1 /* 2 * Copyright 2017 Benjamin Herrenschmidt, IBM Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License, version 2, as 6 * published by the Free Software Foundation. 7 */ 8 9 #define pr_fmt(fmt) "xive-kvm: " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/kvm_host.h> 13 #include <linux/err.h> 14 #include <linux/gfp.h> 15 #include <linux/spinlock.h> 16 #include <linux/delay.h> 17 #include <linux/percpu.h> 18 #include <linux/cpumask.h> 19 #include <linux/uaccess.h> 20 #include <asm/kvm_book3s.h> 21 #include <asm/kvm_ppc.h> 22 #include <asm/hvcall.h> 23 #include <asm/xics.h> 24 #include <asm/xive.h> 25 #include <asm/xive-regs.h> 26 #include <asm/debug.h> 27 #include <asm/debugfs.h> 28 #include <asm/time.h> 29 #include <asm/opal.h> 30 31 #include <linux/debugfs.h> 32 #include <linux/seq_file.h> 33 34 #include "book3s_xive.h" 35 36 37 /* 38 * Virtual mode variants of the hcalls for use on radix/radix 39 * with AIL. They require the VCPU's VP to be "pushed" 40 * 41 * We still instantiate them here because we use some of the 42 * generated utility functions as well in this file. 43 */ 44 #define XIVE_RUNTIME_CHECKS 45 #define X_PFX xive_vm_ 46 #define X_STATIC static 47 #define X_STAT_PFX stat_vm_ 48 #define __x_tima xive_tima 49 #define __x_eoi_page(xd) ((void __iomem *)((xd)->eoi_mmio)) 50 #define __x_trig_page(xd) ((void __iomem *)((xd)->trig_mmio)) 51 #define __x_writeb __raw_writeb 52 #define __x_readw __raw_readw 53 #define __x_readq __raw_readq 54 #define __x_writeq __raw_writeq 55 56 #include "book3s_xive_template.c" 57 58 /* 59 * We leave a gap of a couple of interrupts in the queue to 60 * account for the IPI and additional safety guard. 61 */ 62 #define XIVE_Q_GAP 2 63 64 /* 65 * This is a simple trigger for a generic XIVE IRQ. This must 66 * only be called for interrupts that support a trigger page 67 */ 68 static bool xive_irq_trigger(struct xive_irq_data *xd) 69 { 70 /* This should be only for MSIs */ 71 if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI)) 72 return false; 73 74 /* Those interrupts should always have a trigger page */ 75 if (WARN_ON(!xd->trig_mmio)) 76 return false; 77 78 out_be64(xd->trig_mmio, 0); 79 80 return true; 81 } 82 83 static irqreturn_t xive_esc_irq(int irq, void *data) 84 { 85 struct kvm_vcpu *vcpu = data; 86 87 vcpu->arch.irq_pending = 1; 88 smp_mb(); 89 if (vcpu->arch.ceded) 90 kvmppc_fast_vcpu_kick(vcpu); 91 92 /* Since we have the no-EOI flag, the interrupt is effectively 93 * disabled now. Clearing xive_esc_on means we won't bother 94 * doing so on the next entry. 95 * 96 * This also allows the entry code to know that if a PQ combination 97 * of 10 is observed while xive_esc_on is true, it means the queue 98 * contains an unprocessed escalation interrupt. We don't make use of 99 * that knowledge today but might (see comment in book3s_hv_rmhandler.S) 100 */ 101 vcpu->arch.xive_esc_on = false; 102 103 return IRQ_HANDLED; 104 } 105 106 static int xive_attach_escalation(struct kvm_vcpu *vcpu, u8 prio) 107 { 108 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 109 struct xive_q *q = &xc->queues[prio]; 110 char *name = NULL; 111 int rc; 112 113 /* Already there ? */ 114 if (xc->esc_virq[prio]) 115 return 0; 116 117 /* Hook up the escalation interrupt */ 118 xc->esc_virq[prio] = irq_create_mapping(NULL, q->esc_irq); 119 if (!xc->esc_virq[prio]) { 120 pr_err("Failed to map escalation interrupt for queue %d of VCPU %d\n", 121 prio, xc->server_num); 122 return -EIO; 123 } 124 125 if (xc->xive->single_escalation) 126 name = kasprintf(GFP_KERNEL, "kvm-%d-%d", 127 vcpu->kvm->arch.lpid, xc->server_num); 128 else 129 name = kasprintf(GFP_KERNEL, "kvm-%d-%d-%d", 130 vcpu->kvm->arch.lpid, xc->server_num, prio); 131 if (!name) { 132 pr_err("Failed to allocate escalation irq name for queue %d of VCPU %d\n", 133 prio, xc->server_num); 134 rc = -ENOMEM; 135 goto error; 136 } 137 138 pr_devel("Escalation %s irq %d (prio %d)\n", name, xc->esc_virq[prio], prio); 139 140 rc = request_irq(xc->esc_virq[prio], xive_esc_irq, 141 IRQF_NO_THREAD, name, vcpu); 142 if (rc) { 143 pr_err("Failed to request escalation interrupt for queue %d of VCPU %d\n", 144 prio, xc->server_num); 145 goto error; 146 } 147 xc->esc_virq_names[prio] = name; 148 149 /* In single escalation mode, we grab the ESB MMIO of the 150 * interrupt and mask it. Also populate the VCPU v/raddr 151 * of the ESB page for use by asm entry/exit code. Finally 152 * set the XIVE_IRQ_NO_EOI flag which will prevent the 153 * core code from performing an EOI on the escalation 154 * interrupt, thus leaving it effectively masked after 155 * it fires once. 156 */ 157 if (xc->xive->single_escalation) { 158 struct irq_data *d = irq_get_irq_data(xc->esc_virq[prio]); 159 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 160 161 xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01); 162 vcpu->arch.xive_esc_raddr = xd->eoi_page; 163 vcpu->arch.xive_esc_vaddr = (__force u64)xd->eoi_mmio; 164 xd->flags |= XIVE_IRQ_NO_EOI; 165 } 166 167 return 0; 168 error: 169 irq_dispose_mapping(xc->esc_virq[prio]); 170 xc->esc_virq[prio] = 0; 171 kfree(name); 172 return rc; 173 } 174 175 static int xive_provision_queue(struct kvm_vcpu *vcpu, u8 prio) 176 { 177 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 178 struct kvmppc_xive *xive = xc->xive; 179 struct xive_q *q = &xc->queues[prio]; 180 void *qpage; 181 int rc; 182 183 if (WARN_ON(q->qpage)) 184 return 0; 185 186 /* Allocate the queue and retrieve infos on current node for now */ 187 qpage = (__be32 *)__get_free_pages(GFP_KERNEL, xive->q_page_order); 188 if (!qpage) { 189 pr_err("Failed to allocate queue %d for VCPU %d\n", 190 prio, xc->server_num); 191 return -ENOMEM; 192 } 193 memset(qpage, 0, 1 << xive->q_order); 194 195 /* 196 * Reconfigure the queue. This will set q->qpage only once the 197 * queue is fully configured. This is a requirement for prio 0 198 * as we will stop doing EOIs for every IPI as soon as we observe 199 * qpage being non-NULL, and instead will only EOI when we receive 200 * corresponding queue 0 entries 201 */ 202 rc = xive_native_configure_queue(xc->vp_id, q, prio, qpage, 203 xive->q_order, true); 204 if (rc) 205 pr_err("Failed to configure queue %d for VCPU %d\n", 206 prio, xc->server_num); 207 return rc; 208 } 209 210 /* Called with kvm_lock held */ 211 static int xive_check_provisioning(struct kvm *kvm, u8 prio) 212 { 213 struct kvmppc_xive *xive = kvm->arch.xive; 214 struct kvm_vcpu *vcpu; 215 int i, rc; 216 217 lockdep_assert_held(&kvm->lock); 218 219 /* Already provisioned ? */ 220 if (xive->qmap & (1 << prio)) 221 return 0; 222 223 pr_devel("Provisioning prio... %d\n", prio); 224 225 /* Provision each VCPU and enable escalations if needed */ 226 kvm_for_each_vcpu(i, vcpu, kvm) { 227 if (!vcpu->arch.xive_vcpu) 228 continue; 229 rc = xive_provision_queue(vcpu, prio); 230 if (rc == 0 && !xive->single_escalation) 231 xive_attach_escalation(vcpu, prio); 232 if (rc) 233 return rc; 234 } 235 236 /* Order previous stores and mark it as provisioned */ 237 mb(); 238 xive->qmap |= (1 << prio); 239 return 0; 240 } 241 242 static void xive_inc_q_pending(struct kvm *kvm, u32 server, u8 prio) 243 { 244 struct kvm_vcpu *vcpu; 245 struct kvmppc_xive_vcpu *xc; 246 struct xive_q *q; 247 248 /* Locate target server */ 249 vcpu = kvmppc_xive_find_server(kvm, server); 250 if (!vcpu) { 251 pr_warn("%s: Can't find server %d\n", __func__, server); 252 return; 253 } 254 xc = vcpu->arch.xive_vcpu; 255 if (WARN_ON(!xc)) 256 return; 257 258 q = &xc->queues[prio]; 259 atomic_inc(&q->pending_count); 260 } 261 262 static int xive_try_pick_queue(struct kvm_vcpu *vcpu, u8 prio) 263 { 264 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 265 struct xive_q *q; 266 u32 max; 267 268 if (WARN_ON(!xc)) 269 return -ENXIO; 270 if (!xc->valid) 271 return -ENXIO; 272 273 q = &xc->queues[prio]; 274 if (WARN_ON(!q->qpage)) 275 return -ENXIO; 276 277 /* Calculate max number of interrupts in that queue. */ 278 max = (q->msk + 1) - XIVE_Q_GAP; 279 return atomic_add_unless(&q->count, 1, max) ? 