1 /* 2 * Copyright 2017 Benjamin Herrenschmidt, IBM Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License, version 2, as 6 * published by the Free Software Foundation. 7 */ 8 9 #define pr_fmt(fmt) "xive-kvm: " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/kvm_host.h> 13 #include <linux/err.h> 14 #include <linux/gfp.h> 15 #include <linux/spinlock.h> 16 #include <linux/delay.h> 17 #include <linux/percpu.h> 18 #include <linux/cpumask.h> 19 #include <linux/uaccess.h> 20 #include <asm/kvm_book3s.h> 21 #include <asm/kvm_ppc.h> 22 #include <asm/hvcall.h> 23 #include <asm/xics.h> 24 #include <asm/xive.h> 25 #include <asm/xive-regs.h> 26 #include <asm/debug.h> 27 #include <asm/debugfs.h> 28 #include <asm/time.h> 29 #include <asm/opal.h> 30 31 #include <linux/debugfs.h> 32 #include <linux/seq_file.h> 33 34 #include "book3s_xive.h" 35 36 37 /* 38 * Virtual mode variants of the hcalls for use on radix/radix 39 * with AIL. They require the VCPU's VP to be "pushed" 40 * 41 * We still instantiate them here because we use some of the 42 * generated utility functions as well in this file. 43 */ 44 #define XIVE_RUNTIME_CHECKS 45 #define X_PFX xive_vm_ 46 #define X_STATIC static 47 #define X_STAT_PFX stat_vm_ 48 #define __x_tima xive_tima 49 #define __x_eoi_page(xd) ((void __iomem *)((xd)->eoi_mmio)) 50 #define __x_trig_page(xd) ((void __iomem *)((xd)->trig_mmio)) 51 #define __x_writeb __raw_writeb 52 #define __x_readw __raw_readw 53 #define __x_readq __raw_readq 54 #define __x_writeq __raw_writeq 55 56 #include "book3s_xive_template.c" 57 58 /* 59 * We leave a gap of a couple of interrupts in the queue to 60 * account for the IPI and additional safety guard. 61 */ 62 #define XIVE_Q_GAP 2 63 64 /* 65 * Push a vcpu's context to the XIVE on guest entry. 66 * This assumes we are in virtual mode (MMU on) 67 */ 68 void kvmppc_xive_push_vcpu(struct kvm_vcpu *vcpu) 69 { 70 void __iomem *tima = local_paca->kvm_hstate.xive_tima_virt; 71 u64 pq; 72 73 if (!tima) 74 return; 75 eieio(); 76 __raw_writeq(vcpu->arch.xive_saved_state.w01, tima + TM_QW1_OS); 77 __raw_writel(vcpu->arch.xive_cam_word, tima + TM_QW1_OS + TM_WORD2); 78 vcpu->arch.xive_pushed = 1; 79 eieio(); 80 81 /* 82 * We clear the irq_pending flag. There is a small chance of a 83 * race vs. the escalation interrupt happening on another 84 * processor setting it again, but the only consequence is to 85 * cause a spurious wakeup on the next H_CEDE, which is not an 86 * issue. 87 */ 88 vcpu->arch.irq_pending = 0; 89 90 /* 91 * In single escalation mode, if the escalation interrupt is 92 * on, we mask it. 93 */ 94 if (vcpu->arch.xive_esc_on) { 95 pq = __raw_readq((void __iomem *)(vcpu->arch.xive_esc_vaddr + 96 XIVE_ESB_SET_PQ_01)); 97 mb(); 98 99 /* 100 * We have a possible subtle race here: The escalation 101 * interrupt might have fired and be on its way to the 102 * host queue while we mask it, and if we unmask it 103 * early enough (re-cede right away), there is a 104 * theorical possibility that it fires again, thus 105 * landing in the target queue more than once which is 106 * a big no-no. 107 * 108 * Fortunately, solving this is rather easy. If the 109 * above load setting PQ to 01 returns a previous 110 * value where P is set, then we know the escalation 111 * interrupt is somewhere on its way to the host. In 112 * that case we simply don't clear the xive_esc_on 113 * flag below. It will be eventually cleared by the 114 * handler for the escalation interrupt. 115 * 116 * Then, when doing a cede, we check that flag again 117 * before re-enabling the escalation interrupt, and if 118 * set, we abort the cede. 119 */ 120 if (!(pq & XIVE_ESB_VAL_P)) 121 /* Now P is 0, we can clear the flag */ 122 vcpu->arch.xive_esc_on = 0; 123 } 124 } 125 EXPORT_SYMBOL_GPL(kvmppc_xive_push_vcpu); 126 127 /* 128 * This is a simple trigger for a generic XIVE IRQ. This must 129 * only be called for interrupts that support a trigger page 130 */ 131 static bool xive_irq_trigger(struct xive_irq_data *xd) 132 { 133 /* This should be only for MSIs */ 134 if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI)) 135 return false; 136 137 /* Those interrupts should always have a trigger page */ 138 if (WARN_ON(!xd->trig_mmio)) 139 return false; 140 141 out_be64(xd->trig_mmio, 0); 142 143 return true; 144 } 145 146 static irqreturn_t xive_esc_irq(int irq, void *data) 147 { 148 struct kvm_vcpu *vcpu = data; 149 150 vcpu->arch.irq_pending = 1; 151 smp_mb(); 152 if (vcpu->arch.ceded) 153 kvmppc_fast_vcpu_kick(vcpu); 154 155 /* Since we have the no-EOI flag, the interrupt is effectively 156 * disabled now. Clearing xive_esc_on means we won't bother 157 * doing so on the next entry. 158 * 159 * This also allows the entry code to know that if a PQ combination 160 * of 10 is observed while xive_esc_on is true, it means the queue 161 * contains an unprocessed escalation interrupt. We don't make use of 162 * that knowledge today but might (see comment in book3s_hv_rmhandler.S) 163 */ 164 vcpu->arch.xive_esc_on = false; 165 166 return IRQ_HANDLED; 167 } 168 169 static int xive_attach_escalation(struct kvm_vcpu *vcpu, u8 prio) 170 { 171 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 172 struct xive_q *q = &xc->queues[prio]; 173 char *name = NULL; 174 int rc; 175 176 /* Already there ? */ 177 if (xc->esc_virq[prio]) 178 return 0; 179 180 /* Hook up the escalation interrupt */ 181 xc->esc_virq[prio] = irq_create_mapping(NULL, q->esc_irq); 182 if (!xc->esc_virq[prio]) { 183 pr_err("Failed to map escalation interrupt for queue %d of VCPU %d\n", 184 prio, xc->server_num); 185 return -EIO; 186 } 187 188 if (xc->xive->single_escalation) 189 name = kasprintf(GFP_KERNEL, "kvm-%d-%d", 190 vcpu->kvm->arch.lpid, xc->server_num); 191 else 192 name = kasprintf(GFP_KERNEL, "kvm-%d-%d-%d", 193 vcpu->kvm->arch.lpid, xc->server_num, prio); 194 if (!name) { 195 pr_err("Failed to allocate escalation irq name for queue %d of VCPU %d\n", 196 prio, xc->server_num); 197 rc = -ENOMEM; 198 goto error; 199 } 200 201 pr_devel("Escalation %s irq %d (prio %d)\n", name, xc->esc_virq[prio], prio); 202 203 rc = request_irq(xc->esc_virq[prio], xive_esc_irq, 204 IRQF_NO_THREAD, name, vcpu); 205 if (rc) { 206 pr_err("Failed to request escalation interrupt for queue %d of VCPU %d\n", 207 prio, xc->server_num); 208 goto error; 209 } 210 xc->esc_virq_names[prio] = name; 211 212 /* In single escalation mode, we grab the ESB MMIO of the 213 * interrupt and mask it. Also populate the VCPU v/raddr 214 * of the ESB page for use by asm entry/exit code. Finally 215 * set the XIVE_IRQ_NO_EOI flag which will prevent the 216 * core code from performing an EOI on the escalation 217 * interrupt, thus leaving it effectively masked after 218 * it fires once. 219 */ 220 if (xc->xive->single_escalation) { 221 struct irq_data *d = irq_get_irq_data(xc->esc_virq[prio]); 222 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 223 224 xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01); 225 vcpu->arch.xive_esc_raddr = xd->eoi_page; 226 vcpu->arch.xive_esc_vaddr = (__force u64)xd->eoi_mmio; 227 xd->flags |= XIVE_IRQ_NO_EOI; 228 } 229 230 return 0; 231 error: 232 irq_dispose_mapping(xc->esc_virq[prio]); 233 xc->esc_virq[prio] = 0; 234 kfree(name); 235 return rc; 236 } 237 238 static int xive_provision_queue(struct kvm_vcpu *vcpu, u8 prio) 239 { 240 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 