpu, kvm) {
1921 		/*
1922 		 * Take vcpu->mutex to ensure that no one_reg get/set ioctl
1923 		 * (i.e. kvmppc_xive_[gs]et_icp) can be done concurrently.
1924 		 * Holding the vcpu->mutex also means that the vcpu cannot
1925 		 * be executing the KVM_RUN ioctl, and therefore it cannot
1926 		 * be executing the XIVE push or pull code or accessing
1927 		 * the XIVE MMIO regions.
1928 		 */
1929 		mutex_lock(&vcpu->mutex);
1930 		kvmppc_xive_cleanup_vcpu(vcpu);
1931 		mutex_unlock(&vcpu->mutex);
1932 	}
1933 
1934 	/*
1935 	 * Now that we have cleared vcpu->arch.xive_vcpu, vcpu->arch.irq_type
1936 	 * and vcpu->arch.xive_esc_[vr]addr on each vcpu, we are safe
1937 	 * against xive code getting called during vcpu execution or
1938 	 * set/get one_reg operations.
1939 	 */
1940 	kvm->arch.xive = NULL;
1941 
1942 	/* Mask and free interrupts */
1943 	for (i = 0; i <= xive->max_sbid; i++) {
1944 		if (xive->src_blocks[i])
1945 			kvmppc_xive_free_sources(xive->src_blocks[i]);
1946 		kfree(xive->src_blocks[i]);
1947 		xive->src_blocks[i] = NULL;
1948 	}
1949 
1950 	if (xive->vp_base != XIVE_INVALID_VP)
1951 		xive_native_free_vp_block(xive->vp_base);
1952 
1953 	/*
1954 	 * A reference of the kvmppc_xive pointer is now kept under
1955 	 * the xive_devices struct of the machine for reuse. It is
1956 	 * freed when the VM is destroyed for now until we fix all the
1957 	 * execution paths.
1958 	 */
1959 
1960 	kfree(dev);
1961 }
1962 
1963 /*
1964  * When the guest chooses the interrupt mode (XICS legacy or XIVE
1965  * native), the VM will switch of KVM device. The previous device will
1966  * be "released" before the new one is created.
1967  *
1968  * Until we are sure all execution paths are well protected, provide a
1969  * fail safe (transitional) method for device destruction, in which
1970  * the XIVE device pointer is recycled and not directly freed.
1971  */
1972 struct kvmppc_xive *kvmppc_xive_get_device(struct kvm *kvm, u32 type)
1973 {
1974 	struct kvmppc_xive **kvm_xive_device = type == KVM_DEV_TYPE_XIVE ?
1975 		&kvm->arch.xive_devices.native :
1976 		&kvm->arch.xive_devices.xics_on_xive;
1977 	struct kvmppc_xive *xive = *kvm_xive_device;
1978 
1979 	if (!xive) {
1980 		xive = kzalloc(sizeof(*xive), GFP_KERNEL);
1981 		*kvm_xive_device = xive;
1982 	} else {
1983 		memset(xive, 0, sizeof(*xive));
1984 	}
1985 
1986 	return xive;
1987 }
1988 
1989 /*
1990  * Create a XICS device with XIVE backend.  kvm->lock is held.