0 : -EBUSY; 280 } 281 282 static int xive_select_target(struct kvm *kvm, u32 *server, u8 prio) 283 { 284 struct kvm_vcpu *vcpu; 285 int i, rc; 286 287 /* Locate target server */ 288 vcpu = kvmppc_xive_find_server(kvm, *server); 289 if (!vcpu) { 290 pr_devel("Can't find server %d\n", *server); 291 return -EINVAL; 292 } 293 294 pr_devel("Finding irq target on 0x%x/%d...\n", *server, prio); 295 296 /* Try pick it */ 297 rc = xive_try_pick_queue(vcpu, prio); 298 if (rc == 0) 299 return rc; 300 301 pr_devel(" .. failed, looking up candidate...\n"); 302 303 /* Failed, pick another VCPU */ 304 kvm_for_each_vcpu(i, vcpu, kvm) { 305 if (!vcpu->arch.xive_vcpu) 306 continue; 307 rc = xive_try_pick_queue(vcpu, prio); 308 if (rc == 0) { 309 *server = vcpu->arch.xive_vcpu->server_num; 310 pr_devel(" found on 0x%x/%d\n", *server, prio); 311 return rc; 312 } 313 } 314 pr_devel(" no available target !\n"); 315 316 /* No available target ! */ 317 return -EBUSY; 318 } 319 320 static u32 xive_vp(struct kvmppc_xive *xive, u32 server) 321 { 322 return xive->vp_base + kvmppc_pack_vcpu_id(xive->kvm, server); 323 } 324 325 static u8 xive_lock_and_mask(struct kvmppc_xive *xive, 326 struct kvmppc_xive_src_block *sb, 327 struct kvmppc_xive_irq_state *state) 328 { 329 struct xive_irq_data *xd; 330 u32 hw_num; 331 u8 old_prio; 332 u64 val; 333 334 /* 335 * Take the lock, set masked, try again if racing 336 * with H_EOI 337 */ 338 for (;;) { 339 arch_spin_lock(&sb->lock); 340 old_prio = state->guest_priority; 341 state->guest_priority = MASKED; 342 mb(); 343 if (!state->in_eoi) 344 break; 345 state->guest_priority = old_prio; 346 arch_spin_unlock(&sb->lock); 347 } 348 349 /* No change ? Bail */ 350 if (old_prio == MASKED) 351 return old_prio; 352 353 /* Get the right irq */ 354 kvmppc_xive_select_irq(state, &hw_num, &xd); 355 356 /* 357 * If the interrupt is marked as needing masking via 358 * firmware, we do it here. Firmware masking however 359 * is "lossy", it won't return the old p and q bits 360 * and won't set the interrupt to a state where it will 361 * record queued ones. If this is an issue we should do 362 * lazy masking instead. 363 * 364 * For now, we work around this in unmask by forcing 365 * an interrupt whenever we unmask a non-LSI via FW 366 * (if ever). 367 */ 368 if (xd->flags & OPAL_XIVE_IRQ_MASK_VIA_FW) { 369 xive_native_configure_irq(hw_num, 370 xive_vp(xive, state->act_server), 371 MASKED, state->number); 372 /* set old_p so we can track if an H_EOI was done */ 373 state->old_p = true; 374 state->old_q = false; 375 } else { 376 /* Set PQ to 10, return old P and old Q and remember them */ 377 val = xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_10); 378 state->old_p = !!(val & 2); 379 state->old_q = !!(val & 1); 380 381 /* 382 * Synchronize hardware to sensure the queues are updated 383 * when masking 384 */ 385 xive_native_sync_source(hw_num); 386 } 387 388 return old_prio; 389 } 390 391 static void xive_lock_for_unmask(struct kvmppc_xive_src_block *sb, 392 struct kvmppc_xive_irq_state *state) 393 { 394 /* 395 * Take the lock try again if racing with H_EOI 396 */ 397 for (;;) { 398 arch_spin_lock(&sb->lock); 399 if (!state->in_eoi) 400 break; 401 arch_spin_unlock(&sb->lock); 402 } 403 } 404 405 static void xive_finish_unmask(struct kvmppc_xive *xive, 406 struct kvmppc_xive_src_block *sb, 407 struct kvmppc_xive_irq_state *state, 408 u8 prio) 409 { 410 struct xive_irq_data *xd; 411 u32 hw_num; 412 413 /* If we aren't changing a thing, move on */ 414 if (state->guest_priority != MASKED) 415 goto bail; 416 417 /* Get the right irq */ 418 kvmppc_xive_select_irq(state, &hw_num, &xd); 419 420 /* 421 * See command in xive_lock_and_mask() concerning masking 422 * via firmware. 423 */ 424 if (xd->flags & OPAL_XIVE_IRQ_MASK_VIA_FW) { 425 xive_native_configure_irq(hw_num, 426 xive_vp(xive, state->act_server), 427 state->act_priority, state->number); 428 /* If an EOI is needed, do it here */ 429 if (!state->old_p) 430 xive_vm_source_eoi(hw_num, xd); 431 /* If this is not an LSI, force a trigger */ 432 if (!(xd->flags & OPAL_XIVE_IRQ_LSI)) 433 xive_irq_trigger(xd); 434 goto bail; 435 } 436 437 /* Old Q set, set PQ to 11 */ 438 if (state->old_q) 439 xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_11); 440 441 /* 442 * If not old P, then perform an "effective" EOI, 443 * on the source. This will handle the cases where 444 * FW EOI is needed. 445 */ 446 if (!state->old_p) 447 xive_vm_source_eoi(hw_num, xd); 448 449 /* Synchronize ordering and mark unmasked */ 450 mb(); 451 bail: 452 state->guest_priority = prio; 453 } 454 455 /* 456 * Target an interrupt to a given server/prio, this will fallback 457 * to another server if necessary and perform the HW targetting 458 * updates as needed 459 * 460 * NOTE: Must be called with the state lock held 461 */ 462 static int xive_target_interrupt(struct kvm *kvm, 463 struct kvmppc_xive_irq_state *state, 464 u32 server, u8 prio) 465 { 466 struct kvmppc_xive *xive = kvm->arch.xive; 467 u32 hw_num; 468 int rc; 469 470 /* 471 * This will return a tentative server and actual 472 * priority. The count for that new target will have 473 * already been incremented. 474 */ 475 rc = xive_select_target(kvm, &server, prio); 476 477 /* 478 * We failed to find a target ? Not much we can do 479 * at least until we support the GIQ. 480 */ 481 if (rc) 482 return rc; 483 484 /* 485 * Increment the old queue pending count if there 486 * was one so that the old queue count gets adjusted later 487 * when observed to be empty. 488 */ 489 if (state->act_priority != MASKED) 490 xive_inc_q_pending(kvm, 491 state->act_server, 492 state->act_priority); 493 /* 494 * Update state and HW 495 */ 496 state->act_priority = prio; 497 state->act_server = server; 498 499 /* Get the right irq */ 500 kvmppc_xive_select_irq(state, &hw_num, NULL); 501 502 return xive_native_configure_irq(hw_num, 503 xive_vp(xive, server), 504 prio, state->number); 505 } 506 507 /* 508 * Targetting rules: In order to avoid losing track of 509 * pending interrupts accross mask and unmask, which would 510 * allow queue overflows, we implement the following rules: 511 * 512 * - Unless it was never enabled (or we run out of capacity) 513 * an interrupt is always targetted at a valid server/queue 514 * pair even when "masked" by the guest. This pair tends to 515 * be the last one used but it can be changed under some 516 * circumstances. That allows us to separate targetting 517 * from masking, we only handle accounting during (re)targetting, 518 * this also allows us to let an interrupt drain into its target 519 * queue after masking, avoiding complex schemes to remove 520 * interrupts out of remote processor queues. 