xref: /openbmc/linux/arch/powerpc/kvm/book3s_xive.c (revision 4b0aaacee51eb6592a03fdefd5ce97558518e291)
1 /*
2  * Copyright 2017 Benjamin Herrenschmidt, IBM Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License, version 2, as
6  * published by the Free Software Foundation.
7  */
8 
9 #define pr_fmt(fmt) "xive-kvm: " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/kvm_host.h>
13 #include <linux/err.h>
14 #include <linux/gfp.h>
15 #include <linux/spinlock.h>
16 #include <linux/delay.h>
17 #include <linux/percpu.h>
18 #include <linux/cpumask.h>
19 #include <linux/uaccess.h>
20 #include <asm/kvm_book3s.h>
21 #include <asm/kvm_ppc.h>
22 #include <asm/hvcall.h>
23 #include <asm/xics.h>
24 #include <asm/xive.h>
25 #include <asm/xive-regs.h>
26 #include <asm/debug.h>
27 #include <asm/debugfs.h>
28 #include <asm/time.h>
29 #include <asm/opal.h>
30 
31 #include <linux/debugfs.h>
32 #include <linux/seq_file.h>
33 
34 #include "book3s_xive.h"
35 
36 
37 /*
38  * Virtual mode variants of the hcalls for use on radix/radix
39  * with AIL. They require the VCPU's VP to be "pushed"
40  *
41  * We still instantiate them here because we use some of the
42  * generated utility functions as well in this file.
43  */
44 #define XIVE_RUNTIME_CHECKS
45 #define X_PFX xive_vm_
46 #define X_STATIC static
47 #define X_STAT_PFX stat_vm_
48 #define __x_tima		xive_tima
49 #define __x_eoi_page(xd)	((void __iomem *)((xd)->eoi_mmio))
50 #define __x_trig_page(xd)	((void __iomem *)((xd)->trig_mmio))
51 #define __x_writeb	__raw_writeb
52 #define __x_readw	__raw_readw
53 #define __x_readq	__raw_readq
54 #define __x_writeq	__raw_writeq
55 
56 #include "book3s_xive_template.c"
57 
58 /*
59  * We leave a gap of a couple of interrupts in the queue to
60  * account for the IPI and additional safety guard.
61  */
62 #define XIVE_Q_GAP	2
63 
64 /*
65  * This is a simple trigger for a generic XIVE IRQ. This must
66  * only be called for interrupts that support a trigger page
67  */
68 static bool xive_irq_trigger(struct xive_irq_data *xd)
69 {
70 	/* This should be only for MSIs */
71 	if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
72 		return false;
73 
74 	/* Those interrupts should always have a trigger page */
75 	if (WARN_ON(!xd->trig_mmio))
76 		return false;
77 
78 	out_be64(xd->trig_mmio, 0);
79 
80 	return true;
81 }
82 
83 static irqreturn_t xive_esc_irq(int irq, void *data)
84 {
85 	struct kvm_vcpu *vcpu = data;
86 
87 	vcpu->arch.irq_pending = 1;
88 	smp_mb();
89 	if (vcpu->arch.ceded)
90 		kvmppc_fast_vcpu_kick(vcpu);
91 
92 	/* Since we have the no-EOI flag, the interrupt is effectively
93 	 * disabled now. Clearing xive_esc_on means we won't bother
94 	 * doing so on the next entry.
95 	 *
96 	 * This also allows the entry code to know that if a PQ combination
97 	 * of 10 is observed while xive_esc_on is true, it means the queue
98 	 * contains an unprocessed escalation interrupt. We don't make use of
99 	 * that knowledge today but might (see comment in book3s_hv_rmhandler.S)
100 	 */
101 	vcpu->arch.xive_esc_on = false;
102 
103 	return IRQ_HANDLED;
104 }
105 
106 static int xive_attach_escalation(struct kvm_vcpu *vcpu, u8 prio)
107 {
108 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
109 	struct xive_q *q = &xc->queues[prio];
110 	char *name = NULL;
111 	int rc;
112 
113 	/* Already there ? */
114 	if (xc->esc_virq[prio])
115 		return 0;
116 
117 	/* Hook up the escalation interrupt */
118 	xc->esc_virq[prio] = irq_create_mapping(NULL, q->esc_irq);
119 	if (!xc->esc_virq[prio]) {
120 		pr_err("Failed to map escalation interrupt for queue %d of VCPU %d\n",
121 		       prio, xc->server_num);
122 		return -EIO;
123 	}
124 
125 	if (xc->xive->single_escalation)
126 		name = kasprintf(GFP_KERNEL, "kvm-%d-%d",
127 				 vcpu->kvm->arch.lpid, xc->server_num);
128 	else
129 		name = kasprintf(GFP_KERNEL, "kvm-%d-%d-%d",
130 				 vcpu->kvm->arch.lpid, xc->server_num, prio);
131 	if (!name) {
132 		pr_err("Failed to allocate escalation irq name for queue %d of VCPU %d\n",
133 		       prio, xc->server_num);
134 		rc = -ENOMEM;
135 		goto error;
136 	}
137 
138 	pr_devel("Escalation %s irq %d (prio %d)\n", name, xc->esc_virq[prio], prio);
139 
140 	rc = request_irq(xc->esc_virq[prio], xive_esc_irq,
141 			 IRQF_NO_THREAD, name, vcpu);
142 	if (rc) {
143 		pr_err("Failed to request escalation interrupt for queue %d of VCPU %d\n",
144 		       prio, xc->server_num);
145 		goto error;
146 	}
147 	xc->esc_virq_names[prio] = name;
148 
149 	/* In single escalation mode, we grab the ESB MMIO of the
150 	 * interrupt and mask it. Also populate the VCPU v/raddr
151 	 * of the ESB page for use by asm entry/exit code. Finally
152 	 * set the XIVE_IRQ_NO_EOI flag which will prevent the
153 	 * core code from performing an EOI on the escalation
154 	 * interrupt, thus leaving it effectively masked after
155 	 * it fires once.
156 	 */
157 	if (xc->xive->single_escalation) {
158 		struct irq_data *d = irq_get_irq_data(xc->esc_virq[prio]);
159 		struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
160 
161 		xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01);
162 		vcpu->arch.xive_esc_raddr = xd->eoi_page;
163 		vcpu->arch.xive_esc_vaddr = (__force u64)xd->eoi_mmio;
164 		xd->flags |= XIVE_IRQ_NO_EOI;
165 	}
166 
167 	return 0;
168 error:
169 	irq_dispose_mapping(xc->esc_virq[prio]);
170 	xc->esc_virq[prio] = 0;
171 	kfree(name);
172 	return rc;
173 }
174 
175 static int xive_provision_queue(struct kvm_vcpu *vcpu, u8 prio)
176 {
177 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
178 	struct kvmppc_xive *xive = xc->xive;
179 	struct xive_q *q =  &xc->queues[prio];
180 	void *qpage;
181 	int rc;
182 
183 	if (WARN_ON(q->qpage))
184 		return 0;
185 
186 	/* Allocate the queue and retrieve infos on current node for now */
187 	qpage = (__be32 *)__get_free_pages(GFP_KERNEL, xive->q_page_order);
188 	if (!qpage) {
189 		pr_err("Failed to allocate queue %d for VCPU %d\n",
190 		       prio, xc->server_num);
191 		return -ENOMEM;
192 	}
193 	memset(qpage, 0, 1 << xive->q_order);
194 
195 	/*
196 	 * Reconfigure the queue. This will set q->qpage only once the
197 	 * queue is fully configured. This is a requirement for prio 0
198 	 * as we will stop doing EOIs for every IPI as soon as we observe
199 	 * qpage being non-NULL, and instead will only EOI when we receive
200 	 * corresponding queue 0 entries
201 	 */
202 	rc = xive_native_configure_queue(xc->vp_id, q, prio, qpage,
203 					 xive->q_order, true);
204 	if (rc)
205 		pr_err("Failed to configure queue %d for VCPU %d\n",
206 		       prio, xc->server_num);
207 	return rc;
208 }
209 
210 /* Called with kvm_lock held */
211 static int xive_check_provisioning(struct kvm *kvm, u8 prio)
212 {
213 	struct kvmppc_xive *xive = kvm->arch.xive;
214 	struct kvm_vcpu *vcpu;
215 	int i, rc;
216 
217 	lockdep_assert_held(&kvm->lock);
218 
219 	/* Already provisioned ? */
220 	if (xive->qmap & (1 << prio))
221 		return 0;
222 
223 	pr_devel("Provisioning prio... %d\n", prio);
224 
225 	/* Provision each VCPU and enable escalations if needed */
226 	kvm_for_each_vcpu(i, vcpu, kvm) {
227 		if (!vcpu->arch.xive_vcpu)
228 			continue;
229 		rc = xive_provision_queue(vcpu, prio);
230 		if (rc == 0 && !xive->single_escalation)
231 			xive_attach_escalation(vcpu, prio);
232 		if (rc)
233 			return rc;
234 	}
235 
236 	/* Order previous stores and mark it as provisioned */
237 	mb();
238 	xive->qmap |= (1 << prio);
239 	return 0;
240 }
241 
242 static void xive_inc_q_pending(struct kvm *kvm, u32 server, u8 prio)
243 {
244 	struct kvm_vcpu *vcpu;
245 	struct kvmppc_xive_vcpu *xc;
246 	struct xive_q *q;
247 
248 	/* Locate target server */
249 	vcpu = kvmppc_xive_find_server(kvm, server);
250 	if (!vcpu) {
251 		pr_warn("%s: Can't find server %d\n", __func__, server);
