xref: /openbmc/linux/arch/powerpc/kvm/book3s_xive.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*
2  * Copyright 2017 Benjamin Herrenschmidt, IBM Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License, version 2, as
6  * published by the Free Software Foundation.
7  */
8 
9 #define pr_fmt(fmt) "xive-kvm: " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/kvm_host.h>
13 #include <linux/err.h>
14 #include <linux/gfp.h>
15 #include <linux/spinlock.h>
16 #include <linux/delay.h>
17 #include <linux/percpu.h>
18 #include <linux/cpumask.h>
19 #include <linux/uaccess.h>
20 #include <asm/kvm_book3s.h>
21 #include <asm/kvm_ppc.h>
22 #include <asm/hvcall.h>
23 #include <asm/xics.h>
24 #include <asm/xive.h>
25 #include <asm/xive-regs.h>
26 #include <asm/debug.h>
27 #include <asm/debugfs.h>
28 #include <asm/time.h>
29 #include <asm/opal.h>
30 
31 #include <linux/debugfs.h>
32 #include <linux/seq_file.h>
33 
34 #include "book3s_xive.h"
35 
36 
37 /*
38  * Virtual mode variants of the hcalls for use on radix/radix
39  * with AIL. They require the VCPU's VP to be "pushed"
40  *
41  * We still instantiate them here because we use some of the
42  * generated utility functions as well in this file.
43  */
44 #define XIVE_RUNTIME_CHECKS
45 #define X_PFX xive_vm_
46 #define X_STATIC static
47 #define X_STAT_PFX stat_vm_
48 #define __x_tima		xive_tima
49 #define __x_eoi_page(xd)	((void __iomem *)((xd)->eoi_mmio))
50 #define __x_trig_page(xd)	((void __iomem *)((xd)->trig_mmio))
51 #define __x_writeb	__raw_writeb
52 #define __x_readw	__raw_readw
53 #define __x_readq	__raw_readq
54 #define __x_writeq	__raw_writeq
55 
56 #include "book3s_xive_template.c"
57 
58 /*
59  * We leave a gap of a couple of interrupts in the queue to
60  * account for the IPI and additional safety guard.
61  */
62 #define XIVE_Q_GAP	2
63 
64 /*
65  * Push a vcpu's context to the XIVE on guest entry.
66  * This assumes we are in virtual mode (MMU on)
67  */
68 void kvmppc_xive_push_vcpu(struct kvm_vcpu *vcpu)
69 {
70 	void __iomem *tima = local_paca->kvm_hstate.xive_tima_virt;
71 	u64 pq;
72 
73 	if (!tima)
74 		return;
75 	eieio();
76 	__raw_writeq(vcpu->arch.xive_saved_state.w01, tima + TM_QW1_OS);
77 	__raw_writel(vcpu->arch.xive_cam_word, tima + TM_QW1_OS + TM_WORD2);
78 	vcpu->arch.xive_pushed = 1;
79 	eieio();
80 
81 	/*
82 	 * We clear the irq_pending flag. There is a small chance of a
83 	 * race vs. the escalation interrupt happening on another
84 	 * processor setting it again, but the only consequence is to
85 	 * cause a spurious wakeup on the next H_CEDE, which is not an
86 	 * issue.
87 	 */
88 	vcpu->arch.irq_pending = 0;
89 
90 	/*
91 	 * In single escalation mode, if the escalation interrupt is
92 	 * on, we mask it.
93 	 */
94 	if (vcpu->arch.xive_esc_on) {
95 		pq = __raw_readq((void __iomem *)(vcpu->arch.xive_esc_vaddr +
96 						  XIVE_ESB_SET_PQ_01));
97 		mb();
98 
99 		/*
100 		 * We have a possible subtle race here: The escalation
101 		 * interrupt might have fired and be on its way to the
102 		 * host queue while we mask it, and if we unmask it
103 		 * early enough (re-cede right away), there is a
104 		 * theorical possibility that it fires again, thus
105 		 * landing in the target queue more than once which is
106 		 * a big no-no.
107 		 *
108 		 * Fortunately, solving this is rather easy. If the
109 		 * above load setting PQ to 01 returns a previous
110 		 * value where P is set, then we know the escalation
111 		 * interrupt is somewhere on its way to the host. In
112 		 * that case we simply don't clear the xive_esc_on
113 		 * flag below. It will be eventually cleared by the
114 		 * handler for the escalation interrupt.
115 		 *
116 		 * Then, when doing a cede, we check that flag again
117 		 * before re-enabling the escalation interrupt, and if
118 		 * set, we abort the cede.
119 		 */
120 		if (!(pq & XIVE_ESB_VAL_P))
121 			/* Now P is 0, we can clear the flag */
122 			vcpu->arch.xive_esc_on = 0;
123 	}
124 }
125 EXPORT_SYMBOL_GPL(kvmppc_xive_push_vcpu);
126 
127 /*
128  * This is a simple trigger for a generic XIVE IRQ. This must
129  * only be called for interrupts that support a trigger page
130  */
131 static bool xive_irq_trigger(struct xive_irq_data *xd)
132 {
133 	/* This should be only for MSIs */
134 	if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
135 		return false;
136 
137 	/* Those interrupts should always have a trigger page */
138 	if (WARN_ON(!xd->trig_mmio))
139 		return false;
140 
141 	out_be64(xd->trig_mmio, 0);
142 
143 	return true;
144 }
145 
146 static irqreturn_t xive_esc_irq(int irq, void *data)
147 {
148 	struct kvm_vcpu *vcpu = data;
149 
150 	vcpu->arch.irq_pending = 1;
151 	smp_mb();
152 	if (vcpu->arch.ceded)
153 		kvmppc_fast_vcpu_kick(vcpu);
154 
155 	/* Since we have the no-EOI flag, the interrupt is effectively
156 	 * disabled now. Clearing xive_esc_on means we won't bother
157 	 * doing so on the next entry.