521 * 522 * - When masking, we set PQ to 10 and save the previous value 523 * of P and Q. 524 * 525 * - When unmasking, if saved Q was set, we set PQ to 11 526 * otherwise we leave PQ to the HW state which will be either 527 * 10 if nothing happened or 11 if the interrupt fired while 528 * masked. Effectively we are OR'ing the previous Q into the 529 * HW Q. 530 * 531 * Then if saved P is clear, we do an effective EOI (Q->P->Trigger) 532 * which will unmask the interrupt and shoot a new one if Q was 533 * set. 534 * 535 * Otherwise (saved P is set) we leave PQ unchanged (so 10 or 11, 536 * effectively meaning an H_EOI from the guest is still expected 537 * for that interrupt). 538 * 539 * - If H_EOI occurs while masked, we clear the saved P. 540 * 541 * - When changing target, we account on the new target and 542 * increment a separate "pending" counter on the old one. 543 * This pending counter will be used to decrement the old 544 * target's count when its queue has been observed empty. 545 */ 546 547 int kvmppc_xive_set_xive(struct kvm *kvm, u32 irq, u32 server, 548 u32 priority) 549 { 550 struct kvmppc_xive *xive = kvm->arch.xive; 551 struct kvmppc_xive_src_block *sb; 552 struct kvmppc_xive_irq_state *state; 553 u8 new_act_prio; 554 int rc = 0; 555 u16 idx; 556 557 if (!xive) 558 return -ENODEV; 559 560 pr_devel("set_xive ! irq 0x%x server 0x%x prio %d\n", 561 irq, server, priority); 562 563 /* First, check provisioning of queues */ 564 if (priority != MASKED) 565 rc = xive_check_provisioning(xive->kvm, 566 xive_prio_from_guest(priority)); 567 if (rc) { 568 pr_devel(" provisioning failure %d !\n", rc); 569 return rc; 570 } 571 572 sb = kvmppc_xive_find_source(xive, irq, &idx); 573 if (!sb) 574 return -EINVAL; 575 state = &sb->irq_state[idx]; 576 577 /* 578 * We first handle masking/unmasking since the locking 579 * might need to be retried due to EOIs, we'll handle 580 * targetting changes later. These functions will return 581 * with the SB lock held. 582 * 583 * xive_lock_and_mask() will also set state->guest_priority 584 * but won't otherwise change other fields of the state. 585 * 586 * xive_lock_for_unmask will not actually unmask, this will 587 * be done later by xive_finish_unmask() once the targetting 588 * has been done, so we don't try to unmask an interrupt 589 * that hasn't yet been targetted. 590 */ 591 if (priority == MASKED) 592 xive_lock_and_mask(xive, sb, state); 593 else 594 xive_lock_for_unmask(sb, state); 595 596 597 /* 598 * Then we handle targetting. 599 * 600 * First calculate a new "actual priority" 601 */ 602 new_act_prio = state->act_priority; 603 if (priority != MASKED) 604 new_act_prio = xive_prio_from_guest(priority); 605 606 pr_devel(" new_act_prio=%x act_server=%x act_prio=%x\n", 607 new_act_prio, state->act_server, state->act_priority); 608 609 /* 610 * Then check if we actually need to change anything, 611 * 612 * The condition for re-targetting the interrupt is that 613 * we have a valid new priority (new_act_prio is not 0xff) 614 * and either the server or the priority changed. 615 * 616 * Note: If act_priority was ff and the new priority is 617 * also ff, we don't do anything and leave the interrupt 618 * untargetted. An attempt of doing an int_on on an 619 * untargetted interrupt will fail. If that is a problem 620 * we could initialize interrupts with valid default 621 */ 622 623 if (new_act_prio != MASKED && 624 (state->act_server != server || 625 state->act_priority != new_act_prio)) 626 rc = xive_target_interrupt(kvm, state, server, new_act_prio); 627 628 /* 629 * Perform the final unmasking of the interrupt source 630 * if necessary 631 */ 632 if (priority != MASKED) 633 xive_finish_unmask(xive, sb, state, priority); 634 635 /* 636 * Finally Update saved_priority to match. Only int_on/off 637 * set this field to a different value. 638 */ 639 state->saved_priority = priority; 640 641 arch_spin_unlock(&sb->lock); 642 return rc; 643 } 644 645 int kvmppc_xive_get_xive(struct kvm *kvm, u32 irq, u32 *server, 646 u32 *priority) 647 { 648 struct kvmppc_xive *xive = kvm->arch.xive; 649 struct kvmppc_xive_src_block *sb; 650 struct kvmppc_xive_irq_state *state; 651 u16 idx; 652 653 if (!xive) 654 return -ENODEV; 655 656 sb = kvmppc_xive_find_source(xive, irq, &idx); 657 if (!sb) 658 return -EINVAL; 659 state = &sb->irq_state[idx]; 660 arch_spin_lock(&sb->lock); 661 *server = state->act_server; 662 *priority = state->guest_priority; 663 arch_spin_unlock(&sb->lock); 664 665 return 0; 666 } 667 668 int kvmppc_xive_int_on(struct kvm *kvm, u32 irq) 669 { 670 struct kvmppc_xive *xive = kvm->arch.xive; 671 struct kvmppc_xive_src_block *sb; 672 struct kvmppc_xive_irq_state *state; 673 u16 idx; 674 675 if (!xive) 676 return -ENODEV; 677 678 sb = kvmppc_xive_find_source(xive, irq, &idx); 679 if (!sb) 680 return -EINVAL; 681 state = &sb->irq_state[idx]; 682 683 pr_devel("int_on(irq=0x%x)\n", irq); 684 685 /* 686 * Check if interrupt was not targetted 687 */ 688 if (state->act_priority == MASKED) { 689 pr_devel("int_on on untargetted interrupt\n"); 690 return -EINVAL; 691 } 692 693 /* If saved_priority is 0xff, do nothing */ 694 if (state->saved_priority == MASKED) 695 return 0; 696 697 /* 698 * Lock and unmask it. 699 */ 700 xive_lock_for_unmask(sb, state); 701 xive_finish_unmask(xive, sb, state, state->saved_priority); 702 arch_spin_unlock(&sb->lock); 703 704 return 0; 705 } 706 707 int kvmppc_xive_int_off(struct kvm *kvm, u32 irq) 708 { 709 struct kvmppc_xive *xive = kvm->arch.xive; 710 struct kvmppc_xive_src_block *sb; 711 struct kvmppc_xive_irq_state *state; 712 u16 idx; 713 714 if (!xive) 715 return -ENODEV; 716 717 sb = kvmppc_xive_find_source(xive, irq, &idx); 718 if (!sb) 719 return -EINVAL; 720 state = &sb->irq_state[idx]; 721 722 pr_devel("int_off(irq=0x%x)\n", irq); 723 724 /* 725 * Lock and mask 726 */ 727 state->saved_priority = xive_lock_and_mask(xive, sb, state); 728 arch_spin_unlock(&sb->lock); 729 730 return 0; 731 } 732 733 static bool xive_restore_pending_irq(struct kvmppc_xive *xive, u32 irq) 734 { 735 struct kvmppc_xive_src_block *sb; 736 struct kvmppc_xive_irq_state *state; 737 u16 idx; 738 739 sb = kvmppc_xive_find_source(xive, irq, &idx); 740 if (!sb) 741 return false; 742 state = &sb->irq_state[idx]; 743 if (!state->valid) 744 return false; 745 746 /* 747 * Trigger the IPI. This assumes we never restore a pass-through 748 * interrupt which should be safe enough 749 */ 750 xive_irq_trigger(&state->ipi_data); 751 752 return true; 753 } 754 755 u64 kvmppc_xive_get_icp(struct kvm_vcpu *vcpu) 756 { 757 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 758 759 if (!xc) 760 return 0; 761 762 /* Return the per-cpu state for state saving/migration */ 763 return (u64)xc->cppr << KVM_REG_PPC_ICP_CPPR_SHIFT | 764 (u64)xc->mfrr << KVM_REG_PPC_ICP_MFRR_SHIFT | 765 (u64)0xff << KVM_REG_PPC_ICP_PPRI_SHIFT; 766 } 767 768 int kvmppc_xive_set_icp(struct kvm_vcpu *vcpu, u64 icpval) 769 { 770 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 771 struct kvmppc_xive *xive = vcpu->kvm->arch.xive; 772 u8 cppr, mfrr; 773 u32 xisr; 774 775 if (!xc || !xive) 776 return -ENOENT; 777 778 /* Grab individual state fields. We don't use pending_pri */ 779 cppr = icpval >> KVM_REG_PPC_ICP_CPPR_SHIFT; 780 xisr = (icpval >> KVM_REG_PPC_ICP_XISR_SHIFT) & 781 KVM_REG_PPC_ICP_XISR_MASK; 782 mfrr = icpval >> KVM_REG_PPC_ICP_MFRR_SHIFT; 783 784 pr_devel("set_icp vcpu %d cppr=0x%x mfrr=0x%x xisr=0x%x\n", 785 xc->server_num, cppr, mfrr, xisr); 786 787 /* 788 * We can't update the state of a "pushed" VCPU, but that 789 * shouldn't happen. 