252 		return;
253 	}
254 	xc = vcpu->arch.xive_vcpu;
255 	if (WARN_ON(!xc))
256 		return;
257 
258 	q = &xc->queues[prio];
259 	atomic_inc(&q->pending_count);
260 }
261 
262 static int xive_try_pick_queue(struct kvm_vcpu *vcpu, u8 prio)
263 {
264 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
265 	struct xive_q *q;
266 	u32 max;
267 
268 	if (WARN_ON(!xc))
269 		return -ENXIO;
270 	if (!xc->valid)
271 		return -ENXIO;
272 
273 	q = &xc->queues[prio];
274 	if (WARN_ON(!q->qpage))
275 		return -ENXIO;
276 
277 	/* Calculate max number of interrupts in that queue. */
278 	max = (q->msk + 1) - XIVE_Q_GAP;
279 	return atomic_add_unless(&q->count, 1, max) ? 0 : -EBUSY;
280 }
281 
282 static int xive_select_target(struct kvm *kvm, u32 *server, u8 prio)
283 {
284 	struct kvm_vcpu *vcpu;
285 	int i, rc;
286 
287 	/* Locate target server */
288 	vcpu = kvmppc_xive_find_server(kvm, *server);
289 	if (!vcpu) {
290 		pr_devel("Can't find server %d\n", *server);
291 		return -EINVAL;
292 	}
293 
294 	pr_devel("Finding irq target on 0x%x/%d...\n", *server, prio);
295 
296 	/* Try pick it */
297 	rc = xive_try_pick_queue(vcpu, prio);
298 	if (rc == 0)
299 		return rc;
300 
301 	pr_devel(" .. failed, looking up candidate...\n");
302 
303 	/* Failed, pick another VCPU */
304 	kvm_for_each_vcpu(i, vcpu, kvm) {
305 		if (!vcpu->arch.xive_vcpu)
306 			continue;
307 		rc = xive_try_pick_queue(vcpu, prio);
308 		if (rc == 0) {
309 			*server = vcpu->arch.xive_vcpu->server_num;
310 			pr_devel("  found on 0x%x/%d\n", *server, prio);
311 			return rc;
312 		}
313 	}
314 	pr_devel("  no available target !\n");
315 
316 	/* No available target ! */
317 	return -EBUSY;
318 }
319 
320 static u32 xive_vp(struct kvmppc_xive *xive, u32 server)
321 {
322 	return xive->vp_base + kvmppc_pack_vcpu_id(xive->kvm, server);
323 }
324 
325 static u8 xive_lock_and_mask(struct kvmppc_xive *xive,
326 			     struct kvmppc_xive_src_block *sb,
327 			     struct kvmppc_xive_irq_state *state)
328 {
329 	struct xive_irq_data *xd;
330 	u32 hw_num;
331 	u8 old_prio;
332 	u64 val;
333 
334 	/*
335 	 * Take the lock, set masked, try again if racing
336 	 * with H_EOI
337 	 */
338 	for (;;) {
339 		arch_spin_lock(&sb->lock);
340 		old_prio = state->guest_priority;
341 		state->guest_priority = MASKED;
342 		mb();
343 		if (!state->in_eoi)
344 			break;
345 		state->guest_priority = old_prio;
346 		arch_spin_unlock(&sb->lock);
347 	}
348 
349 	/* No change ? Bail */
350 	if (old_prio == MASKED)
351 		return old_prio;
352 
353 	/* Get the right irq */
354 	kvmppc_xive_select_irq(state, &hw_num, &xd);
355 
356 	/*
357 	 * If the interrupt is marked as needing masking via
358 	 * firmware, we do it here. Firmware masking however
359 	 * is "lossy", it won't return the old p and q bits
360 	 * and won't set the interrupt to a state where it will
361 	 * record queued ones. If this is an issue we should do
362 	 * lazy masking instead.
363 	 *
364 	 * For now, we work around this in unmask by forcing
365 	 * an interrupt whenever we unmask a non-LSI via FW
366 	 * (if ever).
367 	 */
368 	if (xd->flags & OPAL_XIVE_IRQ_MASK_VIA_FW) {
369 		xive_native_configure_irq(hw_num,
370 					  xive_vp(xive, state->act_server),
371 					  MASKED, state->number);
372 		/* set old_p so we can track if an H_EOI was done */
373 		state->old_p = true;
374 		state->old_q = false;
375 	} else {
376 		/* Set PQ to 10, return old P and old Q and remember them */
377 		val = xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_10);
378 		state->old_p = !!(val & 2);
379 		state->old_q = !!(val & 1);
380 
381 		/*
382 		 * Synchronize hardware to sensure the queues are updated
383 		 * when masking
384 		 */
385 		xive_native_sync_source(hw_num);
386 	}
387 
388 	return old_prio;
389 }
390 
391 static void xive_lock_for_unmask(struct kvmppc_xive_src_block *sb,
392 				 struct kvmppc_xive_irq_state *state)
393 {
394 	/*
395 	 * Take the lock try again if racing with H_EOI
396 	 */
397 	for (;;) {
398 		arch_spin_lock(&sb->lock);
399 		if (!state->in_eoi)
400 			break;
401 		arch_spin_unlock(&sb->lock);
402 	}
403 }
404 
405 static void xive_finish_unmask(struct kvmppc_xive *xive,
406 			       struct kvmppc_xive_src_block *sb,
407 			       struct kvmppc_xive_irq_state *state,
408 			       u8 prio)
409 {
410 	struct xive_irq_data *xd;
411 	u32 hw_num;
412 
413 	/* If we aren't changing a thing, move on */
414 	if (state->guest_priority != MASKED)
415 		goto bail;
416 
417 	/* Get the right irq */
418 	kvmppc_xive_select_irq(state, &hw_num, &xd);
419 
420 	/*
421 	 * See command in xive_lock_and_mask() concerning masking
422 	 * via firmware.
423 	 */
424 	if (xd->flags & OPAL_XIVE_IRQ_MASK_VIA_FW) {
425 		xive_native_configure_irq(hw_num,
426 					  xive_vp(xive, state->act_server),
427 					  state->act_priority, state->number);
428 		/* If an EOI is needed, do it here */
429 		if (!state->old_p)
430 			xive_vm_source_eoi(hw_num, xd);
431 		/* If this is not an LSI, force a trigger */
432 		if (!(xd->flags & OPAL_XIVE_IRQ_LSI))
433 			xive_irq_trigger(xd);
434 		goto bail;
435 	}
436 
437 	/* Old Q set, set PQ to 11 */
438 	if (state->old_q)
439 		xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_11);
440 
441 	/*
442 	 * If not old P, then perform an "effective" EOI,
443 	 * on the source. This will handle the cases where
444 	 * FW EOI is needed.
445 	 */
446 	if (!state->old_p)
447 		xive_vm_source_eoi(hw_num, xd);
448 
449 	/* Synchronize ordering and mark unmasked */
450 	mb();
451 bail:
452 	state->guest_priority = prio;
453 }
454 
455 /*
456  * Target an interrupt to a given server/prio, this will fallback
457  * to another server if necessary and perform the HW targetting
458  * updates as needed
459  *
460  * NOTE: Must be called with the state lock held
461  */
462 static int xive_target_interrupt(struct kvm *kvm,
463 				 struct kvmppc_xive_irq_state *state,
464 				 u32 server, u8 prio)
465 {
466 	struct kvmppc_xive *xive = kvm->arch.xive;
467 	u32 hw_num;
468 	int rc;
469 
470 	/*
471 	 * This will return a tentative server and actual
472 	 * priority. The count for that new target will have
473 	 * already been incremented.
474 	 */
475 	rc = xive_select_target(kvm, &server, prio);
476 
477 	/*
478 	 * We failed to find a target ? Not much we can do
479 	 * at least until we support the GIQ.
480 	 */
481 	if (rc)
482 		return rc;
483 
484 	/*
485 	 * Increment the old queue pending count if there
486 	 * was one so that the old queue count gets adjusted later
487 	 * when observed to be empty.
488 	 */
489 	if (state->act_priority != MASKED)
490 		xive_inc_q_pending(kvm,
491 				   state->act_server,
492 				   state->act_priority);
493 	/*
494 	 * Update state and HW
495 	 */
496 	state->act_priority = prio;
497 	state->act_server = server;
498 
499 	/* Get the right irq */
500 	kvmppc_xive_select_irq(state, &hw_num, NULL);
501 
502 	return xive_native_configure_irq(hw_num,
503 					 xive_vp(xive, server),
504 					 prio, state->number);
505 }
506 
507 /*
508  * Targetting rules: In order to avoid losing track of
509  * pending interrupts accross mask and unmask, which would
510  * allow queue overflows, we implement the following rules:
511  *
512  *  - Unless it was never enabled (or we run out of capacity)
513  *    an interrupt is always targetted at a valid server/queue
514  *    pair even when "masked" by the guest. This pair tends to
515  *    be the last one used but it can be changed under some
516  *    circumstances. That allows us to separate targetting
517  *    from masking, we only handle accounting during (re)targetting,
518  *    this also allows us to let an interrupt drain into its target
519  *    queue after masking, avoiding complex schemes to remove
520  *    interrupts out of remote processor queues.