158 	 *
159 	 * This also allows the entry code to know that if a PQ combination
160 	 * of 10 is observed while xive_esc_on is true, it means the queue
161 	 * contains an unprocessed escalation interrupt. We don't make use of
162 	 * that knowledge today but might (see comment in book3s_hv_rmhandler.S)
163 	 */
164 	vcpu->arch.xive_esc_on = false;
165 
166 	return IRQ_HANDLED;
167 }
168 
169 static int xive_attach_escalation(struct kvm_vcpu *vcpu, u8 prio)
170 {
171 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
172 	struct xive_q *q = &xc->queues[prio];
173 	char *name = NULL;
174 	int rc;
175 
176 	/* Already there ? */
177 	if (xc->esc_virq[prio])
178 		return 0;
179 
180 	/* Hook up the escalation interrupt */
181 	xc->esc_virq[prio] = irq_create_mapping(NULL, q->esc_irq);
182 	if (!xc->esc_virq[prio]) {
183 		pr_err("Failed to map escalation interrupt for queue %d of VCPU %d\n",
184 		       prio, xc->server_num);
185 		return -EIO;
186 	}
187 
188 	if (xc->xive->single_escalation)
189 		name = kasprintf(GFP_KERNEL, "kvm-%d-%d",
190 				 vcpu->kvm->arch.lpid, xc->server_num);
191 	else
192 		name = kasprintf(GFP_KERNEL, "kvm-%d-%d-%d",
193 				 vcpu->kvm->arch.lpid, xc->server_num, prio);
194 	if (!name) {
195 		pr_err("Failed to allocate escalation irq name for queue %d of VCPU %d\n",
196 		       prio, xc->server_num);
197 		rc = -ENOMEM;
198 		goto error;
199 	}
200 
201 	pr_devel("Escalation %s irq %d (prio %d)\n", name, xc->esc_virq[prio], prio);
202 
203 	rc = request_irq(xc->esc_virq[prio], xive_esc_irq,
204 			 IRQF_NO_THREAD, name, vcpu);
205 	if (rc) {
206 		pr_err("Failed to request escalation interrupt for queue %d of VCPU %d\n",
207 		       prio, xc->server_num);
208 		goto error;
209 	}
210 	xc->esc_virq_names[prio] = name;
211 
212 	/* In single escalation mode, we grab the ESB MMIO of the
213 	 * interrupt and mask it. Also populate the VCPU v/raddr
214 	 * of the ESB page for use by asm entry/exit code. Finally
215 	 * set the XIVE_IRQ_NO_EOI flag which will prevent the
216 	 * core code from performing an EOI on the escalation
217 	 * interrupt, thus leaving it effectively masked after
218 	 * it fires once.
219 	 */
220 	if (xc->xive->single_escalation) {
221 		struct irq_data *d = irq_get_irq_data(xc->esc_virq[prio]);
222 		struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
223 
224 		xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01);
225 		vcpu->arch.xive_esc_raddr = xd->eoi_page;
226 		vcpu->arch.xive_esc_vaddr = (__force u64)xd->eoi_mmio;
227 		xd->flags |= XIVE_IRQ_NO_EOI;
228 	}
229 
230 	return 0;
231 error:
232 	irq_dispose_mapping(xc->esc_virq[prio]);
233 	xc->esc_virq[prio] = 0;
234 	kfree(name);
235 	return rc;
236 }
237 
238 static int xive_provision_queue(struct kvm_vcpu *vcpu, u8 prio)
239 {
240 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
241 	struct kvmppc_xive *xive = xc->xive;
242 	struct xive_q *q =  &xc->queues[prio];
243 	void *qpage;
244 	int rc;
245 
246 	if (WARN_ON(q->qpage))
247 		return 0;
248 
249 	/* Allocate the queue and retrieve infos on current node for now */
250 	qpage = (__be32 *)__get_free_pages(GFP_KERNEL, xive->q_page_order);
251 	if (!qpage) {
252 		pr_err("Failed to allocate queue %d for VCPU %d\n",
253 		       prio, xc->server_num);
254 		return -ENOMEM;
255 	}
256 	memset(qpage, 0, 1 << xive->q_order);
257 
258 	/*
259 	 * Reconfigure the queue. This will set q->qpage only once the
260 	 * queue is fully configured. This is a requirement for prio 0
261 	 * as we will stop doing EOIs for every IPI as soon as we observe
262 	 * qpage being non-NULL, and instead will only EOI when we receive
263 	 * corresponding queue 0 entries
264 	 */
265 	rc = xive_native_configure_queue(xc->vp_id, q, prio, qpage,
266 					 xive->q_order, true);
267 	if (rc)
268 		pr_err("Failed to configure queue %d for VCPU %d\n",
269 		       prio, xc->server_num);
270 	return rc;
271 }
272 
273 /* Called with kvm_lock held */
274 static int xive_check_provisioning(struct kvm *kvm, u8 prio)
275 {
276 	struct kvmppc_xive *xive = kvm->arch.xive;