241 struct kvmppc_xive *xive = xc->xive; 242 struct xive_q *q = &xc->queues[prio]; 243 void *qpage; 244 int rc; 245 246 if (WARN_ON(q->qpage)) 247 return 0; 248 249 /* Allocate the queue and retrieve infos on current node for now */ 250 qpage = (__be32 *)__get_free_pages(GFP_KERNEL, xive->q_page_order); 251 if (!qpage) { 252 pr_err("Failed to allocate queue %d for VCPU %d\n", 253 prio, xc->server_num); 254 return -ENOMEM; 255 } 256 memset(qpage, 0, 1 << xive->q_order); 257 258 /* 259 * Reconfigure the queue. This will set q->qpage only once the 260 * queue is fully configured. This is a requirement for prio 0 261 * as we will stop doing EOIs for every IPI as soon as we observe 262 * qpage being non-NULL, and instead will only EOI when we receive 263 * corresponding queue 0 entries 264 */ 265 rc = xive_native_configure_queue(xc->vp_id, q, prio, qpage, 266 xive->q_order, true); 267 if (rc) 268 pr_err("Failed to configure queue %d for VCPU %d\n", 269 prio, xc->server_num); 270 return rc; 271 } 272 273 /* Called with kvm_lock held */ 274 static int xive_check_provisioning(struct kvm *kvm, u8 prio) 275 { 276 struct kvmppc_xive *xive = kvm->arch.xive; 277 struct kvm_vcpu *vcpu; 278 int i, rc; 279 280 lockdep_assert_held(&kvm->lock); 281 282 /* Already provisioned ? */ 283 if (xive->qmap & (1 << prio)) 284 return 0; 285 286 pr_devel("Provisioning prio... %d\n", prio); 287 288 /* Provision each VCPU and enable escalations if needed */ 289 kvm_for_each_vcpu(i, vcpu, kvm) { 290 if (!vcpu->arch.xive_vcpu) 291 continue; 292 rc = xive_provision_queue(vcpu, prio); 293 if (rc == 0 && !xive->single_escalation) 294 xive_attach_escalation(vcpu, prio); 295 if (rc) 296 return rc; 297 } 298 299 /* Order previous stores and mark it as provisioned */ 300 mb(); 301 xive->qmap |= (1 << prio); 302 return 0; 303 } 304 305 static void xive_inc_q_pending(struct kvm *kvm, u32 server, u8 prio) 306 { 307 struct kvm_vcpu *vcpu; 308 struct kvmppc_xive_vcpu *xc; 309 struct xive_q *q; 310 311 /* Locate target server */ 312 vcpu = kvmppc_xive_find_server(kvm, server); 313 if (!vcpu) { 314 pr_warn("%s: Can't find server %d\n", __func__, server); 315 return; 316 } 317 xc = vcpu->arch.xive_vcpu; 318 if (WARN_ON(!xc)) 319 return; 320 321 q = &xc->queues[prio]; 322 atomic_inc(&q->pending_count); 323 } 324 325 static int xive_try_pick_queue(struct kvm_vcpu *vcpu, u8 prio) 326 { 327 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 328 struct xive_q *q; 329 u32 max; 330 331 if (WARN_ON(!xc)) 332 return -ENXIO; 333 if (!xc->valid) 334 return -ENXIO; 335 336 q = &xc->queues[prio]; 337 if (WARN_ON(!q->qpage)) 338 return -ENXIO; 339 340 /* Calculate max number of interrupts in that queue. */ 341 max = (q->msk + 1) - XIVE_Q_GAP; 342 return atomic_add_unless(&q->count, 1, max) ? 0 : -EBUSY; 343 } 344 345 static int xive_select_target(struct kvm *kvm, u32 *server, u8 prio) 346 { 347 struct kvm_vcpu *vcpu; 348 int i, rc; 349 350 /* Locate target server */ 351 vcpu = kvmppc_xive_find_server(kvm, *server); 352 if (!vcpu) { 353 pr_devel("Can't find server %d\n", *server); 354 return -EINVAL; 355 } 356 357 pr_devel("Finding irq target on 0x%x/%d...\n", *server, prio); 358 359 /* Try pick it */ 360 rc = xive_try_pick_queue(vcpu, prio); 361 if (rc == 0) 362 return rc; 363 364 pr_devel(" .. failed, looking up candidate...\n"); 365 366 /* Failed, pick another VCPU */ 367 kvm_for_each_vcpu(i, vcpu, kvm) { 368 if (!vcpu->arch.xive_vcpu) 369 continue; 370 rc = xive_try_pick_queue(vcpu, prio); 371 if (rc == 0) { 372 *server = vcpu->arch.xive_vcpu->server_num; 373 pr_devel(" found on 0x%x/%d\n", *server, prio); 374 return rc; 375 } 376 } 377 pr_devel(" no available target !\n"); 378 379 /* No available target ! */ 380 return -EBUSY; 381 } 382 383 static u32 xive_vp(struct kvmppc_xive *xive, u32 server) 384 { 385 return xive->vp_base + kvmppc_pack_vcpu_id(xive->kvm, server); 386 } 387 388 static u8 xive_lock_and_mask(struct kvmppc_xive *xive, 389 struct kvmppc_xive_src_block *sb, 390 struct kvmppc_xive_irq_state *state) 391 { 392 struct xive_irq_data *xd; 393 u32 hw_num; 394 u8 old_prio; 395 u64 val; 396 397 /* 398 * Take the lock, set masked, try again if racing 399 * with H_EOI 400 */ 401 for (;;) { 402 arch_spin_lock(&sb->lock); 403 old_prio = state->guest_priority; 404 state->guest_priority = MASKED; 405 mb(); 406 if (!state->in_eoi) 407 break; 408 state->guest_priority = old_prio; 409 arch_spin_unlock(&sb->lock); 410 } 411 412 /* No change ? Bail */ 413 if (old_prio == MASKED) 414 return old_prio; 415 416 /* Get the right irq */ 417 kvmppc_xive_select_irq(state, &hw_num, &xd); 418 419 /* 420 * If the interrupt is marked as needing masking via 421 * firmware, we do it here. Firmware masking however 422 * is "lossy", it won't return the old p and q bits 423 * and won't set the interrupt to a state where it will 424 * record queued ones. If this is an issue we should do 425 * lazy masking instead. 426 * 427 * For now, we work around this in unmask by forcing 428 * an interrupt whenever we unmask a non-LSI via FW 429 * (if ever). 430 */ 431 if (xd->flags & OPAL_XIVE_IRQ_MASK_VIA_FW) { 432 xive_native_configure_irq(hw_num, 433 xive_vp(xive, state->act_server), 434 MASKED, state->number); 435 /* set old_p so we can track if an H_EOI was done */ 436 state->old_p = true; 437 state->old_q = false; 438 } else { 439 /* Set PQ to 10, return old P and old Q and remember them */ 440 val = xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_10); 441 state->old_p = !!(val & 2); 442 state->old_q = !!(val & 1); 443 444 /* 445 * Synchronize hardware to sensure the queues are updated 446 * when masking 447 */ 448 xive_native_sync_source(hw_num); 449 } 450 451 return old_prio; 452 } 453 454 static void xive_lock_for_unmask(struct kvmppc_xive_src_block *sb, 455 struct kvmppc_xive_irq_state *state) 456 { 457 /* 458 * Take the lock try again if racing with H_EOI 459 */ 460 for (;;) { 461 arch_spin_lock(&sb->lock); 462 if (!state->in_eoi) 463 break; 464 arch_spin_unlock(&sb->lock); 465 } 466 } 467 468 static void xive_finish_unmask(struct kvmppc_xive *xive, 469 struct kvmppc_xive_src_block *sb, 470 struct kvmppc_xive_irq_state *state, 471 u8 prio) 472 { 473 struct xive_irq_data *xd; 474 u32 hw_num; 475 476 /* If we aren't changing a thing, move on */ 477 if (state->guest_priority != MASKED) 478 goto bail; 479 480 /* Get the right irq */ 481 kvmppc_xive_select_irq(state, &hw_num, &xd); 482 483 /* 484 * See command in xive_lock_and_mask() concerning masking 485 * via firmware. 486 */ 487 if (xd->flags & OPAL_XIVE_IRQ_MASK_VIA_FW) { 488 xive_native_configure_irq(hw_num, 489 xive_vp(xive, state->act_server), 490 state->act_priority, state->number); 491 /* If an EOI is needed, do it here */ 492 if (!state->old_p) 493 xive_vm_source_eoi(hw_num, xd); 494 /* If this is not an LSI, force a trigger */ 495 if (!(xd->flags & OPAL_XIVE_IRQ_LSI)) 496 xive_irq_trigger(xd); 497 goto bail; 498 } 499 500 /* Old Q set, set PQ to 11 */ 501 if (state->old_q) 502 xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_11); 503 504 /* 505 * If not old P, then perform an "effective" EOI, 506 * on the source. This will handle the cases where 507 * FW EOI is needed. 