xref: /openbmc/linux/arch/powerpc/kvm/book3s_xive.c (revision 4b33b5ff)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2017 Benjamin Herrenschmidt, IBM Corporation.
4  */
5 
6 #define pr_fmt(fmt) "xive-kvm: " fmt
7 
8 #include <linux/kernel.h>
9 #include <linux/kvm_host.h>
10 #include <linux/err.h>
11 #include <linux/gfp.h>
12 #include <linux/spinlock.h>
13 #include <linux/delay.h>
14 #include <linux/percpu.h>
15 #include <linux/cpumask.h>
16 #include <linux/uaccess.h>
17 #include <linux/irqdomain.h>
18 #include <asm/kvm_book3s.h>
19 #include <asm/kvm_ppc.h>
20 #include <asm/hvcall.h>
21 #include <asm/xics.h>
22 #include <asm/xive.h>
23 #include <asm/xive-regs.h>
24 #include <asm/debug.h>
25 #include <asm/time.h>
26 #include <asm/opal.h>
27 
28 #include <linux/debugfs.h>
29 #include <linux/seq_file.h>
30 
31 #include "book3s_xive.h"
32 
33 
34 /*
35  * Virtual mode variants of the hcalls for use on radix/radix
36  * with AIL. They require the VCPU's VP to be "pushed"
37  *
38  * We still instantiate them here because we use some of the
39  * generated utility functions as well in this file.
40  */
41 #define XIVE_RUNTIME_CHECKS
42 #define X_PFX xive_vm_
43 #define X_STATIC static
44 #define X_STAT_PFX stat_vm_
45 #define __x_tima		xive_tima
46 #define __x_eoi_page(xd)	((void __iomem *)((xd)->eoi_mmio))
47 #define __x_trig_page(xd)	((void __iomem *)((xd)->trig_mmio))
48 #define __x_writeb	__raw_writeb
49 #define __x_readw	__raw_readw
50 #define __x_readq	__raw_readq
51 #define __x_writeq	__raw_writeq
52 
53 #include "book3s_xive_template.c"
54 
55 /*
56  * We leave a gap of a couple of interrupts in the queue to
57  * account for the IPI and additional safety guard.
58  */
59 #define XIVE_Q_GAP	2
60 
61 static bool kvmppc_xive_vcpu_has_save_restore(struct kvm_vcpu *vcpu)
62 {
63 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
64 
65 	/* Check enablement at VP level */
66 	return xc->vp_cam & TM_QW1W2_HO;
67 }
68 
69 bool kvmppc_xive_check_save_restore(struct kvm_vcpu *vcpu)
70 {
71 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
72 	struct kvmppc_xive *xive = xc->xive;
73 
74 	if (xive->flags & KVMPPC_XIVE_FLAG_SAVE_RESTORE)
75 		return kvmppc_xive_vcpu_has_save_restore(vcpu);
76 
77 	return true;
78 }
79 
80 /*
81  * Push a vcpu's context to the XIVE on guest entry.
82  * This assumes we are in virtual mode (MMU on)
83  */
84 void kvmppc_xive_push_vcpu(struct kvm_vcpu *vcpu)
85 {
86 	void __iomem *tima = local_paca->kvm_hstate.xive_tima_virt;
87 	u64 pq;
88 
89 	/*
90 	 * Nothing to do if the platform doesn't have a XIVE
91 	 * or this vCPU doesn't have its own XIVE context
92 	 * (e.g. because it's not using an in-kernel interrupt controller).
93 	 */
94 	if (!tima || !vcpu->arch.xive_cam_word)
95 		return;
96 
97 	eieio();
98 	if (!kvmppc_xive_vcpu_has_save_restore(vcpu))
99 		__raw_writeq(vcpu->arch.xive_saved_state.w01, tima + TM_QW1_OS);
100 	__raw_writel(vcpu->arch.xive_cam_word, tima + TM_QW1_OS + TM_WORD2);
101 	vcpu->arch.xive_pushed = 1;
102 	eieio();
103 
104 	/*
105 	 * We clear the irq_pending flag. There is a small chance of a
106 	 * race vs. the escalation interrupt happening on another
107 	 * processor setting it again, but the only consequence is to
108 	 * cause a spurious wakeup on the next H_CEDE, which is not an
109 	 * issue.
110 	 */
111 	vcpu->arch.irq_pending = 0;
112 
113 	/*
114 	 * In single escalation mode, if the escalation interrupt is
115 	 * on, we mask it.
116 	 */
117 	if (vcpu->arch.xive_esc_on) {
118 		pq = __raw_readq((void __iomem *)(vcpu->arch.xive_esc_vaddr +
119 						  XIVE_ESB_SET_PQ_01));
120 		mb();
121 
122 		/*
123 		 * We have a possible subtle race here: The escalation
124 		 * interrupt might have fired and be on its way to the
125 		 * host queue while we mask it, and if we unmask it
126 		 * early enough (re-cede right away), there is a
127 		 * theorical possibility that it fires again, thus
128 		 * landing in the target queue more than once which is
129 		 * a big no-no.
130 		 *
131 		 * Fortunately, solving this is rather easy. If the
132 		 * above load setting PQ to 01 returns a previous
133 		 * value where P is set, then we know the escalation
134 		 * interrupt is somewhere on its way to the host. In
135 		 * that case we simply don't clear the xive_esc_on
136 		 * flag below. It will be eventually cleared by the
137 		 * handler for the escalation interrupt.
138 		 *
139 		 * Then, when doing a cede, we check that flag again
140 		 * before re-enabling the escalation interrupt, and if
141 		 * set, we abort the cede.
142 		 */
143 		if (!(pq & XIVE_ESB_VAL_P))
144 			/* Now P is 0, we can clear the flag */
145 			vcpu->arch.xive_esc_on = 0;
146 	}
147 }
148 EXPORT_SYMBOL_GPL(kvmppc_xive_push_vcpu);
149 
150 /*
151  * Pull a vcpu's context from the XIVE on guest exit.
152  * This assumes we are in virtual mode (MMU on)
153  */
154 void kvmppc_xive_pull_vcpu(struct kvm_vcpu *vcpu)
155 {
156 	void __iomem *tima = local_paca->kvm_hstate.xive_tima_virt;
157 
158 	if (!vcpu->arch.xive_pushed)
159 		return;
160 
161 	/*
162 	 * Should not have been pushed if there is no tima
163 	 */
164 	if (WARN_ON(!tima))
165 		return;
166 
167 	eieio();
168 	/* First load to pull the context, we ignore the value */
169 	__raw_readl(tima + TM_SPC_PULL_OS_CTX);
170 	/* Second load to recover the context state (Words 0 and 1) */
171 	if (!kvmppc_xive_vcpu_has_save_restore(vcpu))
172 		vcpu->arch.xive_saved_state.w01 = __raw_readq(tima + TM_QW1_OS);
173 
174 	/* Fixup some of the state for the next load */
175 	vcpu->arch.xive_saved_state.lsmfb = 0;
176 	vcpu->arch.xive_saved_state.ack = 0xff;
177 	vcpu->arch.xive_pushed = 0;
178 	eieio();
179 }
180 EXPORT_SYMBOL_GPL(kvmppc_xive_pull_vcpu);
181 
182 void kvmppc_xive_rearm_escalation(struct kvm_vcpu *vcpu)
183 {
184 	void __iomem *esc_vaddr = (void __iomem *)vcpu->arch.xive_esc_vaddr;
185 
186 	if (!esc_vaddr)
187 		return;
188 
189 	/* we are using XIVE with single escalation */
190 
191 	if (vcpu->arch.xive_esc_on) {
192 		/*
193 		 * If we still have a pending escalation, abort the cede,
194 		 * and we must set PQ to 10 rather than 00 so that we don't
195 		 * potentially end up with two entries for the escalation
196 		 * interrupt in the XIVE interrupt queue.  In that case
197 		 * we also don't want to set xive_esc_on to 1 here in
198 		 * case we race with xive_esc_irq().
199 		 */
200 		vcpu->arch.ceded = 0;
201 		/*
202 		 * The escalation interrupts are special as we don't EOI them.
203 		 * There is no need to use the load-after-store ordering offset
204 		 * to set PQ to 10 as we won't use StoreEOI.
205 		 */
206 		__raw_readq(esc_vaddr + XIVE_ESB_SET_PQ_10);
207 	} else {
208 		vcpu->arch.xive_esc_on = true;
209 		mb();
210 		__raw_readq(esc_vaddr + XIVE_ESB_SET_PQ_00);
211 	}
212 	mb();
213 }
214 EXPORT_SYMBOL_GPL(kvmppc_xive_rearm_escalation);
215 
216 /*
217  * This is a simple trigger for a generic XIVE IRQ. This must
218  * only be called for interrupts that support a trigger page
219  */
220 static bool xive_irq_trigger(struct xive_irq_data *xd)
221 {
222 	/* This should be only for MSIs */
223 	if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
224 		return false;
225 
226 	/* Those interrupts should always have a trigger page */
227 	if (WARN_ON(!xd->trig_mmio))
228 		return false;
229 
230 	out_be64(xd->trig_mmio, 0);
231 
232 	return true;
233 }
234 
235 static irqreturn_t xive_esc_irq(int irq, void *data)
236 {
237 	struct kvm_vcpu *vcpu = data;
238 
239 	vcpu->arch.irq_pending = 1;
240 	smp_mb();
241 	if (vcpu->arch.ceded)
242 		kvmppc_fast_vcpu_kick(vcpu);
243 
244 	/* Since we have the no-EOI flag, the interrupt is effectively
245 	 * disabled now. Clearing xive_esc_on means we won't bother
246 	 * doing so on the next entry.
247 	 *
248 	 * This also allows the entry code to know that if a PQ combination
249 	 * of 10 is observed while xive_esc_on is true, it means the queue
250 	 * contains an unprocessed escalation interrupt. We don't make use of
251 	 * that knowledge today but might (see comment in book3s_hv_rmhandler.S)
252 	 */
253 	vcpu->arch.xive_esc_on = false;
254 
255 	/* This orders xive_esc_on = false vs. subsequent stale_p = true */
256 	smp_wmb();	/* goes with smp_mb() in cleanup_single_escalation */
257 
258 	return IRQ_HANDLED;
259 }
260 
261 int kvmppc_xive_attach_escalation(struct kvm_vcpu *vcpu, u8 prio,
262 				  bool single_escalation)
263 {
264 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
265 	struct xive_q *q = &xc->queues[prio];
266 	char *name = NULL;
267 	int rc;
268 
269 	/* Already there ? */
270 	if (xc->esc_virq[prio])
271 		return 0;
272 
273 	/* Hook up the escalation interrupt */
274 	xc->esc_virq[prio] = irq_create_mapping(NULL, q->esc_irq);
275 	if (!xc->esc_virq[prio]) {
276 		pr_err("Failed to map escalation interrupt for queue %d of VCPU %d\n",
277 		       prio, xc->server_num);
278 		return -EIO;
279 	}
280 
281 	if (single_escalation)
282 		name = kasprintf(GFP_KERNEL, "kvm-%d-%d",
283 				 vcpu->kvm->arch.lpid, xc->server_num);
284 	else
285 		name = kasprintf(GFP_KERNEL, "kvm-%d-%d-%d",
286 				 vcpu->kvm->arch.lpid, xc->server_num, prio);
287 	if (!name) {
288 		pr_err("Failed to allocate escalation irq name for queue %d of VCPU %d\n",
289 		       prio, xc->server_num);
290 		rc = -ENOMEM;
291 		goto error;
292 	}
293 
294 	pr_devel("Escalation %s irq %d (prio %d)\n", name, xc->esc_virq[prio], prio);
295 
296 	rc = request_irq(xc->esc_virq[prio], xive_esc_irq,
297 			 IRQF_NO_THREAD, name, vcpu);
298 	if (rc) {
299 		pr_err("Failed to request escalation interrupt for queue %d of VCPU %d\n",
300 		       prio, xc->server_num);
301 		goto error;
302 	}
303 	xc->esc_virq_names[prio] = name;
304 
305 	/* In single escalation mode, we grab the ESB MMIO of the
306 	 * interrupt and mask it. Also populate the VCPU v/raddr
307 	 * of the ESB page for use by asm entry/exit code. Finally
308 	 * set the XIVE_IRQ_FLAG_NO_EOI flag which will prevent the
309 	 * core code from performing an EOI on the escalation
310 	 * interrupt, thus leaving it effectively masked after
311 	 * it fires once.
