1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2017 Benjamin Herrenschmidt, IBM Corporation. 4 */ 5 6 #define pr_fmt(fmt) "xive-kvm: " fmt 7 8 #include <linux/kernel.h> 9 #include <linux/kvm_host.h> 10 #include <linux/err.h> 11 #include <linux/gfp.h> 12 #include <linux/spinlock.h> 13 #include <linux/delay.h> 14 #include <linux/percpu.h> 15 #include <linux/cpumask.h> 16 #include <linux/uaccess.h> 17 #include <asm/kvm_book3s.h> 18 #include <asm/kvm_ppc.h> 19 #include <asm/hvcall.h> 20 #include <asm/xics.h> 21 #include <asm/xive.h> 22 #include <asm/xive-regs.h> 23 #include <asm/debug.h> 24 #include <asm/debugfs.h> 25 #include <asm/time.h> 26 #include <asm/opal.h> 27 28 #include <linux/debugfs.h> 29 #include <linux/seq_file.h> 30 31 #include "book3s_xive.h" 32 33 34 /* 35 * Virtual mode variants of the hcalls for use on radix/radix 36 * with AIL. They require the VCPU's VP to be "pushed" 37 * 38 * We still instantiate them here because we use some of the 39 * generated utility functions as well in this file. 40 */ 41 #define XIVE_RUNTIME_CHECKS 42 #define X_PFX xive_vm_ 43 #define X_STATIC static 44 #define X_STAT_PFX stat_vm_ 45 #define __x_tima xive_tima 46 #define __x_eoi_page(xd) ((void __iomem *)((xd)->eoi_mmio)) 47 #define __x_trig_page(xd) ((void __iomem *)((xd)->trig_mmio)) 48 #define __x_writeb __raw_writeb 49 #define __x_readw __raw_readw 50 #define __x_readq __raw_readq 51 #define __x_writeq __raw_writeq 52 53 #include "book3s_xive_template.c" 54 55 /* 56 * We leave a gap of a couple of interrupts in the queue to 57 * account for the IPI and additional safety guard. 58 */ 59 #define XIVE_Q_GAP 2 60 61 /* 62 * Push a vcpu's context to the XIVE on guest entry. 63 * This assumes we are in virtual mode (MMU on) 64 */ 65 void kvmppc_xive_push_vcpu(struct kvm_vcpu *vcpu) 66 { 67 void __iomem *tima = local_paca->kvm_hstate.xive_tima_virt; 68 u64 pq; 69 70 /* 71 * Nothing to do if the platform doesn't have a XIVE 72 * or this vCPU doesn't have its own XIVE context 73 * (e.g. because it's not using an in-kernel interrupt controller). 74 */ 75 if (!tima || !vcpu->arch.xive_cam_word) 76 return; 77 78 eieio(); 79 __raw_writeq(vcpu->arch.xive_saved_state.w01, tima + TM_QW1_OS); 80 __raw_writel(vcpu->arch.xive_cam_word, tima + TM_QW1_OS + TM_WORD2); 81 vcpu->arch.xive_pushed = 1; 82 eieio(); 83 84 /* 85 * We clear the irq_pending flag. There is a small chance of a 86 * race vs. the escalation interrupt happening on another 87 * processor setting it again, but the only consequence is to 88 * cause a spurious wakeup on the next H_CEDE, which is not an 89 * issue. 90 */ 91 vcpu->arch.irq_pending = 0; 92 93 /* 94 * In single escalation mode, if the escalation interrupt is 95 * on, we mask it. 96 */ 97 if (vcpu->arch.xive_esc_on) { 98 pq = __raw_readq((void __iomem *)(vcpu->arch.xive_esc_vaddr + 99 XIVE_ESB_SET_PQ_01)); 100 mb(); 101 102 /* 103 * We have a possible subtle race here: The escalation 104 * interrupt might have fired and be on its way to the 105 * host queue while we mask it, and if we unmask it 106 * early enough (re-cede right away), there is a 107 * theorical possibility that it fires again, thus 108 * landing in the target queue more than once which is 109 * a big no-no. 110 * 111 * Fortunately, solving this is rather easy. If the 112 * above load setting PQ to 01 returns a previous 113 * value where P is set, then we know the escalation 114 * interrupt is somewhere on its way to the host. In 115 * that case we simply don't clear the xive_esc_on 116 * flag below. It will be eventually cleared by the 117 * handler for the escalation interrupt. 118 * 119 * Then, when doing a cede, we check that flag again 120 * before re-enabling the escalation interrupt, and if 121 * set, we abort the cede. 122 */ 123 if (!(pq & XIVE_ESB_VAL_P)) 124 /* Now P is 0, we can clear the flag */ 125 vcpu->arch.xive_esc_on = 0; 126 } 127 } 128 EXPORT_SYMBOL_GPL(kvmppc_xive_push_vcpu); 129 130 /* 131 * This is a simple trigger for a generic XIVE IRQ. This must 132 * only be called for interrupts that support a trigger page 133 */ 134 static bool xive_irq_trigger(struct xive_irq_data *xd) 135 { 136 /* This should be only for MSIs */ 137 if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI)) 138 return false; 139 140 /* Those interrupts should always have a trigger page */ 141 if (WARN_ON(!xd->trig_mmio)) 142 return false; 143 144 out_be64(xd->trig_mmio, 0); 145 146 return true; 147 } 148 149 static irqreturn_t xive_esc_irq(int irq, void *data) 150 { 151 struct kvm_vcpu *vcpu = data; 152 153 vcpu->arch.irq_pending = 1; 154 smp_mb(); 155 if (vcpu->arch.ceded) 156 kvmppc_fast_vcpu_kick(vcpu); 157 158 /* Since we have the no-EOI flag, the interrupt is effectively 159 * disabled now. Clearing xive_esc_on means we won't bother 160 * doing so on the next entry. 161 * 162 * This also allows the entry code to know that if a PQ combination 163 * of 10 is observed while xive_esc_on is true, it means the queue 164 * contains an unprocessed escalation interrupt. We don't make use of 165 * that knowledge today but might (see comment in book3s_hv_rmhandler.S) 166 */ 167 vcpu->arch.xive_esc_on = false; 168 169 /* This orders xive_esc_on = false vs. subsequent stale_p = true */ 170 smp_wmb(); /* goes with smp_mb() in cleanup_single_escalation */ 171 172 return IRQ_HANDLED; 173 } 174 175 int kvmppc_xive_attach_escalation(struct kvm_vcpu *vcpu, u8 prio, 176 bool single_escalation) 177 { 178 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 179 struct xive_q *q = &xc->queues[prio]; 180 char *name = NULL; 181 int rc; 182 183 /* Already there ? */ 184 if (xc->esc_virq[prio]) 185 return 0; 186 187 /* Hook up the escalation interrupt */ 188 xc->esc_virq[prio] = irq_create_mapping(NULL, q->esc_irq); 189 if (!xc->esc_virq[prio]) { 190 pr_err("Failed to map escalation interrupt for queue %d of VCPU %d\n", 191 prio, xc->server_num); 192 return -EIO; 193 } 194 195 if (single_escalation) 196 name = kasprintf(GFP_KERNEL, "kvm-%d-%d", 197 vcpu->kvm->arch.lpid, xc->server_num); 198 else 199 name = kasprintf(GFP_KERNEL, "kvm-%d-%d-%d", 200 vcpu->kvm->arch.lpid, xc->server_num, prio); 201 if (!name) { 202 pr_err("Failed to allocate escalation irq name for queue %d of VCPU %d\n", 203 prio, xc->server_num); 204 rc = -ENOMEM; 205 goto error; 206 } 207 208 pr_devel("Escalation %s irq %d (prio %d)\n", name, xc->esc_virq[prio], prio); 209 210 rc = request_irq(xc->esc_virq[prio], xive_esc_irq, 211 IRQF_NO_THREAD, name, vcpu); 212 if (rc) { 213 pr_err("Failed to request escalation interrupt for queue %d of VCPU %d\n", 214 prio, xc->server_num); 215 goto error; 216 } 217 xc->esc_virq_names[prio] = name; 218 219 /* In single escalation mode, we grab the ESB MMIO of the 220 * interrupt and mask it. Also populate the VCPU v/raddr 221 * of the ESB page for use by asm entry/exit code. Finally 222 * set the XIVE_IRQ_NO_EOI flag which will prevent the 223 * core code from performing an EOI on the escalation 224 * interrupt, thus leaving it effectively masked after 225 * it fires once. 226 */ 227 if (single_escalation) { 228 struct irq_data *d = irq_get_irq_data(xc->esc_virq[prio]); 229 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 230 231 xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01); 232 vcpu->arch.xive_esc_raddr = xd->eoi_page; 233 vcpu->arch.xive_esc_vaddr = (__force u64)xd->eoi_mmio; 234 xd->flags |= XIVE_IRQ_NO_EOI; 235 } 236 237 return 0; 238 error: 239 irq_dispose_mapping(xc->esc_virq[prio]); 240 xc->esc_virq[prio] = 0; 241 kfree(name); 242 return rc; 243 } 244 245 static int xive_provision_queue(struct kvm_vcpu *vcpu, u8 prio) 246 { 247 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 248 struct kvmppc_xive *xive = xc->xive; 249 struct xive_q *q = &xc->queues[prio]; 250 void *qpage; 251 int rc; 252 253 if (WARN_ON(q->qpage)) 254 return 0; 255 256 /* Allocate the queue and retrieve infos on current node for now */ 257 qpage = (__be32 *)__get_free_pages(GFP_KERNEL, xive->q_page_order); 258 if (!qpage) { 259 pr_err("Failed to allocate queue %d for VCPU %d\n", 260 prio, xc->server_num); 261 return -ENOMEM; 262 } 263 memset(qpage, 0, 1 << xive->q_order); 264 265 /* 266 * Reconfigure the queue. This will set q->qpage only once the 267 * queue is fully configured. This is a requirement for prio 0 268 * as we will stop doing EOIs for every IPI as soon as we observe 269 * qpage being non-NULL, and instead will only EOI when we receive 270 * corresponding queue 0 entries 271 */ 272 rc = xive_native_configure_queue(xc->vp_id, q, prio, qpage, 273 xive->q_order, true); 274 if (rc) 275 pr_err("Failed to configure queue %d for VCPU %d\n", 276 prio, xc->server_num); 277 return rc; 278 } 279 280 /* Called with xive->lock held */ 281 static int xive_check_provisioning(struct kvm *kvm, u8 prio) 282 { 283 struct kvmppc_xive *xive = kvm->arch.xive; 284 struct kvm_vcpu *vcpu; 285 int i, rc; 286 287 lockdep_assert_held(&xive->lock); 288 289 /* Already provisioned ? */ 290 if (xive->qmap & (1 << prio)) 291 return 0; 292 293 pr_devel("Provisioning prio... %d\n", prio); 294 295 /* Provision each VCPU and enable escalations if needed */ 296 kvm_for_each_vcpu(i, vcpu, kvm) { 297 if (!vcpu->arch.xive_vcpu) 298 continue; 299 rc = xive_provision_queue(vcpu, prio); 300 if (rc == 0 && !xive->single_escalation) 301 kvmppc_xive_attach_escalation(vcpu, prio, 302 xive->single_escalation); 303 if (rc) 304 return rc; 305 } 306 307 /* Order previous stores and mark it as provisioned */ 308 mb(); 309 xive->qmap |= (1 << prio); 310 return 0; 311 } 312 313 static void xive_inc_q_pending(struct kvm *kvm, u32 server, u8 prio) 314 { 315 struct kvm_vcpu *vcpu; 316 struct kvmppc_xive_vcpu *xc; 317 struct xive_q *q; 318 319 /* Locate target server */ 320 vcpu = kvmppc_xive_find_server(kvm, server); 321 if (!vcpu) { 322 pr_warn("%s: Can't find server %d\n", __func__, server); 323 return; 324 } 325 xc = vcpu->arch.xive_vcpu; 326 if (WARN_ON(!xc)) 327 return; 328 329 q = &xc->queues[prio]; 330 atomic_inc(&q->pending_count); 331 } 332 333 static int xive_try_pick_queue(struct kvm_vcpu *vcpu, u8 prio) 334 { 335 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 336 struct xive_q *q; 337 u32 max; 338 339 if (WARN_ON(!xc)) 340 return -ENXIO; 341 if (!xc->valid) 342 return -ENXIO; 343 344 q = &xc->queues[prio]; 345 if (WARN_ON(!q->qpage)) 346 return -ENXIO; 347 348 /* Calculate max number of interrupts in that queue. */ 349 max = (q->msk + 1) - XIVE_Q_GAP; 350 return atomic_add_unless(&q->count, 1, max) ? 0 : -EBUSY; 351 } 352 353 int kvmppc_xive_select_target(struct kvm *kvm, u32 *server, u8 prio) 354 { 355 struct kvm_vcpu *vcpu; 356 int i, rc; 357 358 /* Locate target server */ 359 vcpu = kvmppc_xive_find_server(kvm, *server); 360 if (!vcpu) { 361 pr_devel("Can't find server %d\n", *server); 362 return -EINVAL; 363 } 364 365 pr_devel("Finding irq target on 0x%x/%d...\n", *server, prio); 366 367 /* Try pick it */ 368 rc = xive_try_pick_queue(vcpu, prio); 369 if (rc == 0) 370 return rc; 371 372 pr_devel(" .. failed, looking up candidate...\n"); 373 374 /* Failed, pick another VCPU */ 375 kvm_for_each_vcpu(i, vcpu, kvm) { 376 if (!vcpu->arch.xive_vcpu) 377 continue; 378 rc = xive_try_pick_queue(vcpu, prio); 379 if (rc == 0) { 380 *server = vcpu->arch.xive_vcpu->server_num; 381 pr_devel(" found on 0x%x/%d\n", *server, prio); 382 return rc; 383 } 384 } 385 pr_devel(" no available target !\n"); 386 387 /* No available target ! */ 388 return -EBUSY; 389 } 390 391 static u8 xive_lock_and_mask(struct kvmppc_xive *xive, 392 struct kvmppc_xive_src_block *sb, 393 struct kvmppc_xive_irq_state *state) 394 { 395 struct xive_irq_data *xd; 396 u32 hw_num; 397 u8 old_prio; 398 u64 val; 399 400 /* 401 * Take the lock, set masked, try again if racing 402 * with H_EOI 403 */ 404 for (;;) { 405 arch_spin_lock(&sb->lock); 406 old_prio = state->guest_priority; 407 state->guest_priority = MASKED; 408 mb(); 409 if (!state->in_eoi) 410 break; 411 state->guest_priority = old_prio; 412 arch_spin_unlock(&sb->lock); 413 } 414 415 /* No change ? Bail */ 416 if (old_prio == MASKED) 417 return old_prio; 418 419 /* Get the right irq */ 420 kvmppc_xive_select_irq(state, &hw_num, &xd); 421 422 /* 423 * If the interrupt is marked as needing masking via 424 * firmware, we do it here. Firmware masking however 425 * is "lossy", it won't return the old p and q bits 426 * and won't set the interrupt to a state where it will 427 * record queued ones. If this is an issue we should do 428 * lazy masking instead. 429 * 430 * For now, we work around this in unmask by forcing 431 * an interrupt whenever we unmask a non-LSI via FW 432 * (if ever). 433 */ 434 if (xd->flags & OPAL_XIVE_IRQ_MASK_VIA_FW) { 435 xive_native_configure_irq(hw_num, 436 kvmppc_xive_vp(xive, state->act_server), 437 MASKED, state->number); 438 /* set old_p so we can track if an H_EOI was done */ 439 state->old_p = true; 440 state->old_q = false; 441 } else { 442 /* Set PQ to 10, return old P and old Q and remember them */ 443 val = xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_10); 444 state->old_p = !!(val & 2); 445 state->old_q = !!(val & 1); 446 447 /* 448 * Synchronize hardware to sensure the queues are updated 449 * when masking 450 */ 451 xive_native_sync_source(hw_num); 452 } 453 454 return old_prio; 455 } 456 457 static void xive_lock_for_unmask(struct kvmppc_xive_src_block *sb, 458 struct kvmppc_xive_irq_state *state) 459 { 460 /* 461 * Take the lock try again if racing with H_EOI 462 */ 463 for (;;) { 464 arch_spin_lock(&sb->lock); 465 if (!state->in_eoi) 466 break; 467 arch_spin_unlock(&sb->lock); 468 } 469 } 470 471 static void xive_finish_unmask(struct kvmppc_xive *xive, 472 struct kvmppc_xive_src_block *sb, 473 struct kvmppc_xive_irq_state *state, 474 u8 prio) 475 { 476 struct xive_irq_data *xd; 477 u32 hw_num; 478 479 /* If we aren't changing a thing, move on */ 480 if (state->guest_priority != MASKED) 481 goto bail; 482 483 /* Get the right irq */ 484 kvmppc_xive_select_irq(state, &hw_num, &xd); 485 486 /* 487 * See comment in xive_lock_and_mask() concerning masking 488 * via firmware. 489 */ 490 if (xd->flags & OPAL_XIVE_IRQ_MASK_VIA_FW) { 491 xive_native_configure_irq(hw_num, 492 kvmppc_xive_vp(xive, state->act_server), 493 state->act_priority, state->number); 494 /* If an EOI is needed, do it here */ 495 if (!state->old_p) 496 xive_vm_source_eoi(hw_num, xd); 497 /* If this is not an LSI, force a trigger */ 498 if (!(xd->flags & OPAL_XIVE_IRQ_LSI)) 499 xive_irq_trigger(xd); 500 goto bail; 501 } 502 503 /* Old Q set, set PQ to 11 */ 504 if (state->old_q) 505 xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_11); 506 507 /* 508 * If not old P, then perform an "effective" EOI, 509 * on the source. This will handle the cases where 510 * FW EOI is needed. 511 */ 512 if (!state->old_p) 513 xive_vm_source_eoi(hw_num, xd); 514 515 /* Synchronize ordering and mark unmasked */ 516 mb(); 517 bail: 518 state->guest_priority = prio; 519 } 520 521 /* 522 * Target an interrupt to a given server/prio, this will fallback 523 * to another server if necessary and perform the HW targetting 524 * updates as needed 525 * 526 * NOTE: Must be called with the state lock held 527 */ 528 static int xive_target_interrupt(struct kvm *kvm, 529 struct kvmppc_xive_irq_state *state, 530 u32 server, u8 prio) 531 { 532 struct kvmppc_xive *xive = kvm->arch.xive; 533 u32 hw_num; 534 int rc; 535 536 /* 537 * This will return a tentative server and actual 538 * priority. The count for that new target will have 539 * already been incremented. 540 */ 541 rc = kvmppc_xive_select_target(kvm, &server, prio); 542 543 /* 544 * We failed to find a target ? Not much we can do 545 * at least until we support the GIQ. 546 */ 547 if (rc) 548 return rc; 549 550 /* 551 * Increment the old queue pending count if there 552 * was one so that the old queue count gets adjusted later 553 * when observed to be empty. 554 */ 555 if (state->act_priority != MASKED) 556 xive_inc_q_pending(kvm, 557 state->act_server, 558 state->act_priority); 559 /* 560 * Update state and HW 561 */ 562 state->act_priority = prio; 563 state->act_server = server; 564 565 /* Get the right irq */ 566 kvmppc_xive_select_irq(state, &hw_num, NULL); 567 568 return xive_native_configure_irq(hw_num, 569 kvmppc_xive_vp(xive, server), 570 prio, state->number); 571 } 572 573 /* 574 * Targetting rules: In order to avoid losing track of 575 * pending interrupts accross mask and unmask, which would 576 * allow queue overflows, we implement the following rules: 577 * 578 * - Unless it was never enabled (or we run out of capacity) 579 * an interrupt is always targetted at a valid server/queue 580 * pair even when "masked" by the guest. This pair tends to 581 * be the last one used but it can be changed under some 582 * circumstances. That allows us to separate targetting 583 * from masking, we only handle accounting during (re)targetting, 584 * this also allows us to let an interrupt drain into its target 585 * queue after masking, avoiding complex schemes to remove 586 * interrupts out of remote processor queues. 