277 	struct kvm_vcpu *vcpu;
278 	int i, rc;
279 
280 	lockdep_assert_held(&kvm->lock);
281 
282 	/* Already provisioned ? */
283 	if (xive->qmap & (1 << prio))
284 		return 0;
285 
286 	pr_devel("Provisioning prio... %d\n", prio);
287 
288 	/* Provision each VCPU and enable escalations if needed */
289 	kvm_for_each_vcpu(i, vcpu, kvm) {
290 		if (!vcpu->arch.xive_vcpu)
291 			continue;
292 		rc = xive_provision_queue(vcpu, prio);
293 		if (rc == 0 && !xive->single_escalation)
294 			xive_attach_escalation(vcpu, prio);
295 		if (rc)
296 			return rc;
297 	}
298 
299 	/* Order previous stores and mark it as provisioned */
300 	mb();
301 	xive->qmap |= (1 << prio);
302 	return 0;
303 }
304 
305 static void xive_inc_q_pending(struct kvm *kvm, u32 server, u8 prio)
306 {
307 	struct kvm_vcpu *vcpu;
308 	struct kvmppc_xive_vcpu *xc;
309 	struct xive_q *q;
310 
311 	/* Locate target server */
312 	vcpu = kvmppc_xive_find_server(kvm, server);
313 	if (!vcpu) {
314 		pr_warn("%s: Can't find server %d\n", __func__, server);
315 		return;
316 	}
317 	xc = vcpu->arch.xive_vcpu;
318 	if (WARN_ON(!xc))
319 		return;
320 
321 	q = &xc->queues[prio];
322 	atomic_inc(&q->pending_count);
323 }
324 
325 static int xive_try_pick_queue(struct kvm_vcpu *vcpu, u8 prio)
326 {
327 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
328 	struct xive_q *q;
329 	u32 max;
330 
331 	if (WARN_ON(!xc))
332 		return -ENXIO;
333 	if (!xc->valid)
334 		return -ENXIO;
335 
336 	q = &xc->queues[prio];
337 	if (WARN_ON(!q->qpage))
338 		return -ENXIO;
339 
340 	/* Calculate max number of interrupts in that queue. */
341 	max = (q->msk + 1) - XIVE_Q_GAP;
342 	return atomic_add_unless(&q->count, 1, max) ? 0 : -EBUSY;
343 }
344 
345 static int xive_select_target(struct kvm *kvm, u32 *server, u8 prio)
346 {
347 	struct kvm_vcpu *vcpu;
348 	int i, rc;
349 
350 	/* Locate target server */
351 	vcpu = kvmppc_xive_find_server(kvm, *server);
352 	if (!vcpu) {
353 		pr_devel("Can't find server %d\n", *server);
354 		return -EINVAL;
355 	}
356 
357 	pr_devel("Finding irq target on 0x%x/%d...\n", *server, prio);
358 
359 	/* Try pick it */
360 	rc = xive_try_pick_queue(vcpu, prio);
361 	if (rc == 0)
362 		return rc;
363 
364 	pr_devel(" .. failed, looking up candidate...\n");
365 
366 	/* Failed, pick another VCPU */
367 	kvm_for_each_vcpu(i, vcpu, kvm) {
368 		if (!vcpu->arch.xive_vcpu)
369 			continue;
370 		rc = xive_try_pick_queue(vcpu, prio);
371 		if (rc == 0) {
372 			*server = vcpu->arch.xive_vcpu->server_num;
373 			pr_devel("  found on 0x%x/%d\n", *server, prio);
374 			return rc;
375 		}
376 	}
377 	pr_devel("  no available target !\n");
378 
379 	/* No available target ! */
380 	return -EBUSY;
381 }
382 
383 static u32 xive_vp(struct kvmppc_xive *xive, u32 server)
384 {
385 	return xive->vp_base + kvmppc_pack_vcpu_id(xive->kvm, server);
386 }
387 
388 static u8 xive_lock_and_mask(struct kvmppc_xive *xive,
389 			     struct kvmppc_xive_src_block *sb,
390 			     struct kvmppc_xive_irq_state *state)
391 {
392 	struct xive_irq_data *xd;
393 	u32 hw_num;
394 	u8 old_prio;
395 	u64 val;
396 
397 	/*
398 	 * Take the lock, set masked, try again if racing
399 	 * with H_EOI
400 	 */
401 	for (;;) {
402 		arch_spin_lock(&sb->lock);
403 		old_prio = state->guest_priority;
404 		state->guest_priority = MASKED;
405 		mb();
406 		if (!state->in_eoi)
407 			break;
408 		state->guest_priority = old_prio;
409 		arch_spin_unlock(&sb->lock);
410 	}
411 
412 	/* No change ? Bail */
413 	if (old_prio == MASKED)
414 		return old_prio;
415 
416 	/* Get the right irq */
417 	kvmppc_xive_select_irq(state, &hw_num, &xd);
418 
419 	/*
420 	 * If the interrupt is marked as needing masking via
421 	 * firmware, we do it here. Firmware masking however
422 	 * is "lossy", it won't return the old p and q bits
423 	 * and won't set the interrupt to a state where it will
424 	 * record queued ones. If this is an issue we should do
425 	 * lazy masking instead.
426 	 *
427 	 * For now, we work around this in unmask by forcing
428 	 * an interrupt whenever we unmask a non-LSI via FW
429 	 * (if ever).