790 */ 791 if (WARN_ON(vcpu->arch.xive_pushed)) 792 return -EIO; 793 794 /* Update VCPU HW saved state */ 795 vcpu->arch.xive_saved_state.cppr = cppr; 796 xc->hw_cppr = xc->cppr = cppr; 797 798 /* 799 * Update MFRR state. If it's not 0xff, we mark the VCPU as 800 * having a pending MFRR change, which will re-evaluate the 801 * target. The VCPU will thus potentially get a spurious 802 * interrupt but that's not a big deal. 803 */ 804 xc->mfrr = mfrr; 805 if (mfrr < cppr) 806 xive_irq_trigger(&xc->vp_ipi_data); 807 808 /* 809 * Now saved XIRR is "interesting". It means there's something in 810 * the legacy "1 element" queue... for an IPI we simply ignore it, 811 * as the MFRR restore will handle that. For anything else we need 812 * to force a resend of the source. 813 * However the source may not have been setup yet. If that's the 814 * case, we keep that info and increment a counter in the xive to 815 * tell subsequent xive_set_source() to go look. 816 */ 817 if (xisr > XICS_IPI && !xive_restore_pending_irq(xive, xisr)) { 818 xc->delayed_irq = xisr; 819 xive->delayed_irqs++; 820 pr_devel(" xisr restore delayed\n"); 821 } 822 823 return 0; 824 } 825 826 int kvmppc_xive_set_mapped(struct kvm *kvm, unsigned long guest_irq, 827 struct irq_desc *host_desc) 828 { 829 struct kvmppc_xive *xive = kvm->arch.xive; 830 struct kvmppc_xive_src_block *sb; 831 struct kvmppc_xive_irq_state *state; 832 struct irq_data *host_data = irq_desc_get_irq_data(host_desc); 833 unsigned int host_irq = irq_desc_get_irq(host_desc); 834 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(host_data); 835 u16 idx; 836 u8 prio; 837 int rc; 838 839 if (!xive) 840 return -ENODEV; 841 842 pr_devel("set_mapped girq 0x%lx host HW irq 0x%x...\n",guest_irq, hw_irq); 843 844 sb = kvmppc_xive_find_source(xive, guest_irq, &idx); 845 if (!sb) 846 return -EINVAL; 847 state = &sb->irq_state[idx]; 848 849 /* 850 * Mark the passed-through interrupt as going to a VCPU, 851 * this will prevent further EOIs and similar operations 852 * from the XIVE code. It will also mask the interrupt 853 * to either PQ=10 or 11 state, the latter if the interrupt 854 * is pending. This will allow us to unmask or retrigger it 855 * after routing it to the guest with a simple EOI. 856 * 857 * The "state" argument is a "token", all it needs is to be 858 * non-NULL to switch to passed-through or NULL for the 859 * other way around. We may not yet have an actual VCPU 860 * target here and we don't really care. 861 */ 862 rc = irq_set_vcpu_affinity(host_irq, state); 863 if (rc) { 864 pr_err("Failed to set VCPU affinity for irq %d\n", host_irq); 865 return rc; 866 } 867 868 /* 869 * Mask and read state of IPI. We need to know if its P bit 870 * is set as that means it's potentially already using a 871 * queue entry in the target 872 */ 873 prio = xive_lock_and_mask(xive, sb, state); 874 pr_devel(" old IPI prio %02x P:%d Q:%d\n", prio, 875 state->old_p, state->old_q); 876 877 /* Turn the IPI hard off */ 878 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01); 879 880 /* Grab info about irq */ 881 state->pt_number = hw_irq; 882 state->pt_data = irq_data_get_irq_handler_data(host_data); 883 884 /* 885 * Configure the IRQ to match the existing configuration of 886 * the IPI if it was already targetted. Otherwise this will 887 * mask the interrupt in a lossy way (act_priority is 0xff) 888 * which is fine for a never started interrupt. 889 */ 890 xive_native_configure_irq(hw_irq, 891 xive_vp(xive, state->act_server), 892 state->act_priority, state->number); 893 894 /* 895 * We do an EOI to enable the interrupt (and retrigger if needed) 896 * if the guest has the interrupt unmasked and the P bit was *not* 897 * set in the IPI. If it was set, we know a slot may still be in 898 * use in the target queue thus we have to wait for a guest 899 * originated EOI 900 */ 901 if (prio != MASKED && !state->old_p) 902 xive_vm_source_eoi(hw_irq, state->pt_data); 903 904 /* Clear old_p/old_q as they are no longer relevant */ 905 state->old_p = state->old_q = false; 906 907 /* Restore guest prio (unlocks EOI) */ 908 mb(); 909 state->guest_priority = prio; 910 arch_spin_unlock(&sb->lock); 911 912 return 0; 913 } 914 EXPORT_SYMBOL_GPL(kvmppc_xive_set_mapped); 915 916 int kvmppc_xive_clr_mapped(struct kvm *kvm, unsigned long guest_irq, 917 struct irq_desc *host_desc) 918 { 919 struct kvmppc_xive *xive = kvm->arch.xive; 920 struct kvmppc_xive_src_block *sb; 921 struct kvmppc_xive_irq_state *state; 922 unsigned int host_irq = irq_desc_get_irq(host_desc); 923 u16 idx; 924 u8 prio; 925 int rc; 926 927 if (!xive) 928 return -ENODEV; 929 930 pr_devel("clr_mapped girq 0x%lx...\n", guest_irq); 931 932 sb = kvmppc_xive_find_source(xive, guest_irq, &idx); 933 if (!sb) 934 return -EINVAL; 935 state = &sb->irq_state[idx]; 936 937 /* 938 * Mask and read state of IRQ. We need to know if its P bit 939 * is set as that means it's potentially already using a 940 * queue entry in the target 941 */ 942 prio = xive_lock_and_mask(xive, sb, state); 943 pr_devel(" old IRQ prio %02x P:%d Q:%d\n", prio, 944 state->old_p, state->old_q); 945 946 /* 947 * If old_p is set, the interrupt is pending, we switch it to 948 * PQ=11. This will force a resend in the host so the interrupt 949 * isn't lost to whatver host driver may pick it up 950 */ 951 if (state->old_p) 952 xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_11); 953 954 /* Release the passed-through interrupt to the host */ 955 rc = irq_set_vcpu_affinity(host_irq, NULL); 956 if (rc) { 957 pr_err("Failed to clr VCPU affinity for irq %d\n", host_irq); 958 return rc; 959 } 960 961 /* Forget about the IRQ */ 962 state->pt_number = 0; 963 state->pt_data = NULL; 964 965 /* Reconfigure the IPI */ 966 xive_native_configure_irq(state->ipi_number, 967 xive_vp(xive, state->act_server), 968 state->act_priority, state->number); 969 970 /* 971 * If old_p is set (we have a queue entry potentially 972 * occupied) or the interrupt is masked, we set the IPI 973 * to PQ=10 state. Otherwise we just re-enable it (PQ=00). 