587 * 588 * - When masking, we set PQ to 10 and save the previous value 589 * of P and Q. 590 * 591 * - When unmasking, if saved Q was set, we set PQ to 11 592 * otherwise we leave PQ to the HW state which will be either 593 * 10 if nothing happened or 11 if the interrupt fired while 594 * masked. Effectively we are OR'ing the previous Q into the 595 * HW Q. 596 * 597 * Then if saved P is clear, we do an effective EOI (Q->P->Trigger) 598 * which will unmask the interrupt and shoot a new one if Q was 599 * set. 600 * 601 * Otherwise (saved P is set) we leave PQ unchanged (so 10 or 11, 602 * effectively meaning an H_EOI from the guest is still expected 603 * for that interrupt). 604 * 605 * - If H_EOI occurs while masked, we clear the saved P. 606 * 607 * - When changing target, we account on the new target and 608 * increment a separate "pending" counter on the old one. 609 * This pending counter will be used to decrement the old 610 * target's count when its queue has been observed empty. 611 */ 612 613 int kvmppc_xive_set_xive(struct kvm *kvm, u32 irq, u32 server, 614 u32 priority) 615 { 616 struct kvmppc_xive *xive = kvm->arch.xive; 617 struct kvmppc_xive_src_block *sb; 618 struct kvmppc_xive_irq_state *state; 619 u8 new_act_prio; 620 int rc = 0; 621 u16 idx; 622 623 if (!xive) 624 return -ENODEV; 625 626 pr_devel("set_xive ! irq 0x%x server 0x%x prio %d\n", 627 irq, server, priority); 628 629 /* First, check provisioning of queues */ 630 if (priority != MASKED) { 631 mutex_lock(&xive->lock); 632 rc = xive_check_provisioning(xive->kvm, 633 xive_prio_from_guest(priority)); 634 mutex_unlock(&xive->lock); 635 } 636 if (rc) { 637 pr_devel(" provisioning failure %d !\n", rc); 638 return rc; 639 } 640 641 sb = kvmppc_xive_find_source(xive, irq, &idx); 642 if (!sb) 643 return -EINVAL; 644 state = &sb->irq_state[idx]; 645 646 /* 647 * We first handle masking/unmasking since the locking 648 * might need to be retried due to EOIs, we'll handle 649 * targetting changes later. These functions will return 650 * with the SB lock held. 651 * 652 * xive_lock_and_mask() will also set state->guest_priority 653 * but won't otherwise change other fields of the state. 654 * 655 * xive_lock_for_unmask will not actually unmask, this will 656 * be done later by xive_finish_unmask() once the targetting 657 * has been done, so we don't try to unmask an interrupt 658 * that hasn't yet been targetted. 659 */ 660 if (priority == MASKED) 661 xive_lock_and_mask(xive, sb, state); 662 else 663 xive_lock_for_unmask(sb, state); 664 665 666 /* 667 * Then we handle targetting. 668 * 669 * First calculate a new "actual priority" 670 */ 671 new_act_prio = state->act_priority; 672 if (priority != MASKED) 673 new_act_prio = xive_prio_from_guest(priority); 674 675 pr_devel(" new_act_prio=%x act_server=%x act_prio=%x\n", 676 new_act_prio, state->act_server, state->act_priority); 677 678 /* 679 * Then check if we actually need to change anything, 680 * 681 * The condition for re-targetting the interrupt is that 682 * we have a valid new priority (new_act_prio is not 0xff) 683 * and either the server or the priority changed. 684 * 685 * Note: If act_priority was ff and the new priority is 686 * also ff, we don't do anything and leave the interrupt 687 * untargetted. An attempt of doing an int_on on an 688 * untargetted interrupt will fail. If that is a problem 689 * we could initialize interrupts with valid default 690 */ 691 692 if (new_act_prio != MASKED && 693 (state->act_server != server || 694 state->act_priority != new_act_prio)) 695 rc = xive_target_interrupt(kvm, state, server, new_act_prio); 696 697 /* 698 * Perform the final unmasking of the interrupt source 699 * if necessary 700 */ 701 if (priority != MASKED) 702 xive_finish_unmask(xive, sb, state, priority); 703 704 /* 705 * Finally Update saved_priority to match. Only int_on/off 706 * set this field to a different value. 707 */ 708 state->saved_priority = priority; 709 710 arch_spin_unlock(&sb->lock); 711 return rc; 712 } 713 714 int kvmppc_xive_get_xive(struct kvm *kvm, u32 irq, u32 *server, 715 u32 *priority) 716 { 717 struct kvmppc_xive *xive = kvm->arch.xive; 718 struct kvmppc_xive_src_block *sb; 719 struct kvmppc_xive_irq_state *state; 720 u16 idx; 721 722 if (!xive) 723 return -ENODEV; 724 725 sb = kvmppc_xive_find_source(xive, irq, &idx); 726 if (!sb) 727 return -EINVAL; 728 state = &sb->irq_state[idx]; 729 arch_spin_lock(&sb->lock); 730 *server = state->act_server; 731 *priority = state->guest_priority; 732 arch_spin_unlock(&sb->lock); 733 734 return 0; 735 } 736 737 int kvmppc_xive_int_on(struct kvm *kvm, u32 irq) 738 { 739 struct kvmppc_xive *xive = kvm->arch.xive; 740 struct kvmppc_xive_src_block *sb; 741 struct kvmppc_xive_irq_state *state; 742 u16 idx; 743 744 if (!xive) 745 return -ENODEV; 746 747 sb = kvmppc_xive_find_source(xive, irq, &idx); 748 if (!sb) 749 return -EINVAL; 750 state = &sb->irq_state[idx]; 751 752 pr_devel("int_on(irq=0x%x)\n", irq); 753 754 /* 755 * Check if interrupt was not targetted 756 */ 757 if (state->act_priority == MASKED) { 758 pr_devel("int_on on untargetted interrupt\n"); 759 return -EINVAL; 760 } 761 762 /* If saved_priority is 0xff, do nothing */ 763 if (state->saved_priority == MASKED) 764 return 0; 765 766 /* 767 * Lock and unmask it. 768 */ 769 xive_lock_for_unmask(sb, state); 770 xive_finish_unmask(xive, sb, state, state->saved_priority); 771 arch_spin_unlock(&sb->lock); 772 773 return 0; 774 } 775 776 int kvmppc_xive_int_off(struct kvm *kvm, u32 irq) 777 { 778 struct kvmppc_xive *xive = kvm->arch.xive; 779 struct kvmppc_xive_src_block *sb; 780 struct kvmppc_xive_irq_state *state; 781 u16 idx; 782 783 if (!xive) 784 return -ENODEV; 785 786 sb = kvmppc_xive_find_source(xive, irq, &idx); 787 if (!sb) 788 return -EINVAL; 789 state = &sb->irq_state[idx]; 790 791 pr_devel("int_off(irq=0x%x)\n", irq); 792 793 /* 794 * Lock and mask 795 */ 796 state->saved_priority = xive_lock_and_mask(xive, sb, state); 797 arch_spin_unlock(&sb->lock); 798 799 return 0; 800 } 801 802 static bool xive_restore_pending_irq(struct kvmppc_xive *xive, u32 irq) 803 { 804 struct kvmppc_xive_src_block *sb; 805 struct kvmppc_xive_irq_state *state; 806 u16 idx; 807 808 sb = kvmppc_xive_find_source(xive, irq, &idx); 809 if (!sb) 810 return false; 811 state = &sb->irq_state[idx]; 812 if (!state->valid) 813 return false; 814 815 /* 816 * Trigger the IPI. This assumes we never restore a pass-through 817 * interrupt which should be safe enough 818 */ 819 xive_irq_trigger(&state->ipi_data); 820 821 return true; 822 } 823 824 u64 kvmppc_xive_get_icp(struct kvm_vcpu *vcpu) 825 { 826 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 827 828 if (!xc) 829 return 0; 830 831 /* Return the per-cpu state for state saving/migration */ 832 return (u64)xc->cppr << KVM_REG_PPC_ICP_CPPR_SHIFT | 833 (u64)xc->mfrr << KVM_REG_PPC_ICP_MFRR_SHIFT | 834 (u64)0xff << KVM_REG_PPC_ICP_PPRI_SHIFT; 835 } 836 837 int kvmppc_xive_set_icp(struct kvm_vcpu *vcpu, u64 icpval) 838 { 839 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 840 struct kvmppc_xive *xive = vcpu->kvm->arch.xive; 841 u8 cppr, mfrr; 842 u32 xisr; 843 844 if (!xc || !xive) 845 return -ENOENT; 846 847 /* Grab individual state fields. We don't use pending_pri */ 848 cppr = icpval >> KVM_REG_PPC_ICP_CPPR_SHIFT; 849 xisr = (icpval >> KVM_REG_PPC_ICP_XISR_SHIFT) & 850 KVM_REG_PPC_ICP_XISR_MASK; 851 mfrr = icpval >> KVM_REG_PPC_ICP_MFRR_SHIFT; 852 853 pr_devel("set_icp vcpu %d cppr=0x%x mfrr=0x%x xisr=0x%x\n", 854 xc->server_num, cppr, mfrr, xisr); 855 856 /* 857 * We can't update the state of a "pushed" VCPU, but that 858 * shouldn't happen because the vcpu->mutex makes running a 859 * vcpu mutually exclusive with doing one_reg get/set on it. 860 */ 861 if (WARN_ON(vcpu->arch.xive_pushed)) 862 return -EIO; 863 864 /* Update VCPU HW saved state */ 865 vcpu->arch.xive_saved_state.cppr = cppr; 866 xc->hw_cppr = xc->cppr = cppr; 867 868 /* 869 * Update MFRR state. If it's not 0xff, we mark the VCPU as 870 * having a pending MFRR change, which will re-evaluate the 871 * target. The VCPU will thus potentially get a spurious 872 * interrupt but that's not a big deal. 873 */ 874 xc->mfrr = mfrr; 875 if (mfrr < cppr) 876 xive_irq_trigger(&xc->vp_ipi_data); 877 878 /* 879 * Now saved XIRR is "interesting". It means there's something in 880 * the legacy "1 element" queue... for an IPI we simply ignore it, 881 * as the MFRR restore will handle that. For anything else we need 882 * to force a resend of the source. 