312 	 */
313 	if (single_escalation) {
314 		struct irq_data *d = irq_get_irq_data(xc->esc_virq[prio]);
315 		struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
316 
317 		xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01);
318 		vcpu->arch.xive_esc_raddr = xd->eoi_page;
319 		vcpu->arch.xive_esc_vaddr = (__force u64)xd->eoi_mmio;
320 		xd->flags |= XIVE_IRQ_FLAG_NO_EOI;
321 	}
322 
323 	return 0;
324 error:
325 	irq_dispose_mapping(xc->esc_virq[prio]);
326 	xc->esc_virq[prio] = 0;
327 	kfree(name);
328 	return rc;
329 }
330 
331 static int xive_provision_queue(struct kvm_vcpu *vcpu, u8 prio)
332 {
333 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
334 	struct kvmppc_xive *xive = xc->xive;
335 	struct xive_q *q =  &xc->queues[prio];
336 	void *qpage;
337 	int rc;
338 
339 	if (WARN_ON(q->qpage))
340 		return 0;
341 
342 	/* Allocate the queue and retrieve infos on current node for now */
343 	qpage = (__be32 *)__get_free_pages(GFP_KERNEL, xive->q_page_order);
344 	if (!qpage) {
345 		pr_err("Failed to allocate queue %d for VCPU %d\n",
346 		       prio, xc->server_num);
347 		return -ENOMEM;
348 	}
349 	memset(qpage, 0, 1 << xive->q_order);
350 
351 	/*
352 	 * Reconfigure the queue. This will set q->qpage only once the
353 	 * queue is fully configured. This is a requirement for prio 0
354 	 * as we will stop doing EOIs for every IPI as soon as we observe
355 	 * qpage being non-NULL, and instead will only EOI when we receive
356 	 * corresponding queue 0 entries
357 	 */
358 	rc = xive_native_configure_queue(xc->vp_id, q, prio, qpage,
359 					 xive->q_order, true);
360 	if (rc)
361 		pr_err("Failed to configure queue %d for VCPU %d\n",
362 		       prio, xc->server_num);
363 	return rc;
364 }
365 
366 /* Called with xive->lock held */
367 static int xive_check_provisioning(struct kvm *kvm, u8 prio)
368 {
369 	struct kvmppc_xive *xive = kvm->arch.xive;
370 	struct kvm_vcpu *vcpu;
371 	unsigned long i;
372 	int rc;
373 
374 	lockdep_assert_held(&xive->lock);
375 
376 	/* Already provisioned ? */
377 	if (xive->qmap & (1 << prio))
378 		return 0;
379 
380 	pr_devel("Provisioning prio... %d\n", prio);
381 
382 	/* Provision each VCPU and enable escalations if needed */
383 	kvm_for_each_vcpu(i, vcpu, kvm) {
384 		if (!vcpu->arch.xive_vcpu)
385 			continue;
386 		rc = xive_provision_queue(vcpu, prio);
387 		if (rc == 0 && !kvmppc_xive_has_single_escalation(xive))
388 			kvmppc_xive_attach_escalation(vcpu, prio,
389 						      kvmppc_xive_has_single_escalation(xive));
390 		if (rc)
391 			return rc;
392 	}
393 
394 	/* Order previous stores and mark it as provisioned */
395 	mb();
396 	xive->qmap |= (1 << prio);
397 	return 0;
398 }
399 
400 static void xive_inc_q_pending(struct kvm *kvm, u32 server, u8 prio)
401 {
402 	struct kvm_vcpu *vcpu;
403 	struct kvmppc_xive_vcpu *xc;
404 	struct xive_q *q;
405 
406 	/* Locate target server */
407 	vcpu = kvmppc_xive_find_server(kvm, server);
408 	if (!vcpu) {
409 		pr_warn("%s: Can't find server %d\n", __func__, server);
410 		return;
411 	}
412 	xc = vcpu->arch.xive_vcpu;
413 	if (WARN_ON(!xc))
414 		return;
415 
416 	q = &xc->queues[prio];
417 	atomic_inc(&q->pending_count);
418 }
419 
420 static int xive_try_pick_queue(struct kvm_vcpu *vcpu, u8 prio)
421 {
422 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
423 	struct xive_q *q;
424 	u32 max;
425 
426 	if (WARN_ON(!xc))
427 		return -ENXIO;
428 	if (!xc->valid)
429 		return -ENXIO;
430 
431 	q = &xc->queues[prio];
432 	if (WARN_ON(!q->qpage))
433 		return -ENXIO;
434 
435 	/* Calculate max number of interrupts in that queue. */
436 	max = (q->msk + 1) - XIVE_Q_GAP;
437 	return atomic_add_unless(&q->count, 1, max) ? 0 : -EBUSY;
438 }
439 
440 int kvmppc_xive_select_target(struct kvm *kvm, u32 *server, u8 prio)
441 {
442 	struct kvm_vcpu *vcpu;
443 	unsigned long i;
444 	int rc;
445 
446 	/* Locate target server */
447 	vcpu = kvmppc_xive_find_server(kvm, *server);
448 	if (!vcpu) {
449 		pr_devel("Can't find server %d\n", *server);
450 		return -EINVAL;
451 	}
452 
453 	pr_devel("Finding irq target on 0x%x/%d...\n", *server, prio);
454 
455 	/* Try pick it */
456 	rc = xive_try_pick_queue(vcpu, prio);
457 	if (rc == 0)
458 		return rc;
459 
460 	pr_devel(" .. failed, looking up candidate...\n");
461 
462 	/* Failed, pick another VCPU */
463 	kvm_for_each_vcpu(i, vcpu, kvm) {
464 		if (!vcpu->arch.xive_vcpu)
465 			continue;
466 		rc = xive_try_pick_queue(vcpu, prio);
467 		if (rc == 0) {
468 			*server = vcpu->arch.xive_vcpu->server_num;
469 			pr_devel("  found on 0x%x/%d\n", *server, prio);
470 			return rc;
471 		}
472 	}
473 	pr_devel("  no available target !\n");
474 
475 	/* No available target ! */
476 	return -EBUSY;
477 }
478 
479 static u8 xive_lock_and_mask(struct kvmppc_xive *xive,
480 			     struct kvmppc_xive_src_block *sb,
481 			     struct kvmppc_xive_irq_state *state)
482 {
483 	struct xive_irq_data *xd;
484 	u32 hw_num;
485 	u8 old_prio;
486 	u64 val;
487 
488 	/*
489 	 * Take the lock, set masked, try again if racing
490 	 * with H_EOI
491 	 */
492 	for (;;) {
493 		arch_spin_lock(&sb->lock);
494 		old_prio = state->guest_priority;
495 		state->guest_priority = MASKED;
496 		mb();
497 		if (!state->in_eoi)
498 			break;
499 		state->guest_priority = old_prio;
500 		arch_spin_unlock(&sb->lock);
501 	}
502 
503 	/* No change ? Bail */
504 	if (old_prio == MASKED)
505 		return old_prio;
506 
507 	/* Get the right irq */
508 	kvmppc_xive_select_irq(state, &hw_num, &xd);
509 
510 	/* Set PQ to 10, return old P and old Q and remember them */
511 	val = xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_10);
512 	state->old_p = !!(val & 2);
513 	state->old_q = !!(val & 1);
514 
515 	/*
516 	 * Synchronize hardware to sensure the queues are updated when
517 	 * masking
518 	 */
519 	xive_native_sync_source(hw_num);
520 
521 	return old_prio;
522 }
523 
524 static void xive_lock_for_unmask(struct kvmppc_xive_src_block *sb,
525 				 struct kvmppc_xive_irq_state *state)
526 {
527 	/*
528 	 * Take the lock try again if racing with H_EOI
529 	 */
530 	for (;;) {
531 		arch_spin_lock(&sb->lock);
532 		if (!state->in_eoi)
533 			break;
534 		arch_spin_unlock(&sb->lock);
535 	}
536 }
537 
538 static void xive_finish_unmask(struct kvmppc_xive *xive,
539 			       struct kvmppc_xive_src_block *sb,
540 			       struct kvmppc_xive_irq_state *state,
541 			       u8 prio)
542 {
543 	struct xive_irq_data *xd;
544 	u32 hw_num;
545 
546 	/* If we aren't changing a thing, move on */
547 	if (state->guest_priority != MASKED)
548 		goto bail;
549 
550 	/* Get the right irq */
551 	kvmppc_xive_select_irq(state, &hw_num, &xd);
552 
553 	/* Old Q set, set PQ to 11 */
554 	if (state->old_q)
555 		xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_11);
556 
557 	/*
558 	 * If not old P, then perform an "effective" EOI,
559 	 * on the source. This will handle the cases where
560 	 * FW EOI is needed.
561 	 */
562 	if (!state->old_p)
563 		xive_vm_source_eoi(hw_num, xd);
564 
565 	/* Synchronize ordering and mark unmasked */
566 	mb();
567 bail:
568 	state->guest_priority = prio;
569 }
570 
571 /*
572  * Target an interrupt to a given server/prio, this will fallback
573  * to another server if necessary and perform the HW targetting
574  * updates as needed
575  *
576  * NOTE: Must be called with the state lock held
577  */
578 static int xive_target_interrupt(struct kvm *kvm,
579 				 struct kvmppc_xive_irq_state *state,
580 				 u32 server, u8 prio)
581 {
582 	struct kvmppc_xive *xive = kvm->arch.xive;
583 	u32 hw_num;
584 	int rc;
585 
586 	/*
587 	 * This will return a tentative server and actual
588 	 * priority. The count for that new target will have
589 	 * already been incremented.
590 	 */
591 	rc = kvmppc_xive_select_target(kvm, &server, prio);
592 
593 	/*
594 	 * We failed to find a target ? Not much we can do
595 	 * at least until we support the GIQ.
596 	 */
597 	if (rc)
598 		return rc;
599 
600 	/*
601 	 * Increment the old queue pending count if there
602 	 * was one so that the old queue count gets adjusted later
603 	 * when observed to be empty.
604 	 */
605 	if (state->act_priority != MASKED)
606 		xive_inc_q_pending(kvm,
607 				   state->act_server,
608 				   state->act_priority);
609 	/*
610 	 * Update state and HW
611 	 */
612 	state->act_priority = prio;
613 	state->act_server = server;
614 
615 	/* Get the right irq */
616 	kvmppc_xive_select_irq(state, &hw_num, NULL);
617 
618 	return xive_native_configure_irq(hw_num,
619 					 kvmppc_xive_vp(xive, server),
620 					 prio, state->number);
621 }
622 
623 /*
624  * Targetting rules: In order to avoid losing track of
625  * pending interrupts accross mask and unmask, which would
626  * allow queue overflows, we implement the following rules:
627  *
628  *  - Unless it was never enabled (or we run out of capacity)
629  *    an interrupt is always targetted at a valid server/queue
630  *    pair even when "masked" by the guest. This pair tends to
631  *    be the last one used but it can be changed under some
632  *    circumstances. That allows us to separate targetting
633  *    from masking, we only handle accounting during (re)targetting,
634  *    this also allows us to let an interrupt drain into its target
635  *    queue after masking, avoiding complex schemes to remove
636  *    interrupts out of remote processor queues.