430 	 */
431 	if (xd->flags & OPAL_XIVE_IRQ_MASK_VIA_FW) {
432 		xive_native_configure_irq(hw_num,
433 					  xive_vp(xive, state->act_server),
434 					  MASKED, state->number);
435 		/* set old_p so we can track if an H_EOI was done */
436 		state->old_p = true;
437 		state->old_q = false;
438 	} else {
439 		/* Set PQ to 10, return old P and old Q and remember them */
440 		val = xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_10);
441 		state->old_p = !!(val & 2);
442 		state->old_q = !!(val & 1);
443 
444 		/*
445 		 * Synchronize hardware to sensure the queues are updated
446 		 * when masking
447 		 */
448 		xive_native_sync_source(hw_num);
449 	}
450 
451 	return old_prio;
452 }
453 
454 static void xive_lock_for_unmask(struct kvmppc_xive_src_block *sb,
455 				 struct kvmppc_xive_irq_state *state)
456 {
457 	/*
458 	 * Take the lock try again if racing with H_EOI
459 	 */
460 	for (;;) {
461 		arch_spin_lock(&sb->lock);
462 		if (!state->in_eoi)
463 			break;
464 		arch_spin_unlock(&sb->lock);
465 	}
466 }
467 
468 static void xive_finish_unmask(struct kvmppc_xive *xive,
469 			       struct kvmppc_xive_src_block *sb,
470 			       struct kvmppc_xive_irq_state *state,
471 			       u8 prio)
472 {
473 	struct xive_irq_data *xd;
474 	u32 hw_num;
475 
476 	/* If we aren't changing a thing, move on */
477 	if (state->guest_priority != MASKED)
478 		goto bail;
479 
480 	/* Get the right irq */
481 	kvmppc_xive_select_irq(state, &hw_num, &xd);
482 
483 	/*
484 	 * See command in xive_lock_and_mask() concerning masking
485 	 * via firmware.
486 	 */
487 	if (xd->flags & OPAL_XIVE_IRQ_MASK_VIA_FW) {
488 		xive_native_configure_irq(hw_num,
489 					  xive_vp(xive, state->act_server),
490 					  state->act_priority, state->number);
491 		/* If an EOI is needed, do it here */
492 		if (!state->old_p)
493 			xive_vm_source_eoi(hw_num, xd);
494 		/* If this is not an LSI, force a trigger */
495 		if (!(xd->flags & OPAL_XIVE_IRQ_LSI))
496 			xive_irq_trigger(xd);
497 		goto bail;
498 	}
499 
500 	/* Old Q set, set PQ to 11 */
501 	if (state->old_q)
502 		xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_11);
503 
504 	/*
505 	 * If not old P, then perform an "effective" EOI,
506 	 * on the source. This will handle the cases where
507 	 * FW EOI is needed.
508 	 */
509 	if (!state->old_p)
510 		xive_vm_source_eoi(hw_num, xd);
511 
512 	/* Synchronize ordering and mark unmasked */
513 	mb();
514 bail:
515 	state->guest_priority = prio;
516 }
517 
518 /*
519  * Target an interrupt to a given server/prio, this will fallback
520  * to another server if necessary and perform the HW targetting
521  * updates as needed
522  *
523  * NOTE: Must be called with the state lock held
524  */
525 static int xive_target_interrupt(struct kvm *kvm,
526 				 struct kvmppc_xive_irq_state *state,
527 				 u32 server, u8 prio)
528 {
529 	struct kvmppc_xive *xive = kvm->arch.xive;
530 	u32 hw_num;
531 	int rc;
532 
533 	/*
534 	 * This will return a tentative server and actual
535 	 * priority. The count for that new target will have
536 	 * already been incremented.
537 	 */
538 	rc = xive_select_target(kvm, &server, prio);
539 
540 	/*
541 	 * We failed to find a target ? Not much we can do
542 	 * at least until we support the GIQ.
543 	 */
544 	if (rc)
545 		return rc;
546 
547 	/*
548 	 * Increment the old queue pending count if there
549 	 * was one so that the old queue count gets adjusted later
550 	 * when observed to be empty.
551 	 */
552 	if (state->act_priority != MASKED)
553 		xive_inc_q_pending(kvm,
554 				   state->act_server,
555 				   state->act_priority);
556 	/*
557 	 * Update state and HW
558 	 */
559 	state->act_priority = prio;
560 	state->act_server = server;
561 
562 	/* Get the right irq */
563 	kvmppc_xive_select_irq(state, &hw_num, NULL);
564 
565 	return xive_native_configure_irq(hw_num,
566 					 xive_vp(xive, server),
567 					 prio, state->number);
568 }
569 
570 /*
571  * Targetting rules: In order to avoid losing track of
572  * pending interrupts accross mask and unmask, which would
573  * allow queue overflows, we implement the following rules:
574  *
575  *  - Unless it was never enabled (or we run out of capacity)
576  *    an interrupt is always targetted at a valid server/queue
577  *    pair even when "masked" by the guest. This pair tends to
578  *    be the last one used but it can be changed under some
579  *    circumstances. That allows us to separate targetting
580  *    from masking, we only handle accounting during (re)targetting,
581  *    this also allows us to let an interrupt drain into its target
582  *    queue after masking, avoiding complex schemes to remove
583  *    interrupts out of remote processor queues.
584  *
585  *  - When masking, we set PQ to 10 and save the previous value
586  *    of P and Q.