508 */ 509 if (!state->old_p) 510 xive_vm_source_eoi(hw_num, xd); 511 512 /* Synchronize ordering and mark unmasked */ 513 mb(); 514 bail: 515 state->guest_priority = prio; 516 } 517 518 /* 519 * Target an interrupt to a given server/prio, this will fallback 520 * to another server if necessary and perform the HW targetting 521 * updates as needed 522 * 523 * NOTE: Must be called with the state lock held 524 */ 525 static int xive_target_interrupt(struct kvm *kvm, 526 struct kvmppc_xive_irq_state *state, 527 u32 server, u8 prio) 528 { 529 struct kvmppc_xive *xive = kvm->arch.xive; 530 u32 hw_num; 531 int rc; 532 533 /* 534 * This will return a tentative server and actual 535 * priority. The count for that new target will have 536 * already been incremented. 537 */ 538 rc = xive_select_target(kvm, &server, prio); 539 540 /* 541 * We failed to find a target ? Not much we can do 542 * at least until we support the GIQ. 543 */ 544 if (rc) 545 return rc; 546 547 /* 548 * Increment the old queue pending count if there 549 * was one so that the old queue count gets adjusted later 550 * when observed to be empty. 551 */ 552 if (state->act_priority != MASKED) 553 xive_inc_q_pending(kvm, 554 state->act_server, 555 state->act_priority); 556 /* 557 * Update state and HW 558 */ 559 state->act_priority = prio; 560 state->act_server = server; 561 562 /* Get the right irq */ 563 kvmppc_xive_select_irq(state, &hw_num, NULL); 564 565 return xive_native_configure_irq(hw_num, 566 xive_vp(xive, server), 567 prio, state->number); 568 } 569 570 /* 571 * Targetting rules: In order to avoid losing track of 572 * pending interrupts accross mask and unmask, which would 573 * allow queue overflows, we implement the following rules: 574 * 575 * - Unless it was never enabled (or we run out of capacity) 576 * an interrupt is always targetted at a valid server/queue 577 * pair even when "masked" by the guest. This pair tends to 578 * be the last one used but it can be changed under some 579 * circumstances. That allows us to separate targetting 580 * from masking, we only handle accounting during (re)targetting, 581 * this also allows us to let an interrupt drain into its target 582 * queue after masking, avoiding complex schemes to remove 583 * interrupts out of remote processor queues. 584 * 585 * - When masking, we set PQ to 10 and save the previous value 586 * of P and Q. 587 * 588 * - When unmasking, if saved Q was set, we set PQ to 11 589 * otherwise we leave PQ to the HW state which will be either 590 * 10 if nothing happened or 11 if the interrupt fired while 591 * masked. Effectively we are OR'ing the previous Q into the 592 * HW Q. 593 * 594 * Then if saved P is clear, we do an effective EOI (Q->P->Trigger) 595 * which will unmask the interrupt and shoot a new one if Q was 596 * set. 597 * 598 * Otherwise (saved P is set) we leave PQ unchanged (so 10 or 11, 599 * effectively meaning an H_EOI from the guest is still expected 600 * for that interrupt). 601 * 602 * - If H_EOI occurs while masked, we clear the saved P. 603 * 604 * - When changing target, we account on the new target and 605 * increment a separate "pending" counter on the old one. 606 * This pending counter will be used to decrement the old 607 * target's count when its queue has been observed empty. 608 */ 609 610 int kvmppc_xive_set_xive(struct kvm *kvm, u32 irq, u32 server, 611 u32 priority) 612 { 613 struct kvmppc_xive *xive = kvm->arch.xive; 614 struct kvmppc_xive_src_block *sb; 615 struct kvmppc_xive_irq_state *state; 616 u8 new_act_prio; 617 int rc = 0; 618 u16 idx; 619 620 if (!xive) 621 return -ENODEV; 622 623 pr_devel("set_xive ! irq 0x%x server 0x%x prio %d\n", 624 irq, server, priority); 625 626 /* First, check provisioning of queues */ 627 if (priority != MASKED) 628 rc = xive_check_provisioning(xive->kvm, 629 xive_prio_from_guest(priority)); 630 if (rc) { 631 pr_devel(" provisioning failure %d !\n", rc); 632 return rc; 633 } 634 635 sb = kvmppc_xive_find_source(xive, irq, &idx); 636 if (!sb) 637 return -EINVAL; 638 state = &sb->irq_state[idx]; 639 640 /* 641 * We first handle masking/unmasking since the locking 642 * might need to be retried due to EOIs, we'll handle 643 * targetting changes later. These functions will return 644 * with the SB lock held. 645 * 646 * xive_lock_and_mask() will also set state->guest_priority 647 * but won't otherwise change other fields of the state. 648 * 649 * xive_lock_for_unmask will not actually unmask, this will 650 * be done later by xive_finish_unmask() once the targetting 651 * has been done, so we don't try to unmask an interrupt 652 * that hasn't yet been targetted. 653 */ 654 if (priority == MASKED) 655 xive_lock_and_mask(xive, sb, state); 656 else 657 xive_lock_for_unmask(sb, state); 658 659 660 /* 661 * Then we handle targetting. 662 * 663 * First calculate a new "actual priority" 664 */ 665 new_act_prio = state->act_priority; 666 if (priority != MASKED) 667 new_act_prio = xive_prio_from_guest(priority); 668 669 pr_devel(" new_act_prio=%x act_server=%x act_prio=%x\n", 670 new_act_prio, state->act_server, state->act_priority); 671 672 /* 673 * Then check if we actually need to change anything, 674 * 675 * The condition for re-targetting the interrupt is that 676 * we have a valid new priority (new_act_prio is not 0xff) 677 * and either the server or the priority changed. 678 * 679 * Note: If act_priority was ff and the new priority is 680 * also ff, we don't do anything and leave the interrupt 681 * untargetted. An attempt of doing an int_on on an 682 * untargetted interrupt will fail. If that is a problem 683 * we could initialize interrupts with valid default 684 */ 685 686 if (new_act_prio != MASKED && 687 (state->act_server != server || 688 state->act_priority != new_act_prio)) 689 rc = xive_target_interrupt(kvm, state, server, new_act_prio); 690 691 /* 692 * Perform the final unmasking of the interrupt source 693 * if necessary 694 */ 695 if (priority != MASKED) 696 xive_finish_unmask(xive, sb, state, priority); 697 698 /* 699 * Finally Update saved_priority to match. Only int_on/off 700 * set this field to a different value. 701 */ 702 state->saved_priority = priority; 703 704 arch_spin_unlock(&sb->lock); 705 return rc; 706 } 707 708 int kvmppc_xive_get_xive(struct kvm *kvm, u32 irq, u32 *server, 709 u32 *priority) 710 { 711 struct kvmppc_xive *xive = kvm->arch.xive; 712 struct kvmppc_xive_src_block *sb; 713 struct kvmppc_xive_irq_state *state; 714 u16 idx; 715 716 if (!xive) 717 return -ENODEV; 718 719 sb = kvmppc_xive_find_source(xive, irq, &idx); 720 if (!sb) 721 return -EINVAL; 722 state = &sb->irq_state[idx]; 723 arch_spin_lock(&sb->lock); 724 *server = state->act_server; 725 *priority = state->guest_priority; 726 arch_spin_unlock(&sb->lock); 727 728 return 0; 729 } 730 731 int kvmppc_xive_int_on(struct kvm *kvm, u32 irq) 732 { 733 struct kvmppc_xive *xive = kvm->arch.xive; 734 struct kvmppc_xive_src_block *sb; 735 struct kvmppc_xive_irq_state *state; 736 u16 idx; 737 738 if (!xive) 739 return -ENODEV; 740 741 sb = kvmppc_xive_find_source(xive, irq, &idx); 742 if (!sb) 743 return -EINVAL; 744 state = &sb->irq_state[idx]; 745 746 pr_devel("int_on(irq=0x%x)\n", irq); 747 748 /* 749 * Check if interrupt was not targetted 750 */ 751 if (state->act_priority == MASKED) { 752 pr_devel("int_on on untargetted interrupt\n"); 753 return -EINVAL; 754 } 755 756 /* If saved_priority is 0xff, do nothing */ 757 if (state->saved_priority == MASKED) 758 return 0; 759 760 /* 761 * Lock and unmask it. 762 */ 763 xive_lock_for_unmask(sb, state); 764 xive_finish_unmask(xive, sb, state, state->saved_priority); 