637  *
638  *  - When masking, we set PQ to 10 and save the previous value
639  *    of P and Q.
640  *
641  *  - When unmasking, if saved Q was set, we set PQ to 11
642  *    otherwise we leave PQ to the HW state which will be either
643  *    10 if nothing happened or 11 if the interrupt fired while
644  *    masked. Effectively we are OR'ing the previous Q into the
645  *    HW Q.
646  *
647  *    Then if saved P is clear, we do an effective EOI (Q->P->Trigger)
648  *    which will unmask the interrupt and shoot a new one if Q was
649  *    set.
650  *
651  *    Otherwise (saved P is set) we leave PQ unchanged (so 10 or 11,
652  *    effectively meaning an H_EOI from the guest is still expected
653  *    for that interrupt).
654  *
655  *  - If H_EOI occurs while masked, we clear the saved P.
656  *
657  *  - When changing target, we account on the new target and
658  *    increment a separate "pending" counter on the old one.
659  *    This pending counter will be used to decrement the old
660  *    target's count when its queue has been observed empty.
661  */
662 
663 int kvmppc_xive_set_xive(struct kvm *kvm, u32 irq, u32 server,
664 			 u32 priority)
665 {
666 	struct kvmppc_xive *xive = kvm->arch.xive;
667 	struct kvmppc_xive_src_block *sb;
668 	struct kvmppc_xive_irq_state *state;
669 	u8 new_act_prio;
670 	int rc = 0;
671 	u16 idx;
672 
673 	if (!xive)
674 		return -ENODEV;
675 
676 	pr_devel("set_xive ! irq 0x%x server 0x%x prio %d\n",
677 		 irq, server, priority);
678 
679 	/* First, check provisioning of queues */
680 	if (priority != MASKED) {
681 		mutex_lock(&xive->lock);
682 		rc = xive_check_provisioning(xive->kvm,
683 			      xive_prio_from_guest(priority));
684 		mutex_unlock(&xive->lock);
685 	}
686 	if (rc) {
687 		pr_devel("  provisioning failure %d !\n", rc);
688 		return rc;
689 	}
690 
691 	sb = kvmppc_xive_find_source(xive, irq, &idx);
692 	if (!sb)
693 		return -EINVAL;
694 	state = &sb->irq_state[idx];
695 
696 	/*
697 	 * We first handle masking/unmasking since the locking
698 	 * might need to be retried due to EOIs, we'll handle
699 	 * targetting changes later. These functions will return
700 	 * with the SB lock held.
701 	 *
702 	 * xive_lock_and_mask() will also set state->guest_priority
703 	 * but won't otherwise change other fields of the state.
704 	 *
705 	 * xive_lock_for_unmask will not actually unmask, this will
706 	 * be done later by xive_finish_unmask() once the targetting
707 	 * has been done, so we don't try to unmask an interrupt
708 	 * that hasn't yet been targetted.
709 	 */
710 	if (priority == MASKED)
711 		xive_lock_and_mask(xive, sb, state);
712 	else
713 		xive_lock_for_unmask(sb, state);
714 
715 
716 	/*
717 	 * Then we handle targetting.
718 	 *
719 	 * First calculate a new "actual priority"
720 	 */
721 	new_act_prio = state->act_priority;
722 	if (priority != MASKED)
723 		new_act_prio = xive_prio_from_guest(priority);
724 
725 	pr_devel(" new_act_prio=%x act_server=%x act_prio=%x\n",
726 		 new_act_prio, state->act_server, state->act_priority);
727 
728 	/*
729 	 * Then check if we actually need to change anything,
730 	 *
731 	 * The condition for re-targetting the interrupt is that
732 	 * we have a valid new priority (new_act_prio is not 0xff)
733 	 * and either the server or the priority changed.
734 	 *
735 	 * Note: If act_priority was ff and the new priority is
736 	 *       also ff, we don't do anything and leave the interrupt
737 	 *       untargetted. An attempt of doing an int_on on an
738 	 *       untargetted interrupt will fail. If that is a problem
739 	 *       we could initialize interrupts with valid default
740 	 */
741 
742 	if (new_act_prio != MASKED &&
743 	    (state->act_server != server ||
744 	     state->act_priority != new_act_prio))
745 		rc = xive_target_interrupt(kvm, state, server, new_act_prio);
746 
747 	/*
748 	 * Perform the final unmasking of the interrupt source
749 	 * if necessary
750 	 */
751 	if (priority != MASKED)
752 		xive_finish_unmask(xive, sb, state, priority);
753 
754 	/*
755 	 * Finally Update saved_priority to match. Only int_on/off
756 	 * set this field to a different value.
757 	 */
758 	state->saved_priority = priority;
759 
760 	arch_spin_unlock(&sb->lock);
761 	return rc;
762 }
763 
764 int kvmppc_xive_get_xive(struct kvm *kvm, u32 irq, u32 *server,
765 			 u32 *priority)
766 {
767 	struct kvmppc_xive *xive = kvm->arch.xive;
768 	struct kvmppc_xive_src_block *sb;
769 	struct kvmppc_xive_irq_state *state;
770 	u16 idx;
771 
772 	if (!xive)
773 		return -ENODEV;
774 
775 	sb = kvmppc_xive_find_source(xive, irq, &idx);
776 	if (!sb)
777 		return -EINVAL;
778 	state = &sb->irq_state[idx];
779 	arch_spin_lock(&sb->lock);
780 	*server = state->act_server;
781 	*priority = state->guest_priority;
782 	arch_spin_unlock(&sb->lock);
783 
784 	return 0;
785 }
786 
787 int kvmppc_xive_int_on(struct kvm *kvm, u32 irq)
788 {
789 	struct kvmppc_xive *xive = kvm->arch.xive;
790 	struct kvmppc_xive_src_block *sb;
791 	struct kvmppc_xive_irq_state *state;
792 	u16 idx;
793 
794 	if (!xive)
795 		return -ENODEV;
796 
797 	sb = kvmppc_xive_find_source(xive, irq, &idx);
798 	if (!sb)
799 		return -EINVAL;
800 	state = &sb->irq_state[idx];
801 
802 	pr_devel("int_on(irq=0x%x)\n", irq);
803 
804 	/*
805 	 * Check if interrupt was not targetted
806 	 */
807 	if (state->act_priority == MASKED) {
808 		pr_devel("int_on on untargetted interrupt\n");
809 		return -EINVAL;
810 	}
811 
812 	/* If saved_priority is 0xff, do nothing */
813 	if (state->saved_priority == MASKED)
814 		return 0;
815 
816 	/*
817 	 * Lock and unmask it.
818 	 */
819 	xive_lock_for_unmask(sb, state);
820 	xive_finish_unmask(xive, sb, state, state->saved_priority);
821 	arch_spin_unlock(&sb->lock);
822 
823 	return 0;
824 }
825 
826 int kvmppc_xive_int_off(struct kvm *kvm, u32 irq)
827 {
828 	struct kvmppc_xive *xive = kvm->arch.xive;
829 	struct kvmppc_xive_src_block *sb;
830 	struct kvmppc_xive_irq_state *state;
831 	u16 idx;
832 
833 	if (!xive)
834 		return -ENODEV;
835 
836 	sb = kvmppc_xive_find_source(xive, irq, &idx);
837 	if (!sb)
838 		return -EINVAL;
839 	state = &sb->irq_state[idx];
840 
841 	pr_devel("int_off(irq=0x%x)\n", irq);
842 
843 	/*
844 	 * Lock and mask
845 	 */
846 	state->saved_priority = xive_lock_and_mask(xive, sb, state);
847 	arch_spin_unlock(&sb->lock);
848 
849 	return 0;
850 }
851 
852 static bool xive_restore_pending_irq(struct kvmppc_xive *xive, u32 irq)
853 {
854 	struct kvmppc_xive_src_block *sb;
855 	struct kvmppc_xive_irq_state *state;
856 	u16 idx;
857 
858 	sb = kvmppc_xive_find_source(xive, irq, &idx);
859 	if (!sb)
860 		return false;
861 	state = &sb->irq_state[idx];
862 	if (!state->valid)
863 		return false;
864 
865 	/*
866 	 * Trigger the IPI. This assumes we never restore a pass-through
867 	 * interrupt which should be safe enough
868 	 */
869 	xive_irq_trigger(&state->ipi_data);
870 
871 	return true;
872 }
873 
874 u64 kvmppc_xive_get_icp(struct kvm_vcpu *vcpu)
875 {
876 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
877 
878 	if (!xc)
879 		return 0;
880 
881 	/* Return the per-cpu state for state saving/migration */
882 	return (u64)xc->cppr << KVM_REG_PPC_ICP_CPPR_SHIFT |
883 	       (u64)xc->mfrr << KVM_REG_PPC_ICP_MFRR_SHIFT |
884 	       (u64)0xff << KVM_REG_PPC_ICP_PPRI_SHIFT;
885 }
886 
887 int kvmppc_xive_set_icp(struct kvm_vcpu *vcpu, u64 icpval)
888 {
889 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
890 	struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
891 	u8 cppr, mfrr;
892 	u32 xisr;
893 
894 	if (!xc || !xive)
895 		return -ENOENT;
896 
897 	/* Grab individual state fields. We don't use pending_pri */
898 	cppr = icpval >> KVM_REG_PPC_ICP_CPPR_SHIFT;
899 	xisr = (icpval >> KVM_REG_PPC_ICP_XISR_SHIFT) &
900 		KVM_REG_PPC_ICP_XISR_MASK;
901 	mfrr = icpval >> KVM_REG_PPC_ICP_MFRR_SHIFT;
902 
903 	pr_devel("set_icp vcpu %d cppr=0x%x mfrr=0x%x xisr=0x%x\n",
904 		 xc->server_num, cppr, mfrr, xisr);
905 
906 	/*
907 	 * We can't update the state of a "pushed" VCPU, but that
908 	 * shouldn't happen because the vcpu->mutex makes running a
909 	 * vcpu mutually exclusive with doing one_reg get/set on it.
910 	 */
911 	if (WARN_ON(vcpu->arch.xive_pushed))
912 		return -EIO;
913 
914 	/* Update VCPU HW saved state */
915 	vcpu->arch.xive_saved_state.cppr = cppr;
916 	xc->hw_cppr = xc->cppr = cppr;
917 
918 	/*
919 	 * Update MFRR state. If it's not 0xff, we mark the VCPU as
920 	 * having a pending MFRR change, which will re-evaluate the
921 	 * target. The VCPU will thus potentially get a spurious
922 	 * interrupt but that's not a big deal.
923 	 */
924 	xc->mfrr = mfrr;
925 	if (mfrr < cppr)
926 		xive_irq_trigger(&xc->vp_ipi_data);
927 
928 	/*
929 	 * Now saved XIRR is "interesting". It means there's something in
930 	 * the legacy "1 element" queue... for an IPI we simply ignore it,
931 	 * as the MFRR restore will handle that. For anything else we need
932 	 * to force a resend of the source.
933 	 * However the source may not have been setup yet. If that's the
934 	 * case, we keep that info and increment a counter in the xive to
935 	 * tell subsequent xive_set_source() to go look.