587  *
588  *  - When unmasking, if saved Q was set, we set PQ to 11
589  *    otherwise we leave PQ to the HW state which will be either
590  *    10 if nothing happened or 11 if the interrupt fired while
591  *    masked. Effectively we are OR'ing the previous Q into the
592  *    HW Q.
593  *
594  *    Then if saved P is clear, we do an effective EOI (Q->P->Trigger)
595  *    which will unmask the interrupt and shoot a new one if Q was
596  *    set.
597  *
598  *    Otherwise (saved P is set) we leave PQ unchanged (so 10 or 11,
599  *    effectively meaning an H_EOI from the guest is still expected
600  *    for that interrupt).
601  *
602  *  - If H_EOI occurs while masked, we clear the saved P.
603  *
604  *  - When changing target, we account on the new target and
605  *    increment a separate "pending" counter on the old one.
606  *    This pending counter will be used to decrement the old
607  *    target's count when its queue has been observed empty.
608  */
609 
610 int kvmppc_xive_set_xive(struct kvm *kvm, u32 irq, u32 server,
611 			 u32 priority)
612 {
613 	struct kvmppc_xive *xive = kvm->arch.xive;
614 	struct kvmppc_xive_src_block *sb;
615 	struct kvmppc_xive_irq_state *state;
616 	u8 new_act_prio;
617 	int rc = 0;
618 	u16 idx;
619 
620 	if (!xive)
621 		return -ENODEV;
622 
623 	pr_devel("set_xive ! irq 0x%x server 0x%x prio %d\n",
624 		 irq, server, priority);
625 
626 	/* First, check provisioning of queues */
627 	if (priority != MASKED)
628 		rc = xive_check_provisioning(xive->kvm,
629 			      xive_prio_from_guest(priority));
630 	if (rc) {
631 		pr_devel("  provisioning failure %d !\n", rc);
632 		return rc;
633 	}
634 
635 	sb = kvmppc_xive_find_source(xive, irq, &idx);
636 	if (!sb)
637 		return -EINVAL;
638 	state = &sb->irq_state[idx];
639 
640 	/*
641 	 * We first handle masking/unmasking since the locking
642 	 * might need to be retried due to EOIs, we'll handle
643 	 * targetting changes later. These functions will return
644 	 * with the SB lock held.
645 	 *
646 	 * xive_lock_and_mask() will also set state->guest_priority
647 	 * but won't otherwise change other fields of the state.
648 	 *
649 	 * xive_lock_for_unmask will not actually unmask, this will
650 	 * be done later by xive_finish_unmask() once the targetting
651 	 * has been done, so we don't try to unmask an interrupt
652 	 * that hasn't yet been targetted.
653 	 */
654 	if (priority == MASKED)
655 		xive_lock_and_mask(xive, sb, state);
656 	else
657 		xive_lock_for_unmask(sb, state);
658 
659 
660 	/*
661 	 * Then we handle targetting.
662 	 *
663 	 * First calculate a new "actual priority"
664 	 */
665 	new_act_prio = state->act_priority;
666 	if (priority != MASKED)
667 		new_act_prio = xive_prio_from_guest(priority);
668 
669 	pr_devel(" new_act_prio=%x act_server=%x act_prio=%x\n",
670 		 new_act_prio, state->act_server, state->act_priority);
671 
672 	/*
673 	 * Then check if we actually need to change anything,
674 	 *
675 	 * The condition for re-targetting the interrupt is that
676 	 * we have a valid new priority (new_act_prio is not 0xff)
677 	 * and either the server or the priority changed.
678 	 *
679 	 * Note: If act_priority was ff and the new priority is
680 	 *       also ff, we don't do anything and leave the interrupt
681 	 *       untargetted. An attempt of doing an int_on on an
682 	 *       untargetted interrupt will fail. If that is a problem
683 	 *       we could initialize interrupts with valid default
684 	 */
685 
686 	if (new_act_prio != MASKED &&
687 	    (state->act_server != server ||
688 	     state->act_priority != new_act_prio))
689 		rc = xive_target_interrupt(kvm, state, server, new_act_prio);
690 
691 	/*
692 	 * Perform the final unmasking of the interrupt source
693 	 * if necessary
694 	 */
695 	if (priority != MASKED)
696 		xive_finish_unmask(xive, sb, state, priority);
697 
698 	/*
699 	 * Finally Update saved_priority to match. Only int_on/off
700 	 * set this field to a different value.
701 	 */
702 	state->saved_priority = priority;
703 
704 	arch_spin_unlock(&sb->lock);
705 	return rc;
706 }
707 
708 int kvmppc_xive_get_xive(struct kvm *kvm, u32 irq, u32 *server,
709 			 u32 *priority)
710 {
711 	struct kvmppc_xive *xive = kvm->arch.xive;
712 	struct kvmppc_xive_src_block *sb;
713 	struct kvmppc_xive_irq_state *state;
714 	u16 idx;
715 
716 	if (!xive)
717 		return -ENODEV;
718 
719 	sb = kvmppc_xive_find_source(xive, irq, &idx);
720 	if (!sb)
721 		return -EINVAL;
722 	state = &sb->irq_state[idx];
723 	arch_spin_lock(&sb->lock);
724 	*server = state->act_server;
725 	*priority = state->guest_priority;
726 	arch_spin_unlock(&sb->lock);
727 
728 	return 0;
729 }
730 
731 int kvmppc_xive_int_on(struct kvm *kvm, u32 irq)
732 {
733 	struct kvmppc_xive *xive = kvm->arch.xive;
734 	struct kvmppc_xive_src_block *sb;
735 	struct kvmppc_xive_irq_state *state;
736 	u16 idx;
737 
738 	if (!xive)
739 		return -ENODEV;
740 
741 	sb = kvmppc_xive_find_source(xive, irq, &idx);
742 	if (!sb)
743 		return -EINVAL;
744 	state = &sb->irq_state[idx];
745 
746 	pr_devel("int_on(irq=0x%x)\n", irq);
747 
748 	/*
749 	 * Check if interrupt was not targetted
750 	 */
751 	if (state->act_priority == MASKED) {
752 		pr_devel("int_on on untargetted interrupt\n");
753 		return -EINVAL;
754 	}
755 
756 	/* If saved_priority is 0xff, do nothing */
757 	if (state->saved_priority == MASKED)
758 		return 0;
759 
760 	/*
761 	 * Lock and unmask it.