883 * However the source may not have been setup yet. If that's the 884 * case, we keep that info and increment a counter in the xive to 885 * tell subsequent xive_set_source() to go look. 886 */ 887 if (xisr > XICS_IPI && !xive_restore_pending_irq(xive, xisr)) { 888 xc->delayed_irq = xisr; 889 xive->delayed_irqs++; 890 pr_devel(" xisr restore delayed\n"); 891 } 892 893 return 0; 894 } 895 896 int kvmppc_xive_set_mapped(struct kvm *kvm, unsigned long guest_irq, 897 struct irq_desc *host_desc) 898 { 899 struct kvmppc_xive *xive = kvm->arch.xive; 900 struct kvmppc_xive_src_block *sb; 901 struct kvmppc_xive_irq_state *state; 902 struct irq_data *host_data = irq_desc_get_irq_data(host_desc); 903 unsigned int host_irq = irq_desc_get_irq(host_desc); 904 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(host_data); 905 u16 idx; 906 u8 prio; 907 int rc; 908 909 if (!xive) 910 return -ENODEV; 911 912 pr_devel("set_mapped girq 0x%lx host HW irq 0x%x...\n",guest_irq, hw_irq); 913 914 sb = kvmppc_xive_find_source(xive, guest_irq, &idx); 915 if (!sb) 916 return -EINVAL; 917 state = &sb->irq_state[idx]; 918 919 /* 920 * Mark the passed-through interrupt as going to a VCPU, 921 * this will prevent further EOIs and similar operations 922 * from the XIVE code. It will also mask the interrupt 923 * to either PQ=10 or 11 state, the latter if the interrupt 924 * is pending. This will allow us to unmask or retrigger it 925 * after routing it to the guest with a simple EOI. 926 * 927 * The "state" argument is a "token", all it needs is to be 928 * non-NULL to switch to passed-through or NULL for the 929 * other way around. We may not yet have an actual VCPU 930 * target here and we don't really care. 931 */ 932 rc = irq_set_vcpu_affinity(host_irq, state); 933 if (rc) { 934 pr_err("Failed to set VCPU affinity for irq %d\n", host_irq); 935 return rc; 936 } 937 938 /* 939 * Mask and read state of IPI. We need to know if its P bit 940 * is set as that means it's potentially already using a 941 * queue entry in the target 942 */ 943 prio = xive_lock_and_mask(xive, sb, state); 944 pr_devel(" old IPI prio %02x P:%d Q:%d\n", prio, 945 state->old_p, state->old_q); 946 947 /* Turn the IPI hard off */ 948 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01); 949 950 /* 951 * Reset ESB guest mapping. Needed when ESB pages are exposed 952 * to the guest in XIVE native mode 953 */ 954 if (xive->ops && xive->ops->reset_mapped) 955 xive->ops->reset_mapped(kvm, guest_irq); 956 957 /* Grab info about irq */ 958 state->pt_number = hw_irq; 959 state->pt_data = irq_data_get_irq_handler_data(host_data); 960 961 /* 962 * Configure the IRQ to match the existing configuration of 963 * the IPI if it was already targetted. Otherwise this will 964 * mask the interrupt in a lossy way (act_priority is 0xff) 965 * which is fine for a never started interrupt. 966 */ 967 xive_native_configure_irq(hw_irq, 968 kvmppc_xive_vp(xive, state->act_server), 969 state->act_priority, state->number); 970 971 /* 972 * We do an EOI to enable the interrupt (and retrigger if needed) 973 * if the guest has the interrupt unmasked and the P bit was *not* 974 * set in the IPI. If it was set, we know a slot may still be in 975 * use in the target queue thus we have to wait for a guest 976 * originated EOI 977 */ 978 if (prio != MASKED && !state->old_p) 979 xive_vm_source_eoi(hw_irq, state->pt_data); 980 981 /* Clear old_p/old_q as they are no longer relevant */ 982 state->old_p = state->old_q = false; 983 984 /* Restore guest prio (unlocks EOI) */ 985 mb(); 986 state->guest_priority = prio; 987 arch_spin_unlock(&sb->lock); 988 989 return 0; 990 } 991 EXPORT_SYMBOL_GPL(kvmppc_xive_set_mapped); 992 993 int kvmppc_xive_clr_mapped(struct kvm *kvm, unsigned long guest_irq, 994 struct irq_desc *host_desc) 995 { 996 struct kvmppc_xive *xive = kvm->arch.xive; 997 struct kvmppc_xive_src_block *sb; 998 struct kvmppc_xive_irq_state *state; 999 unsigned int host_irq = irq_desc_get_irq(host_desc); 1000 u16 idx; 1001 u8 prio; 1002 int rc; 1003 1004 if (!xive) 1005 return -ENODEV; 1006 1007 pr_devel("clr_mapped girq 0x%lx...\n", guest_irq); 1008 1009 sb = kvmppc_xive_find_source(xive, guest_irq, &idx); 1010 if (!sb) 1011 return -EINVAL; 1012 state = &sb->irq_state[idx]; 1013 1014 /* 1015 * Mask and read state of IRQ. We need to know if its P bit 1016 * is set as that means it's potentially already using a 1017 * queue entry in the target 1018 */ 1019 prio = xive_lock_and_mask(xive, sb, state); 1020 pr_devel(" old IRQ prio %02x P:%d Q:%d\n", prio, 1021 state->old_p, state->old_q); 1022 1023 /* 1024 * If old_p is set, the interrupt is pending, we switch it to 1025 * PQ=11. This will force a resend in the host so the interrupt 1026 * isn't lost to whatver host driver may pick it up 1027 */ 1028 if (state->old_p) 1029 xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_11); 1030 1031 /* Release the passed-through interrupt to the host */ 1032 rc = irq_set_vcpu_affinity(host_irq, NULL); 1033 if (rc) { 1034 pr_err("Failed to clr VCPU affinity for irq %d\n", host_irq); 1035 return rc; 1036 } 1037 1038 /* Forget about the IRQ */ 1039 state->pt_number = 0; 1040 state->pt_data = NULL; 1041 1042 /* 1043 * Reset ESB guest mapping. Needed when ESB pages are exposed 1044 * to the guest in XIVE native mode 1045 */ 1046 if (xive->ops && xive->ops->reset_mapped) { 1047 xive->ops->reset_mapped(kvm, guest_irq); 1048 } 1049 1050 /* Reconfigure the IPI */ 1051 xive_native_configure_irq(state->ipi_number, 1052 kvmppc_xive_vp(xive, state->act_server), 1053 state->act_priority, state->number); 1054 1055 /* 1056 * If old_p is set (we have a queue entry potentially 1057 * occupied) or the interrupt is masked, we set the IPI 1058 * to PQ=10 state. Otherwise we just re-enable it (PQ=00). 1059 */ 1060 if (prio == MASKED || state->old_p) 1061 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_10); 1062 else 1063 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_00); 1064 1065 /* Restore guest prio (unlocks EOI) */ 1066 mb(); 1067 state->guest_priority = prio; 1068 arch_spin_unlock(&sb->lock); 1069 1070 return 0; 1071 } 1072 EXPORT_SYMBOL_GPL(kvmppc_xive_clr_mapped); 1073 1074 void kvmppc_xive_disable_vcpu_interrupts(struct kvm_vcpu *vcpu) 1075 { 1076 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 1077 struct kvm *kvm = vcpu->kvm; 1078 struct kvmppc_xive *xive = kvm->arch.xive; 1079 int i, j; 1080 1081 for (i = 0; i <= xive->max_sbid; i++) { 1082 struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; 1083 1084 if (!sb) 1085 continue; 1086 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) { 1087 struct kvmppc_xive_irq_state *state = &sb->irq_state[j]; 1088 1089 if (!state->valid) 1090 continue; 1091 if (state->act_priority == MASKED) 1092 continue; 1093 if (state->act_server != xc->server_num) 1094 continue; 1095 1096 /* Clean it up */ 1097 arch_spin_lock(&sb->lock); 1098 state->act_priority = MASKED; 1099 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01); 1100 xive_native_configure_irq(state->ipi_number, 0, MASKED, 0); 1101 if (state->pt_number) { 1102 xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_01); 1103 xive_native_configure_irq(state->pt_number, 0, MASKED, 0); 1104 } 1105 arch_spin_unlock(&sb->lock); 1106 } 1107 } 1108 1109 /* Disable vcpu's escalation interrupt */ 1110 if (vcpu->arch.xive_esc_on) { 1111 __raw_readq((void __iomem *)(vcpu->arch.xive_esc_vaddr + 1112 XIVE_ESB_SET_PQ_01)); 1113 vcpu->arch.xive_esc_on = false; 1114 } 1115 1116 /* 1117 * Clear pointers to escalation interrupt ESB. 1118 * This is safe because the vcpu->mutex is held, preventing 1119 * any other CPU from concurrently executing a KVM_RUN ioctl. 