521  *
522  *  - When masking, we set PQ to 10 and save the previous value
523  *    of P and Q.
524  *
525  *  - When unmasking, if saved Q was set, we set PQ to 11
526  *    otherwise we leave PQ to the HW state which will be either
527  *    10 if nothing happened or 11 if the interrupt fired while
528  *    masked. Effectively we are OR'ing the previous Q into the
529  *    HW Q.
530  *
531  *    Then if saved P is clear, we do an effective EOI (Q->P->Trigger)
532  *    which will unmask the interrupt and shoot a new one if Q was
533  *    set.
534  *
535  *    Otherwise (saved P is set) we leave PQ unchanged (so 10 or 11,
536  *    effectively meaning an H_EOI from the guest is still expected
537  *    for that interrupt).
538  *
539  *  - If H_EOI occurs while masked, we clear the saved P.
540  *
541  *  - When changing target, we account on the new target and
542  *    increment a separate "pending" counter on the old one.
543  *    This pending counter will be used to decrement the old
544  *    target's count when its queue has been observed empty.
545  */
546 
547 int kvmppc_xive_set_xive(struct kvm *kvm, u32 irq, u32 server,
548 			 u32 priority)
549 {
550 	struct kvmppc_xive *xive = kvm->arch.xive;
551 	struct kvmppc_xive_src_block *sb;
552 	struct kvmppc_xive_irq_state *state;
553 	u8 new_act_prio;
554 	int rc = 0;
555 	u16 idx;
556 
557 	if (!xive)
558 		return -ENODEV;
559 
560 	pr_devel("set_xive ! irq 0x%x server 0x%x prio %d\n",
561 		 irq, server, priority);
562 
563 	/* First, check provisioning of queues */
564 	if (priority != MASKED)
565 		rc = xive_check_provisioning(xive->kvm,
566 			      xive_prio_from_guest(priority));
567 	if (rc) {
568 		pr_devel("  provisioning failure %d !\n", rc);
569 		return rc;
570 	}
571 
572 	sb = kvmppc_xive_find_source(xive, irq, &idx);
573 	if (!sb)
574 		return -EINVAL;
575 	state = &sb->irq_state[idx];
576 
577 	/*
578 	 * We first handle masking/unmasking since the locking
579 	 * might need to be retried due to EOIs, we'll handle
580 	 * targetting changes later. These functions will return
581 	 * with the SB lock held.
582 	 *
583 	 * xive_lock_and_mask() will also set state->guest_priority
584 	 * but won't otherwise change other fields of the state.
585 	 *
586 	 * xive_lock_for_unmask will not actually unmask, this will
587 	 * be done later by xive_finish_unmask() once the targetting
588 	 * has been done, so we don't try to unmask an interrupt
589 	 * that hasn't yet been targetted.
590 	 */
591 	if (priority == MASKED)
592 		xive_lock_and_mask(xive, sb, state);
593 	else
594 		xive_lock_for_unmask(sb, state);
595 
596 
597 	/*
598 	 * Then we handle targetting.
599 	 *
600 	 * First calculate a new "actual priority"
601 	 */
602 	new_act_prio = state->act_priority;
603 	if (priority != MASKED)
604 		new_act_prio = xive_prio_from_guest(priority);
605 
606 	pr_devel(" new_act_prio=%x act_server=%x act_prio=%x\n",
607 		 new_act_prio, state->act_server, state->act_priority);
608 
609 	/*
610 	 * Then check if we actually need to change anything,
611 	 *
612 	 * The condition for re-targetting the interrupt is that
613 	 * we have a valid new priority (new_act_prio is not 0xff)
614 	 * and either the server or the priority changed.
615 	 *
616 	 * Note: If act_priority was ff and the new priority is
617 	 *       also ff, we don't do anything and leave the interrupt
618 	 *       untargetted. An attempt of doing an int_on on an
619 	 *       untargetted interrupt will fail. If that is a problem
620 	 *       we could initialize interrupts with valid default
621 	 */
622 
623 	if (new_act_prio != MASKED &&
624 	    (state->act_server != server ||
625 	     state->act_priority != new_act_prio))
626 		rc = xive_target_interrupt(kvm, state, server, new_act_prio);
627 
628 	/*
629 	 * Perform the final unmasking of the interrupt source
630 	 * if necessary
631 	 */
632 	if (priority != MASKED)
633 		xive_finish_unmask(xive, sb, state, priority);
634 
635 	/*
636 	 * Finally Update saved_priority to match. Only int_on/off
637 	 * set this field to a different value.
638 	 */
639 	state->saved_priority = priority;
640 
641 	arch_spin_unlock(&sb->lock);
642 	return rc;
643 }
644 
645 int kvmppc_xive_get_xive(struct kvm *kvm, u32 irq, u32 *server,
646 			 u32 *priority)
647 {
648 	struct kvmppc_xive *xive = kvm->arch.xive;
649 	struct kvmppc_xive_src_block *sb;
650 	struct kvmppc_xive_irq_state *state;
651 	u16 idx;
652 
653 	if (!xive)
654 		return -ENODEV;
655 
656 	sb = kvmppc_xive_find_source(xive, irq, &idx);
657 	if (!sb)
658 		return -EINVAL;
659 	state = &sb->irq_state[idx];
660 	arch_spin_lock(&sb->lock);
661 	*server = state->act_server;
662 	*priority = state->guest_priority;
663 	arch_spin_unlock(&sb->lock);
664 
665 	return 0;
666 }
667 
668 int kvmppc_xive_int_on(struct kvm *kvm, u32 irq)
669 {
670 	struct kvmppc_xive *xive = kvm->arch.xive;
671 	struct kvmppc_xive_src_block *sb;
672 	struct kvmppc_xive_irq_state *state;
673 	u16 idx;
674 
675 	if (!xive)
676 		return -ENODEV;
677 
678 	sb = kvmppc_xive_find_source(xive, irq, &idx);
679 	if (!sb)
680 		return -EINVAL;
681 	state = &sb->irq_state[idx];
682 
683 	pr_devel("int_on(irq=0x%x)\n", irq);
684 
685 	/*
686 	 * Check if interrupt was not targetted
687 	 */
688 	if (state->act_priority == MASKED) {
689 		pr_devel("int_on on untargetted interrupt\n");
690 		return -EINVAL;
691 	}
692 
693 	/* If saved_priority is 0xff, do nothing */
694 	if (state->saved_priority == MASKED)
695 		return 0;
696 
697 	/*
698 	 * Lock and unmask it.
699 	 */
700 	xive_lock_for_unmask(sb, state);
701 	xive_finish_unmask(xive, sb, state, state->saved_priority);
702 	arch_spin_unlock(&sb->lock);
703 
704 	return 0;
705 }
706 
707 int kvmppc_xive_int_off(struct kvm *kvm, u32 irq)
708 {
709 	struct kvmppc_xive *xive = kvm->arch.xive;
710 	struct kvmppc_xive_src_block *sb;
711 	struct kvmppc_xive_irq_state *state;
712 	u16 idx;
713 
714 	if (!xive)
715 		return -ENODEV;
716 
717 	sb = kvmppc_xive_find_source(xive, irq, &idx);
718 	if (!sb)
719 		return -EINVAL;
720 	state = &sb->irq_state[idx];
721 
722 	pr_devel("int_off(irq=0x%x)\n", irq);
723 
724 	/*
725 	 * Lock and mask
726 	 */
727 	state->saved_priority = xive_lock_and_mask(xive, sb, state);
728 	arch_spin_unlock(&sb->lock);
729 
730 	return 0;
731 }
732 
733 static bool xive_restore_pending_irq(struct kvmppc_xive *xive, u32 irq)
734 {
735 	struct kvmppc_xive_src_block *sb;
736 	struct kvmppc_xive_irq_state *state;
737 	u16 idx;
738 
739 	sb = kvmppc_xive_find_source(xive, irq, &idx);
740 	if (!sb)
741 		return false;
742 	state = &sb->irq_state[idx];
743 	if (!state->valid)
744 		return false;
745 
746 	/*
747 	 * Trigger the IPI. This assumes we never restore a pass-through
748 	 * interrupt which should be safe enough
749 	 */
750 	xive_irq_trigger(&state->ipi_data);
751 
752 	return true;
753 }
754 
755 u64 kvmppc_xive_get_icp(struct kvm_vcpu *vcpu)
756 {
757 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
758 
759 	if (!xc)
760 		return 0;
761 
762 	/* Return the per-cpu state for state saving/migration */
763 	return (u64)xc->cppr << KVM_REG_PPC_ICP_CPPR_SHIFT |
764 	       (u64)xc->mfrr << KVM_REG_PPC_ICP_MFRR_SHIFT |
765 	       (u64)0xff << KVM_REG_PPC_ICP_PPRI_SHIFT;
766 }
767 
768 int kvmppc_xive_set_icp(struct kvm_vcpu *vcpu, u64 icpval)
769 {
770 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
771 	struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
772 	u8 cppr, mfrr;
773 	u32 xisr;
774 
775 	if (!xc || !xive)
776 		return -ENOENT;
777 
778 	/* Grab individual state fields. We don't use pending_pri */
779 	cppr = icpval >> KVM_REG_PPC_ICP_CPPR_SHIFT;
780 	xisr = (icpval >> KVM_REG_PPC_ICP_XISR_SHIFT) &
781 		KVM_REG_PPC_ICP_XISR_MASK;
782 	mfrr = icpval >> KVM_REG_PPC_ICP_MFRR_SHIFT;
783 
784 	pr_devel("set_icp vcpu %d cppr=0x%x mfrr=0x%x xisr=0x%x\n",
785 		 xc->server_num, cppr, mfrr, xisr);
786 
787 	/*
788 	 * We can't update the state of a "pushed" VCPU, but that
789 	 * shouldn't happen.