1991  */
1992 static int kvmppc_xive_create(struct kvm_device *dev, u32 type)
1993 {
1994 	struct kvmppc_xive *xive;
1995 	struct kvm *kvm = dev->kvm;
1996 	int ret = 0;
1997 
1998 	pr_devel("Creating xive for partition\n");
1999 
2000 	xive = kvmppc_xive_get_device(kvm, type);
2001 	if (!xive)
2002 		return -ENOMEM;
2003 
2004 	dev->private = xive;
2005 	xive->dev = dev;
2006 	xive->kvm = kvm;
2007 	mutex_init(&xive->lock);
2008 
2009 	/* Already there ? */
2010 	if (kvm->arch.xive)
2011 		ret = -EEXIST;
2012 	else
2013 		kvm->arch.xive = xive;
2014 
2015 	/* We use the default queue size set by the host */
2016 	xive->q_order = xive_native_default_eq_shift();
2017 	if (xive->q_order < PAGE_SHIFT)
2018 		xive->q_page_order = 0;
2019 	else
2020 		xive->q_page_order = xive->q_order - PAGE_SHIFT;
2021 
2022 	/* Allocate a bunch of VPs */
2023 	xive->vp_base = xive_native_alloc_vp_block(KVM_MAX_VCPUS);
2024 	pr_devel("VP_Base=%x\n", xive->vp_base);
2025 
2026 	if (xive->vp_base == XIVE_INVALID_VP)
2027 		ret = -ENOMEM;
2028 
2029 	xive->single_escalation = xive_native_has_single_escalation();
2030 
2031 	if (ret)
2032 		return ret;
2033 
2034 	return 0;
2035 }
2036 
2037 int kvmppc_xive_debug_show_queues(struct seq_file *m, struct kvm_vcpu *vcpu)
2038 {
2039 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
2040 	unsigned int i;
2041 
2042 	for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
2043 		struct xive_q *q = &xc->queues[i];
2044 		u32 i0, i1, idx;
2045 
2046 		if (!q->qpage && !xc->esc_virq[i])
2047 			continue;
2048 
2049 		seq_printf(m, " [q%d]: ", i);
2050 
2051 		if (q->qpage) {
2052 			idx = q->idx;
2053 			i0 = be32_to_cpup(q->qpage + idx);
2054 			idx = (idx + 1) & q->msk;
2055 			i1 = be32_to_cpup(q->qpage + idx);
2056 			seq_printf(m, "T=%d %08x %08x...\n", q->toggle,
2057 				   i0, i1);
2058 		}
2059 		if (xc->esc_virq[i]) {
2060 			struct irq_data *d = irq_get_irq_data(xc->esc_virq[i]);
2061 			struct xive_irq_data *xd =
2062 				irq_data_get_irq_handler_data(d);
2063 			u64 pq = xive_vm_esb_load(xd, XIVE_ESB_GET);
2064 
2065 			seq_printf(m, "E:%c%c I(%d:%llx:%llx)",
2066 				   (pq & XIVE_ESB_VAL_P) ? 'P' : 'p',
2067 				   (pq & XIVE_ESB_VAL_Q) ? 'Q' : 'q',
2068 				   xc->esc_virq[i], pq, xd->eoi_page);
2069 			seq_puts(m, "\n");
2070 		}
2071 	}
2072 	return 0;
2073 }
2074 
2075 static int xive_debug_show(struct seq_file *m, void *private)
2076 {
2077 	struct kvmppc_xive *xive = m->private;
2078 	struct kvm *kvm = xive->kvm;
2079 	struct kvm_vcpu *vcpu;
2080 	u64 t_rm_h_xirr = 0;
2081 	u64 t_rm_h_ipoll = 0;
2082 	u64 t_rm_h_cppr = 0;
2083 	u64 t_rm_h_eoi = 0;
2084 	u64 t_rm_h_ipi = 0;
2085 	u64 t_vm_h_xirr = 0;
2086 	u64 t_vm_h_ipoll = 0;
2087 	u64 t_vm_h_cppr = 0;
2088 	u64 t_vm_h_eoi = 0;
2089 	u64 t_vm_h_ipi = 0;
2090 	unsigned int i;
2091 
2092 	if (!kvm)
2093 		return 0;
2094 