1120 */ 1121 vcpu->arch.xive_esc_vaddr = 0; 1122 vcpu->arch.xive_esc_raddr = 0; 1123 } 1124 1125 /* 1126 * In single escalation mode, the escalation interrupt is marked so 1127 * that EOI doesn't re-enable it, but just sets the stale_p flag to 1128 * indicate that the P bit has already been dealt with. However, the 1129 * assembly code that enters the guest sets PQ to 00 without clearing 1130 * stale_p (because it has no easy way to address it). Hence we have 1131 * to adjust stale_p before shutting down the interrupt. 1132 */ 1133 void xive_cleanup_single_escalation(struct kvm_vcpu *vcpu, 1134 struct kvmppc_xive_vcpu *xc, int irq) 1135 { 1136 struct irq_data *d = irq_get_irq_data(irq); 1137 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 1138 1139 /* 1140 * This slightly odd sequence gives the right result 1141 * (i.e. stale_p set if xive_esc_on is false) even if 1142 * we race with xive_esc_irq() and xive_irq_eoi(). 1143 */ 1144 xd->stale_p = false; 1145 smp_mb(); /* paired with smb_wmb in xive_esc_irq */ 1146 if (!vcpu->arch.xive_esc_on) 1147 xd->stale_p = true; 1148 } 1149 1150 void kvmppc_xive_cleanup_vcpu(struct kvm_vcpu *vcpu) 1151 { 1152 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 1153 struct kvmppc_xive *xive = vcpu->kvm->arch.xive; 1154 int i; 1155 1156 if (!kvmppc_xics_enabled(vcpu)) 1157 return; 1158 1159 if (!xc) 1160 return; 1161 1162 pr_devel("cleanup_vcpu(cpu=%d)\n", xc->server_num); 1163 1164 /* Ensure no interrupt is still routed to that VP */ 1165 xc->valid = false; 1166 kvmppc_xive_disable_vcpu_interrupts(vcpu); 1167 1168 /* Mask the VP IPI */ 1169 xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_01); 1170 1171 /* Free escalations */ 1172 for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) { 1173 if (xc->esc_virq[i]) { 1174 if (xc->xive->single_escalation) 1175 xive_cleanup_single_escalation(vcpu, xc, 1176 xc->esc_virq[i]); 1177 free_irq(xc->esc_virq[i], vcpu); 1178 irq_dispose_mapping(xc->esc_virq[i]); 1179 kfree(xc->esc_virq_names[i]); 1180 } 1181 } 1182 1183 /* Disable the VP */ 1184 xive_native_disable_vp(xc->vp_id); 1185 1186 /* Clear the cam word so guest entry won't try to push context */ 1187 vcpu->arch.xive_cam_word = 0; 1188 1189 /* Free the queues */ 1190 for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) { 1191 struct xive_q *q = &xc->queues[i]; 1192 1193 xive_native_disable_queue(xc->vp_id, q, i); 1194 if (q->qpage) { 1195 free_pages((unsigned long)q->qpage, 1196 xive->q_page_order); 1197 q->qpage = NULL; 1198 } 1199 } 1200 1201 /* Free the IPI */ 1202 if (xc->vp_ipi) { 1203 xive_cleanup_irq_data(&xc->vp_ipi_data); 1204 xive_native_free_irq(xc->vp_ipi); 1205 } 1206 /* Free the VP */ 1207 kfree(xc); 1208 1209 /* Cleanup the vcpu */ 1210 vcpu->arch.irq_type = KVMPPC_IRQ_DEFAULT; 1211 vcpu->arch.xive_vcpu = NULL; 1212 } 1213 1214 static bool kvmppc_xive_vcpu_id_valid(struct kvmppc_xive *xive, u32 cpu) 1215 { 1216 /* We have a block of xive->nr_servers VPs. We just need to check 1217 * raw vCPU ids are below the expected limit for this guest's 1218 * core stride ; kvmppc_pack_vcpu_id() will pack them down to an 1219 * index that can be safely used to compute a VP id that belongs 1220 * to the VP block. 1221 */ 1222 return cpu < xive->nr_servers * xive->kvm->arch.emul_smt_mode; 1223 } 1224 1225 int kvmppc_xive_compute_vp_id(struct kvmppc_xive *xive, u32 cpu, u32 *vp) 1226 { 1227 u32 vp_id; 1228 1229 if (!kvmppc_xive_vcpu_id_valid(xive, cpu)) { 1230 pr_devel("Out of bounds !\n"); 1231 return -EINVAL; 1232 } 1233 1234 if (xive->vp_base == XIVE_INVALID_VP) { 1235 xive->vp_base = xive_native_alloc_vp_block(xive->nr_servers); 1236 pr_devel("VP_Base=%x nr_servers=%d\n", xive->vp_base, xive->nr_servers); 1237 1238 if (xive->vp_base == XIVE_INVALID_VP) 1239 return -ENOSPC; 1240 } 1241 1242 vp_id = kvmppc_xive_vp(xive, cpu); 1243 if (kvmppc_xive_vp_in_use(xive->kvm, vp_id)) { 1244 pr_devel("Duplicate !\n"); 1245 return -EEXIST; 1246 } 1247 1248 *vp = vp_id; 1249 1250 return 0; 1251 } 1252 1253 int kvmppc_xive_connect_vcpu(struct kvm_device *dev, 1254 struct kvm_vcpu *vcpu, u32 cpu) 1255 { 1256 struct kvmppc_xive *xive = dev->private; 1257 struct kvmppc_xive_vcpu *xc; 1258 int i, r = -EBUSY; 1259 u32 vp_id; 1260 1261 pr_devel("connect_vcpu(cpu=%d)\n", cpu); 1262 1263 if (dev->ops != &kvm_xive_ops) { 1264 pr_devel("Wrong ops !\n"); 1265 return -EPERM; 1266 } 1267 if (xive->kvm != vcpu->kvm) 1268 return -EPERM; 1269 if (vcpu->arch.irq_type != KVMPPC_IRQ_DEFAULT) 1270 return -EBUSY; 1271 1272 /* We need to synchronize with queue provisioning */ 1273 mutex_lock(&xive->lock); 1274 1275 r = kvmppc_xive_compute_vp_id(xive, cpu, &vp_id); 1276 if (r) 1277 goto bail; 1278 1279 xc = kzalloc(sizeof(*xc), GFP_KERNEL); 1280 if (!xc) { 1281 r = -ENOMEM; 1282 goto bail; 1283 } 1284 1285 vcpu->arch.xive_vcpu = xc; 1286 xc->xive = xive; 1287 xc->vcpu = vcpu; 1288 xc->server_num = cpu; 1289 xc->vp_id = vp_id; 1290 xc->mfrr = 0xff; 1291 xc->valid = true; 1292 1293 r = xive_native_get_vp_info(xc->vp_id, &xc->vp_cam, &xc->vp_chip_id); 1294 if (r) 1295 goto bail; 1296 1297 /* Configure VCPU fields for use by assembly push/pull */ 1298 vcpu->arch.xive_saved_state.w01 = cpu_to_be64(0xff000000); 1299 vcpu->arch.xive_cam_word = cpu_to_be32(xc->vp_cam | TM_QW1W2_VO); 1300 1301 /* Allocate IPI */ 1302 xc->vp_ipi = xive_native_alloc_irq(); 1303 if (!xc->vp_ipi) { 1304 pr_err("Failed to allocate xive irq for VCPU IPI\n"); 1305 r = -EIO; 1306 goto bail; 1307 } 1308 pr_devel(" IPI=0x%x\n", xc->vp_ipi); 1309 1310 r = xive_native_populate_irq_data(xc->vp_ipi, &xc->vp_ipi_data); 1311 if (r) 1312 goto bail; 1313 1314 /* 1315 * Enable the VP first as the single escalation mode will 1316 * affect escalation interrupts numbering 1317 */ 1318 r = xive_native_enable_vp(xc->vp_id, xive->single_escalation); 1319 if (r) { 1320 pr_err("Failed to enable VP in OPAL, err %d\n", r); 1321 goto bail; 1322 } 1323 1324 /* 1325 * Initialize queues. Initially we set them all for no queueing 1326 * and we enable escalation for queue 0 only which we'll use for 1327 * our mfrr change notifications. If the VCPU is hot-plugged, we 1328 * do handle provisioning however based on the existing "map" 1329 * of enabled queues. 1330 */ 1331 for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) { 1332 struct xive_q *q = &xc->queues[i]; 1333 1334 /* Single escalation, no queue 7 */ 1335 if (i == 7 && xive->single_escalation) 1336 break; 1337 1338 /* Is queue already enabled ? Provision it */ 1339 if (xive->qmap & (1 << i)) { 1340 r = xive_provision_queue(vcpu, i); 1341 if (r == 0 && !xive->single_escalation) 1342 kvmppc_xive_attach_escalation( 1343 vcpu, i, xive->single_escalation); 1344 if (r) 1345 goto bail; 1346 } else { 1347 r = xive_native_configure_queue(xc->vp_id, 1348 q, i, NULL, 0, true); 1349 if (r) { 1350 pr_err("Failed to configure queue %d for VCPU %d\n", 1351 i, cpu); 1352 goto bail; 1353 } 1354 } 1355 } 1356 1357 /* If not done above, attach priority 0 escalation */ 1358 r = kvmppc_xive_attach_escalation(vcpu, 0, xive->single_escalation); 1359 if (r) 1360 goto bail; 1361 1362 /* Route the IPI */ 1363 r = xive_native_configure_irq(xc->vp_ipi, xc->vp_id, 0, XICS_IPI); 1364 if (!r) 1365 xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_00); 1366 1367 bail: 1368 mutex_unlock(&xive->lock); 1369 if (r) { 1370 kvmppc_xive_cleanup_vcpu(vcpu); 1371 return r; 1372 } 1373 1374 vcpu->arch.irq_type = KVMPPC_IRQ_XICS; 1375 return 0; 1376 } 1377 1378 /* 1379 * Scanning of queues before/after migration save 1380 */ 1381 static void xive_pre_save_set_queued(struct kvmppc_xive *xive, u32 irq) 1382 { 1383 struct kvmppc_xive_src_block *sb; 1384 struct kvmppc_xive_irq_state *state; 1385 u16 idx; 1386 1387 sb = kvmppc_xive_find_source(xive, irq, &idx); 1388 if (!sb) 1389 return; 1390 1391 state = &sb->irq_state[idx]; 1392 1393 /* Some sanity checking */ 1394 if (!state->valid) { 1395 pr_err("invalid irq 0x%x in cpu queue!\n", irq); 1396 return; 1397 } 1398 1399 /* 1400 * If the interrupt is in a queue it should have P set. 1401 * We warn so that gets reported. A backtrace isn't useful 1402 * so no need to use a WARN_ON. 1403 */ 1404 if (!state->saved_p) 1405 pr_err("Interrupt 0x%x is marked in a queue but P not set !