762 	 */
763 	xive_lock_for_unmask(sb, state);
764 	xive_finish_unmask(xive, sb, state, state->saved_priority);
765 	arch_spin_unlock(&sb->lock);
766 
767 	return 0;
768 }
769 
770 int kvmppc_xive_int_off(struct kvm *kvm, u32 irq)
771 {
772 	struct kvmppc_xive *xive = kvm->arch.xive;
773 	struct kvmppc_xive_src_block *sb;
774 	struct kvmppc_xive_irq_state *state;
775 	u16 idx;
776 
777 	if (!xive)
778 		return -ENODEV;
779 
780 	sb = kvmppc_xive_find_source(xive, irq, &idx);
781 	if (!sb)
782 		return -EINVAL;
783 	state = &sb->irq_state[idx];
784 
785 	pr_devel("int_off(irq=0x%x)\n", irq);
786 
787 	/*
788 	 * Lock and mask
789 	 */
790 	state->saved_priority = xive_lock_and_mask(xive, sb, state);
791 	arch_spin_unlock(&sb->lock);
792 
793 	return 0;
794 }
795 
796 static bool xive_restore_pending_irq(struct kvmppc_xive *xive, u32 irq)
797 {
798 	struct kvmppc_xive_src_block *sb;
799 	struct kvmppc_xive_irq_state *state;
800 	u16 idx;
801 
802 	sb = kvmppc_xive_find_source(xive, irq, &idx);
803 	if (!sb)
804 		return false;
805 	state = &sb->irq_state[idx];
806 	if (!state->valid)
807 		return false;
808 
809 	/*
810 	 * Trigger the IPI. This assumes we never restore a pass-through
811 	 * interrupt which should be safe enough
812 	 */
813 	xive_irq_trigger(&state->ipi_data);
814 
815 	return true;
816 }
817 
818 u64 kvmppc_xive_get_icp(struct kvm_vcpu *vcpu)
819 {
820 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
821 
822 	if (!xc)
823 		return 0;
824 
825 	/* Return the per-cpu state for state saving/migration */
826 	return (u64)xc->cppr << KVM_REG_PPC_ICP_CPPR_SHIFT |
827 	       (u64)xc->mfrr << KVM_REG_PPC_ICP_MFRR_SHIFT |
828 	       (u64)0xff << KVM_REG_PPC_ICP_PPRI_SHIFT;
829 }
830 
831 int kvmppc_xive_set_icp(struct kvm_vcpu *vcpu, u64 icpval)
832 {
833 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
834 	struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
835 	u8 cppr, mfrr;
836 	u32 xisr;
837 
838 	if (!xc || !xive)
839 		return -ENOENT;
840 
841 	/* Grab individual state fields. We don't use pending_pri */
842 	cppr = icpval >> KVM_REG_PPC_ICP_CPPR_SHIFT;
843 	xisr = (icpval >> KVM_REG_PPC_ICP_XISR_SHIFT) &
844 		KVM_REG_PPC_ICP_XISR_MASK;
845 	mfrr = icpval >> KVM_REG_PPC_ICP_MFRR_SHIFT;
846 
847 	pr_devel("set_icp vcpu %d cppr=0x%x mfrr=0x%x xisr=0x%x\n",
848 		 xc->server_num, cppr, mfrr, xisr);
849 
850 	/*
851 	 * We can't update the state of a "pushed" VCPU, but that
852 	 * shouldn't happen.
853 	 */
854 	if (WARN_ON(vcpu->arch.xive_pushed))
855 		return -EIO;
856 
857 	/* Update VCPU HW saved state */
858 	vcpu->arch.xive_saved_state.cppr = cppr;
859 	xc->hw_cppr = xc->cppr = cppr;
860 
861 	/*
862 	 * Update MFRR state. If it's not 0xff, we mark the VCPU as
863 	 * having a pending MFRR change, which will re-evaluate the
864 	 * target. The VCPU will thus potentially get a spurious
865 	 * interrupt but that's not a big deal.
866 	 */
867 	xc->mfrr = mfrr;
868 	if (mfrr < cppr)
869 		xive_irq_trigger(&xc->vp_ipi_data);
870 
871 	/*
872 	 * Now saved XIRR is "interesting". It means there's something in
873 	 * the legacy "1 element" queue... for an IPI we simply ignore it,
874 	 * as the MFRR restore will handle that. For anything else we need
875 	 * to force a resend of the source.
876 	 * However the source may not have been setup yet. If that's the
877 	 * case, we keep that info and increment a counter in the xive to
878 	 * tell subsequent xive_set_source() to go look.