790 	 */
791 	if (WARN_ON(vcpu->arch.xive_pushed))
792 		return -EIO;
793 
794 	/* Update VCPU HW saved state */
795 	vcpu->arch.xive_saved_state.cppr = cppr;
796 	xc->hw_cppr = xc->cppr = cppr;
797 
798 	/*
799 	 * Update MFRR state. If it's not 0xff, we mark the VCPU as
800 	 * having a pending MFRR change, which will re-evaluate the
801 	 * target. The VCPU will thus potentially get a spurious
802 	 * interrupt but that's not a big deal.
803 	 */
804 	xc->mfrr = mfrr;
805 	if (mfrr < cppr)
806 		xive_irq_trigger(&xc->vp_ipi_data);
807 
808 	/*
809 	 * Now saved XIRR is "interesting". It means there's something in
810 	 * the legacy "1 element" queue... for an IPI we simply ignore it,
811 	 * as the MFRR restore will handle that. For anything else we need
812 	 * to force a resend of the source.
813 	 * However the source may not have been setup yet. If that's the
814 	 * case, we keep that info and increment a counter in the xive to
815 	 * tell subsequent xive_set_source() to go look.
816 	 */
817 	if (xisr > XICS_IPI && !xive_restore_pending_irq(xive, xisr)) {
818 		xc->delayed_irq = xisr;
819 		xive->delayed_irqs++;
820 		pr_devel("  xisr restore delayed\n");
821 	}
822 
823 	return 0;
824 }
825 
826 int kvmppc_xive_set_mapped(struct kvm *kvm, unsigned long guest_irq,
827 			   struct irq_desc *host_desc)
828 {
829 	struct kvmppc_xive *xive = kvm->arch.xive;
830 	struct kvmppc_xive_src_block *sb;
831 	struct kvmppc_xive_irq_state *state;
832 	struct irq_data *host_data = irq_desc_get_irq_data(host_desc);
833 	unsigned int host_irq = irq_desc_get_irq(host_desc);
834 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(host_data);
835 	u16 idx;
836 	u8 prio;
837 	int rc;
838 
839 	if (!xive)
840 		return -ENODEV;
841 
842 	pr_devel("set_mapped girq 0x%lx host HW irq 0x%x...\n",guest_irq, hw_irq);
843 
844 	sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
845 	if (!sb)
846 		return -EINVAL;
847 	state = &sb->irq_state[idx];
848 
849 	/*
850 	 * Mark the passed-through interrupt as going to a VCPU,
851 	 * this will prevent further EOIs and similar operations
852 	 * from the XIVE code. It will also mask the interrupt
853 	 * to either PQ=10 or 11 state, the latter if the interrupt
854 	 * is pending. This will allow us to unmask or retrigger it
855 	 * after routing it to the guest with a simple EOI.
856 	 *
857 	 * The "state" argument is a "token", all it needs is to be
858 	 * non-NULL to switch to passed-through or NULL for the
859 	 * other way around. We may not yet have an actual VCPU
860 	 * target here and we don't really care.
861 	 */
862 	rc = irq_set_vcpu_affinity(host_irq, state);
863 	if (rc) {
864 		pr_err("Failed to set VCPU affinity for irq %d\n", host_irq);
865 		return rc;
866 	}
867 
868 	/*
869 	 * Mask and read state of IPI. We need to know if its P bit
870 	 * is set as that means it's potentially already using a
871 	 * queue entry in the target
872 	 */
873 	prio = xive_lock_and_mask(xive, sb, state);
874 	pr_devel(" old IPI prio %02x P:%d Q:%d\n", prio,
875 		 state->old_p, state->old_q);
876 
877 	/* Turn the IPI hard off */
878 	xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
879 
880 	/* Grab info about irq */
881 	state->pt_number = hw_irq;
882 	state->pt_data = irq_data_get_irq_handler_data(host_data);
883 
884 	/*
885 	 * Configure the IRQ to match the existing configuration of
886 	 * the IPI if it was already targetted. Otherwise this will
887 	 * mask the interrupt in a lossy way (act_priority is 0xff)
888 	 * which is fine for a never started interrupt.
889 	 */
890 	xive_native_configure_irq(hw_irq,
891 				  xive_vp(xive, state->act_server),
892 				  state->act_priority, state->number);
893 
894 	/*
895 	 * We do an EOI to enable the interrupt (and retrigger if needed)
896 	 * if the guest has the interrupt unmasked and the P bit was *not*
897 	 * set in the IPI. If it was set, we know a slot may still be in
898 	 * use in the target queue thus we have to wait for a guest
899 	 * originated EOI
900 	 */
901 	if (prio != MASKED && !state->old_p)
902 		xive_vm_source_eoi(hw_irq, state->pt_data);
903 
904 	/* Clear old_p/old_q as they are no longer relevant */
905 	state->old_p = state->old_q = false;
906 
907 	/* Restore guest prio (unlocks EOI) */
908 	mb();
909 	state->guest_priority = prio;
910 	arch_spin_unlock(&sb->lock);
911 
912 	return 0;
913 }
914 EXPORT_SYMBOL_GPL(kvmppc_xive_set_mapped);
915 
916 int kvmppc_xive_clr_mapped(struct kvm *kvm, unsigned long guest_irq,
917 			   struct irq_desc *host_desc)
918 {
919 	struct kvmppc_xive *xive = kvm->arch.xive;
920 	struct kvmppc_xive_src_block *sb;
921 	struct kvmppc_xive_irq_state *state;
922 	unsigned int host_irq = irq_desc_get_irq(host_desc);
923 	u16 idx;
924 	u8 prio;
925 	int rc;
926 
927 	if (!xive)
928 		return -ENODEV;
929 
930 	pr_devel("clr_mapped girq 0x%lx...\n", guest_irq);
931 
932 	sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
933 	if (!sb)
934 		return -EINVAL;
935 	state = &sb->irq_state[idx];
936 
937 	/*
938 	 * Mask and read state of IRQ. We need to know if its P bit
939 	 * is set as that means it's potentially already using a
940 	 * queue entry in the target
941 	 */
942 	prio = xive_lock_and_mask(xive, sb, state);
943 	pr_devel(" old IRQ prio %02x P:%d Q:%d\n", prio,
944 		 state->old_p, state->old_q);
945 
946 	/*
947 	 * If old_p is set, the interrupt is pending, we switch it to
948 	 * PQ=11. This will force a resend in the host so the interrupt
949 	 * isn't lost to whatver host driver may pick it up
950 	 */
951 	if (state->old_p)
952 		xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_11);
953 
954 	/* Release the passed-through interrupt to the host */
955 	rc = irq_set_vcpu_affinity(host_irq, NULL);
956 	if (rc) {
957 		pr_err("Failed to clr VCPU affinity for irq %d\n", host_irq);
958 		return rc;
959 	}
960 
961 	/* Forget about the IRQ */
962 	state->pt_number = 0;
963 	state->pt_data = NULL;
964 
965 	/* Reconfigure the IPI */
966 	xive_native_configure_irq(state->ipi_number,
967 				  xive_vp(xive, state->act_server),
968 				  state->act_priority, state->number);
969 
970 	/*
971 	 * If old_p is set (we have a queue entry potentially
972 	 * occupied) or the interrupt is masked, we set the IPI
973 	 * to PQ=10 state. Otherwise we just re-enable it (PQ=00).