\n", irq); 1406 1407 /* Set flag */ 1408 state->in_queue = true; 1409 } 1410 1411 static void xive_pre_save_mask_irq(struct kvmppc_xive *xive, 1412 struct kvmppc_xive_src_block *sb, 1413 u32 irq) 1414 { 1415 struct kvmppc_xive_irq_state *state = &sb->irq_state[irq]; 1416 1417 if (!state->valid) 1418 return; 1419 1420 /* Mask and save state, this will also sync HW queues */ 1421 state->saved_scan_prio = xive_lock_and_mask(xive, sb, state); 1422 1423 /* Transfer P and Q */ 1424 state->saved_p = state->old_p; 1425 state->saved_q = state->old_q; 1426 1427 /* Unlock */ 1428 arch_spin_unlock(&sb->lock); 1429 } 1430 1431 static void xive_pre_save_unmask_irq(struct kvmppc_xive *xive, 1432 struct kvmppc_xive_src_block *sb, 1433 u32 irq) 1434 { 1435 struct kvmppc_xive_irq_state *state = &sb->irq_state[irq]; 1436 1437 if (!state->valid) 1438 return; 1439 1440 /* 1441 * Lock / exclude EOI (not technically necessary if the 1442 * guest isn't running concurrently. If this becomes a 1443 * performance issue we can probably remove the lock. 1444 */ 1445 xive_lock_for_unmask(sb, state); 1446 1447 /* Restore mask/prio if it wasn't masked */ 1448 if (state->saved_scan_prio != MASKED) 1449 xive_finish_unmask(xive, sb, state, state->saved_scan_prio); 1450 1451 /* Unlock */ 1452 arch_spin_unlock(&sb->lock); 1453 } 1454 1455 static void xive_pre_save_queue(struct kvmppc_xive *xive, struct xive_q *q) 1456 { 1457 u32 idx = q->idx; 1458 u32 toggle = q->toggle; 1459 u32 irq; 1460 1461 do { 1462 irq = __xive_read_eq(q->qpage, q->msk, &idx, &toggle); 1463 if (irq > XICS_IPI) 1464 xive_pre_save_set_queued(xive, irq); 1465 } while(irq); 1466 } 1467 1468 static void xive_pre_save_scan(struct kvmppc_xive *xive) 1469 { 1470 struct kvm_vcpu *vcpu = NULL; 1471 int i, j; 1472 1473 /* 1474 * See comment in xive_get_source() about how this 1475 * work. Collect a stable state for all interrupts 1476 */ 1477 for (i = 0; i <= xive->max_sbid; i++) { 1478 struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; 1479 if (!sb) 1480 continue; 1481 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) 1482 xive_pre_save_mask_irq(xive, sb, j); 1483 } 1484 1485 /* Then scan the queues and update the "in_queue" flag */ 1486 kvm_for_each_vcpu(i, vcpu, xive->kvm) { 1487 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 1488 if (!xc) 1489 continue; 1490 for (j = 0; j < KVMPPC_XIVE_Q_COUNT; j++) { 1491 if (xc->queues[j].qpage) 1492 xive_pre_save_queue(xive, &xc->queues[j]); 1493 } 1494 } 1495 1496 /* Finally restore interrupt states */ 1497 for (i = 0; i <= xive->max_sbid; i++) { 1498 struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; 1499 if (!sb) 1500 continue; 1501 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) 1502 xive_pre_save_unmask_irq(xive, sb, j); 1503 } 1504 } 1505 1506 static void xive_post_save_scan(struct kvmppc_xive *xive) 1507 { 1508 u32 i, j; 1509 1510 /* Clear all the in_queue flags */ 1511 for (i = 0; i <= xive->max_sbid; i++) { 1512 struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; 1513 if (!sb) 1514 continue; 1515 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) 1516 sb->irq_state[j].in_queue = false; 1517 } 1518 1519 /* Next get_source() will do a new scan */ 1520 xive->saved_src_count = 0; 1521 } 1522 1523 /* 1524 * This returns the source configuration and state to user space. 1525 */ 1526 static int xive_get_source(struct kvmppc_xive *xive, long irq, u64 addr) 1527 { 1528 struct kvmppc_xive_src_block *sb; 1529 struct kvmppc_xive_irq_state *state; 1530 u64 __user *ubufp = (u64 __user *) addr; 1531 u64 val, prio; 1532 u16 idx; 1533 1534 sb = kvmppc_xive_find_source(xive, irq, &idx); 1535 if (!sb) 1536 return -ENOENT; 1537 1538 state = &sb->irq_state[idx]; 1539 1540 if (!state->valid) 1541 return -ENOENT; 1542 1543 pr_devel("get_source(%ld)...\n", irq); 1544 1545 /* 1546 * So to properly save the state into something that looks like a 1547 * XICS migration stream we cannot treat interrupts individually. 1548 * 1549 * We need, instead, mask them all (& save their previous PQ state) 1550 * to get a stable state in the HW, then sync them to ensure that 1551 * any interrupt that had already fired hits its queue, and finally 1552 * scan all the queues to collect which interrupts are still present 1553 * in the queues, so we can set the "pending" flag on them and 1554 * they can be resent on restore. 1555 * 1556 * So we do it all when the "first" interrupt gets saved, all the 1557 * state is collected at that point, the rest of xive_get_source() 1558 * will merely collect and convert that state to the expected 1559 * userspace bit mask. 1560 */ 1561 if (xive->saved_src_count == 0) 1562 xive_pre_save_scan(xive); 1563 xive->saved_src_count++; 1564 1565 /* Convert saved state into something compatible with xics */ 1566 val = state->act_server; 1567 prio = state->saved_scan_prio; 1568 1569 if (prio == MASKED) { 1570 val |= KVM_XICS_MASKED; 1571 prio = state->saved_priority; 1572 } 1573 val |= prio << KVM_XICS_PRIORITY_SHIFT; 1574 if (state->lsi) { 1575 val |= KVM_XICS_LEVEL_SENSITIVE; 1576 if (state->saved_p) 1577 val |= KVM_XICS_PENDING; 1578 } else { 1579 if (state->saved_p) 1580 val |= KVM_XICS_PRESENTED; 1581 1582 if (state->saved_q) 1583 val |= KVM_XICS_QUEUED; 1584 1585 /* 1586 * We mark it pending (which will attempt a re-delivery) 1587 * if we are in a queue *or* we were masked and had 1588 * Q set which is equivalent to the XICS "masked pending" 1589 * state 1590 */ 1591 if (state->in_queue || (prio == MASKED && state->saved_q)) 1592 val |= KVM_XICS_PENDING; 1593 } 1594 1595 /* 1596 * If that was the last interrupt saved, reset the 1597 * in_queue flags 1598 */ 1599 if (xive->saved_src_count == xive->src_count) 1600 xive_post_save_scan(xive); 1601 1602 /* Copy the result to userspace */ 1603 if (put_user(val, ubufp)) 1604 return -EFAULT; 1605 1606 return 0; 1607 } 1608 1609 struct kvmppc_xive_src_block *kvmppc_xive_create_src_block( 1610 struct kvmppc_xive *xive, int irq) 1611 { 1612 struct kvmppc_xive_src_block *sb; 1613 int i, bid; 1614 1615 bid = irq >> KVMPPC_XICS_ICS_SHIFT; 1616 1617 mutex_lock(&xive->lock); 1618 1619 /* block already exists - somebody else got here first */ 1620 if (xive->src_blocks[bid]) 1621 goto out; 1622 1623 /* Create the ICS */ 1624 sb = kzalloc(sizeof(*sb), GFP_KERNEL); 1625 if (!sb) 1626 goto out; 1627 1628 sb->id = bid; 1629 1630 for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) { 1631 sb->irq_state[i].number = (bid << KVMPPC_XICS_ICS_SHIFT) | i; 1632 sb->irq_state[i].eisn = 0; 1633 sb->irq_state[i].guest_priority = MASKED; 1634 sb->irq_state[i].saved_priority = MASKED; 1635 sb->irq_state[i].act_priority = MASKED; 1636 } 1637 smp_wmb(); 1638 xive->src_blocks[bid] = sb; 1639 1640 if (bid > xive->max_sbid) 1641 xive->max_sbid = bid; 1642 1643 out: 1644 mutex_unlock(&xive->lock); 1645 return xive->src_blocks[bid]; 1646 } 1647 1648 static bool xive_check_delayed_irq(struct kvmppc_xive *xive, u32 irq) 1649 { 1650 struct kvm *kvm = xive->kvm; 1651 struct kvm_vcpu *vcpu = NULL; 1652 int i; 1653 1654 kvm_for_each_vcpu(i, vcpu, kvm) { 1655 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 1656 1657 if (!xc) 1658 continue; 1659 1660 if (xc->delayed_irq == irq) { 1661 xc->delayed_irq = 0; 1662 xive->delayed_irqs--; 1663 return true; 1664 } 1665 } 1666 return false; 1667 } 1668 1669 static int xive_set_source(struct kvmppc_xive *xive, long irq, u64 addr) 1670 { 1671 struct kvmppc_xive_src_block *sb; 1672 struct kvmppc_xive_irq_state *state; 1673 u64 __user *ubufp = (u64 __user *) addr; 1674 u16 idx; 1675 u64 val; 1676 u8 act_prio, guest_prio; 1677 u32 server; 1678 int rc = 0; 1679 1680 if (irq < KVMPPC_XICS_FIRST_IRQ || irq >= KVMPPC_XICS_NR_IRQS) 1681 return -ENOENT; 1682 1683 pr_devel("set_source(irq=0x%lx)\n", irq); 1684 1685 /* Find the source */ 1686 sb = kvmppc_xive_find_source(xive, irq, &idx); 1687 if (!sb) { 1688 pr_devel("No source, creating source block...\n"); 1689 sb = kvmppc_xive_create_src_block(xive, irq); 1690 if (!sb) { 1691 pr_devel("Failed to create block...\n"); 1692 return -ENOMEM; 1693 } 1694 } 1695 state = &sb->irq_state[idx]; 1696 1697 /* Read user passed data */ 1698 if (get_user(val, ubufp)) { 1699 pr_devel("fault getting user info !\n"); 1700 return -EFAULT; 1701 } 1702 1703 server = val & KVM_XICS_DESTINATION_MASK; 1704 guest_prio = val >> KVM_XICS_PRIORITY_SHIFT; 1705 1706 pr_devel(" val=0x016%llx (server=0x%x, guest_prio=%d)\n", 1707 val, server, guest_prio); 1708 1709 /* 1710 * If the source doesn't already have an IPI, allocate 1711 * one and get the corresponding data 1712 */ 1713 if (!state->ipi_number) { 1714 state->ipi_number = xive_native_alloc_irq(); 1715 if (state->ipi_number == 0) { 1716 pr_devel("Failed to allocate IPI !