765 arch_spin_unlock(&sb->lock); 766 767 return 0; 768 } 769 770 int kvmppc_xive_int_off(struct kvm *kvm, u32 irq) 771 { 772 struct kvmppc_xive *xive = kvm->arch.xive; 773 struct kvmppc_xive_src_block *sb; 774 struct kvmppc_xive_irq_state *state; 775 u16 idx; 776 777 if (!xive) 778 return -ENODEV; 779 780 sb = kvmppc_xive_find_source(xive, irq, &idx); 781 if (!sb) 782 return -EINVAL; 783 state = &sb->irq_state[idx]; 784 785 pr_devel("int_off(irq=0x%x)\n", irq); 786 787 /* 788 * Lock and mask 789 */ 790 state->saved_priority = xive_lock_and_mask(xive, sb, state); 791 arch_spin_unlock(&sb->lock); 792 793 return 0; 794 } 795 796 static bool xive_restore_pending_irq(struct kvmppc_xive *xive, u32 irq) 797 { 798 struct kvmppc_xive_src_block *sb; 799 struct kvmppc_xive_irq_state *state; 800 u16 idx; 801 802 sb = kvmppc_xive_find_source(xive, irq, &idx); 803 if (!sb) 804 return false; 805 state = &sb->irq_state[idx]; 806 if (!state->valid) 807 return false; 808 809 /* 810 * Trigger the IPI. This assumes we never restore a pass-through 811 * interrupt which should be safe enough 812 */ 813 xive_irq_trigger(&state->ipi_data); 814 815 return true; 816 } 817 818 u64 kvmppc_xive_get_icp(struct kvm_vcpu *vcpu) 819 { 820 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 821 822 if (!xc) 823 return 0; 824 825 /* Return the per-cpu state for state saving/migration */ 826 return (u64)xc->cppr << KVM_REG_PPC_ICP_CPPR_SHIFT | 827 (u64)xc->mfrr << KVM_REG_PPC_ICP_MFRR_SHIFT | 828 (u64)0xff << KVM_REG_PPC_ICP_PPRI_SHIFT; 829 } 830 831 int kvmppc_xive_set_icp(struct kvm_vcpu *vcpu, u64 icpval) 832 { 833 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 834 struct kvmppc_xive *xive = vcpu->kvm->arch.xive; 835 u8 cppr, mfrr; 836 u32 xisr; 837 838 if (!xc || !xive) 839 return -ENOENT; 840 841 /* Grab individual state fields. We don't use pending_pri */ 842 cppr = icpval >> KVM_REG_PPC_ICP_CPPR_SHIFT; 843 xisr = (icpval >> KVM_REG_PPC_ICP_XISR_SHIFT) & 844 KVM_REG_PPC_ICP_XISR_MASK; 845 mfrr = icpval >> KVM_REG_PPC_ICP_MFRR_SHIFT; 846 847 pr_devel("set_icp vcpu %d cppr=0x%x mfrr=0x%x xisr=0x%x\n", 848 xc->server_num, cppr, mfrr, xisr); 849 850 /* 851 * We can't update the state of a "pushed" VCPU, but that 852 * shouldn't happen. 853 */ 854 if (WARN_ON(vcpu->arch.xive_pushed)) 855 return -EIO; 856 857 /* Update VCPU HW saved state */ 858 vcpu->arch.xive_saved_state.cppr = cppr; 859 xc->hw_cppr = xc->cppr = cppr; 860 861 /* 862 * Update MFRR state. If it's not 0xff, we mark the VCPU as 863 * having a pending MFRR change, which will re-evaluate the 864 * target. The VCPU will thus potentially get a spurious 865 * interrupt but that's not a big deal. 866 */ 867 xc->mfrr = mfrr; 868 if (mfrr < cppr) 869 xive_irq_trigger(&xc->vp_ipi_data); 870 871 /* 872 * Now saved XIRR is "interesting". It means there's something in 873 * the legacy "1 element" queue... for an IPI we simply ignore it, 874 * as the MFRR restore will handle that. For anything else we need 875 * to force a resend of the source. 876 * However the source may not have been setup yet. If that's the 877 * case, we keep that info and increment a counter in the xive to 878 * tell subsequent xive_set_source() to go look. 879 */ 880 if (xisr > XICS_IPI && !xive_restore_pending_irq(xive, xisr)) { 881 xc->delayed_irq = xisr; 882 xive->delayed_irqs++; 883 pr_devel(" xisr restore delayed\n"); 884 } 885 886 return 0; 887 } 888 889 int kvmppc_xive_set_mapped(struct kvm *kvm, unsigned long guest_irq, 890 struct irq_desc *host_desc) 891 { 892 struct kvmppc_xive *xive = kvm->arch.xive; 893 struct kvmppc_xive_src_block *sb; 894 struct kvmppc_xive_irq_state *state; 895 struct irq_data *host_data = irq_desc_get_irq_data(host_desc); 896 unsigned int host_irq = irq_desc_get_irq(host_desc); 897 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(host_data); 898 u16 idx; 899 u8 prio; 900 int rc; 901 902 if (!xive) 903 return -ENODEV; 904 905 pr_devel("set_mapped girq 0x%lx host HW irq 0x%x...\n",guest_irq, hw_irq); 906 907 sb = kvmppc_xive_find_source(xive, guest_irq, &idx); 908 if (!sb) 909 return -EINVAL; 910 state = &sb->irq_state[idx]; 911 912 /* 913 * Mark the passed-through interrupt as going to a VCPU, 914 * this will prevent further EOIs and similar operations 915 * from the XIVE code. It will also mask the interrupt 916 * to either PQ=10 or 11 state, the latter if the interrupt 917 * is pending. This will allow us to unmask or retrigger it 918 * after routing it to the guest with a simple EOI. 919 * 920 * The "state" argument is a "token", all it needs is to be 921 * non-NULL to switch to passed-through or NULL for the 922 * other way around. We may not yet have an actual VCPU 923 * target here and we don't really care. 924 */ 925 rc = irq_set_vcpu_affinity(host_irq, state); 926 if (rc) { 927 pr_err("Failed to set VCPU affinity for irq %d\n", host_irq); 928 return rc; 929 } 930 931 /* 932 * Mask and read state of IPI. We need to know if its P bit 933 * is set as that means it's potentially already using a 934 * queue entry in the target 935 */ 936 prio = xive_lock_and_mask(xive, sb, state); 937 pr_devel(" old IPI prio %02x P:%d Q:%d\n", prio, 938 state->old_p, state->old_q); 939 940 /* Turn the IPI hard off */ 941 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01); 942 943 /* Grab info about irq */ 944 state->pt_number = hw_irq; 945 state->pt_data = irq_data_get_irq_handler_data(host_data); 946 947 /* 948 * Configure the IRQ to match the existing configuration of 949 * the IPI if it was already targetted. Otherwise this will 950 * mask the interrupt in a lossy way (act_priority is 0xff) 951 * which is fine for a never started interrupt. 952 */ 953 xive_native_configure_irq(hw_irq, 954 xive_vp(xive, state->act_server), 955 state->act_priority, state->number); 956 957 /* 958 * We do an EOI to enable the interrupt (and retrigger if needed) 959 * if the guest has the interrupt unmasked and the P bit was *not* 960 * set in the IPI. If it was set, we know a slot may still be in 961 * use in the target queue thus we have to wait for a guest 962 * originated EOI 963 */ 964 if (prio != MASKED && !state->old_p) 965 xive_vm_source_eoi(hw_irq, state->pt_data); 966 967 /* Clear old_p/old_q as they are no longer relevant */ 968 state->old_p = state->old_q = false; 969 970 /* Restore guest prio (unlocks EOI) */ 971 mb(); 972 state->guest_priority = prio; 973 arch_spin_unlock(&sb->lock); 974 975 return 0; 976 } 977 EXPORT_SYMBOL_GPL(kvmppc_xive_set_mapped); 978 979 int kvmppc_xive_clr_mapped(struct kvm *kvm, unsigned long guest_irq, 980 struct irq_desc *host_desc) 981 { 982 struct kvmppc_xive *xive = kvm->arch.xive; 983 struct kvmppc_xive_src_block *sb; 984 struct kvmppc_xive_irq_state *state; 985 unsigned int host_irq = irq_desc_get_irq(host_desc); 986 u16 idx; 987 u8 prio; 988 int rc; 989 990 if (!xive) 991 return -ENODEV; 992 993 pr_devel("clr_mapped girq 0x%lx...