974 	 */
975 	if (prio == MASKED || state->old_p)
976 		xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_10);
977 	else
978 		xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_00);
979 
980 	/* Restore guest prio (unlocks EOI) */
981 	mb();
982 	state->guest_priority = prio;
983 	arch_spin_unlock(&sb->lock);
984 
985 	return 0;
986 }
987 EXPORT_SYMBOL_GPL(kvmppc_xive_clr_mapped);
988 
989 static void kvmppc_xive_disable_vcpu_interrupts(struct kvm_vcpu *vcpu)
990 {
991 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
992 	struct kvm *kvm = vcpu->kvm;
993 	struct kvmppc_xive *xive = kvm->arch.xive;
994 	int i, j;
995 
996 	for (i = 0; i <= xive->max_sbid; i++) {
997 		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
998 
999 		if (!sb)
1000 			continue;
1001 		for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) {
1002 			struct kvmppc_xive_irq_state *state = &sb->irq_state[j];
1003 
1004 			if (!state->valid)
1005 				continue;
1006 			if (state->act_priority == MASKED)
1007 				continue;
1008 			if (state->act_server != xc->server_num)
1009 				continue;
1010 
1011 			/* Clean it up */
1012 			arch_spin_lock(&sb->lock);
1013 			state->act_priority = MASKED;
1014 			xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
1015 			xive_native_configure_irq(state->ipi_number, 0, MASKED, 0);
1016 			if (state->pt_number) {
1017 				xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_01);
1018 				xive_native_configure_irq(state->pt_number, 0, MASKED, 0);
1019 			}
1020 			arch_spin_unlock(&sb->lock);
1021 		}
1022 	}
1023 }
1024 
1025 void kvmppc_xive_cleanup_vcpu(struct kvm_vcpu *vcpu)
1026 {
1027 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1028 	struct kvmppc_xive *xive = xc->xive;
1029 	int i;
1030 
1031 	pr_devel("cleanup_vcpu(cpu=%d)\n", xc->server_num);
1032 
1033 	/* Ensure no interrupt is still routed to that VP */
1034 	xc->valid = false;
1035 	kvmppc_xive_disable_vcpu_interrupts(vcpu);
1036 
1037 	/* Mask the VP IPI */
1038 	xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_01);
1039 
1040 	/* Disable the VP */
1041 	xive_native_disable_vp(xc->vp_id);
1042 
1043 	/* Free the queues & associated interrupts */
1044 	for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1045 		struct xive_q *q = &xc->queues[i];
1046 
1047 		/* Free the escalation irq */
1048 		if (xc->esc_virq[i]) {
1049 			free_irq(xc->esc_virq[i], vcpu);
1050 			irq_dispose_mapping(xc->esc_virq[i]);
1051 			kfree(xc->esc_virq_names[i]);
1052 		}
1053 		/* Free the queue */
1054 		xive_native_disable_queue(xc->vp_id, q, i);
1055 		if (q->qpage) {
1056 			free_pages((unsigned long)q->qpage,
1057 				   xive->q_page_order);
1058 			q->qpage = NULL;
1059 		}
1060 	}
1061 
1062 	/* Free the IPI */
1063 	if (xc->vp_ipi) {
1064 		xive_cleanup_irq_data(&xc->vp_ipi_data);
1065 		xive_native_free_irq(xc->vp_ipi);
1066 	}
1067 	/* Free the VP */
1068 	kfree(xc);
1069 }
1070 
1071 int kvmppc_xive_connect_vcpu(struct kvm_device *dev,
1072 			     struct kvm_vcpu *vcpu, u32 cpu)
1073 {
1074 	struct kvmppc_xive *xive = dev->private;
1075 	struct kvmppc_xive_vcpu *xc;
1076 	int i, r = -EBUSY;
1077 
1078 	pr_devel("connect_vcpu(cpu=%d)\n", cpu);
1079 
1080 	if (dev->ops != &kvm_xive_ops) {
1081 		pr_devel("Wrong ops !\n");
1082 		return -EPERM;
1083 	}
1084 	if (xive->kvm != vcpu->kvm)
1085 		return -EPERM;
1086 	if (vcpu->arch.irq_type)
1087 		return -EBUSY;
1088 	if (kvmppc_xive_find_server(vcpu->kvm, cpu)) {
1089 		pr_devel("Duplicate !\n");
1090 		return -EEXIST;
1091 	}
1092 	if (cpu >= (KVM_MAX_VCPUS * vcpu->kvm->arch.emul_smt_mode)) {
1093 		pr_devel("Out of bounds !\n");
1094 		return -EINVAL;
1095 	}
1096 	xc = kzalloc(sizeof(*xc), GFP_KERNEL);
1097 	if (!xc)
1098 		return -ENOMEM;
1099 
1100 	/* We need to synchronize with queue provisioning */
1101 	mutex_lock(&vcpu->kvm->lock);
1102 	vcpu->arch.xive_vcpu = xc;
1103 	xc->xive = xive;
1104 	xc->vcpu = vcpu;
1105 	xc->server_num = cpu;
1106 	xc->vp_id = xive_vp(xive, cpu);
1107 	xc->mfrr = 0xff;
1108 	xc->valid = true;
1109 
1110 	r = xive_native_get_vp_info(xc->vp_id, &xc->vp_cam, &xc->vp_chip_id);
1111 	if (r)
1112 		goto bail;
1113 
1114 	/* Configure VCPU fields for use by assembly push/pull */
1115 	vcpu->arch.xive_saved_state.w01 = cpu_to_be64(0xff000000);
1116 	vcpu->arch.xive_cam_word = cpu_to_be32(xc->vp_cam | TM_QW1W2_VO);
1117 
1118 	/* Allocate IPI */
1119 	xc->vp_ipi = xive_native_alloc_irq();
1120 	if (!xc->vp_ipi) {
1121 		pr_err("Failed to allocate xive irq for VCPU IPI\n");
1122 		r = -EIO;
1123 		goto bail;
1124 	}
1125 	pr_devel(" IPI=0x%x\n", xc->vp_ipi);
1126 
1127 	r = xive_native_populate_irq_data(xc->vp_ipi, &xc->vp_ipi_data);
1128 	if (r)
1129 		goto bail;
1130 
1131 	/*
1132 	 * Enable the VP first as the single escalation mode will
1133 	 * affect escalation interrupts numbering
1134 	 */
1135 	r = xive_native_enable_vp(xc->vp_id, xive->single_escalation);
1136 	if (r) {
1137 		pr_err("Failed to enable VP in OPAL, err %d\n", r);
1138 		goto bail;
1139 	}
1140 
1141 	/*
1142 	 * Initialize queues. Initially we set them all for no queueing
1143 	 * and we enable escalation for queue 0 only which we'll use for
1144 	 * our mfrr change notifications. If the VCPU is hot-plugged, we
1145 	 * do handle provisioning however based on the existing "map"
1146 	 * of enabled queues.
1147 	 */
1148 	for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1149 		struct xive_q *q = &xc->queues[i];
1150 
1151 		/* Single escalation, no queue 7 */
1152 		if (i == 7 && xive->single_escalation)
1153 			break;
1154 
1155 		/* Is queue already enabled ? Provision it */
1156 		if (xive->qmap & (1 << i)) {
1157 			r = xive_provision_queue(vcpu, i);
1158 			if (r == 0 && !xive->single_escalation)
1159 				xive_attach_escalation(vcpu, i);
1160 			if (r)
1161 				goto bail;
1162 		} else {
1163 			r = xive_native_configure_queue(xc->vp_id,
1164 							q, i, NULL, 0, true);
1165 			if (r) {
1166 				pr_err("Failed to configure queue %d for VCPU %d\n",
1167 				       i, cpu);
1168 				goto bail;
1169 			}
1170 		}
1171 	}
1172 
1173 	/* If not done above, attach priority 0 escalation */
1174 	r = xive_attach_escalation(vcpu, 0);
1175 	if (r)
1176 		goto bail;
1177 
1178 	/* Route the IPI */
1179 	r = xive_native_configure_irq(xc->vp_ipi, xc->vp_id, 0, XICS_IPI);
1180 	if (!r)
1181 		xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_00);
1182 
1183 bail:
1184 	mutex_unlock(&vcpu->kvm->lock);
1185 	if (r) {
1186 		kvmppc_xive_cleanup_vcpu(vcpu);
1187 		return r;
1188 	}
1189 
1190 	vcpu->arch.irq_type = KVMPPC_IRQ_XICS;
1191 	return 0;
1192 }
1193 
1194 /*
1195  * Scanning of queues before/after migration save
1196  */
1197 static void xive_pre_save_set_queued(struct kvmppc_xive *xive, u32 irq)
1198 {
1199 	struct kvmppc_xive_src_block *sb;
1200 	struct kvmppc_xive_irq_state *state;
1201 	u16 idx;
1202 
1203 	sb = kvmppc_xive_find_source(xive, irq, &idx);
1204 	if (!sb)
1205 		return;
1206 
1207 	state = &sb->irq_state[idx];
1208 
1209 	/* Some sanity checking */
1210 	if (!state->valid) {
1211 		pr_err("invalid irq 0x%x in cpu queue!\n", irq);
1212 		return;
1213 	}
1214 
1215 	/*
1216 	 * If the interrupt is in a queue it should have P set.
1217 	 * We warn so that gets reported. A backtrace isn't useful
1218 	 * so no need to use a WARN_ON.
1219 	 */
1220 	if (!state->saved_p)
1221 		pr_err("Interrupt 0x%x is marked in a queue but P not set !\n", irq);
1222 
1223 	/* Set flag */
1224 	state->in_queue = true;
1225 }
1226 
1227 static void xive_pre_save_mask_irq(struct kvmppc_xive *xive,
1228 				   struct kvmppc_xive_src_block *sb,
1229 				   u32 irq)
1230 {
1231 	struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
1232 
1233 	if (!state->valid)
1234 		return;
1235 
1236 	/* Mask and save state, this will also sync HW queues */
1237 	state->saved_scan_prio = xive_lock_and_mask(xive, sb, state);
1238 
1239 	/* Transfer P and Q */
1240 	state->saved_p = state->old_p;
1241 	state->saved_q = state->old_q;
1242 
1243 	/* Unlock */
1244 	arch_spin_unlock(&sb->lock);
1245 }
1246 
1247 static void xive_pre_save_unmask_irq(struct kvmppc_xive *xive,
1248 				     struct kvmppc_xive_src_block *sb,
1249 				     u32 irq)
1250 {
1251 	struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
1252 
1253 	if (!state->valid)
1254 		return;
1255 
1256 	/*
1257 	 * Lock / exclude EOI (not technically necessary if the
1258 	 * guest isn't running concurrently. If this becomes a
1259 	 * performance issue we can probably remove the lock.