\n"); 1717 return -ENOMEM; 1718 } 1719 xive_native_populate_irq_data(state->ipi_number, &state->ipi_data); 1720 pr_devel(" src_ipi=0x%x\n", state->ipi_number); 1721 } 1722 1723 /* 1724 * We use lock_and_mask() to set us in the right masked 1725 * state. We will override that state from the saved state 1726 * further down, but this will handle the cases of interrupts 1727 * that need FW masking. We set the initial guest_priority to 1728 * 0 before calling it to ensure it actually performs the masking. 1729 */ 1730 state->guest_priority = 0; 1731 xive_lock_and_mask(xive, sb, state); 1732 1733 /* 1734 * Now, we select a target if we have one. If we don't we 1735 * leave the interrupt untargetted. It means that an interrupt 1736 * can become "untargetted" accross migration if it was masked 1737 * by set_xive() but there is little we can do about it. 1738 */ 1739 1740 /* First convert prio and mark interrupt as untargetted */ 1741 act_prio = xive_prio_from_guest(guest_prio); 1742 state->act_priority = MASKED; 1743 1744 /* 1745 * We need to drop the lock due to the mutex below. Hopefully 1746 * nothing is touching that interrupt yet since it hasn't been 1747 * advertized to a running guest yet 1748 */ 1749 arch_spin_unlock(&sb->lock); 1750 1751 /* If we have a priority target the interrupt */ 1752 if (act_prio != MASKED) { 1753 /* First, check provisioning of queues */ 1754 mutex_lock(&xive->lock); 1755 rc = xive_check_provisioning(xive->kvm, act_prio); 1756 mutex_unlock(&xive->lock); 1757 1758 /* Target interrupt */ 1759 if (rc == 0) 1760 rc = xive_target_interrupt(xive->kvm, state, 1761 server, act_prio); 1762 /* 1763 * If provisioning or targetting failed, leave it 1764 * alone and masked. It will remain disabled until 1765 * the guest re-targets it. 1766 */ 1767 } 1768 1769 /* 1770 * Find out if this was a delayed irq stashed in an ICP, 1771 * in which case, treat it as pending 1772 */ 1773 if (xive->delayed_irqs && xive_check_delayed_irq(xive, irq)) { 1774 val |= KVM_XICS_PENDING; 1775 pr_devel(" Found delayed ! forcing PENDING !\n"); 1776 } 1777 1778 /* Cleanup the SW state */ 1779 state->old_p = false; 1780 state->old_q = false; 1781 state->lsi = false; 1782 state->asserted = false; 1783 1784 /* Restore LSI state */ 1785 if (val & KVM_XICS_LEVEL_SENSITIVE) { 1786 state->lsi = true; 1787 if (val & KVM_XICS_PENDING) 1788 state->asserted = true; 1789 pr_devel(" LSI ! Asserted=%d\n", state->asserted); 1790 } 1791 1792 /* 1793 * Restore P and Q. If the interrupt was pending, we 1794 * force Q and !P, which will trigger a resend. 1795 * 1796 * That means that a guest that had both an interrupt 1797 * pending (queued) and Q set will restore with only 1798 * one instance of that interrupt instead of 2, but that 1799 * is perfectly fine as coalescing interrupts that haven't 1800 * been presented yet is always allowed. 1801 */ 1802 if (val & KVM_XICS_PRESENTED && !(val & KVM_XICS_PENDING)) 1803 state->old_p = true; 1804 if (val & KVM_XICS_QUEUED || val & KVM_XICS_PENDING) 1805 state->old_q = true; 1806 1807 pr_devel(" P=%d, Q=%d\n", state->old_p, state->old_q); 1808 1809 /* 1810 * If the interrupt was unmasked, update guest priority and 1811 * perform the appropriate state transition and do a 1812 * re-trigger if necessary. 1813 */ 1814 if (val & KVM_XICS_MASKED) { 1815 pr_devel(" masked, saving prio\n"); 1816 state->guest_priority = MASKED; 1817 state->saved_priority = guest_prio; 1818 } else { 1819 pr_devel(" unmasked, restoring to prio %d\n", guest_prio); 1820 xive_finish_unmask(xive, sb, state, guest_prio); 1821 state->saved_priority = guest_prio; 1822 } 1823 1824 /* Increment the number of valid sources and mark this one valid */ 1825 if (!state->valid) 1826 xive->src_count++; 1827 state->valid = true; 1828 1829 return 0; 1830 } 1831 1832 int kvmppc_xive_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1833 bool line_status) 1834 { 1835 struct kvmppc_xive *xive = kvm->arch.xive; 1836 struct kvmppc_xive_src_block *sb; 1837 struct kvmppc_xive_irq_state *state; 1838 u16 idx; 1839 1840 if (!xive) 1841 return -ENODEV; 1842 1843 sb = kvmppc_xive_find_source(xive, irq, &idx); 1844 if (!sb) 1845 return -EINVAL; 1846 1847 /* Perform locklessly .... (we need to do some RCUisms here...) */ 1848 state = &sb->irq_state[idx]; 1849 if (!state->valid) 1850 return -EINVAL; 1851 1852 /* We don't allow a trigger on a passed-through interrupt */ 1853 if (state->pt_number) 1854 return -EINVAL; 1855 1856 if ((level == 1 && state->lsi) || level == KVM_INTERRUPT_SET_LEVEL) 1857 state->asserted = 1; 1858 else if (level == 0 || level == KVM_INTERRUPT_UNSET) { 1859 state->asserted = 0; 1860 return 0; 1861 } 1862 1863 /* Trigger the IPI */ 1864 xive_irq_trigger(&state->ipi_data); 1865 1866 return 0; 1867 } 1868 1869 int kvmppc_xive_set_nr_servers(struct kvmppc_xive *xive, u64 addr) 1870 { 1871 u32 __user *ubufp = (u32 __user *) addr; 1872 u32 nr_servers; 1873 int rc = 0; 1874 1875 if (get_user(nr_servers, ubufp)) 1876 return -EFAULT; 1877 1878 pr_devel("%s nr_servers=%u\n", __func__, nr_servers); 1879 1880 if (!nr_servers || nr_servers > KVM_MAX_VCPU_ID) 1881 return -EINVAL; 1882 1883 mutex_lock(&xive->lock); 1884 if (xive->vp_base != XIVE_INVALID_VP) 1885 /* The VP block is allocated once and freed when the device 1886 * is released. Better not allow to change its size since its 1887 * used by connect_vcpu to validate vCPU ids are valid (eg, 1888 * setting it back to a higher value could allow connect_vcpu 1889 * to come up with a VP id that goes beyond the VP block, which 1890 * is likely to cause a crash in OPAL). 1891 */ 1892 rc = -EBUSY; 1893 else if (nr_servers > KVM_MAX_VCPUS) 1894 /* We don't need more servers. Higher vCPU ids get packed 1895 * down below KVM_MAX_VCPUS by kvmppc_pack_vcpu_id(). 1896 */ 1897 xive->nr_servers = KVM_MAX_VCPUS; 1898 else 1899 xive->nr_servers = nr_servers; 1900 1901 mutex_unlock(&xive->lock); 1902 1903 return rc; 1904 } 1905 1906 static int xive_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 1907 { 1908 struct kvmppc_xive *xive = dev->private; 1909 1910 /* We honor the existing XICS ioctl */ 1911 switch (attr->group) { 1912 case KVM_DEV_XICS_GRP_SOURCES: 1913 return xive_set_source(xive, attr->attr, attr->addr); 1914 case KVM_DEV_XICS_GRP_CTRL: 1915 switch (attr->attr) { 1916 case KVM_DEV_XICS_NR_SERVERS: 1917 return kvmppc_xive_set_nr_servers(xive, attr->addr); 1918 } 1919 } 1920 return -ENXIO; 1921 } 1922 1923 static int xive_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 1924 { 1925 struct kvmppc_xive *xive = dev->private; 1926 1927 /* We honor the existing XICS ioctl */ 1928 switch (attr->group) { 1929 case KVM_DEV_XICS_GRP_SOURCES: 1930 return xive_get_source(xive, attr->attr, attr->addr); 1931 } 1932 return -ENXIO; 1933 } 1934 1935 static int xive_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 1936 { 1937 /* We honor the same limits as XICS, at least for now */ 1938 switch (attr->group) { 1939 case KVM_DEV_XICS_GRP_SOURCES: 1940 if (attr->attr >= KVMPPC_XICS_FIRST_IRQ && 1941 attr->attr < KVMPPC_XICS_NR_IRQS) 1942 return 0; 1943 break; 1944 case KVM_DEV_XICS_GRP_CTRL: 1945 switch (attr->attr) { 1946 case KVM_DEV_XICS_NR_SERVERS: 1947 return 0; 1948 } 1949 } 1950 return -ENXIO; 1951 } 1952 1953 static void kvmppc_xive_cleanup_irq(u32 hw_num, struct xive_irq_data *xd) 1954 { 1955 xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01); 1956 xive_native_configure_irq(hw_num, 0, MASKED, 0); 1957 } 1958 1959 void kvmppc_xive_free_sources(struct kvmppc_xive_src_block *sb) 1960 { 1961 int i; 1962 1963 for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) { 1964 struct kvmppc_xive_irq_state *state = &sb->irq_state[i]; 1965 1966 if (!state->valid) 1967 continue; 1968 1969 kvmppc_xive_cleanup_irq(state->ipi_number, &state->ipi_data); 1970 xive_cleanup_irq_data(&state->ipi_data); 1971 xive_native_free_irq(state->ipi_number); 1972 1973 /* Pass-through, cleanup too but keep IRQ hw data */ 1974 if (state->pt_number) 1975 kvmppc_xive_cleanup_irq(state->pt_number, state->pt_data); 1976 1977 state->valid = false; 1978 } 1979 } 1980 1981 /* 1982 * Called when device fd is closed. kvm->lock is held. 1983 */ 1984 static void kvmppc_xive_release(struct kvm_device *dev) 1985 { 1986 struct kvmppc_xive *xive = dev->private; 1987 struct kvm *kvm = xive->kvm; 1988 struct kvm_vcpu *vcpu; 1989 int i; 1990 1991 pr_devel("Releasing xive device\n"); 1992 1993 /* 1994 * Since this is the device release function, we know that 1995 * userspace does not have any open fd referring to the 1996 * device. Therefore there can not be any of the device 1997 * attribute set/get functions being executed concurrently, 1998 * and similarly, the connect_vcpu and set/clr_mapped 1999 * functions also cannot be being executed. 