879 	 */
880 	if (xisr > XICS_IPI && !xive_restore_pending_irq(xive, xisr)) {
881 		xc->delayed_irq = xisr;
882 		xive->delayed_irqs++;
883 		pr_devel("  xisr restore delayed\n");
884 	}
885 
886 	return 0;
887 }
888 
889 int kvmppc_xive_set_mapped(struct kvm *kvm, unsigned long guest_irq,
890 			   struct irq_desc *host_desc)
891 {
892 	struct kvmppc_xive *xive = kvm->arch.xive;
893 	struct kvmppc_xive_src_block *sb;
894 	struct kvmppc_xive_irq_state *state;
895 	struct irq_data *host_data = irq_desc_get_irq_data(host_desc);
896 	unsigned int host_irq = irq_desc_get_irq(host_desc);
897 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(host_data);
898 	u16 idx;
899 	u8 prio;
900 	int rc;
901 
902 	if (!xive)
903 		return -ENODEV;
904 
905 	pr_devel("set_mapped girq 0x%lx host HW irq 0x%x...\n",guest_irq, hw_irq);
906 
907 	sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
908 	if (!sb)
909 		return -EINVAL;
910 	state = &sb->irq_state[idx];
911 
912 	/*
913 	 * Mark the passed-through interrupt as going to a VCPU,
914 	 * this will prevent further EOIs and similar operations
915 	 * from the XIVE code. It will also mask the interrupt
916 	 * to either PQ=10 or 11 state, the latter if the interrupt
917 	 * is pending. This will allow us to unmask or retrigger it
918 	 * after routing it to the guest with a simple EOI.
919 	 *
920 	 * The "state" argument is a "token", all it needs is to be
921 	 * non-NULL to switch to passed-through or NULL for the
922 	 * other way around. We may not yet have an actual VCPU
923 	 * target here and we don't really care.
924 	 */
925 	rc = irq_set_vcpu_affinity(host_irq, state);
926 	if (rc) {
927 		pr_err("Failed to set VCPU affinity for irq %d\n", host_irq);
928 		return rc;
929 	}
930 
931 	/*
932 	 * Mask and read state of IPI. We need to know if its P bit
933 	 * is set as that means it's potentially already using a
934 	 * queue entry in the target
935 	 */
936 	prio = xive_lock_and_mask(xive, sb, state);
937 	pr_devel(" old IPI prio %02x P:%d Q:%d\n", prio,
938 		 state->old_p, state->old_q);
939 
940 	/* Turn the IPI hard off */
941 	xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
942 
943 	/* Grab info about irq */
944 	state->pt_number = hw_irq;
945 	state->pt_data = irq_data_get_irq_handler_data(host_data);
946 
947 	/*
948 	 * Configure the IRQ to match the existing configuration of
949 	 * the IPI if it was already targetted. Otherwise this will
950 	 * mask the interrupt in a lossy way (act_priority is 0xff)
951 	 * which is fine for a never started interrupt.
952 	 */
953 	xive_native_configure_irq(hw_irq,
954 				  xive_vp(xive, state->act_server),
955 				  state->act_priority, state->number);
956 
957 	/*
958 	 * We do an EOI to enable the interrupt (and retrigger if needed)
959 	 * if the guest has the interrupt unmasked and the P bit was *not*
960 	 * set in the IPI. If it was set, we know a slot may still be in
961 	 * use in the target queue thus we have to wait for a guest
962 	 * originated EOI
963 	 */
964 	if (prio != MASKED && !state->old_p)
965 		xive_vm_source_eoi(hw_irq, state->pt_data);
966 
967 	/* Clear old_p/old_q as they are no longer relevant */
968 	state->old_p = state->old_q = false;
969 
970 	/* Restore guest prio (unlocks EOI) */
971 	mb();
972 	state->guest_priority = prio;
973 	arch_spin_unlock(&sb->lock);
974 
975 	return 0;
976 }
977 EXPORT_SYMBOL_GPL(kvmppc_xive_set_mapped);
978 
979 int kvmppc_xive_clr_mapped(struct kvm *kvm, unsigned long guest_irq,
980 			   struct irq_desc *host_desc)
981 {
982 	struct kvmppc_xive *xive = kvm->arch.xive;
983 	struct kvmppc_xive_src_block *sb;
984 	struct kvmppc_xive_irq_state *state;
985 	unsigned int host_irq = irq_desc_get_irq(host_desc);
986 	u16 idx;
987 	u8 prio;
988 	int rc;
989 
990 	if (!xive)
991 		return -ENODEV;
992 
993 	pr_devel("clr_mapped girq 0x%lx...\n", guest_irq);
994 
995 	sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
996 	if (!sb)
997 		return -EINVAL;
998 	state = &sb->irq_state[idx];
999 
1000 	/*
1001 	 * Mask and read state of IRQ. We need to know if its P bit
1002 	 * is set as that means it's potentially already using a
1003 	 * queue entry in the target
1004 	 */
1005 	prio = xive_lock_and_mask(xive, sb, state);
1006 	pr_devel(" old IRQ prio %02x P:%d Q:%d\n", prio,
1007 		 state->old_p, state->old_q);
1008 
1009 	/*
1010 	 * If old_p is set, the interrupt is pending, we switch it to
1011 	 * PQ=11. This will force a resend in the host so the interrupt
1012 	 * isn't lost to whatver host driver may pick it up
1013 	 */
1014 	if (state->old_p)
1015 		xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_11);
1016 
1017 	/* Release the passed-through interrupt to the host */
1018 	rc = irq_set_vcpu_affinity(host_irq, NULL);
1019 	if (rc) {
1020 		pr_err("Failed to clr VCPU affinity for irq %d\n", host_irq);
1021 		return rc;
1022 	}
1023 
1024 	/* Forget about the IRQ */
1025 	state->pt_number = 0;
1026 	state->pt_data = NULL;
1027 
1028 	/* Reconfigure the IPI */
1029 	xive_native_configure_irq(state->ipi_number,
1030 				  xive_vp(xive, state->act_server),
1031 				  state->act_priority, state->number);
1032 
1033 	/*
1034 	 * If old_p is set (we have a queue entry potentially
1035 	 * occupied) or the interrupt is masked, we set the IPI
1036 	 * to PQ=10 state. Otherwise we just re-enable it (PQ=00).