2095 	seq_printf(m, "=========\nVCPU state\n=========\n");
2096 
2097 	kvm_for_each_vcpu(i, vcpu, kvm) {
2098 		struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
2099 
2100 		if (!xc)
2101 			continue;
2102 
2103 		seq_printf(m, "cpu server %#x CPPR:%#x HWCPPR:%#x"
2104 			   " MFRR:%#x PEND:%#x h_xirr: R=%lld V=%lld\n",
2105 			   xc->server_num, xc->cppr, xc->hw_cppr,
2106 			   xc->mfrr, xc->pending,
2107 			   xc->stat_rm_h_xirr, xc->stat_vm_h_xirr);
2108 
2109 		kvmppc_xive_debug_show_queues(m, vcpu);
2110 
2111 		t_rm_h_xirr += xc->stat_rm_h_xirr;
2112 		t_rm_h_ipoll += xc->stat_rm_h_ipoll;
2113 		t_rm_h_cppr += xc->stat_rm_h_cppr;
2114 		t_rm_h_eoi += xc->stat_rm_h_eoi;
2115 		t_rm_h_ipi += xc->stat_rm_h_ipi;
2116 		t_vm_h_xirr += xc->stat_vm_h_xirr;
2117 		t_vm_h_ipoll += xc->stat_vm_h_ipoll;
2118 		t_vm_h_cppr += xc->stat_vm_h_cppr;
2119 		t_vm_h_eoi += xc->stat_vm_h_eoi;
2120 		t_vm_h_ipi += xc->stat_vm_h_ipi;
2121 	}
2122 
2123 	seq_printf(m, "Hcalls totals\n");
2124 	seq_printf(m, " H_XIRR  R=%10lld V=%10lld\n", t_rm_h_xirr, t_vm_h_xirr);
2125 	seq_printf(m, " H_IPOLL R=%10lld V=%10lld\n", t_rm_h_ipoll, t_vm_h_ipoll);
2126 	seq_printf(m, " H_CPPR  R=%10lld V=%10lld\n", t_rm_h_cppr, t_vm_h_cppr);
2127 	seq_printf(m, " H_EOI   R=%10lld V=%10lld\n", t_rm_h_eoi, t_vm_h_eoi);
2128 	seq_printf(m, " H_IPI   R=%10lld V=%10lld\n", t_rm_h_ipi, t_vm_h_ipi);
2129 
2130 	return 0;
2131 }
2132 
2133 DEFINE_SHOW_ATTRIBUTE(xive_debug);
2134 
2135 static void xive_debugfs_init(struct kvmppc_xive *xive)
2136 {
2137 	char *name;
2138 
2139 	name = kasprintf(GFP_KERNEL, "kvm-xive-%p", xive);
2140 	if (!name) {
2141 		pr_err("%s: no memory for name\n", __func__);
2142 		return;
2143 	}
2144 
2145 	xive->dentry = debugfs_create_file(name, S_IRUGO, powerpc_debugfs_root,
2146 					   xive, &xive_debug_fops);
2147 
2148 	pr_debug("%s: created %s\n", __func__, name);
2149 	kfree(name);
2150 }
2151 
2152 static void kvmppc_xive_init(struct kvm_device *dev)
2153 {
2154 	struct kvmppc_xive *xive = (struct kvmppc_xive *)dev->private;
2155 
2156 	/* Register some debug interfaces */
2157 	xive_debugfs_init(xive);
2158 }
2159 
2160 struct kvm_device_ops kvm_xive_ops = {
2161 	.name = "kvm-xive",
2162 	.create = kvmppc_xive_create,
2163 	.init = kvmppc_xive_init,
2164 	.release = kvmppc_xive_release,
2165 	.set_attr = xive_set_attr,
2166 	.get_attr = xive_get_attr,
2167 	.has_attr = xive_has_attr,
2168 };
2169 
2170 void kvmppc_xive_init_module(void)
2171 {
2172 	__xive_vm_h_xirr = xive_vm_h_xirr;
2173 	__xive_vm_h_ipoll = xive_vm_h_ipoll;
2174 	__xive_vm_h_ipi = xive_vm_h_ipi;
2175 	__xive_vm_h_cppr = xive_vm_h_cppr;
2176 	__xive_vm_h_eoi = xive_vm_h_eoi;
2177 }
2178 
2179 void kvmppc_xive_exit_module(void)
2180 {
2181 	__xive_vm_h_xirr = NULL;
2182 	__xive_vm_h_ipoll = NULL;
2183 	__xive_vm_h_ipi = NULL;
2184 	__xive_vm_h_cppr = NULL;
2185 	__xive_vm_h_eoi = NULL;
2186 }
2187