974 */ 975 if (prio == MASKED || state->old_p) 976 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_10); 977 else 978 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_00); 979 980 /* Restore guest prio (unlocks EOI) */ 981 mb(); 982 state->guest_priority = prio; 983 arch_spin_unlock(&sb->lock); 984 985 return 0; 986 } 987 EXPORT_SYMBOL_GPL(kvmppc_xive_clr_mapped); 988 989 static void kvmppc_xive_disable_vcpu_interrupts(struct kvm_vcpu *vcpu) 990 { 991 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 992 struct kvm *kvm = vcpu->kvm; 993 struct kvmppc_xive *xive = kvm->arch.xive; 994 int i, j; 995 996 for (i = 0; i <= xive->max_sbid; i++) { 997 struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; 998 999 if (!sb) 1000 continue; 1001 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) { 1002 struct kvmppc_xive_irq_state *state = &sb->irq_state[j]; 1003 1004 if (!state->valid) 1005 continue; 1006 if (state->act_priority == MASKED) 1007 continue; 1008 if (state->act_server != xc->server_num) 1009 continue; 1010 1011 /* Clean it up */ 1012 arch_spin_lock(&sb->lock); 1013 state->act_priority = MASKED; 1014 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01); 1015 xive_native_configure_irq(state->ipi_number, 0, MASKED, 0); 1016 if (state->pt_number) { 1017 xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_01); 1018 xive_native_configure_irq(state->pt_number, 0, MASKED, 0); 1019 } 1020 arch_spin_unlock(&sb->lock); 1021 } 1022 } 1023 } 1024 1025 void kvmppc_xive_cleanup_vcpu(struct kvm_vcpu *vcpu) 1026 { 1027 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 1028 struct kvmppc_xive *xive = xc->xive; 1029 int i; 1030 1031 pr_devel("cleanup_vcpu(cpu=%d)\n", xc->server_num); 1032 1033 /* Ensure no interrupt is still routed to that VP */ 1034 xc->valid = false; 1035 kvmppc_xive_disable_vcpu_interrupts(vcpu); 1036 1037 /* Mask the VP IPI */ 1038 xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_01); 1039 1040 /* Disable the VP */ 1041 xive_native_disable_vp(xc->vp_id); 1042 1043 /* Free the queues & associated interrupts */ 1044 for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) { 1045 struct xive_q *q = &xc->queues[i]; 1046 1047 /* Free the escalation irq */ 1048 if (xc->esc_virq[i]) { 1049 free_irq(xc->esc_virq[i], vcpu); 1050 irq_dispose_mapping(xc->esc_virq[i]); 1051 kfree(xc->esc_virq_names[i]); 1052 } 1053 /* Free the queue */ 1054 xive_native_disable_queue(xc->vp_id, q, i); 1055 if (q->qpage) { 1056 free_pages((unsigned long)q->qpage, 1057 xive->q_page_order); 1058 q->qpage = NULL; 1059 } 1060 } 1061 1062 /* Free the IPI */ 1063 if (xc->vp_ipi) { 1064 xive_cleanup_irq_data(&xc->vp_ipi_data); 1065 xive_native_free_irq(xc->vp_ipi); 1066 } 1067 /* Free the VP */ 1068 kfree(xc); 1069 } 1070 1071 int kvmppc_xive_connect_vcpu(struct kvm_device *dev, 1072 struct kvm_vcpu *vcpu, u32 cpu) 1073 { 1074 struct kvmppc_xive *xive = dev->private; 1075 struct kvmppc_xive_vcpu *xc; 1076 int i, r = -EBUSY; 1077 1078 pr_devel("connect_vcpu(cpu=%d)\n", cpu); 1079 1080 if (dev->ops != &kvm_xive_ops) { 1081 pr_devel("Wrong ops !\n"); 1082 return -EPERM; 1083 } 1084 if (xive->kvm != vcpu->kvm) 1085 return -EPERM; 1086 if (vcpu->arch.irq_type) 1087 return -EBUSY; 1088 if (kvmppc_xive_find_server(vcpu->kvm, cpu)) { 1089 pr_devel("Duplicate !\n"); 1090 return -EEXIST; 1091 } 1092 if (cpu >= (KVM_MAX_VCPUS * vcpu->kvm->arch.emul_smt_mode)) { 1093 pr_devel("Out of bounds !\n"); 1094 return -EINVAL; 1095 } 1096 xc = kzalloc(sizeof(*xc), GFP_KERNEL); 1097 if (!xc) 1098 return -ENOMEM; 1099 1100 /* We need to synchronize with queue provisioning */ 1101 mutex_lock(&vcpu->kvm->lock); 1102 vcpu->arch.xive_vcpu = xc; 1103 xc->xive = xive; 1104 xc->vcpu = vcpu; 1105 xc->server_num = cpu; 1106 xc->vp_id = xive_vp(xive, cpu); 1107 xc->mfrr = 0xff; 1108 xc->valid = true; 1109 1110 r = xive_native_get_vp_info(xc->vp_id, &xc->vp_cam, &xc->vp_chip_id); 1111 if (r) 1112 goto bail; 1113 1114 /* Configure VCPU fields for use by assembly push/pull */ 1115 vcpu->arch.xive_saved_state.w01 = cpu_to_be64(0xff000000); 1116 vcpu->arch.xive_cam_word = cpu_to_be32(xc->vp_cam | TM_QW1W2_VO); 1117 1118 /* Allocate IPI */ 1119 xc->vp_ipi = xive_native_alloc_irq(); 1120 if (!xc->vp_ipi) { 1121 pr_err("Failed to allocate xive irq for VCPU IPI\n"); 1122 r = -EIO; 1123 goto bail; 1124 } 1125 pr_devel(" IPI=0x%x\n", xc->vp_ipi); 1126 1127 r = xive_native_populate_irq_data(xc->vp_ipi, &xc->vp_ipi_data); 1128 if (r) 1129 goto bail; 1130 1131 /* 1132 * Enable the VP first as the single escalation mode will 1133 * affect escalation interrupts numbering 1134 */ 1135 r = xive_native_enable_vp(xc->vp_id, xive->single_escalation); 1136 if (r) { 1137 pr_err("Failed to enable VP in OPAL, err %d\n", r); 1138 goto bail; 1139 } 1140 1141 /* 1142 * Initialize queues. Initially we set them all for no queueing 1143 * and we enable escalation for queue 0 only which we'll use for 1144 * our mfrr change notifications. If the VCPU is hot-plugged, we 1145 * do handle provisioning however based on the existing "map" 1146 * of enabled queues. 1147 */ 1148 for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) { 1149 struct xive_q *q = &xc->queues[i]; 1150 1151 /* Single escalation, no queue 7 */ 1152 if (i == 7 && xive->single_escalation) 1153 break; 1154 1155 /* Is queue already enabled ? Provision it */ 1156 if (xive->qmap & (1 << i)) { 1157 r = xive_provision_queue(vcpu, i); 1158 if (r == 0 && !xive->single_escalation) 1159 xive_attach_escalation(vcpu, i); 1160 if (r) 1161 goto bail; 1162 } else { 1163 r = xive_native_configure_queue(xc->vp_id, 1164 q, i, NULL, 0, true); 1165 if (r) { 1166 pr_err("Failed to configure queue %d for VCPU %d\n", 1167 i, cpu); 1168 goto bail; 1169 } 1170 } 1171 } 1172 1173 /* If not done above, attach priority 0 escalation */ 1174 r = xive_attach_escalation(vcpu, 0); 1175 if (r) 1176 goto bail; 1177 1178 /* Route the IPI */ 1179 r = xive_native_configure_irq(xc->vp_ipi, xc->vp_id, 0, XICS_IPI); 1180 if (!r) 1181 xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_00); 1182 1183 bail: 1184 mutex_unlock(&vcpu->kvm->lock); 1185 if (r) { 1186 kvmppc_xive_cleanup_vcpu(vcpu); 1187 return r; 1188 } 1189 1190 vcpu->arch.irq_type = KVMPPC_IRQ_XICS; 1191 return 0; 1192 } 1193 1194 /* 1195 * Scanning of queues before/after migration save 1196 */ 1197 static void xive_pre_save_set_queued(struct kvmppc_xive *xive, u32 irq) 1198 { 1199 struct kvmppc_xive_src_block *sb; 1200 struct kvmppc_xive_irq_state *state; 1201 u16 idx; 1202 1203 sb = kvmppc_xive_find_source(xive, irq, &idx); 1204 if (!sb) 1205 return; 1206 1207 state = &sb->irq_state[idx]; 1208 1209 /* Some sanity checking */ 1210 if (!state->valid) { 1211 pr_err("invalid irq 0x%x in cpu queue!\n", irq); 1212 return; 1213 } 1214 1215 /* 1216 * If the interrupt is in a queue it should have P set. 1217 * We warn so that gets reported. A backtrace isn't useful 1218 * so no need to use a WARN_ON. 1219 */ 1220 if (!state->saved_p) 1221 pr_err("Interrupt 0x%x is marked in a queue but P not set !