\n", guest_irq); 994 995 sb = kvmppc_xive_find_source(xive, guest_irq, &idx); 996 if (!sb) 997 return -EINVAL; 998 state = &sb->irq_state[idx]; 999 1000 /* 1001 * Mask and read state of IRQ. We need to know if its P bit 1002 * is set as that means it's potentially already using a 1003 * queue entry in the target 1004 */ 1005 prio = xive_lock_and_mask(xive, sb, state); 1006 pr_devel(" old IRQ prio %02x P:%d Q:%d\n", prio, 1007 state->old_p, state->old_q); 1008 1009 /* 1010 * If old_p is set, the interrupt is pending, we switch it to 1011 * PQ=11. This will force a resend in the host so the interrupt 1012 * isn't lost to whatver host driver may pick it up 1013 */ 1014 if (state->old_p) 1015 xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_11); 1016 1017 /* Release the passed-through interrupt to the host */ 1018 rc = irq_set_vcpu_affinity(host_irq, NULL); 1019 if (rc) { 1020 pr_err("Failed to clr VCPU affinity for irq %d\n", host_irq); 1021 return rc; 1022 } 1023 1024 /* Forget about the IRQ */ 1025 state->pt_number = 0; 1026 state->pt_data = NULL; 1027 1028 /* Reconfigure the IPI */ 1029 xive_native_configure_irq(state->ipi_number, 1030 xive_vp(xive, state->act_server), 1031 state->act_priority, state->number); 1032 1033 /* 1034 * If old_p is set (we have a queue entry potentially 1035 * occupied) or the interrupt is masked, we set the IPI 1036 * to PQ=10 state. Otherwise we just re-enable it (PQ=00). 1037 */ 1038 if (prio == MASKED || state->old_p) 1039 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_10); 1040 else 1041 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_00); 1042 1043 /* Restore guest prio (unlocks EOI) */ 1044 mb(); 1045 state->guest_priority = prio; 1046 arch_spin_unlock(&sb->lock); 1047 1048 return 0; 1049 } 1050 EXPORT_SYMBOL_GPL(kvmppc_xive_clr_mapped); 1051 1052 static void kvmppc_xive_disable_vcpu_interrupts(struct kvm_vcpu *vcpu) 1053 { 1054 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 1055 struct kvm *kvm = vcpu->kvm; 1056 struct kvmppc_xive *xive = kvm->arch.xive; 1057 int i, j; 1058 1059 for (i = 0; i <= xive->max_sbid; i++) { 1060 struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; 1061 1062 if (!sb) 1063 continue; 1064 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) { 1065 struct kvmppc_xive_irq_state *state = &sb->irq_state[j]; 1066 1067 if (!state->valid) 1068 continue; 1069 if (state->act_priority == MASKED) 1070 continue; 1071 if (state->act_server != xc->server_num) 1072 continue; 1073 1074 /* Clean it up */ 1075 arch_spin_lock(&sb->lock); 1076 state->act_priority = MASKED; 1077 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01); 1078 xive_native_configure_irq(state->ipi_number, 0, MASKED, 0); 1079 if (state->pt_number) { 1080 xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_01); 1081 xive_native_configure_irq(state->pt_number, 0, MASKED, 0); 1082 } 1083 arch_spin_unlock(&sb->lock); 1084 } 1085 } 1086 } 1087 1088 void kvmppc_xive_cleanup_vcpu(struct kvm_vcpu *vcpu) 1089 { 1090 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 1091 struct kvmppc_xive *xive = xc->xive; 1092 int i; 1093 1094 pr_devel("cleanup_vcpu(cpu=%d)\n", xc->server_num); 1095 1096 /* Ensure no interrupt is still routed to that VP */ 1097 xc->valid = false; 1098 kvmppc_xive_disable_vcpu_interrupts(vcpu); 1099 1100 /* Mask the VP IPI */ 1101 xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_01); 1102 1103 /* Disable the VP */ 1104 xive_native_disable_vp(xc->vp_id); 1105 1106 /* Free the queues & associated interrupts */ 1107 for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) { 1108 struct xive_q *q = &xc->queues[i]; 1109 1110 /* Free the escalation irq */ 1111 if (xc->esc_virq[i]) { 1112 free_irq(xc->esc_virq[i], vcpu); 1113 irq_dispose_mapping(xc->esc_virq[i]); 1114 kfree(xc->esc_virq_names[i]); 1115 } 1116 /* Free the queue */ 1117 xive_native_disable_queue(xc->vp_id, q, i); 1118 if (q->qpage) { 1119 free_pages((unsigned long)q->qpage, 1120 xive->q_page_order); 1121 q->qpage = NULL; 1122 } 1123 } 1124 1125 /* Free the IPI */ 1126 if (xc->vp_ipi) { 1127 xive_cleanup_irq_data(&xc->vp_ipi_data); 1128 xive_native_free_irq(xc->vp_ipi); 1129 } 1130 /* Free the VP */ 1131 kfree(xc); 1132 } 1133 1134 int kvmppc_xive_connect_vcpu(struct kvm_device *dev, 1135 struct kvm_vcpu *vcpu, u32 cpu) 1136 { 1137 struct kvmppc_xive *xive = dev->private; 1138 struct kvmppc_xive_vcpu *xc; 1139 int i, r = -EBUSY; 1140 1141 pr_devel("connect_vcpu(cpu=%d)\n", cpu); 1142 1143 if (dev->ops != &kvm_xive_ops) { 1144 pr_devel("Wrong ops !\n"); 1145 return -EPERM; 1146 } 1147 if (xive->kvm != vcpu->kvm) 1148 return -EPERM; 1149 if (vcpu->arch.irq_type) 1150 return -EBUSY; 1151 if (kvmppc_xive_find_server(vcpu->kvm, cpu)) { 1152 pr_devel("Duplicate !\n"); 1153 return -EEXIST; 1154 } 1155 if (cpu >= (KVM_MAX_VCPUS * vcpu->kvm->arch.emul_smt_mode)) { 1156 pr_devel("Out of bounds !\n"); 1157 return -EINVAL; 1158 } 1159 xc = kzalloc(sizeof(*xc), GFP_KERNEL); 1160 if (!xc) 1161 return -ENOMEM; 1162 1163 /* We need to synchronize with queue provisioning */ 1164 mutex_lock(&vcpu->kvm->lock); 1165 vcpu->arch.xive_vcpu = xc; 1166 xc->xive = xive; 1167 xc->vcpu = vcpu; 1168 xc->server_num = cpu; 1169 xc->vp_id = xive_vp(xive, cpu); 1170 xc->mfrr = 0xff; 1171 xc->valid = true; 1172 1173 r = xive_native_get_vp_info(xc->vp_id, &xc->vp_cam, &xc->vp_chip_id); 1174 if (r) 1175 goto bail; 1176 1177 /* Configure VCPU fields for use by assembly push/pull */ 1178 vcpu->arch.xive_saved_state.w01 = cpu_to_be64(0xff000000); 1179 vcpu->arch.xive_cam_word = cpu_to_be32(xc->vp_cam | TM_QW1W2_VO); 1180 1181 /* Allocate IPI */ 1182 xc->vp_ipi = xive_native_alloc_irq(); 1183 if (!xc->vp_ipi) { 1184 pr_err("Failed to allocate xive irq for VCPU IPI\n"); 1185 r = -EIO; 1186 goto bail; 1187 } 1188 pr_devel(" IPI=0x%x\n", xc->vp_ipi); 1189 1190 r = xive_native_populate_irq_data(xc->vp_ipi, &xc->vp_ipi_data); 1191 if (r) 1192 goto bail; 1193 1194 /* 1195 * Enable the VP first as the single escalation mode will 1196 * affect escalation interrupts numbering 1197 */ 1198 r = xive_native_enable_vp(xc->vp_id, xive->single_escalation); 1199 if (r) { 1200 pr_err("Failed to enable VP in OPAL, err %d\n", r); 1201 goto bail; 1202 } 1203 1204 /* 1205 * Initialize queues. Initially we set them all for no queueing 1206 * and we enable escalation for queue 0 only which we'll use for 1207 * our mfrr change notifications. If the VCPU is hot-plugged, we 1208 * do handle provisioning however based on the existing "map" 1209 * of enabled queues. 1210 */ 1211 for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) { 1212 struct xive_q *q = &xc->queues[i]; 1213 1214 /* Single escalation, no queue 7 */ 1215 if (i == 7 && xive->single_escalation) 1216 break; 1217 1218 /* Is queue already enabled ? Provision it */ 1219 if (xive->qmap & (1 << i)) { 1220 r = xive_provision_queue(vcpu, i); 1221 if (r == 0 && !xive->single_escalation) 1222 xive_attach_escalation(vcpu, i); 1223 if (r) 1224 goto bail; 1225 } else { 1226 r = xive_native_configure_queue(xc->vp_id, 1227 q, i, NULL, 0, true); 1228 if (r) { 1229 pr_err("Failed to configure queue %d for VCPU %d\n", 1230 i, cpu); 1231 goto bail; 1232 } 1233 } 1234 } 1235 1236 /* If not done above, attach priority 0 escalation */ 1237 r = xive_attach_escalation(vcpu, 0); 1238 if (r) 1239 goto bail; 1240 1241 /* Route the IPI */ 1242 r = xive_native_configure_irq(xc->vp_ipi, xc->vp_id, 0, XICS_IPI); 1243 if (!r) 1244 xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_00); 1245 1246 bail: 1247 mutex_unlock(&vcpu->kvm->lock); 1248 if (r) { 1249 kvmppc_xive_cleanup_vcpu(vcpu); 1250 return r; 1251 } 1252 1253 vcpu->arch.irq_type = KVMPPC_IRQ_XICS; 1254 return 0; 1255 } 1256 1257 /* 1258 * Scanning of queues before/after migration save 1259 */ 1260 static void xive_pre_save_set_queued(struct kvmppc_xive *xive, u32 irq) 1261 { 1262 struct kvmppc_xive_src_block *sb; 1263 struct kvmppc_xive_irq_state *state; 1264 u16 idx; 1265 1266 sb = kvmppc_xive_find_source(xive, irq, &idx); 1267 if (!sb) 1268 return; 1269 1270 state = &sb->irq_state[idx]; 1271 1272 /* Some sanity checking */ 1273 if (!state->valid) { 1274 pr_err("invalid irq 0x%x in cpu queue!