936 	 */
937 	if (xisr > XICS_IPI && !xive_restore_pending_irq(xive, xisr)) {
938 		xc->delayed_irq = xisr;
939 		xive->delayed_irqs++;
940 		pr_devel("  xisr restore delayed\n");
941 	}
942 
943 	return 0;
944 }
945 
946 int kvmppc_xive_set_mapped(struct kvm *kvm, unsigned long guest_irq,
947 			   unsigned long host_irq)
948 {
949 	struct kvmppc_xive *xive = kvm->arch.xive;
950 	struct kvmppc_xive_src_block *sb;
951 	struct kvmppc_xive_irq_state *state;
952 	struct irq_data *host_data =
953 		irq_domain_get_irq_data(irq_get_default_host(), host_irq);
954 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(host_data);
955 	u16 idx;
956 	u8 prio;
957 	int rc;
958 
959 	if (!xive)
960 		return -ENODEV;
961 
962 	pr_debug("%s: GIRQ 0x%lx host IRQ %ld XIVE HW IRQ 0x%x\n",
963 		 __func__, guest_irq, host_irq, hw_irq);
964 
965 	sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
966 	if (!sb)
967 		return -EINVAL;
968 	state = &sb->irq_state[idx];
969 
970 	/*
971 	 * Mark the passed-through interrupt as going to a VCPU,
972 	 * this will prevent further EOIs and similar operations
973 	 * from the XIVE code. It will also mask the interrupt
974 	 * to either PQ=10 or 11 state, the latter if the interrupt
975 	 * is pending. This will allow us to unmask or retrigger it
976 	 * after routing it to the guest with a simple EOI.
977 	 *
978 	 * The "state" argument is a "token", all it needs is to be
979 	 * non-NULL to switch to passed-through or NULL for the
980 	 * other way around. We may not yet have an actual VCPU
981 	 * target here and we don't really care.
982 	 */
983 	rc = irq_set_vcpu_affinity(host_irq, state);
984 	if (rc) {
985 		pr_err("Failed to set VCPU affinity for host IRQ %ld\n", host_irq);
986 		return rc;
987 	}
988 
989 	/*
990 	 * Mask and read state of IPI. We need to know if its P bit
991 	 * is set as that means it's potentially already using a
992 	 * queue entry in the target
993 	 */
994 	prio = xive_lock_and_mask(xive, sb, state);
995 	pr_devel(" old IPI prio %02x P:%d Q:%d\n", prio,
996 		 state->old_p, state->old_q);
997 
998 	/* Turn the IPI hard off */
999 	xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
1000 
1001 	/*
1002 	 * Reset ESB guest mapping. Needed when ESB pages are exposed
1003 	 * to the guest in XIVE native mode
1004 	 */
1005 	if (xive->ops && xive->ops->reset_mapped)
1006 		xive->ops->reset_mapped(kvm, guest_irq);
1007 
1008 	/* Grab info about irq */
1009 	state->pt_number = hw_irq;
1010 	state->pt_data = irq_data_get_irq_handler_data(host_data);
1011 
1012 	/*
1013 	 * Configure the IRQ to match the existing configuration of
1014 	 * the IPI if it was already targetted. Otherwise this will
1015 	 * mask the interrupt in a lossy way (act_priority is 0xff)
1016 	 * which is fine for a never started interrupt.
1017 	 */
1018 	xive_native_configure_irq(hw_irq,
1019 				  kvmppc_xive_vp(xive, state->act_server),
1020 				  state->act_priority, state->number);
1021 
1022 	/*
1023 	 * We do an EOI to enable the interrupt (and retrigger if needed)
1024 	 * if the guest has the interrupt unmasked and the P bit was *not*
1025 	 * set in the IPI. If it was set, we know a slot may still be in
1026 	 * use in the target queue thus we have to wait for a guest
1027 	 * originated EOI
1028 	 */
1029 	if (prio != MASKED && !state->old_p)
1030 		xive_vm_source_eoi(hw_irq, state->pt_data);
1031 
1032 	/* Clear old_p/old_q as they are no longer relevant */
1033 	state->old_p = state->old_q = false;
1034 
1035 	/* Restore guest prio (unlocks EOI) */
1036 	mb();
1037 	state->guest_priority = prio;
1038 	arch_spin_unlock(&sb->lock);
1039 
1040 	return 0;
1041 }
1042 EXPORT_SYMBOL_GPL(kvmppc_xive_set_mapped);
1043 
1044 int kvmppc_xive_clr_mapped(struct kvm *kvm, unsigned long guest_irq,
1045 			   unsigned long host_irq)
1046 {
1047 	struct kvmppc_xive *xive = kvm->arch.xive;
1048 	struct kvmppc_xive_src_block *sb;
1049 	struct kvmppc_xive_irq_state *state;
1050 	u16 idx;
1051 	u8 prio;
1052 	int rc;
1053 
1054 	if (!xive)
1055 		return -ENODEV;
1056 
1057 	pr_debug("%s: GIRQ 0x%lx host IRQ %ld\n", __func__, guest_irq, host_irq);
1058 
1059 	sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
1060 	if (!sb)
1061 		return -EINVAL;
1062 	state = &sb->irq_state[idx];
1063 
1064 	/*
1065 	 * Mask and read state of IRQ. We need to know if its P bit
1066 	 * is set as that means it's potentially already using a
1067 	 * queue entry in the target
1068 	 */
1069 	prio = xive_lock_and_mask(xive, sb, state);
1070 	pr_devel(" old IRQ prio %02x P:%d Q:%d\n", prio,
1071 		 state->old_p, state->old_q);
1072 
1073 	/*
1074 	 * If old_p is set, the interrupt is pending, we switch it to
1075 	 * PQ=11. This will force a resend in the host so the interrupt
1076 	 * isn't lost to whatver host driver may pick it up
1077 	 */
1078 	if (state->old_p)
1079 		xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_11);
1080 
1081 	/* Release the passed-through interrupt to the host */
1082 	rc = irq_set_vcpu_affinity(host_irq, NULL);
1083 	if (rc) {
1084 		pr_err("Failed to clr VCPU affinity for host IRQ %ld\n", host_irq);
1085 		return rc;
1086 	}
1087 
1088 	/* Forget about the IRQ */
1089 	state->pt_number = 0;
1090 	state->pt_data = NULL;
1091 
1092 	/*
1093 	 * Reset ESB guest mapping. Needed when ESB pages are exposed
1094 	 * to the guest in XIVE native mode
1095 	 */
1096 	if (xive->ops && xive->ops->reset_mapped) {
1097 		xive->ops->reset_mapped(kvm, guest_irq);
1098 	}
1099 
1100 	/* Reconfigure the IPI */
1101 	xive_native_configure_irq(state->ipi_number,
1102 				  kvmppc_xive_vp(xive, state->act_server),
1103 				  state->act_priority, state->number);
1104 
1105 	/*
1106 	 * If old_p is set (we have a queue entry potentially
1107 	 * occupied) or the interrupt is masked, we set the IPI
1108 	 * to PQ=10 state. Otherwise we just re-enable it (PQ=00).
1109 	 */
1110 	if (prio == MASKED || state->old_p)
1111 		xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_10);
1112 	else
1113 		xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_00);
1114 
1115 	/* Restore guest prio (unlocks EOI) */
1116 	mb();
1117 	state->guest_priority = prio;
1118 	arch_spin_unlock(&sb->lock);
1119 
1120 	return 0;
1121 }
1122 EXPORT_SYMBOL_GPL(kvmppc_xive_clr_mapped);
1123 
1124 void kvmppc_xive_disable_vcpu_interrupts(struct kvm_vcpu *vcpu)
1125 {
1126 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1127 	struct kvm *kvm = vcpu->kvm;
1128 	struct kvmppc_xive *xive = kvm->arch.xive;
1129 	int i, j;
1130 
1131 	for (i = 0; i <= xive->max_sbid; i++) {
1132 		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1133 
1134 		if (!sb)
1135 			continue;
1136 		for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) {
1137 			struct kvmppc_xive_irq_state *state = &sb->irq_state[j];
1138 
1139 			if (!state->valid)
1140 				continue;
1141 			if (state->act_priority == MASKED)
1142 				continue;
1143 			if (state->act_server != xc->server_num)
1144 				continue;
1145 
1146 			/* Clean it up */
1147 			arch_spin_lock(&sb->lock);
1148 			state->act_priority = MASKED;
1149 			xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
1150 			xive_native_configure_irq(state->ipi_number, 0, MASKED, 0);
1151 			if (state->pt_number) {
1152 				xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_01);
1153 				xive_native_configure_irq(state->pt_number, 0, MASKED, 0);
1154 			}
1155 			arch_spin_unlock(&sb->lock);
1156 		}
1157 	}
1158 
1159 	/* Disable vcpu's escalation interrupt */
1160 	if (vcpu->arch.xive_esc_on) {
1161 		__raw_readq((void __iomem *)(vcpu->arch.xive_esc_vaddr +
1162 					     XIVE_ESB_SET_PQ_01));
1163 		vcpu->arch.xive_esc_on = false;
1164 	}
1165 
1166 	/*
1167 	 * Clear pointers to escalation interrupt ESB.
1168 	 * This is safe because the vcpu->mutex is held, preventing
1169 	 * any other CPU from concurrently executing a KVM_RUN ioctl.
1170 	 */
1171 	vcpu->arch.xive_esc_vaddr = 0;
1172 	vcpu->arch.xive_esc_raddr = 0;
1173 }
1174 
1175 /*
1176  * In single escalation mode, the escalation interrupt is marked so
1177  * that EOI doesn't re-enable it, but just sets the stale_p flag to
1178  * indicate that the P bit has already been dealt with.  However, the
1179  * assembly code that enters the guest sets PQ to 00 without clearing
1180  * stale_p (because it has no easy way to address it).  Hence we have
1181  * to adjust stale_p before shutting down the interrupt.
1182  */
1183 void xive_cleanup_single_escalation(struct kvm_vcpu *vcpu,
1184 				    struct kvmppc_xive_vcpu *xc, int irq)
1185 {
1186 	struct irq_data *d = irq_get_irq_data(irq);
1187 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
1188 
1189 	/*
1190 	 * This slightly odd sequence gives the right result
1191 	 * (i.e. stale_p set if xive_esc_on is false) even if
1192 	 * we race with xive_esc_irq() and xive_irq_eoi().