\n", irq); 1222 1223 /* Set flag */ 1224 state->in_queue = true; 1225 } 1226 1227 static void xive_pre_save_mask_irq(struct kvmppc_xive *xive, 1228 struct kvmppc_xive_src_block *sb, 1229 u32 irq) 1230 { 1231 struct kvmppc_xive_irq_state *state = &sb->irq_state[irq]; 1232 1233 if (!state->valid) 1234 return; 1235 1236 /* Mask and save state, this will also sync HW queues */ 1237 state->saved_scan_prio = xive_lock_and_mask(xive, sb, state); 1238 1239 /* Transfer P and Q */ 1240 state->saved_p = state->old_p; 1241 state->saved_q = state->old_q; 1242 1243 /* Unlock */ 1244 arch_spin_unlock(&sb->lock); 1245 } 1246 1247 static void xive_pre_save_unmask_irq(struct kvmppc_xive *xive, 1248 struct kvmppc_xive_src_block *sb, 1249 u32 irq) 1250 { 1251 struct kvmppc_xive_irq_state *state = &sb->irq_state[irq]; 1252 1253 if (!state->valid) 1254 return; 1255 1256 /* 1257 * Lock / exclude EOI (not technically necessary if the 1258 * guest isn't running concurrently. If this becomes a 1259 * performance issue we can probably remove the lock. 1260 */ 1261 xive_lock_for_unmask(sb, state); 1262 1263 /* Restore mask/prio if it wasn't masked */ 1264 if (state->saved_scan_prio != MASKED) 1265 xive_finish_unmask(xive, sb, state, state->saved_scan_prio); 1266 1267 /* Unlock */ 1268 arch_spin_unlock(&sb->lock); 1269 } 1270 1271 static void xive_pre_save_queue(struct kvmppc_xive *xive, struct xive_q *q) 1272 { 1273 u32 idx = q->idx; 1274 u32 toggle = q->toggle; 1275 u32 irq; 1276 1277 do { 1278 irq = __xive_read_eq(q->qpage, q->msk, &idx, &toggle); 1279 if (irq > XICS_IPI) 1280 xive_pre_save_set_queued(xive, irq); 1281 } while(irq); 1282 } 1283 1284 static void xive_pre_save_scan(struct kvmppc_xive *xive) 1285 { 1286 struct kvm_vcpu *vcpu = NULL; 1287 int i, j; 1288 1289 /* 1290 * See comment in xive_get_source() about how this 1291 * work. Collect a stable state for all interrupts 1292 */ 1293 for (i = 0; i <= xive->max_sbid; i++) { 1294 struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; 1295 if (!sb) 1296 continue; 1297 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) 1298 xive_pre_save_mask_irq(xive, sb, j); 1299 } 1300 1301 /* Then scan the queues and update the "in_queue" flag */ 1302 kvm_for_each_vcpu(i, vcpu, xive->kvm) { 1303 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 1304 if (!xc) 1305 continue; 1306 for (j = 0; j < KVMPPC_XIVE_Q_COUNT; j++) { 1307 if (xc->queues[j].qpage) 1308 xive_pre_save_queue(xive, &xc->queues[j]); 1309 } 1310 } 1311 1312 /* Finally restore interrupt states */ 1313 for (i = 0; i <= xive->max_sbid; i++) { 1314 struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; 1315 if (!sb) 1316 continue; 1317 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) 1318 xive_pre_save_unmask_irq(xive, sb, j); 1319 } 1320 } 1321 1322 static void xive_post_save_scan(struct kvmppc_xive *xive) 1323 { 1324 u32 i, j; 1325 1326 /* Clear all the in_queue flags */ 1327 for (i = 0; i <= xive->max_sbid; i++) { 1328 struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; 1329 if (!sb) 1330 continue; 1331 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) 1332 sb->irq_state[j].in_queue = false; 1333 } 1334 1335 /* Next get_source() will do a new scan */ 1336 xive->saved_src_count = 0; 1337 } 1338 1339 /* 1340 * This returns the source configuration and state to user space. 1341 */ 1342 static int xive_get_source(struct kvmppc_xive *xive, long irq, u64 addr) 1343 { 1344 struct kvmppc_xive_src_block *sb; 1345 struct kvmppc_xive_irq_state *state; 1346 u64 __user *ubufp = (u64 __user *) addr; 1347 u64 val, prio; 1348 u16 idx; 1349 1350 sb = kvmppc_xive_find_source(xive, irq, &idx); 1351 if (!sb) 1352 return -ENOENT; 1353 1354 state = &sb->irq_state[idx]; 1355 1356 if (!state->valid) 1357 return -ENOENT; 1358 1359 pr_devel("get_source(%ld)...\n", irq); 1360 1361 /* 1362 * So to properly save the state into something that looks like a 1363 * XICS migration stream we cannot treat interrupts individually. 1364 * 1365 * We need, instead, mask them all (& save their previous PQ state) 1366 * to get a stable state in the HW, then sync them to ensure that 1367 * any interrupt that had already fired hits its queue, and finally 1368 * scan all the queues to collect which interrupts are still present 1369 * in the queues, so we can set the "pending" flag on them and 1370 * they can be resent on restore. 1371 * 1372 * So we do it all when the "first" interrupt gets saved, all the 1373 * state is collected at that point, the rest of xive_get_source() 1374 * will merely collect and convert that state to the expected 1375 * userspace bit mask. 1376 */ 1377 if (xive->saved_src_count == 0) 1378 xive_pre_save_scan(xive); 1379 xive->saved_src_count++; 1380 1381 /* Convert saved state into something compatible with xics */ 1382 val = state->act_server; 1383 prio = state->saved_scan_prio; 1384 1385 if (prio == MASKED) { 1386 val |= KVM_XICS_MASKED; 1387 prio = state->saved_priority; 1388 } 1389 val |= prio << KVM_XICS_PRIORITY_SHIFT; 1390 if (state->lsi) { 1391 val |= KVM_XICS_LEVEL_SENSITIVE; 1392 if (state->saved_p) 1393 val |= KVM_XICS_PENDING; 1394 } else { 1395 if (state->saved_p) 1396 val |= KVM_XICS_PRESENTED; 1397 1398 if (state->saved_q) 1399 val |= KVM_XICS_QUEUED; 1400 1401 /* 1402 * We mark it pending (which will attempt a re-delivery) 1403 * if we are in a queue *or* we were masked and had 1404 * Q set which is equivalent to the XICS "masked pending" 1405 * state 1406 */ 1407 if (state->in_queue || (prio == MASKED && state->saved_q)) 1408 val |= KVM_XICS_PENDING; 1409 } 1410 1411 /* 1412 * If that was the last interrupt saved, reset the 1413 * in_queue flags 1414 */ 1415 if (xive->saved_src_count == xive->src_count) 1416 xive_post_save_scan(xive); 1417 1418 /* Copy the result to userspace */ 1419 if (put_user(val, ubufp)) 1420 return -EFAULT; 1421 1422 return 0; 1423 } 1424 1425 static struct kvmppc_xive_src_block *xive_create_src_block(struct kvmppc_xive *xive, 1426 int irq) 1427 { 1428 struct kvm *kvm = xive->kvm; 1429 struct kvmppc_xive_src_block *sb; 1430 int i, bid; 1431 1432 bid = irq >> KVMPPC_XICS_ICS_SHIFT; 1433 1434 mutex_lock(&kvm->lock); 1435 1436 /* block already exists - somebody else got here first */ 1437 if (xive->src_blocks[bid]) 1438 goto out; 1439 1440 /* Create the ICS */ 1441 sb = kzalloc(sizeof(*sb), GFP_KERNEL); 1442 if (!sb) 1443 goto out; 1444 1445 sb->id = bid; 1446 1447 for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) { 1448 sb->irq_state[i].number = (bid << KVMPPC_XICS_ICS_SHIFT) | i; 1449 sb->irq_state[i].guest_priority = MASKED; 1450 sb->irq_state[i].saved_priority = MASKED; 1451 sb->irq_state[i].act_priority = MASKED; 1452 } 1453 smp_wmb(); 1454 xive->src_blocks[bid] = sb; 1455 1456 if (bid > xive->max_sbid) 1457 xive->max_sbid = bid; 1458 1459 out: 1460 mutex_unlock(&kvm->lock); 1461 return xive->src_blocks[bid]; 1462 } 1463 1464 static bool xive_check_delayed_irq(struct kvmppc_xive *xive, u32 irq) 1465 { 1466 struct kvm *kvm = xive->kvm; 1467 struct kvm_vcpu *vcpu = NULL; 1468 int i; 1469 1470 kvm_for_each_vcpu(i, vcpu, kvm) { 1471 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 1472 1473 if (!xc) 1474 continue; 1475 1476 if (xc->delayed_irq == irq) { 1477 xc->delayed_irq = 0; 1478 xive->delayed_irqs--; 1479 return true; 1480 } 1481 } 1482 return false; 1483 } 1484 1485 static int xive_set_source(struct kvmppc_xive *xive, long irq, u64 addr) 1486 { 1487 struct kvmppc_xive_src_block *sb; 1488 struct kvmppc_xive_irq_state *state; 1489 u64 __user *ubufp = (u64 __user *) addr; 1490 u16 idx; 1491 u64 val; 1492 u8 act_prio, guest_prio; 1493 u32 server; 1494 int rc = 0; 1495 1496 if (irq < KVMPPC_XICS_FIRST_IRQ || irq >= KVMPPC_XICS_NR_IRQS) 1497 return -ENOENT; 1498 1499 pr_devel("set_source(irq=0x%lx)\n", irq); 1500 1501 /* Find the source */ 1502 sb = kvmppc_xive_find_source(xive, irq, &idx); 1503 if (!sb) { 1504 pr_devel("No source, creating source block...