\n", irq); 1275 return; 1276 } 1277 1278 /* 1279 * If the interrupt is in a queue it should have P set. 1280 * We warn so that gets reported. A backtrace isn't useful 1281 * so no need to use a WARN_ON. 1282 */ 1283 if (!state->saved_p) 1284 pr_err("Interrupt 0x%x is marked in a queue but P not set !\n", irq); 1285 1286 /* Set flag */ 1287 state->in_queue = true; 1288 } 1289 1290 static void xive_pre_save_mask_irq(struct kvmppc_xive *xive, 1291 struct kvmppc_xive_src_block *sb, 1292 u32 irq) 1293 { 1294 struct kvmppc_xive_irq_state *state = &sb->irq_state[irq]; 1295 1296 if (!state->valid) 1297 return; 1298 1299 /* Mask and save state, this will also sync HW queues */ 1300 state->saved_scan_prio = xive_lock_and_mask(xive, sb, state); 1301 1302 /* Transfer P and Q */ 1303 state->saved_p = state->old_p; 1304 state->saved_q = state->old_q; 1305 1306 /* Unlock */ 1307 arch_spin_unlock(&sb->lock); 1308 } 1309 1310 static void xive_pre_save_unmask_irq(struct kvmppc_xive *xive, 1311 struct kvmppc_xive_src_block *sb, 1312 u32 irq) 1313 { 1314 struct kvmppc_xive_irq_state *state = &sb->irq_state[irq]; 1315 1316 if (!state->valid) 1317 return; 1318 1319 /* 1320 * Lock / exclude EOI (not technically necessary if the 1321 * guest isn't running concurrently. If this becomes a 1322 * performance issue we can probably remove the lock. 1323 */ 1324 xive_lock_for_unmask(sb, state); 1325 1326 /* Restore mask/prio if it wasn't masked */ 1327 if (state->saved_scan_prio != MASKED) 1328 xive_finish_unmask(xive, sb, state, state->saved_scan_prio); 1329 1330 /* Unlock */ 1331 arch_spin_unlock(&sb->lock); 1332 } 1333 1334 static void xive_pre_save_queue(struct kvmppc_xive *xive, struct xive_q *q) 1335 { 1336 u32 idx = q->idx; 1337 u32 toggle = q->toggle; 1338 u32 irq; 1339 1340 do { 1341 irq = __xive_read_eq(q->qpage, q->msk, &idx, &toggle); 1342 if (irq > XICS_IPI) 1343 xive_pre_save_set_queued(xive, irq); 1344 } while(irq); 1345 } 1346 1347 static void xive_pre_save_scan(struct kvmppc_xive *xive) 1348 { 1349 struct kvm_vcpu *vcpu = NULL; 1350 int i, j; 1351 1352 /* 1353 * See comment in xive_get_source() about how this 1354 * work. Collect a stable state for all interrupts 1355 */ 1356 for (i = 0; i <= xive->max_sbid; i++) { 1357 struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; 1358 if (!sb) 1359 continue; 1360 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) 1361 xive_pre_save_mask_irq(xive, sb, j); 1362 } 1363 1364 /* Then scan the queues and update the "in_queue" flag */ 1365 kvm_for_each_vcpu(i, vcpu, xive->kvm) { 1366 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 1367 if (!xc) 1368 continue; 1369 for (j = 0; j < KVMPPC_XIVE_Q_COUNT; j++) { 1370 if (xc->queues[j].qpage) 1371 xive_pre_save_queue(xive, &xc->queues[j]); 1372 } 1373 } 1374 1375 /* Finally restore interrupt states */ 1376 for (i = 0; i <= xive->max_sbid; i++) { 1377 struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; 1378 if (!sb) 1379 continue; 1380 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) 1381 xive_pre_save_unmask_irq(xive, sb, j); 1382 } 1383 } 1384 1385 static void xive_post_save_scan(struct kvmppc_xive *xive) 1386 { 1387 u32 i, j; 1388 1389 /* Clear all the in_queue flags */ 1390 for (i = 0; i <= xive->max_sbid; i++) { 1391 struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; 1392 if (!sb) 1393 continue; 1394 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) 1395 sb->irq_state[j].in_queue = false; 1396 } 1397 1398 /* Next get_source() will do a new scan */ 1399 xive->saved_src_count = 0; 1400 } 1401 1402 /* 1403 * This returns the source configuration and state to user space. 1404 */ 1405 static int xive_get_source(struct kvmppc_xive *xive, long irq, u64 addr) 1406 { 1407 struct kvmppc_xive_src_block *sb; 1408 struct kvmppc_xive_irq_state *state; 1409 u64 __user *ubufp = (u64 __user *) addr; 1410 u64 val, prio; 1411 u16 idx; 1412 1413 sb = kvmppc_xive_find_source(xive, irq, &idx); 1414 if (!sb) 1415 return -ENOENT; 1416 1417 state = &sb->irq_state[idx]; 1418 1419 if (!state->valid) 1420 return -ENOENT; 1421 1422 pr_devel("get_source(%ld)...\n", irq); 1423 1424 /* 1425 * So to properly save the state into something that looks like a 1426 * XICS migration stream we cannot treat interrupts individually. 1427 * 1428 * We need, instead, mask them all (& save their previous PQ state) 1429 * to get a stable state in the HW, then sync them to ensure that 1430 * any interrupt that had already fired hits its queue, and finally 1431 * scan all the queues to collect which interrupts are still present 1432 * in the queues, so we can set the "pending" flag on them and 1433 * they can be resent on restore. 1434 * 1435 * So we do it all when the "first" interrupt gets saved, all the 1436 * state is collected at that point, the rest of xive_get_source() 1437 * will merely collect and convert that state to the expected 1438 * userspace bit mask. 1439 */ 1440 if (xive->saved_src_count == 0) 1441 xive_pre_save_scan(xive); 1442 xive->saved_src_count++; 1443 1444 /* Convert saved state into something compatible with xics */ 1445 val = state->act_server; 1446 prio = state->saved_scan_prio; 1447 1448 if (prio == MASKED) { 1449 val |= KVM_XICS_MASKED; 1450 prio = state->saved_priority; 1451 } 1452 val |= prio << KVM_XICS_PRIORITY_SHIFT; 1453 if (state->lsi) { 1454 val |= KVM_XICS_LEVEL_SENSITIVE; 1455 if (state->saved_p) 1456 val |= KVM_XICS_PENDING; 1457 } else { 1458 if (state->saved_p) 1459 val |= KVM_XICS_PRESENTED; 1460 1461 if (state->saved_q) 1462 val |= KVM_XICS_QUEUED; 1463 1464 /* 1465 * We mark it pending (which will attempt a re-delivery) 1466 * if we are in a queue *or* we were masked and had 1467 * Q set which is equivalent to the XICS "masked pending" 1468 * state 1469 */ 1470 if (state->in_queue || (prio == MASKED && state->saved_q)) 1471 val |= KVM_XICS_PENDING; 1472 } 1473 1474 /* 1475 * If that was the last interrupt saved, reset the 1476 * in_queue flags 1477 */ 1478 if (xive->saved_src_count == xive->src_count) 1479 xive_post_save_scan(xive); 1480 1481 /* Copy the result to userspace */ 1482 if (put_user(val, ubufp)) 1483 return -EFAULT; 1484 1485 return 0; 1486 } 1487 1488 static struct kvmppc_xive_src_block *xive_create_src_block(struct kvmppc_xive *xive, 1489 int irq) 1490 { 1491 struct kvm *kvm = xive->kvm; 1492 struct kvmppc_xive_src_block *sb; 1493 int i, bid; 1494 1495 bid = irq >> KVMPPC_XICS_ICS_SHIFT; 1496 1497 mutex_lock(&kvm->lock); 1498 1499 /* block already exists - somebody else got here first */ 1500 if (xive->src_blocks[bid]) 1501 goto out; 1502 1503 /* Create the ICS */ 1504 sb = kzalloc(sizeof(*sb), GFP_KERNEL); 1505 if (!sb) 1506 goto out; 1507 1508 sb->id = bid; 1509 1510 for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) { 1511 sb->irq_state[i].number = (bid << KVMPPC_XICS_ICS_SHIFT) | i; 1512 sb->irq_state[i].guest_priority = MASKED; 1513 sb->irq_state[i].saved_priority = MASKED; 1514 sb->irq_state[i].act_priority = MASKED; 1515 } 1516 smp_wmb(); 1517 xive->src_blocks[bid] = sb; 1518 1519 if (bid > xive->max_sbid) 1520 xive->max_sbid = bid; 1521 1522 out: 1523 mutex_unlock(&kvm->lock); 1524 return xive->src_blocks[bid]; 1525 } 1526 1527 static bool xive_check_delayed_irq(struct kvmppc_xive *xive, u32 irq) 1528 { 1529 struct kvm *kvm = xive->kvm; 1530 struct kvm_vcpu *vcpu = NULL; 1531 int i; 1532 1533 kvm_for_each_vcpu(i, vcpu, kvm) { 1534 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 1535 1536 if (!xc) 1537 continue; 1538 1539 if (xc->delayed_irq == irq) { 1540 xc->delayed_irq = 0; 1541 xive->delayed_irqs--; 1542 return true; 1543 } 1544 } 1545 return false; 1546 } 1547 1548 static int xive_set_source(struct kvmppc_xive *xive, long irq, u64 addr) 1549 { 1550 struct kvmppc_xive_src_block *sb; 1551 struct kvmppc_xive_irq_state *state; 1552 u64 __user *ubufp = (u64 __user *) addr; 1553 u16 idx; 1554 u64 val; 1555 u8 act_prio, guest_prio; 1556 u32 server; 1557 int rc = 0; 1558 1559 if (irq < KVMPPC_XICS_FIRST_IRQ || irq >= KVMPPC_XICS_NR_IRQS) 1560 return -ENOENT; 1561 1562 pr_devel("set_source(irq=0x%lx)\n", irq); 1563 1564 /* Find the source */ 1565 sb = kvmppc_xive_find_source(xive, irq, &idx); 1566 if (!sb) { 1567 pr_devel("No source, creating source block...\n"); 1568 sb = xive_create_src_block(xive, irq); 1569 if (!sb) { 1570 pr_devel("Failed to create block...\n"); 1571 return -ENOMEM; 1572 } 1573 } 1574 state = &sb->irq_state[idx]; 1575 1576 /* Read user passed data */ 1577 if (get_user(val, ubufp)) { 1578 pr_devel("fault getting user info !\n"); 1579 return -EFAULT; 1580 } 1581 1582 server = val & KVM_XICS_DESTINATION_MASK; 1583 guest_prio = val >> KVM_XICS_PRIORITY_SHIFT; 1584 1585 pr_devel(" val=0x016%llx (server=0x%x, guest_prio=%d)\n", 1586 val, server, guest_prio); 1587 1588 /* 1589 * If the source doesn't already have an IPI, allocate 1590 * one and get the corresponding data 1591 */ 1592 if (!state->ipi_number) { 1593 state->ipi_number = xive_native_alloc_irq(); 1594 if (state->ipi_number == 0) { 1595 pr_devel("Failed to allocate IPI !\n"); 1596 return -ENOMEM; 1597 } 1598 xive_native_populate_irq_data(state->ipi_number, &state->ipi_data); 1599 pr_devel(" src_ipi=0x%x\n", state->ipi_number); 1600 } 1601 1602 /* 1603 * We use lock_and_mask() to set us in the right masked 1604 * state. We will override that state from the saved state 1605 * further down, but this will handle the cases of interrupts 1606 * that need FW masking. We set the initial guest_priority to 1607 * 0 before calling it to ensure it actually performs the masking. 1608 */ 1609 state->guest_priority = 0; 1610 xive_lock_and_mask(xive, sb, state); 1611 1612 /* 1613 * Now, we select a target if we have one. If we don't we 1614 * leave the interrupt untargetted. It means that an interrupt 1615 * can become "untargetted" accross migration if it was masked 1616 * by set_xive() but there is little we can do about it. 1617 */ 1618 1619 /* First convert prio and mark interrupt as untargetted */ 1620 act_prio = xive_prio_from_guest(guest_prio); 1621 state->act_priority = MASKED; 1622 1623 /* 1624 * We need to drop the lock due to the mutex below. Hopefully 1625 * nothing is touching that interrupt yet since it hasn't been 1626 * advertized to a running guest yet 1627 */ 1628 arch_spin_unlock(&sb->lock); 1629 1630 /* If we have a priority target the interrupt */ 1631 if (act_prio != MASKED) { 1632 /* First, check provisioning of queues */ 1633 mutex_lock(&xive->kvm->lock); 1634 rc = xive_check_provisioning(xive->kvm, act_prio); 1635 mutex_unlock(&xive->kvm->lock); 1636 1637 /* Target interrupt */ 1638 if (rc == 0) 1639 rc = xive_target_interrupt(xive->kvm, state, 1640 server, act_prio); 1641 /* 1642 * If provisioning or targetting failed, leave it 1643 * alone and masked. It will remain disabled until 1644 * the guest re-targets it. 1645 */ 1646 } 1647 1648 /* 1649 * Find out if this was a delayed irq stashed in an ICP, 1650 * in which case, treat it as pending 1651 */ 1652 if (xive->delayed_irqs && xive_check_delayed_irq(xive, irq)) { 1653 val |= KVM_XICS_PENDING; 1654 pr_devel(" Found delayed ! forcing PENDING !\n"); 1655 } 1656 1657 /* Cleanup the SW state */ 1658 state->old_p = false; 1659 state->old_q = false; 1660 state->lsi = false; 1661 state->asserted = false; 1662 1663 /* Restore LSI state */ 1664 if (val & KVM_XICS_LEVEL_SENSITIVE) { 1665 state->lsi = true; 1666 if (val & KVM_XICS_PENDING) 1667 state->asserted = true; 1668 pr_devel(" LSI ! Asserted=%d\n", state->asserted); 1669 } 1670 1671 /* 1672 * Restore P and Q. If the interrupt was pending, we 1673 * force Q and !P, which will trigger a resend. 1674 * 1675 * That means that a guest that had both an interrupt 1676 * pending (queued) and Q set will restore with only 1677 * one instance of that interrupt instead of 2, but that 1678 * is perfectly fine as coalescing interrupts that haven't 1679 * been presented yet is always allowed. 1680 */ 1681 if (val & KVM_XICS_PRESENTED && !(val & KVM_XICS_PENDING)) 1682 state->old_p = true; 1683 if (val & KVM_XICS_QUEUED || val & KVM_XICS_PENDING) 1684 state->old_q = true; 1685 1686 pr_devel(" P=%d, Q=%d\n", state->old_p, state->old_q); 1687 1688 /* 1689 * If the interrupt was unmasked, update guest priority and 1690 * perform the appropriate state transition and do a 1691 * re-trigger if necessary. 1692 */ 1693 if (val & KVM_XICS_MASKED) { 1694 pr_devel(" masked, saving prio\n"); 1695 state->guest_priority = MASKED; 1696 state->saved_priority = guest_prio; 1697 } else { 1698 pr_devel(" unmasked, restoring to prio %d\n", guest_prio); 1699 xive_finish_unmask(xive, sb, state, guest_prio); 1700 state->saved_priority = guest_prio; 1701 } 1702 1703 /* Increment the number of valid sources and mark this one valid */ 1704 if (!state->valid) 1705 xive->src_count++; 1706 state->valid = true; 1707 1708 return 0; 1709 } 1710 1711 int kvmppc_xive_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1712 bool line_status) 1713 { 1714 struct kvmppc_xive *xive = kvm->arch.xive; 1715 struct kvmppc_xive_src_block *sb; 1716 struct kvmppc_xive_irq_state *state; 1717 u16 idx; 1718 1719 if (!xive) 1720 return -ENODEV; 1721 1722 sb = kvmppc_xive_find_source(xive, irq, &idx); 1723 if (!sb) 1724 return -EINVAL; 1725 1726 /* Perform locklessly .... (we need to do some RCUisms here...) */ 1727 state = &sb->irq_state[idx]; 1728 if (!state->valid) 1729 return -EINVAL; 1730 1731 /* We don't allow a trigger on a passed-through interrupt */ 1732 if (state->pt_number) 1733 return -EINVAL; 1734 1735 if ((level == 1 && state->lsi) || level == KVM_INTERRUPT_SET_LEVEL) 1736 state->asserted = 1; 1737 else if (level == 0 || level == KVM_INTERRUPT_UNSET) { 1738 state->asserted = 0; 1739 return 0; 1740 } 1741 1742 /* Trigger the IPI */ 1743 xive_irq_trigger(&state->ipi_data); 1744 1745 return 0; 1746 } 1747 1748 static int xive_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 1749 { 1750 struct kvmppc_xive *xive = dev->private; 1751 1752 /* We honor the existing XICS ioctl */ 1753 switch (attr->group) { 1754 case KVM_DEV_XICS_GRP_SOURCES: 1755 return xive_set_source(xive, attr->attr, attr->addr); 1756 } 1757 return -ENXIO; 1758 } 1759 1760 static int xive_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 1761 { 1762 struct kvmppc_xive *xive = dev->private; 1763 1764 /* We honor the existing XICS ioctl */ 1765 switch (attr->group) { 1766 case KVM_DEV_XICS_GRP_SOURCES: 1767 return xive_get_source(xive, attr->attr, attr->addr); 