1193 	 */
1194 	xd->stale_p = false;
1195 	smp_mb();		/* paired with smb_wmb in xive_esc_irq */
1196 	if (!vcpu->arch.xive_esc_on)
1197 		xd->stale_p = true;
1198 }
1199 
1200 void kvmppc_xive_cleanup_vcpu(struct kvm_vcpu *vcpu)
1201 {
1202 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1203 	struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
1204 	int i;
1205 
1206 	if (!kvmppc_xics_enabled(vcpu))
1207 		return;
1208 
1209 	if (!xc)
1210 		return;
1211 
1212 	pr_devel("cleanup_vcpu(cpu=%d)\n", xc->server_num);
1213 
1214 	/* Ensure no interrupt is still routed to that VP */
1215 	xc->valid = false;
1216 	kvmppc_xive_disable_vcpu_interrupts(vcpu);
1217 
1218 	/* Mask the VP IPI */
1219 	xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_01);
1220 
1221 	/* Free escalations */
1222 	for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1223 		if (xc->esc_virq[i]) {
1224 			if (kvmppc_xive_has_single_escalation(xc->xive))
1225 				xive_cleanup_single_escalation(vcpu, xc,
1226 							xc->esc_virq[i]);
1227 			free_irq(xc->esc_virq[i], vcpu);
1228 			irq_dispose_mapping(xc->esc_virq[i]);
1229 			kfree(xc->esc_virq_names[i]);
1230 		}
1231 	}
1232 
1233 	/* Disable the VP */
1234 	xive_native_disable_vp(xc->vp_id);
1235 
1236 	/* Clear the cam word so guest entry won't try to push context */
1237 	vcpu->arch.xive_cam_word = 0;
1238 
1239 	/* Free the queues */
1240 	for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1241 		struct xive_q *q = &xc->queues[i];
1242 
1243 		xive_native_disable_queue(xc->vp_id, q, i);
1244 		if (q->qpage) {
1245 			free_pages((unsigned long)q->qpage,
1246 				   xive->q_page_order);
1247 			q->qpage = NULL;
1248 		}
1249 	}
1250 
1251 	/* Free the IPI */
1252 	if (xc->vp_ipi) {
1253 		xive_cleanup_irq_data(&xc->vp_ipi_data);
1254 		xive_native_free_irq(xc->vp_ipi);
1255 	}
1256 	/* Free the VP */
1257 	kfree(xc);
1258 
1259 	/* Cleanup the vcpu */
1260 	vcpu->arch.irq_type = KVMPPC_IRQ_DEFAULT;
1261 	vcpu->arch.xive_vcpu = NULL;
1262 }
1263 
1264 static bool kvmppc_xive_vcpu_id_valid(struct kvmppc_xive *xive, u32 cpu)
1265 {
1266 	/* We have a block of xive->nr_servers VPs. We just need to check
1267 	 * packed vCPU ids are below that.
1268 	 */
1269 	return kvmppc_pack_vcpu_id(xive->kvm, cpu) < xive->nr_servers;
1270 }
1271 
1272 int kvmppc_xive_compute_vp_id(struct kvmppc_xive *xive, u32 cpu, u32 *vp)
1273 {
1274 	u32 vp_id;
1275 
1276 	if (!kvmppc_xive_vcpu_id_valid(xive, cpu)) {
1277 		pr_devel("Out of bounds !\n");
1278 		return -EINVAL;
1279 	}
1280 
1281 	if (xive->vp_base == XIVE_INVALID_VP) {
1282 		xive->vp_base = xive_native_alloc_vp_block(xive->nr_servers);
1283 		pr_devel("VP_Base=%x nr_servers=%d\n", xive->vp_base, xive->nr_servers);
1284 
1285 		if (xive->vp_base == XIVE_INVALID_VP)
1286 			return -ENOSPC;
1287 	}
1288 
1289 	vp_id = kvmppc_xive_vp(xive, cpu);
1290 	if (kvmppc_xive_vp_in_use(xive->kvm, vp_id)) {
1291 		pr_devel("Duplicate !\n");
1292 		return -EEXIST;
1293 	}
1294 
1295 	*vp = vp_id;
1296 
1297 	return 0;
1298 }
1299 
1300 int kvmppc_xive_connect_vcpu(struct kvm_device *dev,
1301 			     struct kvm_vcpu *vcpu, u32 cpu)
1302 {
1303 	struct kvmppc_xive *xive = dev->private;
1304 	struct kvmppc_xive_vcpu *xc;
1305 	int i, r = -EBUSY;
1306 	u32 vp_id;
1307 
1308 	pr_devel("connect_vcpu(cpu=%d)\n", cpu);
1309 
1310 	if (dev->ops != &kvm_xive_ops) {
1311 		pr_devel("Wrong ops !\n");
1312 		return -EPERM;
1313 	}
1314 	if (xive->kvm != vcpu->kvm)
1315 		return -EPERM;
1316 	if (vcpu->arch.irq_type != KVMPPC_IRQ_DEFAULT)
1317 		return -EBUSY;
1318 
1319 	/* We need to synchronize with queue provisioning */
1320 	mutex_lock(&xive->lock);
1321 
1322 	r = kvmppc_xive_compute_vp_id(xive, cpu, &vp_id);
1323 	if (r)
1324 		goto bail;
1325 
1326 	xc = kzalloc(sizeof(*xc), GFP_KERNEL);
1327 	if (!xc) {
1328 		r = -ENOMEM;
1329 		goto bail;
1330 	}
1331 
1332 	vcpu->arch.xive_vcpu = xc;
1333 	xc->xive = xive;
1334 	xc->vcpu = vcpu;
1335 	xc->server_num = cpu;
1336 	xc->vp_id = vp_id;
1337 	xc->mfrr = 0xff;
1338 	xc->valid = true;
1339 
1340 	r = xive_native_get_vp_info(xc->vp_id, &xc->vp_cam, &xc->vp_chip_id);
1341 	if (r)
1342 		goto bail;
1343 
1344 	if (!kvmppc_xive_check_save_restore(vcpu)) {
1345 		pr_err("inconsistent save-restore setup for VCPU %d\n", cpu);
1346 		r = -EIO;
1347 		goto bail;
1348 	}
1349 
1350 	/* Configure VCPU fields for use by assembly push/pull */
1351 	vcpu->arch.xive_saved_state.w01 = cpu_to_be64(0xff000000);
1352 	vcpu->arch.xive_cam_word = cpu_to_be32(xc->vp_cam | TM_QW1W2_VO);
1353 
1354 	/* Allocate IPI */
1355 	xc->vp_ipi = xive_native_alloc_irq();
1356 	if (!xc->vp_ipi) {
1357 		pr_err("Failed to allocate xive irq for VCPU IPI\n");
1358 		r = -EIO;
1359 		goto bail;
1360 	}
1361 	pr_devel(" IPI=0x%x\n", xc->vp_ipi);
1362 
1363 	r = xive_native_populate_irq_data(xc->vp_ipi, &xc->vp_ipi_data);
1364 	if (r)
1365 		goto bail;
1366 
1367 	/*
1368 	 * Enable the VP first as the single escalation mode will
1369 	 * affect escalation interrupts numbering
1370 	 */
1371 	r = xive_native_enable_vp(xc->vp_id, kvmppc_xive_has_single_escalation(xive));
1372 	if (r) {
1373 		pr_err("Failed to enable VP in OPAL, err %d\n", r);
1374 		goto bail;
1375 	}
1376 
1377 	/*
1378 	 * Initialize queues. Initially we set them all for no queueing
1379 	 * and we enable escalation for queue 0 only which we'll use for
1380 	 * our mfrr change notifications. If the VCPU is hot-plugged, we
1381 	 * do handle provisioning however based on the existing "map"
1382 	 * of enabled queues.
1383 	 */
1384 	for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1385 		struct xive_q *q = &xc->queues[i];
1386 
1387 		/* Single escalation, no queue 7 */
1388 		if (i == 7 && kvmppc_xive_has_single_escalation(xive))
1389 			break;
1390 
1391 		/* Is queue already enabled ? Provision it */
1392 		if (xive->qmap & (1 << i)) {
1393 			r = xive_provision_queue(vcpu, i);
1394 			if (r == 0 && !kvmppc_xive_has_single_escalation(xive))
1395 				kvmppc_xive_attach_escalation(
1396 					vcpu, i, kvmppc_xive_has_single_escalation(xive));
1397 			if (r)
1398 				goto bail;
1399 		} else {
1400 			r = xive_native_configure_queue(xc->vp_id,
1401 							q, i, NULL, 0, true);
1402 			if (r) {
1403 				pr_err("Failed to configure queue %d for VCPU %d\n",
1404 				       i, cpu);
1405 				goto bail;
1406 			}
1407 		}
1408 	}
1409 
1410 	/* If not done above, attach priority 0 escalation */
1411 	r = kvmppc_xive_attach_escalation(vcpu, 0, kvmppc_xive_has_single_escalation(xive));
1412 	if (r)
1413 		goto bail;
1414 
1415 	/* Route the IPI */
1416 	r = xive_native_configure_irq(xc->vp_ipi, xc->vp_id, 0, XICS_IPI);
1417 	if (!r)
1418 		xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_00);
1419 
1420 bail:
1421 	mutex_unlock(&xive->lock);
1422 	if (r) {
1423 		kvmppc_xive_cleanup_vcpu(vcpu);
1424 		return r;
1425 	}
1426 
1427 	vcpu->arch.irq_type = KVMPPC_IRQ_XICS;
1428 	return 0;
1429 }
1430 
1431 /*
1432  * Scanning of queues before/after migration save
1433  */
1434 static void xive_pre_save_set_queued(struct kvmppc_xive *xive, u32 irq)
1435 {
1436 	struct kvmppc_xive_src_block *sb;
1437 	struct kvmppc_xive_irq_state *state;
1438 	u16 idx;
1439 
1440 	sb = kvmppc_xive_find_source(xive, irq, &idx);
1441 	if (!sb)
1442 		return;
1443 
1444 	state = &sb->irq_state[idx];
1445 
1446 	/* Some sanity checking */
1447 	if (!state->valid) {
1448 		pr_err("invalid irq 0x%x in cpu queue!\n", irq);
1449 		return;
1450 	}
1451 
1452 	/*
1453 	 * If the interrupt is in a queue it should have P set.
1454 	 * We warn so that gets reported. A backtrace isn't useful
1455 	 * so no need to use a WARN_ON.
1456 	 */
1457 	if (!state->saved_p)
1458 		pr_err("Interrupt 0x%x is marked in a queue but P not set !\n", irq);
1459 
1460 	/* Set flag */
1461 	state->in_queue = true;
1462 }
1463 
1464 static void xive_pre_save_mask_irq(struct kvmppc_xive *xive,
1465 				   struct kvmppc_xive_src_block *sb,
1466 				   u32 irq)
1467 {
1468 	struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
1469 
1470 	if (!state->valid)
1471 		return;
1472 
1473 	/* Mask and save state, this will also sync HW queues */
1474 	state->saved_scan_prio = xive_lock_and_mask(xive, sb, state);
1475 
1476 	/* Transfer P and Q */
1477 	state->saved_p = state->old_p;
1478 	state->saved_q = state->old_q;
1479 
1480 	/* Unlock */
1481 	arch_spin_unlock(&sb->lock);
1482 }
1483 
1484 static void xive_pre_save_unmask_irq(struct kvmppc_xive *xive,
1485 				     struct kvmppc_xive_src_block *sb,
1486 				     u32 irq)
1487 {
1488 	struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
1489 
1490 	if (!state->valid)
1491 		return;
1492 
1493 	/*
1494 	 * Lock / exclude EOI (not technically necessary if the
1495 	 * guest isn't running concurrently. If this becomes a
1496 	 * performance issue we can probably remove the lock.