2000 */ 2001 2002 debugfs_remove(xive->dentry); 2003 2004 /* 2005 * We should clean up the vCPU interrupt presenters first. 2006 */ 2007 kvm_for_each_vcpu(i, vcpu, kvm) { 2008 /* 2009 * Take vcpu->mutex to ensure that no one_reg get/set ioctl 2010 * (i.e. kvmppc_xive_[gs]et_icp) can be done concurrently. 2011 * Holding the vcpu->mutex also means that the vcpu cannot 2012 * be executing the KVM_RUN ioctl, and therefore it cannot 2013 * be executing the XIVE push or pull code or accessing 2014 * the XIVE MMIO regions. 2015 */ 2016 mutex_lock(&vcpu->mutex); 2017 kvmppc_xive_cleanup_vcpu(vcpu); 2018 mutex_unlock(&vcpu->mutex); 2019 } 2020 2021 /* 2022 * Now that we have cleared vcpu->arch.xive_vcpu, vcpu->arch.irq_type 2023 * and vcpu->arch.xive_esc_[vr]addr on each vcpu, we are safe 2024 * against xive code getting called during vcpu execution or 2025 * set/get one_reg operations. 2026 */ 2027 kvm->arch.xive = NULL; 2028 2029 /* Mask and free interrupts */ 2030 for (i = 0; i <= xive->max_sbid; i++) { 2031 if (xive->src_blocks[i]) 2032 kvmppc_xive_free_sources(xive->src_blocks[i]); 2033 kfree(xive->src_blocks[i]); 2034 xive->src_blocks[i] = NULL; 2035 } 2036 2037 if (xive->vp_base != XIVE_INVALID_VP) 2038 xive_native_free_vp_block(xive->vp_base); 2039 2040 /* 2041 * A reference of the kvmppc_xive pointer is now kept under 2042 * the xive_devices struct of the machine for reuse. It is 2043 * freed when the VM is destroyed for now until we fix all the 2044 * execution paths. 2045 */ 2046 2047 kfree(dev); 2048 } 2049 2050 /* 2051 * When the guest chooses the interrupt mode (XICS legacy or XIVE 2052 * native), the VM will switch of KVM device. The previous device will 2053 * be "released" before the new one is created. 2054 * 2055 * Until we are sure all execution paths are well protected, provide a 2056 * fail safe (transitional) method for device destruction, in which 2057 * the XIVE device pointer is recycled and not directly freed. 2058 */ 2059 struct kvmppc_xive *kvmppc_xive_get_device(struct kvm *kvm, u32 type) 2060 { 2061 struct kvmppc_xive **kvm_xive_device = type == KVM_DEV_TYPE_XIVE ? 2062 &kvm->arch.xive_devices.native : 2063 &kvm->arch.xive_devices.xics_on_xive; 2064 struct kvmppc_xive *xive = *kvm_xive_device; 2065 2066 if (!xive) { 2067 xive = kzalloc(sizeof(*xive), GFP_KERNEL); 2068 *kvm_xive_device = xive; 2069 } else { 2070 memset(xive, 0, sizeof(*xive)); 2071 } 2072 2073 return xive; 2074 } 2075 2076 /* 2077 * Create a XICS device with XIVE backend. kvm->lock is held. 2078 */ 2079 static int kvmppc_xive_create(struct kvm_device *dev, u32 type) 2080 { 2081 struct kvmppc_xive *xive; 2082 struct kvm *kvm = dev->kvm; 2083 2084 pr_devel("Creating xive for partition\n"); 2085 2086 /* Already there ? */ 2087 if (kvm->arch.xive) 2088 return -EEXIST; 2089 2090 xive = kvmppc_xive_get_device(kvm, type); 2091 if (!xive) 2092 return -ENOMEM; 2093 2094 dev->private = xive; 2095 xive->dev = dev; 2096 xive->kvm = kvm; 2097 mutex_init(&xive->lock); 2098 2099 /* We use the default queue size set by the host */ 2100 xive->q_order = xive_native_default_eq_shift(); 2101 if (xive->q_order < PAGE_SHIFT) 2102 xive->q_page_order = 0; 2103 else 2104 xive->q_page_order = xive->q_order - PAGE_SHIFT; 2105 2106 /* VP allocation is delayed to the first call to connect_vcpu */ 2107 xive->vp_base = XIVE_INVALID_VP; 2108 /* KVM_MAX_VCPUS limits the number of VMs to roughly 64 per sockets 2109 * on a POWER9 system. 2110 */ 2111 xive->nr_servers = KVM_MAX_VCPUS; 2112 2113 xive->single_escalation = xive_native_has_single_escalation(); 2114 2115 kvm->arch.xive = xive; 2116 return 0; 2117 } 2118 2119 int kvmppc_xive_debug_show_queues(struct seq_file *m, struct kvm_vcpu *vcpu) 2120 { 2121 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 2122 unsigned int i; 2123 2124 for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) { 2125 struct xive_q *q = &xc->queues[i]; 2126 u32 i0, i1, idx; 2127 2128 if (!q->qpage && !xc->esc_virq[i]) 2129 continue; 2130 2131 seq_printf(m, " [q%d]: ", i); 2132 2133 if (q->qpage) { 2134 idx = q->idx; 2135 i0 = be32_to_cpup(q->qpage + idx); 2136 idx = (idx + 1) & q->msk; 2137 i1 = be32_to_cpup(q->qpage + idx); 2138 seq_printf(m, "T=%d %08x %08x...\n", q->toggle, 2139 i0, i1); 2140 } 2141 if (xc->esc_virq[i]) { 2142 struct irq_data *d = irq_get_irq_data(xc->esc_virq[i]); 2143 struct xive_irq_data *xd = 2144 irq_data_get_irq_handler_data(d); 2145 u64 pq = xive_vm_esb_load(xd, XIVE_ESB_GET); 2146 2147 seq_printf(m, "E:%c%c I(%d:%llx:%llx)", 2148 (pq & XIVE_ESB_VAL_P) ? 'P' : 'p', 2149 (pq & XIVE_ESB_VAL_Q) ? 'Q' : 'q', 2150 xc->esc_virq[i], pq, xd->eoi_page); 2151 seq_puts(m, "\n"); 2152 } 2153 } 2154 return 0; 2155 } 2156 2157 static int xive_debug_show(struct seq_file *m, void *private) 2158 { 2159 struct kvmppc_xive *xive = m->private; 2160 struct kvm *kvm = xive->kvm; 2161 struct kvm_vcpu *vcpu; 2162 u64 t_rm_h_xirr = 0; 2163 u64 t_rm_h_ipoll = 0; 2164 u64 t_rm_h_cppr = 0; 2165 u64 t_rm_h_eoi = 0; 2166 u64 t_rm_h_ipi = 0; 2167 u64 t_vm_h_xirr = 0; 2168 u64 t_vm_h_ipoll = 0; 2169 u64 t_vm_h_cppr = 0; 2170 u64 t_vm_h_eoi = 0; 2171 u64 t_vm_h_ipi = 0; 2172 unsigned int i; 2173 2174 if (!kvm) 2175 return 0; 2176 2177 seq_printf(m, "=========\nVCPU state\n=========\n"); 2178 2179 kvm_for_each_vcpu(i, vcpu, kvm) { 2180 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 2181 2182 if (!xc) 2183 continue; 2184 2185 seq_printf(m, "cpu server %#x VP:%#x CPPR:%#x HWCPPR:%#x" 2186 " MFRR:%#x PEND:%#x h_xirr: R=%lld V=%lld\n", 2187 xc->server_num, xc->vp_id, xc->cppr, xc->hw_cppr, 2188 xc->mfrr, xc->pending, 2189 xc->stat_rm_h_xirr, xc->stat_vm_h_xirr); 2190 2191 kvmppc_xive_debug_show_queues(m, vcpu); 2192 2193 t_rm_h_xirr += xc->stat_rm_h_xirr; 2194 t_rm_h_ipoll += xc->stat_rm_h_ipoll; 2195 t_rm_h_cppr += xc->stat_rm_h_cppr; 2196 t_rm_h_eoi += xc->stat_rm_h_eoi; 2197 t_rm_h_ipi += xc->stat_rm_h_ipi; 2198 t_vm_h_xirr += xc->stat_vm_h_xirr; 2199 t_vm_h_ipoll += xc->stat_vm_h_ipoll; 2200 t_vm_h_cppr += xc->stat_vm_h_cppr; 2201 t_vm_h_eoi += xc->stat_vm_h_eoi; 2202 t_vm_h_ipi += xc->stat_vm_h_ipi; 2203 } 2204 2205 seq_printf(m, "Hcalls totals\n"); 2206 seq_printf(m, " H_XIRR R=%10lld V=%10lld\n", t_rm_h_xirr, t_vm_h_xirr); 2207 seq_printf(m, " H_IPOLL R=%10lld V=%10lld\n", t_rm_h_ipoll, t_vm_h_ipoll); 2208 seq_printf(m, " H_CPPR R=%10lld V=%10lld\n", t_rm_h_cppr, t_vm_h_cppr); 2209 seq_printf(m, " H_EOI R=%10lld V=%10lld\n", t_rm_h_eoi, t_vm_h_eoi); 2210 seq_printf(m, " H_IPI R=%10lld V=%10lld\n", t_rm_h_ipi, t_vm_h_ipi); 2211 2212 return 0; 2213 } 2214 2215 DEFINE_SHOW_ATTRIBUTE(xive_debug); 2216 2217 static void xive_debugfs_init(struct kvmppc_xive *xive) 2218 { 2219 char *name; 2220 2221 name = kasprintf(GFP_KERNEL, "kvm-xive-%p", xive); 2222 if (!name) { 2223 pr_err("%s: no memory for name\n", __func__); 2224 return; 2225 } 2226 2227 xive->dentry = debugfs_create_file(name, S_IRUGO, powerpc_debugfs_root, 2228 xive, &xive_debug_fops); 2229 2230 pr_debug("%s: created %s\n", __func__, name); 2231 kfree(name); 2232 } 2233 2234 static void kvmppc_xive_init(struct kvm_device *dev) 2235 { 2236 struct kvmppc_xive *xive = (struct kvmppc_xive *)dev->private; 2237 2238 /* Register some debug interfaces */ 2239 xive_debugfs_init(xive); 2240 } 2241 2242 struct kvm_device_ops kvm_xive_ops = { 2243 .name = "kvm-xive", 2244 .create = kvmppc_xive_create, 2245 .init = kvmppc_xive_init, 2246 .release = kvmppc_xive_release, 2247 .set_attr = xive_set_attr, 2248 .get_attr = xive_get_attr, 2249 .has_attr = xive_has_attr, 2250 }; 2251 2252 void kvmppc_xive_init_module(void) 2253 { 2254 __xive_vm_h_xirr = xive_vm_h_xirr; 2255 __xive_vm_h_ipoll = xive_vm_h_ipoll; 2256 __xive_vm_h_ipi = xive_vm_h_ipi; 2257 __xive_vm_h_cppr = xive_vm_h_cppr; 2258 __xive_vm_h_eoi = xive_vm_h_eoi; 2259 } 2260 2261 void kvmppc_xive_exit_module(void) 2262 { 2263 __xive_vm_h_xirr = NULL; 2264 __xive_vm_h_ipoll = NULL; 2265 __xive_vm_h_ipi = NULL; 2266 __xive_vm_h_cppr = NULL; 2267 __xive_vm_h_eoi = NULL; 2268 } 2269