1260 	 */
1261 	xive_lock_for_unmask(sb, state);
1262 
1263 	/* Restore mask/prio if it wasn't masked */
1264 	if (state->saved_scan_prio != MASKED)
1265 		xive_finish_unmask(xive, sb, state, state->saved_scan_prio);
1266 
1267 	/* Unlock */
1268 	arch_spin_unlock(&sb->lock);
1269 }
1270 
1271 static void xive_pre_save_queue(struct kvmppc_xive *xive, struct xive_q *q)
1272 {
1273 	u32 idx = q->idx;
1274 	u32 toggle = q->toggle;
1275 	u32 irq;
1276 
1277 	do {
1278 		irq = __xive_read_eq(q->qpage, q->msk, &idx, &toggle);
1279 		if (irq > XICS_IPI)
1280 			xive_pre_save_set_queued(xive, irq);
1281 	} while(irq);
1282 }
1283 
1284 static void xive_pre_save_scan(struct kvmppc_xive *xive)
1285 {
1286 	struct kvm_vcpu *vcpu = NULL;
1287 	int i, j;
1288 
1289 	/*
1290 	 * See comment in xive_get_source() about how this
1291 	 * work. Collect a stable state for all interrupts
1292 	 */
1293 	for (i = 0; i <= xive->max_sbid; i++) {
1294 		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1295 		if (!sb)
1296 			continue;
1297 		for (j = 0;  j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1298 			xive_pre_save_mask_irq(xive, sb, j);
1299 	}
1300 
1301 	/* Then scan the queues and update the "in_queue" flag */
1302 	kvm_for_each_vcpu(i, vcpu, xive->kvm) {
1303 		struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1304 		if (!xc)
1305 			continue;
1306 		for (j = 0; j < KVMPPC_XIVE_Q_COUNT; j++) {
1307 			if (xc->queues[j].qpage)
1308 				xive_pre_save_queue(xive, &xc->queues[j]);
1309 		}
1310 	}
1311 
1312 	/* Finally restore interrupt states */
1313 	for (i = 0; i <= xive->max_sbid; i++) {
1314 		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1315 		if (!sb)
1316 			continue;
1317 		for (j = 0;  j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1318 			xive_pre_save_unmask_irq(xive, sb, j);
1319 	}
1320 }
1321 
1322 static void xive_post_save_scan(struct kvmppc_xive *xive)
1323 {
1324 	u32 i, j;
1325 
1326 	/* Clear all the in_queue flags */
1327 	for (i = 0; i <= xive->max_sbid; i++) {
1328 		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1329 		if (!sb)
1330 			continue;
1331 		for (j = 0;  j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1332 			sb->irq_state[j].in_queue = false;
1333 	}
1334 
1335 	/* Next get_source() will do a new scan */
1336 	xive->saved_src_count = 0;
1337 }
1338 
1339 /*
1340  * This returns the source configuration and state to user space.
1341  */
1342 static int xive_get_source(struct kvmppc_xive *xive, long irq, u64 addr)
1343 {
1344 	struct kvmppc_xive_src_block *sb;
1345 	struct kvmppc_xive_irq_state *state;
1346 	u64 __user *ubufp = (u64 __user *) addr;
1347 	u64 val, prio;
1348 	u16 idx;
1349 
1350 	sb = kvmppc_xive_find_source(xive, irq, &idx);
1351 	if (!sb)
1352 		return -ENOENT;
1353 
1354 	state = &sb->irq_state[idx];
1355 
1356 	if (!state->valid)
1357 		return -ENOENT;
1358 
1359 	pr_devel("get_source(%ld)...\n", irq);
1360 
1361 	/*
1362 	 * So to properly save the state into something that looks like a
1363 	 * XICS migration stream we cannot treat interrupts individually.
1364 	 *
1365 	 * We need, instead, mask them all (& save their previous PQ state)
1366 	 * to get a stable state in the HW, then sync them to ensure that
1367 	 * any interrupt that had already fired hits its queue, and finally
1368 	 * scan all the queues to collect which interrupts are still present
1369 	 * in the queues, so we can set the "pending" flag on them and
1370 	 * they can be resent on restore.
1371 	 *
1372 	 * So we do it all when the "first" interrupt gets saved, all the
1373 	 * state is collected at that point, the rest of xive_get_source()
1374 	 * will merely collect and convert that state to the expected
1375 	 * userspace bit mask.
1376 	 */
1377 	if (xive->saved_src_count == 0)
1378 		xive_pre_save_scan(xive);
1379 	xive->saved_src_count++;
1380 
1381 	/* Convert saved state into something compatible with xics */
1382 	val = state->act_server;
1383 	prio = state->saved_scan_prio;
1384 
1385 	if (prio == MASKED) {
1386 		val |= KVM_XICS_MASKED;
1387 		prio = state->saved_priority;
1388 	}
1389 	val |= prio << KVM_XICS_PRIORITY_SHIFT;
1390 	if (state->lsi) {
1391 		val |= KVM_XICS_LEVEL_SENSITIVE;
1392 		if (state->saved_p)
1393 			val |= KVM_XICS_PENDING;
1394 	} else {
1395 		if (state->saved_p)
1396 			val |= KVM_XICS_PRESENTED;
1397 
1398 		if (state->saved_q)
1399 			val |= KVM_XICS_QUEUED;
1400 
1401 		/*
1402 		 * We mark it pending (which will attempt a re-delivery)
1403 		 * if we are in a queue *or* we were masked and had
1404 		 * Q set which is equivalent to the XICS "masked pending"
1405 		 * state
1406 		 */
1407 		if (state->in_queue || (prio == MASKED && state->saved_q))
1408 			val |= KVM_XICS_PENDING;
1409 	}
1410 
1411 	/*
1412 	 * If that was the last interrupt saved, reset the
1413 	 * in_queue flags
1414 	 */
1415 	if (xive->saved_src_count == xive->src_count)
1416 		xive_post_save_scan(xive);
1417 
1418 	/* Copy the result to userspace */
1419 	if (put_user(val, ubufp))
1420 		return -EFAULT;
1421 
1422 	return 0;
1423 }
1424 
1425 static struct kvmppc_xive_src_block *xive_create_src_block(struct kvmppc_xive *xive,
1426 							   int irq)
1427 {
1428 	struct kvm *kvm = xive->kvm;
1429 	struct kvmppc_xive_src_block *sb;
1430 	int i, bid;
1431 
1432 	bid = irq >> KVMPPC_XICS_ICS_SHIFT;
1433 
1434 	mutex_lock(&kvm->lock);
1435 
1436 	/* block already exists - somebody else got here first */
1437 	if (xive->src_blocks[bid])
1438 		goto out;
1439 
1440 	/* Create the ICS */
1441 	sb = kzalloc(sizeof(*sb), GFP_KERNEL);
1442 	if (!sb)
1443 		goto out;
1444 
1445 	sb->id = bid;
1446 
1447 	for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
1448 		sb->irq_state[i].number = (bid << KVMPPC_XICS_ICS_SHIFT) | i;
1449 		sb->irq_state[i].guest_priority = MASKED;
1450 		sb->irq_state[i].saved_priority = MASKED;
1451 		sb->irq_state[i].act_priority = MASKED;
1452 	}
1453 	smp_wmb();
1454 	xive->src_blocks[bid] = sb;
1455 
1456 	if (bid > xive->max_sbid)
1457 		xive->max_sbid = bid;
1458 
1459 out:
1460 	mutex_unlock(&kvm->lock);
1461 	return xive->src_blocks[bid];
1462 }
1463 
1464 static bool xive_check_delayed_irq(struct kvmppc_xive *xive, u32 irq)
1465 {
1466 	struct kvm *kvm = xive->kvm;
1467 	struct kvm_vcpu *vcpu = NULL;
1468 	int i;
1469 
1470 	kvm_for_each_vcpu(i, vcpu, kvm) {
1471 		struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1472 
1473 		if (!xc)
1474 			continue;
1475 
1476 		if (xc->delayed_irq == irq) {
1477 			xc->delayed_irq = 0;
1478 			xive->delayed_irqs--;
1479 			return true;
1480 		}
1481 	}
1482 	return false;
1483 }
1484 
1485 static int xive_set_source(struct kvmppc_xive *xive, long irq, u64 addr)
1486 {
1487 	struct kvmppc_xive_src_block *sb;
1488 	struct kvmppc_xive_irq_state *state;
1489 	u64 __user *ubufp = (u64 __user *) addr;
1490 	u16 idx;
1491 	u64 val;
1492 	u8 act_prio, guest_prio;
1493 	u32 server;
1494 	int rc = 0;
1495 
1496 	if (irq < KVMPPC_XICS_FIRST_IRQ || irq >= KVMPPC_XICS_NR_IRQS)
1497 		return -ENOENT;
1498 
1499 	pr_devel("set_source(irq=0x%lx)\n", irq);
1500 
1501 	/* Find the source */
1502 	sb = kvmppc_xive_find_source(xive, irq, &idx);
1503 	if (!sb) {
1504 		pr_devel("No source, creating source block...\n");
1505 		sb = xive_create_src_block(xive, irq);
1506 		if (!sb) {
1507 			pr_devel("Failed to create block...\n");
1508 			return -ENOMEM;
1509 		}
1510 	}
1511 	state = &sb->irq_state[idx];
1512 
1513 	/* Read user passed data */
1514 	if (get_user(val, ubufp)) {
1515 		pr_devel("fault getting user info !\n");
1516 		return -EFAULT;
1517 	}
1518 
1519 	server = val & KVM_XICS_DESTINATION_MASK;
1520 	guest_prio = val >> KVM_XICS_PRIORITY_SHIFT;
1521 
1522 	pr_devel("  val=0x016%llx (server=0x%x, guest_prio=%d)\n",
1523 		 val, server, guest_prio);
1524 
1525 	/*
1526 	 * If the source doesn't already have an IPI, allocate
1527 	 * one and get the corresponding data
1528 	 */
1529 	if (!state->ipi_number) {
1530 		state->ipi_number = xive_native_alloc_irq();
1531 		if (state->ipi_number == 0) {
1532 			pr_devel("Failed to allocate IPI !\n");
1533 			return -ENOMEM;
1534 		}
1535 		xive_native_populate_irq_data(state->ipi_number, &state->ipi_data);
1536 		pr_devel(" src_ipi=0x%x\n", state->ipi_number);
1537 	}
1538 
1539 	/*
1540 	 * We use lock_and_mask() to set us in the right masked
1541 	 * state. We will override that state from the saved state
1542 	 * further down, but this will handle the cases of interrupts
1543 	 * that need FW masking. We set the initial guest_priority to
1544 	 * 0 before calling it to ensure it actually performs the masking.