1497 	 */
1498 	xive_lock_for_unmask(sb, state);
1499 
1500 	/* Restore mask/prio if it wasn't masked */
1501 	if (state->saved_scan_prio != MASKED)
1502 		xive_finish_unmask(xive, sb, state, state->saved_scan_prio);
1503 
1504 	/* Unlock */
1505 	arch_spin_unlock(&sb->lock);
1506 }
1507 
1508 static void xive_pre_save_queue(struct kvmppc_xive *xive, struct xive_q *q)
1509 {
1510 	u32 idx = q->idx;
1511 	u32 toggle = q->toggle;
1512 	u32 irq;
1513 
1514 	do {
1515 		irq = __xive_read_eq(q->qpage, q->msk, &idx, &toggle);
1516 		if (irq > XICS_IPI)
1517 			xive_pre_save_set_queued(xive, irq);
1518 	} while(irq);
1519 }
1520 
1521 static void xive_pre_save_scan(struct kvmppc_xive *xive)
1522 {
1523 	struct kvm_vcpu *vcpu = NULL;
1524 	unsigned long i;
1525 	int j;
1526 
1527 	/*
1528 	 * See comment in xive_get_source() about how this
1529 	 * work. Collect a stable state for all interrupts
1530 	 */
1531 	for (i = 0; i <= xive->max_sbid; i++) {
1532 		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1533 		if (!sb)
1534 			continue;
1535 		for (j = 0;  j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1536 			xive_pre_save_mask_irq(xive, sb, j);
1537 	}
1538 
1539 	/* Then scan the queues and update the "in_queue" flag */
1540 	kvm_for_each_vcpu(i, vcpu, xive->kvm) {
1541 		struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1542 		if (!xc)
1543 			continue;
1544 		for (j = 0; j < KVMPPC_XIVE_Q_COUNT; j++) {
1545 			if (xc->queues[j].qpage)
1546 				xive_pre_save_queue(xive, &xc->queues[j]);
1547 		}
1548 	}
1549 
1550 	/* Finally restore interrupt states */
1551 	for (i = 0; i <= xive->max_sbid; i++) {
1552 		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1553 		if (!sb)
1554 			continue;
1555 		for (j = 0;  j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1556 			xive_pre_save_unmask_irq(xive, sb, j);
1557 	}
1558 }
1559 
1560 static void xive_post_save_scan(struct kvmppc_xive *xive)
1561 {
1562 	u32 i, j;
1563 
1564 	/* Clear all the in_queue flags */
1565 	for (i = 0; i <= xive->max_sbid; i++) {
1566 		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1567 		if (!sb)
1568 			continue;
1569 		for (j = 0;  j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1570 			sb->irq_state[j].in_queue = false;
1571 	}
1572 
1573 	/* Next get_source() will do a new scan */
1574 	xive->saved_src_count = 0;
1575 }
1576 
1577 /*
1578  * This returns the source configuration and state to user space.
1579  */
1580 static int xive_get_source(struct kvmppc_xive *xive, long irq, u64 addr)
1581 {
1582 	struct kvmppc_xive_src_block *sb;
1583 	struct kvmppc_xive_irq_state *state;
1584 	u64 __user *ubufp = (u64 __user *) addr;
1585 	u64 val, prio;
1586 	u16 idx;
1587 
1588 	sb = kvmppc_xive_find_source(xive, irq, &idx);
1589 	if (!sb)
1590 		return -ENOENT;
1591 
1592 	state = &sb->irq_state[idx];
1593 
1594 	if (!state->valid)
1595 		return -ENOENT;
1596 
1597 	pr_devel("get_source(%ld)...\n", irq);
1598 
1599 	/*
1600 	 * So to properly save the state into something that looks like a
1601 	 * XICS migration stream we cannot treat interrupts individually.
1602 	 *
1603 	 * We need, instead, mask them all (& save their previous PQ state)
1604 	 * to get a stable state in the HW, then sync them to ensure that
1605 	 * any interrupt that had already fired hits its queue, and finally
1606 	 * scan all the queues to collect which interrupts are still present
1607 	 * in the queues, so we can set the "pending" flag on them and
1608 	 * they can be resent on restore.
1609 	 *
1610 	 * So we do it all when the "first" interrupt gets saved, all the
1611 	 * state is collected at that point, the rest of xive_get_source()
1612 	 * will merely collect and convert that state to the expected
1613 	 * userspace bit mask.
1614 	 */
1615 	if (xive->saved_src_count == 0)
1616 		xive_pre_save_scan(xive);
1617 	xive->saved_src_count++;
1618 
1619 	/* Convert saved state into something compatible with xics */
1620 	val = state->act_server;
1621 	prio = state->saved_scan_prio;
1622 
1623 	if (prio == MASKED) {
1624 		val |= KVM_XICS_MASKED;
1625 		prio = state->saved_priority;
1626 	}
1627 	val |= prio << KVM_XICS_PRIORITY_SHIFT;
1628 	if (state->lsi) {
1629 		val |= KVM_XICS_LEVEL_SENSITIVE;
1630 		if (state->saved_p)
1631 			val |= KVM_XICS_PENDING;
1632 	} else {
1633 		if (state->saved_p)
1634 			val |= KVM_XICS_PRESENTED;
1635 
1636 		if (state->saved_q)
1637 			val |= KVM_XICS_QUEUED;
1638 
1639 		/*
1640 		 * We mark it pending (which will attempt a re-delivery)
1641 		 * if we are in a queue *or* we were masked and had
1642 		 * Q set which is equivalent to the XICS "masked pending"
1643 		 * state
1644 		 */
1645 		if (state->in_queue || (prio == MASKED && state->saved_q))
1646 			val |= KVM_XICS_PENDING;
1647 	}
1648 
1649 	/*
1650 	 * If that was the last interrupt saved, reset the
1651 	 * in_queue flags
1652 	 */
1653 	if (xive->saved_src_count == xive->src_count)
1654 		xive_post_save_scan(xive);
1655 
1656 	/* Copy the result to userspace */
1657 	if (put_user(val, ubufp))
1658 		return -EFAULT;
1659 
1660 	return 0;
1661 }
1662 
1663 struct kvmppc_xive_src_block *kvmppc_xive_create_src_block(
1664 	struct kvmppc_xive *xive, int irq)
1665 {
1666 	struct kvmppc_xive_src_block *sb;
1667 	int i, bid;
1668 
1669 	bid = irq >> KVMPPC_XICS_ICS_SHIFT;
1670 
1671 	mutex_lock(&xive->lock);
1672 
1673 	/* block already exists - somebody else got here first */
1674 	if (xive->src_blocks[bid])
1675 		goto out;
1676 
1677 	/* Create the ICS */
1678 	sb = kzalloc(sizeof(*sb), GFP_KERNEL);
1679 	if (!sb)
1680 		goto out;
1681 
1682 	sb->id = bid;
1683 
1684 	for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
1685 		sb->irq_state[i].number = (bid << KVMPPC_XICS_ICS_SHIFT) | i;
1686 		sb->irq_state[i].eisn = 0;
1687 		sb->irq_state[i].guest_priority = MASKED;
1688 		sb->irq_state[i].saved_priority = MASKED;
1689 		sb->irq_state[i].act_priority = MASKED;
1690 	}
1691 	smp_wmb();
1692 	xive->src_blocks[bid] = sb;
1693 
1694 	if (bid > xive->max_sbid)
1695 		xive->max_sbid = bid;
1696 
1697 out:
1698 	mutex_unlock(&xive->lock);
1699 	return xive->src_blocks[bid];
1700 }
1701 
1702 static bool xive_check_delayed_irq(struct kvmppc_xive *xive, u32 irq)
1703 {
1704 	struct kvm *kvm = xive->kvm;
1705 	struct kvm_vcpu *vcpu = NULL;
1706 	unsigned long i;
1707 
1708 	kvm_for_each_vcpu(i, vcpu, kvm) {
1709 		struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1710 
1711 		if (!xc)
1712 			continue;
1713 
1714 		if (xc->delayed_irq == irq) {
1715 			xc->delayed_irq = 0;
1716 			xive->delayed_irqs--;
1717 			return true;
1718 		}
1719 	}
1720 	return false;
1721 }
1722 
1723 static int xive_set_source(struct kvmppc_xive *xive, long irq, u64 addr)
1724 {
1725 	struct kvmppc_xive_src_block *sb;
1726 	struct kvmppc_xive_irq_state *state;
1727 	u64 __user *ubufp = (u64 __user *) addr;
1728 	u16 idx;
1729 	u64 val;
1730 	u8 act_prio, guest_prio;
1731 	u32 server;
1732 	int rc = 0;
1733 
1734 	if (irq < KVMPPC_XICS_FIRST_IRQ || irq >= KVMPPC_XICS_NR_IRQS)
1735 		return -ENOENT;
1736 
1737 	pr_devel("set_source(irq=0x%lx)\n", irq);
1738 
1739 	/* Find the source */
1740 	sb = kvmppc_xive_find_source(xive, irq, &idx);
1741 	if (!sb) {
1742 		pr_devel("No source, creating source block...\n");
1743 		sb = kvmppc_xive_create_src_block(xive, irq);
1744 		if (!sb) {
1745 			pr_devel("Failed to create block...\n");
1746 			return -ENOMEM;
1747 		}
1748 	}
1749 	state = &sb->irq_state[idx];
1750 
1751 	/* Read user passed data */
1752 	if (get_user(val, ubufp)) {
1753 		pr_devel("fault getting user info !\n");
1754 		return -EFAULT;
1755 	}
1756 
1757 	server = val & KVM_XICS_DESTINATION_MASK;
1758 	guest_prio = val >> KVM_XICS_PRIORITY_SHIFT;
1759 
1760 	pr_devel("  val=0x016%llx (server=0x%x, guest_prio=%d)\n",
1761 		 val, server, guest_prio);
1762 
1763 	/*
1764 	 * If the source doesn't already have an IPI, allocate
1765 	 * one and get the corresponding data
1766 	 */
1767 	if (!state->ipi_number) {
1768 		state->ipi_number = xive_native_alloc_irq();
1769 		if (state->ipi_number == 0) {
1770 			pr_devel("Failed to allocate IPI !\n");
1771 			return -ENOMEM;
1772 		}
1773 		xive_native_populate_irq_data(state->ipi_number, &state->ipi_data);
1774 		pr_devel(" src_ipi=0x%x\n", state->ipi_number);
1775 	}
1776 
1777 	/*
1778 	 * We use lock_and_mask() to set us in the right masked
1779 	 * state. We will override that state from the saved state
1780 	 * further down, but this will handle the cases of interrupts
1781 	 * that need FW masking. We set the initial guest_priority to
1782 	 * 0 before calling it to ensure it actually performs the masking.
1783 	 */
1784 	state->guest_priority = 0;
1785 	xive_lock_and_mask(xive, sb, state);
1786 
1787 	/*
1788 	 * Now, we select a target if we have one. If we don't we
1789 	 * leave the interrupt untargetted. It means that an interrupt
1790 	 * can become "untargetted" accross migration if it was masked
1791 	 * by set_xive() but there is little we can do about it.
1792 	 */
1793 
1794 	/* First convert prio and mark interrupt as untargetted */
1795 	act_prio = xive_prio_from_guest(guest_prio);
1796 	state->act_priority = MASKED;
1797 
1798 	/*
1799 	 * We need to drop the lock due to the mutex below. Hopefully
1800 	 * nothing is touching that interrupt yet since it hasn't been
1801 	 * advertized to a running guest yet
1802 	 */
1803 	arch_spin_unlock(&sb->lock);
1804 
1805 	/* If we have a priority target the interrupt */
1806 	if (act_prio != MASKED) {
1807 		/* First, check provisioning of queues */
1808 		mutex_lock(&xive->lock);
1809 		rc = xive_check_provisioning(xive->kvm, act_prio);
1810 		mutex_unlock(&xive->lock);
1811 
1812 		/* Target interrupt */
1813 		if (rc == 0)
1814 			rc = xive_target_interrupt(xive->kvm, state,
1815 						   server, act_prio);
1816 		/*
1817 		 * If provisioning or targetting failed, leave it
1818 		 * alone and masked. It will remain disabled until
1819 		 * the guest re-targets it.