\n"); 1505 sb = xive_create_src_block(xive, irq); 1506 if (!sb) { 1507 pr_devel("Failed to create block...\n"); 1508 return -ENOMEM; 1509 } 1510 } 1511 state = &sb->irq_state[idx]; 1512 1513 /* Read user passed data */ 1514 if (get_user(val, ubufp)) { 1515 pr_devel("fault getting user info !\n"); 1516 return -EFAULT; 1517 } 1518 1519 server = val & KVM_XICS_DESTINATION_MASK; 1520 guest_prio = val >> KVM_XICS_PRIORITY_SHIFT; 1521 1522 pr_devel(" val=0x016%llx (server=0x%x, guest_prio=%d)\n", 1523 val, server, guest_prio); 1524 1525 /* 1526 * If the source doesn't already have an IPI, allocate 1527 * one and get the corresponding data 1528 */ 1529 if (!state->ipi_number) { 1530 state->ipi_number = xive_native_alloc_irq(); 1531 if (state->ipi_number == 0) { 1532 pr_devel("Failed to allocate IPI !\n"); 1533 return -ENOMEM; 1534 } 1535 xive_native_populate_irq_data(state->ipi_number, &state->ipi_data); 1536 pr_devel(" src_ipi=0x%x\n", state->ipi_number); 1537 } 1538 1539 /* 1540 * We use lock_and_mask() to set us in the right masked 1541 * state. We will override that state from the saved state 1542 * further down, but this will handle the cases of interrupts 1543 * that need FW masking. We set the initial guest_priority to 1544 * 0 before calling it to ensure it actually performs the masking. 1545 */ 1546 state->guest_priority = 0; 1547 xive_lock_and_mask(xive, sb, state); 1548 1549 /* 1550 * Now, we select a target if we have one. If we don't we 1551 * leave the interrupt untargetted. It means that an interrupt 1552 * can become "untargetted" accross migration if it was masked 1553 * by set_xive() but there is little we can do about it. 1554 */ 1555 1556 /* First convert prio and mark interrupt as untargetted */ 1557 act_prio = xive_prio_from_guest(guest_prio); 1558 state->act_priority = MASKED; 1559 1560 /* 1561 * We need to drop the lock due to the mutex below. Hopefully 1562 * nothing is touching that interrupt yet since it hasn't been 1563 * advertized to a running guest yet 1564 */ 1565 arch_spin_unlock(&sb->lock); 1566 1567 /* If we have a priority target the interrupt */ 1568 if (act_prio != MASKED) { 1569 /* First, check provisioning of queues */ 1570 mutex_lock(&xive->kvm->lock); 1571 rc = xive_check_provisioning(xive->kvm, act_prio); 1572 mutex_unlock(&xive->kvm->lock); 1573 1574 /* Target interrupt */ 1575 if (rc == 0) 1576 rc = xive_target_interrupt(xive->kvm, state, 1577 server, act_prio); 1578 /* 1579 * If provisioning or targetting failed, leave it 1580 * alone and masked. It will remain disabled until 1581 * the guest re-targets it. 1582 */ 1583 } 1584 1585 /* 1586 * Find out if this was a delayed irq stashed in an ICP, 1587 * in which case, treat it as pending 1588 */ 1589 if (xive->delayed_irqs && xive_check_delayed_irq(xive, irq)) { 1590 val |= KVM_XICS_PENDING; 1591 pr_devel(" Found delayed ! forcing PENDING !\n"); 1592 } 1593 1594 /* Cleanup the SW state */ 1595 state->old_p = false; 1596 state->old_q = false; 1597 state->lsi = false; 1598 state->asserted = false; 1599 1600 /* Restore LSI state */ 1601 if (val & KVM_XICS_LEVEL_SENSITIVE) { 1602 state->lsi = true; 1603 if (val & KVM_XICS_PENDING) 1604 state->asserted = true; 1605 pr_devel(" LSI ! Asserted=%d\n", state->asserted); 1606 } 1607 1608 /* 1609 * Restore P and Q. If the interrupt was pending, we 1610 * force Q and !P, which will trigger a resend. 1611 * 1612 * That means that a guest that had both an interrupt 1613 * pending (queued) and Q set will restore with only 1614 * one instance of that interrupt instead of 2, but that 1615 * is perfectly fine as coalescing interrupts that haven't 1616 * been presented yet is always allowed. 1617 */ 1618 if (val & KVM_XICS_PRESENTED && !(val & KVM_XICS_PENDING)) 1619 state->old_p = true; 1620 if (val & KVM_XICS_QUEUED || val & KVM_XICS_PENDING) 1621 state->old_q = true; 1622 1623 pr_devel(" P=%d, Q=%d\n", state->old_p, state->old_q); 1624 1625 /* 1626 * If the interrupt was unmasked, update guest priority and 1627 * perform the appropriate state transition and do a 1628 * re-trigger if necessary. 1629 */ 1630 if (val & KVM_XICS_MASKED) { 1631 pr_devel(" masked, saving prio\n"); 1632 state->guest_priority = MASKED; 1633 state->saved_priority = guest_prio; 1634 } else { 1635 pr_devel(" unmasked, restoring to prio %d\n", guest_prio); 1636 xive_finish_unmask(xive, sb, state, guest_prio); 1637 state->saved_priority = guest_prio; 1638 } 1639 1640 /* Increment the number of valid sources and mark this one valid */ 1641 if (!state->valid) 1642 xive->src_count++; 1643 state->valid = true; 1644 1645 return 0; 1646 } 1647 1648 int kvmppc_xive_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1649 bool line_status) 1650 { 1651 struct kvmppc_xive *xive = kvm->arch.xive; 1652 struct kvmppc_xive_src_block *sb; 1653 struct kvmppc_xive_irq_state *state; 1654 u16 idx; 1655 1656 if (!xive) 1657 return -ENODEV; 1658 1659 sb = kvmppc_xive_find_source(xive, irq, &idx); 1660 if (!sb) 1661 return -EINVAL; 1662 1663 /* Perform locklessly .... (we need to do some RCUisms here...) */ 1664 state = &sb->irq_state[idx]; 1665 if (!state->valid) 1666 return -EINVAL; 1667 1668 /* We don't allow a trigger on a passed-through interrupt */ 1669 if (state->pt_number) 1670 return -EINVAL; 1671 1672 if ((level == 1 && state->lsi) || level == KVM_INTERRUPT_SET_LEVEL) 1673 state->asserted = 1; 1674 else if (level == 0 || level == KVM_INTERRUPT_UNSET) { 1675 state->asserted = 0; 1676 return 0; 1677 } 1678 1679 /* Trigger the IPI */ 1680 xive_irq_trigger(&state->ipi_data); 1681 1682 return 0; 1683 } 1684 1685 static int xive_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 1686 { 1687 struct kvmppc_xive *xive = dev->private; 1688 1689 /* We honor the existing XICS ioctl */ 1690 switch (attr->group) { 1691 case KVM_DEV_XICS_GRP_SOURCES: 1692 return xive_set_source(xive, attr->attr, attr->addr); 1693 } 1694 return -ENXIO; 1695 } 1696 1697 static int xive_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 1698 { 1699 struct kvmppc_xive *xive = dev->private; 1700 1701 /* We honor the existing XICS ioctl */ 1702 switch (attr->group) { 1703 case KVM_DEV_XICS_GRP_SOURCES: 1704 return xive_get_source(xive, attr->attr, attr->addr); 1705 } 1706 return -ENXIO; 1707 } 1708 1709 static int xive_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 1710 { 1711 /* We honor the same limits as XICS, at least for now */ 1712 switch (attr->group) { 1713 case KVM_DEV_XICS_GRP_SOURCES: 1714 if (attr->attr >= KVMPPC_XICS_FIRST_IRQ && 1715 attr->attr < KVMPPC_XICS_NR_IRQS) 1716 return 0; 1717 break; 1718 } 1719 return -ENXIO; 1720 } 1721 1722 static void kvmppc_xive_cleanup_irq(u32 hw_num, struct xive_irq_data *xd) 1723 { 1724 xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01); 1725 xive_native_configure_irq(hw_num, 0, MASKED, 0); 1726 xive_cleanup_irq_data(xd); 1727 } 1728 1729 static void kvmppc_xive_free_sources(struct kvmppc_xive_src_block *sb) 1730 { 1731 int i; 1732 1733 for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) { 1734 struct kvmppc_xive_irq_state *state = &sb->irq_state[i]; 1735 1736 if (!state->valid) 1737 continue; 1738 1739 kvmppc_xive_cleanup_irq(state->ipi_number, &state->ipi_data); 1740 xive_native_free_irq(state->ipi_number); 1741 1742 /* Pass-through, cleanup too */ 1743 if (state->pt_number) 1744 kvmppc_xive_cleanup_irq(state->pt_number, state->pt_data); 1745 1746 state->valid = false; 1747 } 1748 } 1749 1750 static void kvmppc_xive_free(struct kvm_device *dev) 1751 { 1752 struct kvmppc_xive *xive = dev->private; 1753 struct kvm *kvm = xive->kvm; 1754 int i; 1755 1756 debugfs_remove(xive->dentry); 1757 1758 if (kvm) 1759 kvm->arch.xive = NULL; 1760 1761 /* Mask and free interrupts */ 1762 for (i = 0; i <= xive->max_sbid; i++) { 1763 if (xive->src_blocks[i]) 1764 kvmppc_xive_free_sources(xive->src_blocks[i]); 1765 kfree(xive->src_blocks[i]); 1766 xive->src_blocks[i] = NULL; 1767 } 1768 1769 if (xive->vp_base != XIVE_INVALID_VP) 1770 xive_native_free_vp_block(xive->vp_base); 1771 1772 1773 kfree(xive); 1774 kfree(dev); 1775 } 1776 1777 static int kvmppc_xive_create(struct kvm_device *dev, u32 type) 1778 { 1779 struct kvmppc_xive *xive; 1780 struct kvm *kvm = dev->kvm; 1781 int ret = 0; 1782 1783 pr_devel("Creating xive for partition\n"); 1784 1785 xive = kzalloc(sizeof(*xive), GFP_KERNEL); 1786 if (!xive) 1787 return -ENOMEM; 1788 1789 dev->private = xive; 1790 xive->dev = dev; 1791 xive->kvm = kvm; 1792 1793 /* Already there ? */ 1794 if (kvm->arch.xive) 1795 ret = -EEXIST; 1796 else 1797 kvm->arch.xive = xive; 1798 1799 /* We use the default queue size set by the host */ 1800 xive->q_order = xive_native_default_eq_shift(); 1801 if (xive->q_order < PAGE_SHIFT) 1802 xive->q_page_order = 0; 1803 else 1804 xive->q_page_order = xive->q_order - PAGE_SHIFT; 1805 1806 /* Allocate a bunch of VPs */ 1807 xive->vp_base = xive_native_alloc_vp_block(KVM_MAX_VCPUS); 1808 pr_devel("VP_Base=%x\n", xive->vp_base); 1809 1810 if (xive->vp_base == XIVE_INVALID_VP) 1811 ret = -ENOMEM; 1812 1813 xive->single_escalation = xive_native_has_single_escalation(); 1814 1815 if (ret) { 1816 kfree(xive); 1817 return ret; 1818 } 1819 1820 return 0; 1821 } 1822 1823 1824 static int xive_debug_show(struct seq_file *m, void *private) 1825 { 1826 struct kvmppc_xive *xive = m->private; 1827 struct kvm *kvm = xive->kvm; 1828 struct kvm_vcpu *vcpu; 1829 u64 t_rm_h_xirr = 0; 1830 u64 t_rm_h_ipoll = 0; 1831 u64 t_rm_h_cppr = 0; 1832 u64 t_rm_h_eoi = 0; 1833 u64 t_rm_h_ipi = 0; 1834 u64 t_vm_h_xirr = 0; 1835 u64 t_vm_h_ipoll = 0; 1836 u64 t_vm_h_cppr = 0; 1837 u64 t_vm_h_eoi = 0; 1838 u64 t_vm_h_ipi = 0; 1839 unsigned int i; 1840 1841 if (!kvm) 1842 return 0; 1843 1844 seq_printf(m, "=========\nVCPU state\n=========\n"); 1845 1846 kvm_for_each_vcpu(i, vcpu, kvm) { 1847 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 1848 unsigned int i; 1849 1850 if (!xc) 1851 continue; 1852 1853 seq_printf(m, "cpu server %#x CPPR:%#x HWCPPR:%#x" 1854 " MFRR:%#x PEND:%#x h_xirr: R=%lld V=%lld\n", 1855 xc->server_num, xc->cppr, xc->hw_cppr, 1856 xc->mfrr, xc->pending, 1857 xc->stat_rm_h_xirr, xc->stat_vm_h_xirr); 1858 for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) { 1859 struct xive_q *q = &xc->queues[i]; 1860 u32 i0, i1, idx; 1861 1862 if (!q->qpage && !xc->esc_virq[i]) 1863 continue; 1864 1865 seq_printf(m, " [q%d]: ", i); 1866 1867 if (q->qpage) { 1868 idx = q->idx; 1869 i0 = be32_to_cpup(q->qpage + idx); 1870 idx = (idx + 1) & q->msk; 1871 i1 = be32_to_cpup(q->qpage + idx); 1872 seq_printf(m, "T=%d %08x %08x... \n", q->toggle, i0, i1); 1873 } 1874 if (xc->esc_virq[i]) { 1875 struct irq_data *d = irq_get_irq_data(xc->esc_virq[i]); 1876 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 1877 u64 pq = xive_vm_esb_load(xd, XIVE_ESB_GET); 1878 seq_printf(m, "E:%c%c I(%d:%llx:%llx)", 1879 (pq & XIVE_ESB_VAL_P) ? 'P' : 'p', 1880 (pq & XIVE_ESB_VAL_Q) ? 'Q' : 'q', 1881 xc->esc_virq[i], pq, xd->eoi_page); 1882 seq_printf(m, "\n"); 1883 } 1884 } 1885 1886 t_rm_h_xirr += xc->stat_rm_h_xirr; 1887 t_rm_h_ipoll += xc->stat_rm_h_ipoll; 1888 t_rm_h_cppr += xc->stat_rm_h_cppr; 1889 t_rm_h_eoi += xc->stat_rm_h_eoi; 1890 t_rm_h_ipi += xc->stat_rm_h_ipi; 1891 t_vm_h_xirr += xc->stat_vm_h_xirr; 1892 t_vm_h_ipoll += xc->stat_vm_h_ipoll; 1893 t_vm_h_cppr += xc->stat_vm_h_cppr; 1894 t_vm_h_eoi += xc->stat_vm_h_eoi; 1895 t_vm_h_ipi += xc->stat_vm_h_ipi; 1896 } 1897 1898 seq_printf(m, "Hcalls totals\n"); 1899 seq_printf(m, " H_XIRR R=%10lld V=%10lld\n", t_rm_h_xirr, t_vm_h_xirr); 1900 seq_printf(m, " H_IPOLL R=%10lld V=%10lld\n", t_rm_h_ipoll, t_vm_h_ipoll); 1901 seq_printf(m, " H_CPPR R=%10lld V=%10lld\n", t_rm_h_cppr, t_vm_h_cppr); 1902 seq_printf(m, " H_EOI R=%10lld V=%10lld\n", t_rm_h_eoi, t_vm_h_eoi); 1903 seq_printf(m, " H_IPI R=%10lld V=%10lld\n", t_rm_h_ipi, t_vm_h_ipi); 1904 1905 return 0; 1906 } 1907 1908 static int xive_debug_open(struct inode *inode, struct file *file) 1909 { 1910 return single_open(file, xive_debug_show, inode->i_private); 1911 } 1912 1913 static const struct file_operations xive_debug_fops = { 1914 .open = xive_debug_open, 1915 .read = seq_read, 1916 .llseek = seq_lseek, 1917 .release = single_release, 1918 }; 1919 1920 static void xive_debugfs_init(struct kvmppc_xive *xive) 1921 { 1922 char *name; 1923 1924 name = kasprintf(GFP_KERNEL, "kvm-xive-%p", xive); 1925 if (!name) { 1926 pr_err("%s: no memory for name\n", __func__); 1927 return; 1928 } 1929 1930 xive->dentry = debugfs_create_file(name, S_IRUGO, powerpc_debugfs_root, 1931 xive, &xive_debug_fops); 1932 1933 pr_debug("%s: created %s\n", __func__, name); 1934 kfree(name); 1935 } 1936 1937 static void kvmppc_xive_init(struct kvm_device *dev) 1938 { 1939 struct kvmppc_xive *xive = (struct kvmppc_xive *)dev->private; 1940 1941 /* Register some debug interfaces */ 1942 xive_debugfs_init(xive); 1943 } 1944 1945 struct kvm_device_ops kvm_xive_ops = { 1946 .name = "kvm-xive", 1947 .create = kvmppc_xive_create, 1948 .init = kvmppc_xive_init, 1949 .destroy = kvmppc_xive_free, 1950 .set_attr = xive_set_attr, 1951 .get_attr = xive_get_attr, 1952 .has_attr = xive_has_attr, 1953 }; 1954 1955 void kvmppc_xive_init_module(void) 1956 { 1957 __xive_vm_h_xirr = xive_vm_h_xirr; 1958 __xive_vm_h_ipoll = xive_vm_h_ipoll; 1959 __xive_vm_h_ipi = xive_vm_h_ipi; 1960 __xive_vm_h_cppr = xive_vm_h_cppr; 1961 __xive_vm_h_eoi = xive_vm_h_eoi; 1962 } 1963 1964 void kvmppc_xive_exit_module(void) 1965 { 1966 __xive_vm_h_xirr = NULL; 1967 __xive_vm_h_ipoll = NULL; 1968 __xive_vm_h_ipi = NULL; 1969 __xive_vm_h_cppr = NULL; 1970 __xive_vm_h_eoi = NULL; 1971 } 1972