1545 	 */
1546 	state->guest_priority = 0;
1547 	xive_lock_and_mask(xive, sb, state);
1548 
1549 	/*
1550 	 * Now, we select a target if we have one. If we don't we
1551 	 * leave the interrupt untargetted. It means that an interrupt
1552 	 * can become "untargetted" accross migration if it was masked
1553 	 * by set_xive() but there is little we can do about it.
1554 	 */
1555 
1556 	/* First convert prio and mark interrupt as untargetted */
1557 	act_prio = xive_prio_from_guest(guest_prio);
1558 	state->act_priority = MASKED;
1559 
1560 	/*
1561 	 * We need to drop the lock due to the mutex below. Hopefully
1562 	 * nothing is touching that interrupt yet since it hasn't been
1563 	 * advertized to a running guest yet
1564 	 */
1565 	arch_spin_unlock(&sb->lock);
1566 
1567 	/* If we have a priority target the interrupt */
1568 	if (act_prio != MASKED) {
1569 		/* First, check provisioning of queues */
1570 		mutex_lock(&xive->kvm->lock);
1571 		rc = xive_check_provisioning(xive->kvm, act_prio);
1572 		mutex_unlock(&xive->kvm->lock);
1573 
1574 		/* Target interrupt */
1575 		if (rc == 0)
1576 			rc = xive_target_interrupt(xive->kvm, state,
1577 						   server, act_prio);
1578 		/*
1579 		 * If provisioning or targetting failed, leave it
1580 		 * alone and masked. It will remain disabled until
1581 		 * the guest re-targets it.
1582 		 */
1583 	}
1584 
1585 	/*
1586 	 * Find out if this was a delayed irq stashed in an ICP,
1587 	 * in which case, treat it as pending
1588 	 */
1589 	if (xive->delayed_irqs && xive_check_delayed_irq(xive, irq)) {
1590 		val |= KVM_XICS_PENDING;
1591 		pr_devel("  Found delayed ! forcing PENDING !\n");
1592 	}
1593 
1594 	/* Cleanup the SW state */
1595 	state->old_p = false;
1596 	state->old_q = false;
1597 	state->lsi = false;
1598 	state->asserted = false;
1599 
1600 	/* Restore LSI state */
1601 	if (val & KVM_XICS_LEVEL_SENSITIVE) {
1602 		state->lsi = true;
1603 		if (val & KVM_XICS_PENDING)
1604 			state->asserted = true;
1605 		pr_devel("  LSI ! Asserted=%d\n", state->asserted);
1606 	}
1607 
1608 	/*
1609 	 * Restore P and Q. If the interrupt was pending, we
1610 	 * force Q and !P, which will trigger a resend.
1611 	 *
1612 	 * That means that a guest that had both an interrupt
1613 	 * pending (queued) and Q set will restore with only
1614 	 * one instance of that interrupt instead of 2, but that
1615 	 * is perfectly fine as coalescing interrupts that haven't
1616 	 * been presented yet is always allowed.
1617 	 */
1618 	if (val & KVM_XICS_PRESENTED && !(val & KVM_XICS_PENDING))
1619 		state->old_p = true;
1620 	if (val & KVM_XICS_QUEUED || val & KVM_XICS_PENDING)
1621 		state->old_q = true;
1622 
1623 	pr_devel("  P=%d, Q=%d\n", state->old_p, state->old_q);
1624 
1625 	/*
1626 	 * If the interrupt was unmasked, update guest priority and
1627 	 * perform the appropriate state transition and do a
1628 	 * re-trigger if necessary.
1629 	 */
1630 	if (val & KVM_XICS_MASKED) {
1631 		pr_devel("  masked, saving prio\n");
1632 		state->guest_priority = MASKED;
1633 		state->saved_priority = guest_prio;
1634 	} else {
1635 		pr_devel("  unmasked, restoring to prio %d\n", guest_prio);
1636 		xive_finish_unmask(xive, sb, state, guest_prio);
1637 		state->saved_priority = guest_prio;
1638 	}
1639 
1640 	/* Increment the number of valid sources and mark this one valid */
1641 	if (!state->valid)
1642 		xive->src_count++;
1643 	state->valid = true;
1644 
1645 	return 0;
1646 }
1647 
1648 int kvmppc_xive_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1649 			bool line_status)
1650 {
1651 	struct kvmppc_xive *xive = kvm->arch.xive;
1652 	struct kvmppc_xive_src_block *sb;
1653 	struct kvmppc_xive_irq_state *state;
1654 	u16 idx;
1655 
1656 	if (!xive)
1657 		return -ENODEV;
1658 
1659 	sb = kvmppc_xive_find_source(xive, irq, &idx);
1660 	if (!sb)
1661 		return -EINVAL;
1662 
1663 	/* Perform locklessly .... (we need to do some RCUisms here...) */
1664 	state = &sb->irq_state[idx];
1665 	if (!state->valid)
1666 		return -EINVAL;
1667 
1668 	/* We don't allow a trigger on a passed-through interrupt */
1669 	if (state->pt_number)
1670 		return -EINVAL;
1671 
1672 	if ((level == 1 && state->lsi) || level == KVM_INTERRUPT_SET_LEVEL)
1673 		state->asserted = 1;
1674 	else if (level == 0 || level == KVM_INTERRUPT_UNSET) {
1675 		state->asserted = 0;
1676 		return 0;
1677 	}
1678 
1679 	/* Trigger the IPI */
1680 	xive_irq_trigger(&state->ipi_data);
1681 
1682 	return 0;
1683 }
1684 
1685 static int xive_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1686 {
1687 	struct kvmppc_xive *xive = dev->private;
1688 
1689 	/* We honor the existing XICS ioctl */
1690 	switch (attr->group) {
1691 	case KVM_DEV_XICS_GRP_SOURCES:
1692 		return xive_set_source(xive, attr->attr, attr->addr);
1693 	}
1694 	return -ENXIO;
1695 }
1696 
1697 static int xive_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1698 {
1699 	struct kvmppc_xive *xive = dev->private;
1700 
1701 	/* We honor the existing XICS ioctl */
1702 	switch (attr->group) {
1703 	case KVM_DEV_XICS_GRP_SOURCES:
1704 		return xive_get_source(xive, attr->attr, attr->addr);
1705 	}
1706 	return -ENXIO;
1707 }
1708 
1709 static int xive_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1710 {
1711 	/* We honor the same limits as XICS, at least for now */
1712 	switch (attr->group) {
1713 	case KVM_DEV_XICS_GRP_SOURCES:
1714 		if (attr->attr >= KVMPPC_XICS_FIRST_IRQ &&
1715 		    attr->attr < KVMPPC_XICS_NR_IRQS)
1716 			return 0;
1717 		break;
1718 	}
1719 	return -ENXIO;
1720 }
1721 
1722 static void kvmppc_xive_cleanup_irq(u32 hw_num, struct xive_irq_data *xd)
1723 {
1724 	xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01);
1725 	xive_native_configure_irq(hw_num, 0, MASKED, 0);
1726 	xive_cleanup_irq_data(xd);
1727 }
1728 
1729 static void kvmppc_xive_free_sources(struct kvmppc_xive_src_block *sb)
1730 {
1731 	int i;
1732 
1733 	for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
1734 		struct kvmppc_xive_irq_state *state = &sb->irq_state[i];
1735 
1736 		if (!state->valid)
1737 			continue;
1738 
1739 		kvmppc_xive_cleanup_irq(state->ipi_number, &state->ipi_data);
1740 		xive_native_free_irq(state->ipi_number);
1741 
1742 		/* Pass-through, cleanup too */
1743 		if (state->pt_number)
1744 			kvmppc_xive_cleanup_irq(state->pt_number, state->pt_data);
1745 
1746 		state->valid = false;
1747 	}
1748 }
1749 
1750 static void kvmppc_xive_free(struct kvm_device *dev)