1820 		 */
1821 	}
1822 
1823 	/*
1824 	 * Find out if this was a delayed irq stashed in an ICP,
1825 	 * in which case, treat it as pending
1826 	 */
1827 	if (xive->delayed_irqs && xive_check_delayed_irq(xive, irq)) {
1828 		val |= KVM_XICS_PENDING;
1829 		pr_devel("  Found delayed ! forcing PENDING !\n");
1830 	}
1831 
1832 	/* Cleanup the SW state */
1833 	state->old_p = false;
1834 	state->old_q = false;
1835 	state->lsi = false;
1836 	state->asserted = false;
1837 
1838 	/* Restore LSI state */
1839 	if (val & KVM_XICS_LEVEL_SENSITIVE) {
1840 		state->lsi = true;
1841 		if (val & KVM_XICS_PENDING)
1842 			state->asserted = true;
1843 		pr_devel("  LSI ! Asserted=%d\n", state->asserted);
1844 	}
1845 
1846 	/*
1847 	 * Restore P and Q. If the interrupt was pending, we
1848 	 * force Q and !P, which will trigger a resend.
1849 	 *
1850 	 * That means that a guest that had both an interrupt
1851 	 * pending (queued) and Q set will restore with only
1852 	 * one instance of that interrupt instead of 2, but that
1853 	 * is perfectly fine as coalescing interrupts that haven't
1854 	 * been presented yet is always allowed.
1855 	 */
1856 	if (val & KVM_XICS_PRESENTED && !(val & KVM_XICS_PENDING))
1857 		state->old_p = true;
1858 	if (val & KVM_XICS_QUEUED || val & KVM_XICS_PENDING)
1859 		state->old_q = true;
1860 
1861 	pr_devel("  P=%d, Q=%d\n", state->old_p, state->old_q);
1862 
1863 	/*
1864 	 * If the interrupt was unmasked, update guest priority and
1865 	 * perform the appropriate state transition and do a
1866 	 * re-trigger if necessary.
1867 	 */
1868 	if (val & KVM_XICS_MASKED) {
1869 		pr_devel("  masked, saving prio\n");
1870 		state->guest_priority = MASKED;
1871 		state->saved_priority = guest_prio;
1872 	} else {
1873 		pr_devel("  unmasked, restoring to prio %d\n", guest_prio);
1874 		xive_finish_unmask(xive, sb, state, guest_prio);
1875 		state->saved_priority = guest_prio;
1876 	}
1877 
1878 	/* Increment the number of valid sources and mark this one valid */
1879 	if (!state->valid)
1880 		xive->src_count++;
1881 	state->valid = true;
1882 
1883 	return 0;
1884 }
1885 
1886 int kvmppc_xive_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1887 			bool line_status)
1888 {
1889 	struct kvmppc_xive *xive = kvm->arch.xive;
1890 	struct kvmppc_xive_src_block *sb;
1891 	struct kvmppc_xive_irq_state *state;
1892 	u16 idx;
1893 
1894 	if (!xive)
1895 		return -ENODEV;
1896 
1897 	sb = kvmppc_xive_find_source(xive, irq, &idx);
1898 	if (!sb)
1899 		return -EINVAL;
1900 
1901 	/* Perform locklessly .... (we need to do some RCUisms here...) */
1902 	state = &sb->irq_state[idx];
1903 	if (!state->valid)
1904 		return -EINVAL;
1905 
1906 	/* We don't allow a trigger on a passed-through interrupt */
1907 	if (state->pt_number)
1908 		return -EINVAL;
1909 
1910 	if ((level == 1 && state->lsi) || level == KVM_INTERRUPT_SET_LEVEL)
1911 		state->asserted = true;
1912 	else if (level == 0 || level == KVM_INTERRUPT_UNSET) {
1913 		state->asserted = false;
1914 		return 0;
1915 	}
1916 
1917 	/* Trigger the IPI */
1918 	xive_irq_trigger(&state->ipi_data);
1919 
1920 	return 0;
1921 }
1922 
1923 int kvmppc_xive_set_nr_servers(struct kvmppc_xive *xive, u64 addr)
1924 {
1925 	u32 __user *ubufp = (u32 __user *) addr;
1926 	u32 nr_servers;
1927 	int rc = 0;
1928 
1929 	if (get_user(nr_servers, ubufp))
1930 		return -EFAULT;
1931 
1932 	pr_devel("%s nr_servers=%u\n", __func__, nr_servers);
1933 
1934 	if (!nr_servers || nr_servers > KVM_MAX_VCPU_IDS)
1935 		return -EINVAL;
1936 
1937 	mutex_lock(&xive->lock);
1938 	if (xive->vp_base != XIVE_INVALID_VP)
1939 		/* The VP block is allocated once and freed when the device
1940 		 * is released. Better not allow to change its size since its
1941 		 * used by connect_vcpu to validate vCPU ids are valid (eg,
1942 		 * setting it back to a higher value could allow connect_vcpu
1943 		 * to come up with a VP id that goes beyond the VP block, which
1944 		 * is likely to cause a crash in OPAL).
1945 		 */
1946 		rc = -EBUSY;
1947 	else if (nr_servers > KVM_MAX_VCPUS)
1948 		/* We don't need more servers. Higher vCPU ids get packed
1949 		 * down below KVM_MAX_VCPUS by kvmppc_pack_vcpu_id().
1950 		 */
1951 		xive->nr_servers = KVM_MAX_VCPUS;
1952 	else
1953 		xive->nr_servers = nr_servers;
1954 
1955 	mutex_unlock(&xive->lock);
1956 
1957 	return rc;
1958 }
1959 
1960 static int xive_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1961 {
1962 	struct kvmppc_xive *xive = dev->private;
1963 
1964 	/* We honor the existing XICS ioctl */
1965 	switch (attr->group) {
1966 	case KVM_DEV_XICS_GRP_SOURCES:
1967 		return xive_set_source(xive, attr->attr, attr->addr);
1968 	case KVM_DEV_XICS_GRP_CTRL:
1969 		switch (attr->attr) {
1970 		case KVM_DEV_XICS_NR_SERVERS:
1971 			return kvmppc_xive_set_nr_servers(xive, attr->addr);
1972 		}
1973 	}
1974 	return -ENXIO;
1975 }
1976 
1977 static int xive_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1978 {
1979 	struct kvmppc_xive *xive = dev->private;
1980 
1981 	/* We honor the existing XICS ioctl */
1982 	switch (attr->group) {
1983 	case KVM_DEV_XICS_GRP_SOURCES:
1984 		return xive_get_source(xive, attr->attr, attr->addr);
1985 	}
1986 	return -ENXIO;
1987 }
1988 
1989 static int xive_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1990 {
1991 	/* We honor the same limits as XICS, at least for now */
1992 	switch (attr->group) {
1993 	case KVM_DEV_XICS_GRP_SOURCES:
1994 		if (attr->attr >= KVMPPC_XICS_FIRST_IRQ &&
1995 		    attr->attr < KVMPPC_XICS_NR_IRQS)
1996 			return 0;
1997 		break;
1998 	case KVM_DEV_XICS_GRP_CTRL:
1999 		switch (attr->attr) {
2000 		case KVM_DEV_XICS_NR_SERVERS:
2001 			return 0;
2002 		}
2003 	}
2004 	return -ENXIO;
2005 }
2006 
2007 static void kvmppc_xive_cleanup_irq(u32 hw_num, struct xive_irq_data *xd)
2008 {
2009 	xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01);
2010 	xive_native_configure_irq(hw_num, 0, MASKED, 0);
2011 }
2012 
2013 void kvmppc_xive_free_sources(struct kvmppc_xive_src_block *sb)
2014 {
2015 	int i;
2016 
2017 	for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
2018 		struct kvmppc_xive_irq_state *state = &sb->irq_state[i];
2019 
2020 		if (!state->valid)
2021 			continue;
2022 
2023 		kvmppc_xive_cleanup_irq(state->ipi_number, &state->ipi_data);
2024 		xive_cleanup_irq_data(&state->ipi_data);
2025 		xive_native_free_irq(state->ipi_number);
2026 
2027 		/* Pass-through, cleanup too but keep IRQ hw data */
2028 		if (state->pt_number)
2029 			kvmppc_xive_cleanup_irq(state->pt_number, state->pt_data);
2030 
2031 		state->valid = false;
2032 	}
2033 }
2034 
2035 /*
2036  * Called when device fd is closed.  kvm->lock is held.
2037  */
2038 static void kvmppc_xive_release(struct kvm_device *dev)
2039 {
2040 	struct kvmppc_xive *xive = dev->private;
2041 	struct kvm *kvm = xive->kvm;
2042 	struct kvm_vcpu *vcpu;
2043 	unsigned long i;
2044 
2045 	pr_devel("Releasing xive device\n");
2046 
2047 	/*
2048 	 * Since this is the device release function, we know that
2049 	 * userspace does not have any open fd referring to the
2050 	 * device.  Therefore there can not be any of the device
2051 	 * attribute set/get functions being executed concurrently,
2052 	 * and similarly, the connect_vcpu and set/clr_mapped
2053 	 * functions also cannot be being executed.
2054 	 */
2055 
2056 	debugfs_remove(xive->dentry);
2057 
2058 	/*
2059 	 * We should clean up the vCPU interrupt presenters first.
2060 	 */
2061 	kvm_for_each_vcpu(i, vcpu, kvm) {
2062 		/*
2063 		 * Take vcpu->mutex to ensure that no one_reg get/set ioctl
2064 		 * (i.e. kvmppc_xive_[gs]et_icp) can be done concurrently.
2065 		 * Holding the vcpu->mutex also means that the vcpu cannot
2066 		 * be executing the KVM_RUN ioctl, and therefore it cannot
2067 		 * be executing the XIVE push or pull code or accessing
2068 		 * the XIVE MMIO regions.
2069 		 */
2070 		mutex_lock(&vcpu->mutex);
2071 		kvmppc_xive_cleanup_vcpu(vcpu);
2072 		mutex_unlock(&vcpu->mutex);
2073 	}
2074 
2075 	/*
2076 	 * Now that we have cleared vcpu->arch.xive_vcpu, vcpu->arch.irq_type
2077 	 * and vcpu->arch.xive_esc_[vr]addr on each vcpu, we are safe
2078 	 * against xive code getting called during vcpu execution or
2079 	 * set/get one_reg operations.
2080 	 */
2081 	kvm->arch.xive = NULL;
2082 
2083 	/* Mask and free interrupts */
2084 	for (i = 0; i <= xive->max_sbid; i++) {
2085 		if (xive->src_blocks[i])
2086 			kvmppc_xive_free_sources(xive->src_blocks[i]);
2087 		kfree(xive->src_blocks[i]);
2088 		xive->src_blocks[i] = NULL;
2089 	}
2090 
2091 	if (xive->vp_base != XIVE_INVALID_VP)
2092 		xive_native_free_vp_block(xive->vp_base);
2093 
2094 	/*
2095 	 * A reference of the kvmppc_xive pointer is now kept under
2096 	 * the xive_devices struct of the machine for reuse. It is
2097 	 * freed when the VM is destroyed for now until we fix all the
2098 	 * execution paths.
2099 	 */
2100 
2101 	kfree(dev);
2102 }
2103 
2104 /*
2105  * When the guest chooses the interrupt mode (XICS legacy or XIVE
2106  * native), the VM will switch of KVM device. The previous device will
2107  * be "released" before the new one is created.
2108  *
2109  * Until we are sure all execution paths are well protected, provide a
2110  * fail safe (transitional) method for device destruction, in which
2111  * the XIVE device pointer is recycled and not directly freed.
2112  */
2113 struct kvmppc_xive *kvmppc_xive_get_device(struct kvm *kvm, u32 type)
2114 {
2115 	struct kvmppc_xive **kvm_xive_device = type == KVM_DEV_TYPE_XIVE ?