1768 } 1769 return -ENXIO; 1770 } 1771 1772 static int xive_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 1773 { 1774 /* We honor the same limits as XICS, at least for now */ 1775 switch (attr->group) { 1776 case KVM_DEV_XICS_GRP_SOURCES: 1777 if (attr->attr >= KVMPPC_XICS_FIRST_IRQ && 1778 attr->attr < KVMPPC_XICS_NR_IRQS) 1779 return 0; 1780 break; 1781 } 1782 return -ENXIO; 1783 } 1784 1785 static void kvmppc_xive_cleanup_irq(u32 hw_num, struct xive_irq_data *xd) 1786 { 1787 xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01); 1788 xive_native_configure_irq(hw_num, 0, MASKED, 0); 1789 xive_cleanup_irq_data(xd); 1790 } 1791 1792 static void kvmppc_xive_free_sources(struct kvmppc_xive_src_block *sb) 1793 { 1794 int i; 1795 1796 for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) { 1797 struct kvmppc_xive_irq_state *state = &sb->irq_state[i]; 1798 1799 if (!state->valid) 1800 continue; 1801 1802 kvmppc_xive_cleanup_irq(state->ipi_number, &state->ipi_data); 1803 xive_native_free_irq(state->ipi_number); 1804 1805 /* Pass-through, cleanup too */ 1806 if (state->pt_number) 1807 kvmppc_xive_cleanup_irq(state->pt_number, state->pt_data); 1808 1809 state->valid = false; 1810 } 1811 } 1812 1813 static void kvmppc_xive_free(struct kvm_device *dev) 1814 { 1815 struct kvmppc_xive *xive = dev->private; 1816 struct kvm *kvm = xive->kvm; 1817 int i; 1818 1819 debugfs_remove(xive->dentry); 1820 1821 if (kvm) 1822 kvm->arch.xive = NULL; 1823 1824 /* Mask and free interrupts */ 1825 for (i = 0; i <= xive->max_sbid; i++) { 1826 if (xive->src_blocks[i]) 1827 kvmppc_xive_free_sources(xive->src_blocks[i]); 1828 kfree(xive->src_blocks[i]); 1829 xive->src_blocks[i] = NULL; 1830 } 1831 1832 if (xive->vp_base != XIVE_INVALID_VP) 1833 xive_native_free_vp_block(xive->vp_base); 1834 1835 1836 kfree(xive); 1837 kfree(dev); 1838 } 1839 1840 static int kvmppc_xive_create(struct kvm_device *dev, u32 type) 1841 { 1842 struct kvmppc_xive *xive; 1843 struct kvm *kvm = dev->kvm; 1844 int ret = 0; 1845 1846 pr_devel("Creating xive for partition\n"); 1847 1848 xive = kzalloc(sizeof(*xive), GFP_KERNEL); 1849 if (!xive) 1850 return -ENOMEM; 1851 1852 dev->private = xive; 1853 xive->dev = dev; 1854 xive->kvm = kvm; 1855 1856 /* Already there ? */ 1857 if (kvm->arch.xive) 1858 ret = -EEXIST; 1859 else 1860 kvm->arch.xive = xive; 1861 1862 /* We use the default queue size set by the host */ 1863 xive->q_order = xive_native_default_eq_shift(); 1864 if (xive->q_order < PAGE_SHIFT) 1865 xive->q_page_order = 0; 1866 else 1867 xive->q_page_order = xive->q_order - PAGE_SHIFT; 1868 1869 /* Allocate a bunch of VPs */ 1870 xive->vp_base = xive_native_alloc_vp_block(KVM_MAX_VCPUS); 1871 pr_devel("VP_Base=%x\n", xive->vp_base); 1872 1873 if (xive->vp_base == XIVE_INVALID_VP) 1874 ret = -ENOMEM; 1875 1876 xive->single_escalation = xive_native_has_single_escalation(); 1877 1878 if (ret) { 1879 kfree(xive); 1880 return ret; 1881 } 1882 1883 return 0; 1884 } 1885 1886 1887 static int xive_debug_show(struct seq_file *m, void *private) 1888 { 1889 struct kvmppc_xive *xive = m->private; 1890 struct kvm *kvm = xive->kvm; 1891 struct kvm_vcpu *vcpu; 1892 u64 t_rm_h_xirr = 0; 1893 u64 t_rm_h_ipoll = 0; 1894 u64 t_rm_h_cppr = 0; 1895 u64 t_rm_h_eoi = 0; 1896 u64 t_rm_h_ipi = 0; 1897 u64 t_vm_h_xirr = 0; 1898 u64 t_vm_h_ipoll = 0; 1899 u64 t_vm_h_cppr = 0; 1900 u64 t_vm_h_eoi = 0; 1901 u64 t_vm_h_ipi = 0; 1902 unsigned int i; 1903 1904 if (!kvm) 1905 return 0; 1906 1907 seq_printf(m, "=========\nVCPU state\n=========\n"); 1908 1909 kvm_for_each_vcpu(i, vcpu, kvm) { 1910 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 1911 unsigned int i; 1912 1913 if (!xc) 1914 continue; 1915 1916 seq_printf(m, "cpu server %#x CPPR:%#x HWCPPR:%#x" 1917 " MFRR:%#x PEND:%#x h_xirr: R=%lld V=%lld\n", 1918 xc->server_num, xc->cppr, xc->hw_cppr, 1919 xc->mfrr, xc->pending, 1920 xc->stat_rm_h_xirr, xc->stat_vm_h_xirr); 1921 for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) { 1922 struct xive_q *q = &xc->queues[i]; 1923 u32 i0, i1, idx; 1924 1925 if (!q->qpage && !xc->esc_virq[i]) 1926 continue; 1927 1928 seq_printf(m, " [q%d]: ", i); 1929 1930 if (q->qpage) { 1931 idx = q->idx; 1932 i0 = be32_to_cpup(q->qpage + idx); 1933 idx = (idx + 1) & q->msk; 1934 i1 = be32_to_cpup(q->qpage + idx); 1935 seq_printf(m, "T=%d %08x %08x... \n", q->toggle, i0, i1); 1936 } 1937 if (xc->esc_virq[i]) { 1938 struct irq_data *d = irq_get_irq_data(xc->esc_virq[i]); 1939 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 1940 u64 pq = xive_vm_esb_load(xd, XIVE_ESB_GET); 1941 seq_printf(m, "E:%c%c I(%d:%llx:%llx)", 1942 (pq & XIVE_ESB_VAL_P) ? 'P' : 'p', 1943 (pq & XIVE_ESB_VAL_Q) ? 'Q' : 'q', 1944 xc->esc_virq[i], pq, xd->eoi_page); 1945 seq_printf(m, "\n"); 1946 } 1947 } 1948 1949 t_rm_h_xirr += xc->stat_rm_h_xirr; 1950 t_rm_h_ipoll += xc->stat_rm_h_ipoll; 1951 t_rm_h_cppr += xc->stat_rm_h_cppr; 1952 t_rm_h_eoi += xc->stat_rm_h_eoi; 1953 t_rm_h_ipi += xc->stat_rm_h_ipi; 1954 t_vm_h_xirr += xc->stat_vm_h_xirr; 1955 t_vm_h_ipoll += xc->stat_vm_h_ipoll; 1956 t_vm_h_cppr += xc->stat_vm_h_cppr; 1957 t_vm_h_eoi += xc->stat_vm_h_eoi; 1958 t_vm_h_ipi += xc->stat_vm_h_ipi; 1959 } 1960 1961 seq_printf(m, "Hcalls totals\n"); 1962 seq_printf(m, " H_XIRR R=%10lld V=%10lld\n", t_rm_h_xirr, t_vm_h_xirr); 1963 seq_printf(m, " H_IPOLL R=%10lld V=%10lld\n", t_rm_h_ipoll, t_vm_h_ipoll); 1964 seq_printf(m, " H_CPPR R=%10lld V=%10lld\n", t_rm_h_cppr, t_vm_h_cppr); 1965 seq_printf(m, " H_EOI R=%10lld V=%10lld\n", t_rm_h_eoi, t_vm_h_eoi); 1966 seq_printf(m, " H_IPI R=%10lld V=%10lld\n", t_rm_h_ipi, t_vm_h_ipi); 1967 1968 return 0; 1969 } 1970 1971 static int xive_debug_open(struct inode *inode, struct file *file) 1972 { 1973 return single_open(file, xive_debug_show, inode->i_private); 1974 } 1975 1976 static const struct file_operations xive_debug_fops = { 1977 .open = xive_debug_open, 1978 .read = seq_read, 1979 .llseek = seq_lseek, 1980 .release = single_release, 1981 }; 1982 1983 static void xive_debugfs_init(struct kvmppc_xive *xive) 1984 { 1985 char *name; 1986 1987 name = kasprintf(GFP_KERNEL, "kvm-xive-%p", xive); 1988 if (!name) { 1989 pr_err("%s: no memory for name\n", __func__); 1990 return; 1991 } 1992 1993 xive->dentry = debugfs_create_file(name, S_IRUGO, powerpc_debugfs_root, 1994 xive, &xive_debug_fops); 1995 1996 pr_debug("%s: created %s\n", __func__, name); 1997 kfree(name); 1998 } 1999 2000 static void kvmppc_xive_init(struct kvm_device *dev) 2001 { 2002 struct kvmppc_xive *xive = (struct kvmppc_xive *)dev->private; 2003 2004 /* Register some debug interfaces */ 2005 xive_debugfs_init(xive); 2006 } 2007 2008 struct kvm_device_ops kvm_xive_ops = { 2009 .name = "kvm-xive", 2010 .create = kvmppc_xive_create, 2011 .init = kvmppc_xive_init, 2012 .destroy = kvmppc_xive_free, 2013 .set_attr = xive_set_attr, 2014 .get_attr = xive_get_attr, 2015 .has_attr = xive_has_attr, 2016 }; 2017 2018 void kvmppc_xive_init_module(void) 2019 { 2020 __xive_vm_h_xirr = xive_vm_h_xirr; 2021 __xive_vm_h_ipoll = xive_vm_h_ipoll; 2022 __xive_vm_h_ipi = xive_vm_h_ipi; 2023 __xive_vm_h_cppr = xive_vm_h_cppr; 2024 __xive_vm_h_eoi = xive_vm_h_eoi; 2025 } 2026 2027 void kvmppc_xive_exit_module(void) 2028 { 2029 __xive_vm_h_xirr = NULL; 2030 __xive_vm_h_ipoll = NULL; 2031 __xive_vm_h_ipi = NULL; 2032 __xive_vm_h_cppr = NULL; 2033 __xive_vm_h_eoi = NULL; 2034 } 2035