1751 {
1752 	struct kvmppc_xive *xive = dev->private;
1753 	struct kvm *kvm = xive->kvm;
1754 	int i;
1755 
1756 	debugfs_remove(xive->dentry);
1757 
1758 	if (kvm)
1759 		kvm->arch.xive = NULL;
1760 
1761 	/* Mask and free interrupts */
1762 	for (i = 0; i <= xive->max_sbid; i++) {
1763 		if (xive->src_blocks[i])
1764 			kvmppc_xive_free_sources(xive->src_blocks[i]);
1765 		kfree(xive->src_blocks[i]);
1766 		xive->src_blocks[i] = NULL;
1767 	}
1768 
1769 	if (xive->vp_base != XIVE_INVALID_VP)
1770 		xive_native_free_vp_block(xive->vp_base);
1771 
1772 
1773 	kfree(xive);
1774 	kfree(dev);
1775 }
1776 
1777 static int kvmppc_xive_create(struct kvm_device *dev, u32 type)
1778 {
1779 	struct kvmppc_xive *xive;
1780 	struct kvm *kvm = dev->kvm;
1781 	int ret = 0;
1782 
1783 	pr_devel("Creating xive for partition\n");
1784 
1785 	xive = kzalloc(sizeof(*xive), GFP_KERNEL);
1786 	if (!xive)
1787 		return -ENOMEM;
1788 
1789 	dev->private = xive;
1790 	xive->dev = dev;
1791 	xive->kvm = kvm;
1792 
1793 	/* Already there ? */
1794 	if (kvm->arch.xive)
1795 		ret = -EEXIST;
1796 	else
1797 		kvm->arch.xive = xive;
1798 
1799 	/* We use the default queue size set by the host */
1800 	xive->q_order = xive_native_default_eq_shift();
1801 	if (xive->q_order < PAGE_SHIFT)
1802 		xive->q_page_order = 0;
1803 	else
1804 		xive->q_page_order = xive->q_order - PAGE_SHIFT;
1805 
1806 	/* Allocate a bunch of VPs */
1807 	xive->vp_base = xive_native_alloc_vp_block(KVM_MAX_VCPUS);
1808 	pr_devel("VP_Base=%x\n", xive->vp_base);
1809 
1810 	if (xive->vp_base == XIVE_INVALID_VP)
1811 		ret = -ENOMEM;
1812 
1813 	xive->single_escalation = xive_native_has_single_escalation();
1814 
1815 	if (ret) {
1816 		kfree(xive);
1817 		return ret;
1818 	}
1819 
1820 	return 0;
1821 }
1822 
1823 
1824 static int xive_debug_show(struct seq_file *m, void *private)
1825 {
1826 	struct kvmppc_xive *xive = m->private;
1827 	struct kvm *kvm = xive->kvm;
1828 	struct kvm_vcpu *vcpu;
1829 	u64 t_rm_h_xirr = 0;
1830 	u64 t_rm_h_ipoll = 0;
1831 	u64 t_rm_h_cppr = 0;
1832 	u64 t_rm_h_eoi = 0;
1833 	u64 t_rm_h_ipi = 0;
1834 	u64 t_vm_h_xirr = 0;
1835 	u64 t_vm_h_ipoll = 0;
1836 	u64 t_vm_h_cppr = 0;
1837 	u64 t_vm_h_eoi = 0;
1838 	u64 t_vm_h_ipi = 0;
1839 	unsigned int i;
1840 
1841 	if (!kvm)
1842 		return 0;
1843 
1844 	seq_printf(m, "=========\nVCPU state\n=========\n");
1845 
1846 	kvm_for_each_vcpu(i, vcpu, kvm) {
1847 		struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1848 		unsigned int i;
1849 
1850 		if (!xc)
1851 			continue;
1852 
1853 		seq_printf(m, "cpu server %#x CPPR:%#x HWCPPR:%#x"
1854 			   " MFRR:%#x PEND:%#x h_xirr: R=%lld V=%lld\n",
1855 			   xc->server_num, xc->cppr, xc->hw_cppr,
1856 			   xc->mfrr, xc->pending,
1857 			   xc->stat_rm_h_xirr, xc->stat_vm_h_xirr);
1858 		for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1859 			struct xive_q *q = &xc->queues[i];
1860 			u32 i0, i1, idx;
1861 
1862 			if (!q->qpage && !xc->esc_virq[i])
1863 				continue;
1864 
1865 			seq_printf(m, " [q%d]: ", i);
1866 
1867 			if (q->qpage) {
1868 				idx = q->idx;
1869 				i0 = be32_to_cpup(q->qpage + idx);
1870 				idx = (idx + 1) & q->msk;
1871 				i1 = be32_to_cpup(q->qpage + idx);
1872 				seq_printf(m, "T=%d %08x %08x... \n", q->toggle, i0, i1);
1873 			}
1874 			if (xc->esc_virq[i]) {
1875 				struct irq_data *d = irq_get_irq_data(xc->esc_virq[i]);
1876 				struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
1877 				u64 pq = xive_vm_esb_load(xd, XIVE_ESB_GET);
1878 				seq_printf(m, "E:%c%c I(%d:%llx:%llx)",
1879 					   (pq & XIVE_ESB_VAL_P) ? 'P' : 'p',
1880 					   (pq & XIVE_ESB_VAL_Q) ? 'Q' : 'q',
1881 					   xc->esc_virq[i], pq, xd->eoi_page);
1882 				seq_printf(m, "\n");
1883 			}
1884 		}
1885 
1886 		t_rm_h_xirr += xc->stat_rm_h_xirr;
1887 		t_rm_h_ipoll += xc->stat_rm_h_ipoll;
1888 		t_rm_h_cppr += xc->stat_rm_h_cppr;
1889 		t_rm_h_eoi += xc->stat_rm_h_eoi;
1890 		t_rm_h_ipi += xc->stat_rm_h_ipi;
1891 		t_vm_h_xirr += xc->stat_vm_h_xirr;
1892 		t_vm_h_ipoll += xc->stat_vm_h_ipoll;
1893 		t_vm_h_cppr += xc->stat_vm_h_cppr;
1894 		t_vm_h_eoi += xc->stat_vm_h_eoi;
1895 		t_vm_h_ipi += xc->stat_vm_h_ipi;
1896 	}
1897 
1898 	seq_printf(m, "Hcalls totals\n");
1899 	seq_printf(m, " H_XIRR  R=%10lld V=%10lld\n", t_rm_h_xirr, t_vm_h_xirr);
1900 	seq_printf(m, " H_IPOLL R=%10lld V=%10lld\n", t_rm_h_ipoll, t_vm_h_ipoll);
1901 	seq_printf(m, " H_CPPR  R=%10lld V=%10lld\n", t_rm_h_cppr, t_vm_h_cppr);
1902 	seq_printf(m, " H_EOI   R=%10lld V=%10lld\n", t_rm_h_eoi, t_vm_h_eoi);
1903 	seq_printf(m, " H_IPI   R=%10lld V=%10lld\n", t_rm_h_ipi, t_vm_h_ipi);
1904 
1905 	return 0;
1906 }
1907 
1908 static int xive_debug_open(struct inode *inode, struct file *file)
1909 {
1910 	return single_open(file, xive_debug_show, inode->i_private);
1911 }
1912 
1913 static const struct file_operations xive_debug_fops = {
1914 	.open = xive_debug_open,
1915 	.read = seq_read,
1916 	.llseek = seq_lseek,
1917 	.release = single_release,
1918 };
1919 
1920 static void xive_debugfs_init(struct kvmppc_xive *xive)
1921 {
1922 	char *name;
1923 
1924 	name = kasprintf(GFP_KERNEL, "kvm-xive-%p", xive);
1925 	if (!name) {
1926 		pr_err("%s: no memory for name\n", __func__);
1927 		return;
1928 	}
1929 
1930 	xive->dentry = debugfs_create_file(name, S_IRUGO, powerpc_debugfs_root,
1931 					   xive, &xive_debug_fops);
1932 
1933 	pr_debug("%s: created %s\n", __func__, name);
1934 	kfree(name);
1935 }
1936 
1937 static void kvmppc_xive_init(struct kvm_device *dev)
1938 {
1939 	struct kvmppc_xive *xive = (struct kvmppc_xive *)dev->private;
1940 
1941 	/* Register some debug interfaces */
1942 	xive_debugfs_init(xive);
1943 }
1944 
1945 struct kvm_device_ops kvm_xive_ops = {
1946 	.name = "kvm-xive",
1947 	.create = kvmppc_xive_create,
1948 	.init = kvmppc_xive_init,
1949 	.destroy = kvmppc_xive_free,
1950 	.set_attr = xive_set_attr,
1951 	.get_attr = xive_get_attr,
1952 	.has_attr = xive_has_attr,
1953 };
1954 
1955 void kvmppc_xive_init_module(void)
1956 {
1957 	__xive_vm_h_xirr = xive_vm_h_xirr;
1958 	__xive_vm_h_ipoll = xive_vm_h_ipoll;
1959 	__xive_vm_h_ipi = xive_vm_h_ipi;
1960 	__xive_vm_h_cppr = xive_vm_h_cppr;
1961 	__xive_vm_h_eoi = xive_vm_h_eoi;
1962 }
1963 
1964 void kvmppc_xive_exit_module(void)
1965 {
1966 	__xive_vm_h_xirr = NULL;
1967 	__xive_vm_h_ipoll = NULL;
1968 	__xive_vm_h_ipi = NULL;
1969 	__xive_vm_h_cppr = NULL;
1970 	__xive_vm_h_eoi = NULL;
1971 }
1972