2116 		&kvm->arch.xive_devices.native :
2117 		&kvm->arch.xive_devices.xics_on_xive;
2118 	struct kvmppc_xive *xive = *kvm_xive_device;
2119 
2120 	if (!xive) {
2121 		xive = kzalloc(sizeof(*xive), GFP_KERNEL);
2122 		*kvm_xive_device = xive;
2123 	} else {
2124 		memset(xive, 0, sizeof(*xive));
2125 	}
2126 
2127 	return xive;
2128 }
2129 
2130 /*
2131  * Create a XICS device with XIVE backend.  kvm->lock is held.
2132  */
2133 static int kvmppc_xive_create(struct kvm_device *dev, u32 type)
2134 {
2135 	struct kvmppc_xive *xive;
2136 	struct kvm *kvm = dev->kvm;
2137 
2138 	pr_devel("Creating xive for partition\n");
2139 
2140 	/* Already there ? */
2141 	if (kvm->arch.xive)
2142 		return -EEXIST;
2143 
2144 	xive = kvmppc_xive_get_device(kvm, type);
2145 	if (!xive)
2146 		return -ENOMEM;
2147 
2148 	dev->private = xive;
2149 	xive->dev = dev;
2150 	xive->kvm = kvm;
2151 	mutex_init(&xive->lock);
2152 
2153 	/* We use the default queue size set by the host */
2154 	xive->q_order = xive_native_default_eq_shift();
2155 	if (xive->q_order < PAGE_SHIFT)
2156 		xive->q_page_order = 0;
2157 	else
2158 		xive->q_page_order = xive->q_order - PAGE_SHIFT;
2159 
2160 	/* VP allocation is delayed to the first call to connect_vcpu */
2161 	xive->vp_base = XIVE_INVALID_VP;
2162 	/* KVM_MAX_VCPUS limits the number of VMs to roughly 64 per sockets
2163 	 * on a POWER9 system.
2164 	 */
2165 	xive->nr_servers = KVM_MAX_VCPUS;
2166 
2167 	if (xive_native_has_single_escalation())
2168 		xive->flags |= KVMPPC_XIVE_FLAG_SINGLE_ESCALATION;
2169 
2170 	if (xive_native_has_save_restore())
2171 		xive->flags |= KVMPPC_XIVE_FLAG_SAVE_RESTORE;
2172 
2173 	kvm->arch.xive = xive;
2174 	return 0;
2175 }
2176 
2177 int kvmppc_xive_xics_hcall(struct kvm_vcpu *vcpu, u32 req)
2178 {
2179 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
2180 
2181 	/* The VM should have configured XICS mode before doing XICS hcalls. */
2182 	if (!kvmppc_xics_enabled(vcpu))
2183 		return H_TOO_HARD;
2184 
2185 	switch (req) {
2186 	case H_XIRR:
2187 		return xive_vm_h_xirr(vcpu);
2188 	case H_CPPR:
2189 		return xive_vm_h_cppr(vcpu, kvmppc_get_gpr(vcpu, 4));
2190 	case H_EOI:
2191 		return xive_vm_h_eoi(vcpu, kvmppc_get_gpr(vcpu, 4));
2192 	case H_IPI:
2193 		return xive_vm_h_ipi(vcpu, kvmppc_get_gpr(vcpu, 4),
2194 					  kvmppc_get_gpr(vcpu, 5));
2195 	case H_IPOLL:
2196 		return xive_vm_h_ipoll(vcpu, kvmppc_get_gpr(vcpu, 4));
2197 	case H_XIRR_X:
2198 		xive_vm_h_xirr(vcpu);
2199 		kvmppc_set_gpr(vcpu, 5, get_tb() + vc->tb_offset);
2200 		return H_SUCCESS;
2201 	}
2202 
2203 	return H_UNSUPPORTED;
2204 }
2205 EXPORT_SYMBOL_GPL(kvmppc_xive_xics_hcall);
2206 
2207 int kvmppc_xive_debug_show_queues(struct seq_file *m, struct kvm_vcpu *vcpu)
2208 {
2209 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
2210 	unsigned int i;
2211 
2212 	for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
2213 		struct xive_q *q = &xc->queues[i];
2214 		u32 i0, i1, idx;
2215 
2216 		if (!q->qpage && !xc->esc_virq[i])
2217 			continue;
2218 
2219 		if (q->qpage) {
2220 			seq_printf(m, "    q[%d]: ", i);
2221 			idx = q->idx;
2222 			i0 = be32_to_cpup(q->qpage + idx);
2223 			idx = (idx + 1) & q->msk;
2224 			i1 = be32_to_cpup(q->qpage + idx);
2225 			seq_printf(m, "T=%d %08x %08x...\n", q->toggle,
2226 				   i0, i1);
2227 		}
2228 		if (xc->esc_virq[i]) {
2229 			struct irq_data *d = irq_get_irq_data(xc->esc_virq[i]);
2230 			struct xive_irq_data *xd =
2231 				irq_data_get_irq_handler_data(d);
2232 			u64 pq = xive_vm_esb_load(xd, XIVE_ESB_GET);
2233 
2234 			seq_printf(m, "    ESC %d %c%c EOI @%llx",
2235 				   xc->esc_virq[i],
2236 				   (pq & XIVE_ESB_VAL_P) ? 'P' : '-',
2237 				   (pq & XIVE_ESB_VAL_Q) ? 'Q' : '-',
2238 				   xd->eoi_page);
2239 			seq_puts(m, "\n");
2240 		}
2241 	}
2242 	return 0;
2243 }
2244 
2245 void kvmppc_xive_debug_show_sources(struct seq_file *m,
2246 				    struct kvmppc_xive_src_block *sb)
2247 {
2248 	int i;
2249 
2250 	seq_puts(m, "    LISN      HW/CHIP   TYPE    PQ      EISN    CPU/PRIO\n");
2251 	for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
2252 		struct kvmppc_xive_irq_state *state = &sb->irq_state[i];
2253 		struct xive_irq_data *xd;
2254 		u64 pq;
2255 		u32 hw_num;
2256 
2257 		if (!state->valid)
2258 			continue;
2259 
2260 		kvmppc_xive_select_irq(state, &hw_num, &xd);
2261 
2262 		pq = xive_vm_esb_load(xd, XIVE_ESB_GET);
2263 
2264 		seq_printf(m, "%08x  %08x/%02x", state->number, hw_num,
2265 			   xd->src_chip);
2266 		if (state->lsi)
2267 			seq_printf(m, " %cLSI", state->asserted ? '^' : ' ');
2268 		else
2269 			seq_puts(m, "  MSI");
2270 
2271 		seq_printf(m, " %s  %c%c  %08x   % 4d/%d",
2272 			   state->ipi_number == hw_num ? "IPI" : " PT",
2273 			   pq & XIVE_ESB_VAL_P ? 'P' : '-',
2274 			   pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
2275 			   state->eisn, state->act_server,
2276 			   state->act_priority);
2277 
2278 		seq_puts(m, "\n");
2279 	}
2280 }
2281 
2282 static int xive_debug_show(struct seq_file *m, void *private)
2283 {
2284 	struct kvmppc_xive *xive = m->private;
2285 	struct kvm *kvm = xive->kvm;
2286 	struct kvm_vcpu *vcpu;
2287 	u64 t_rm_h_xirr = 0;
2288 	u64 t_rm_h_ipoll = 0;
2289 	u64 t_rm_h_cppr = 0;
2290 	u64 t_rm_h_eoi = 0;
2291 	u64 t_rm_h_ipi = 0;
2292 	u64 t_vm_h_xirr = 0;
2293 	u64 t_vm_h_ipoll = 0;
2294 	u64 t_vm_h_cppr = 0;
2295 	u64 t_vm_h_eoi = 0;
2296 	u64 t_vm_h_ipi = 0;
2297 	unsigned long i;
2298 
2299 	if (!kvm)
2300 		return 0;
2301 
2302 	seq_puts(m, "=========\nVCPU state\n=========\n");
2303 
2304 	kvm_for_each_vcpu(i, vcpu, kvm) {
2305 		struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
2306 
2307 		if (!xc)
2308 			continue;
2309 
2310 		seq_printf(m, "VCPU %d: VP:%#x/%02x\n"
2311 			 "    CPPR:%#x HWCPPR:%#x MFRR:%#x PEND:%#x h_xirr: R=%lld V=%lld\n",
2312 			 xc->server_num, xc->vp_id, xc->vp_chip_id,
2313 			 xc->cppr, xc->hw_cppr,
2314 			 xc->mfrr, xc->pending,
2315 			 xc->stat_rm_h_xirr, xc->stat_vm_h_xirr);
2316 
2317 		kvmppc_xive_debug_show_queues(m, vcpu);
2318 
2319 		t_rm_h_xirr += xc->stat_rm_h_xirr;
2320 		t_rm_h_ipoll += xc->stat_rm_h_ipoll;
2321 		t_rm_h_cppr += xc->stat_rm_h_cppr;
2322 		t_rm_h_eoi += xc->stat_rm_h_eoi;
2323 		t_rm_h_ipi += xc->stat_rm_h_ipi;
2324 		t_vm_h_xirr += xc->stat_vm_h_xirr;
2325 		t_vm_h_ipoll += xc->stat_vm_h_ipoll;
2326 		t_vm_h_cppr += xc->stat_vm_h_cppr;
2327 		t_vm_h_eoi += xc->stat_vm_h_eoi;
2328 		t_vm_h_ipi += xc->stat_vm_h_ipi;
2329 	}
2330 
2331 	seq_puts(m, "Hcalls totals\n");
2332 	seq_printf(m, " H_XIRR  R=%10lld V=%10lld\n", t_rm_h_xirr, t_vm_h_xirr);
2333 	seq_printf(m, " H_IPOLL R=%10lld V=%10lld\n", t_rm_h_ipoll, t_vm_h_ipoll);
2334 	seq_printf(m, " H_CPPR  R=%10lld V=%10lld\n", t_rm_h_cppr, t_vm_h_cppr);
2335 	seq_printf(m, " H_EOI   R=%10lld V=%10lld\n", t_rm_h_eoi, t_vm_h_eoi);
2336 	seq_printf(m, " H_IPI   R=%10lld V=%10lld\n", t_rm_h_ipi, t_vm_h_ipi);
2337 
2338 	seq_puts(m, "=========\nSources\n=========\n");
2339 
2340 	for (i = 0; i <= xive->max_sbid; i++) {
2341 		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
2342 
2343 		if (sb) {
2344 			arch_spin_lock(&sb->lock);
2345 			kvmppc_xive_debug_show_sources(m, sb);
2346 			arch_spin_unlock(&sb->lock);
2347 		}
2348 	}
2349 
2350 	return 0;
2351 }
2352 
2353 DEFINE_SHOW_ATTRIBUTE(xive_debug);
2354 
2355 static void xive_debugfs_init(struct kvmppc_xive *xive)
2356 {
2357 	xive->dentry = debugfs_create_file("xive", S_IRUGO, xive->kvm->debugfs_dentry,
2358 					   xive, &xive_debug_fops);
2359 
2360 	pr_debug("%s: created\n", __func__);
2361 }
2362 
2363 static void kvmppc_xive_init(struct kvm_device *dev)
2364 {
2365 	struct kvmppc_xive *xive = dev->private;
2366 
2367 	/* Register some debug interfaces */
2368 	xive_debugfs_init(xive);
2369 }
2370 
2371 struct kvm_device_ops kvm_xive_ops = {
2372 	.name = "kvm-xive",
2373 	.create = kvmppc_xive_create,
2374 	.init = kvmppc_xive_init,
2375 	.release = kvmppc_xive_release,
2376 	.set_attr = xive_set_attr,
2377 	.get_attr = xive_get_attr,
2378 	.has_attr = xive_has_attr,
2379 };
2380