1037 	 */
1038 	if (prio == MASKED || state->old_p)
1039 		xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_10);
1040 	else
1041 		xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_00);
1042 
1043 	/* Restore guest prio (unlocks EOI) */
1044 	mb();
1045 	state->guest_priority = prio;
1046 	arch_spin_unlock(&sb->lock);
1047 
1048 	return 0;
1049 }
1050 EXPORT_SYMBOL_GPL(kvmppc_xive_clr_mapped);
1051 
1052 static void kvmppc_xive_disable_vcpu_interrupts(struct kvm_vcpu *vcpu)
1053 {
1054 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1055 	struct kvm *kvm = vcpu->kvm;
1056 	struct kvmppc_xive *xive = kvm->arch.xive;
1057 	int i, j;
1058 
1059 	for (i = 0; i <= xive->max_sbid; i++) {
1060 		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1061 
1062 		if (!sb)
1063 			continue;
1064 		for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) {
1065 			struct kvmppc_xive_irq_state *state = &sb->irq_state[j];
1066 
1067 			if (!state->valid)
1068 				continue;
1069 			if (state->act_priority == MASKED)
1070 				continue;
1071 			if (state->act_server != xc->server_num)
1072 				continue;
1073 
1074 			/* Clean it up */
1075 			arch_spin_lock(&sb->lock);
1076 			state->act_priority = MASKED;
1077 			xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
1078 			xive_native_configure_irq(state->ipi_number, 0, MASKED, 0);
1079 			if (state->pt_number) {
1080 				xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_01);
1081 				xive_native_configure_irq(state->pt_number, 0, MASKED, 0);
1082 			}
1083 			arch_spin_unlock(&sb->lock);
1084 		}
1085 	}
1086 }
1087 
1088 void kvmppc_xive_cleanup_vcpu(struct kvm_vcpu *vcpu)
1089 {
1090 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1091 	struct kvmppc_xive *xive = xc->xive;
1092 	int i;
1093 
1094 	pr_devel("cleanup_vcpu(cpu=%d)\n", xc->server_num);
1095 
1096 	/* Ensure no interrupt is still routed to that VP */
1097 	xc->valid = false;
1098 	kvmppc_xive_disable_vcpu_interrupts(vcpu);
1099 
1100 	/* Mask the VP IPI */
1101 	xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_01);
1102 
1103 	/* Disable the VP */
1104 	xive_native_disable_vp(xc->vp_id);
1105 
1106 	/* Free the queues & associated interrupts */
1107 	for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1108 		struct xive_q *q = &xc->queues[i];
1109 
1110 		/* Free the escalation irq */
1111 		if (xc->esc_virq[i]) {
1112 			free_irq(xc->esc_virq[i], vcpu);
1113 			irq_dispose_mapping(xc->esc_virq[i]);
1114 			kfree(xc->esc_virq_names[i]);
1115 		}
1116 		/* Free the queue */
1117 		xive_native_disable_queue(xc->vp_id, q, i);
1118 		if (q->qpage) {
1119 			free_pages((unsigned long)q->qpage,
1120 				   xive->q_page_order);
1121 			q->qpage = NULL;
1122 		}
1123 	}
1124 
1125 	/* Free the IPI */
1126 	if (xc->vp_ipi) {
1127 		xive_cleanup_irq_data(&xc->vp_ipi_data);
1128 		xive_native_free_irq(xc->vp_ipi);
1129 	}
1130 	/* Free the VP */
1131 	kfree(xc);
1132 }
1133 
1134 int kvmppc_xive_connect_vcpu(struct kvm_device *dev,
1135 			     struct kvm_vcpu *vcpu, u32 cpu)
1136 {
1137 	struct kvmppc_xive *xive = dev->private;
1138 	struct kvmppc_xive_vcpu *xc;
1139 	int i, r = -EBUSY;
1140 
1141 	pr_devel("connect_vcpu(cpu=%d)\n", cpu);
1142 
1143 	if (dev->ops != &kvm_xive_ops) {
1144 		pr_devel("Wrong ops !\n");
1145 		return -EPERM;
1146 	}
1147 	if (xive->kvm != vcpu->kvm)
1148 		return -EPERM;
1149 	if (vcpu->arch.irq_type)
1150 		return -EBUSY;
1151 	if (kvmppc_xive_find_server(vcpu->kvm, cpu)) {
1152 		pr_devel("Duplicate !\n");
1153 		return -EEXIST;
1154 	}
1155 	if (cpu >= (KVM_MAX_VCPUS * vcpu->kvm->arch.emul_smt_mode)) {
1156 		pr_devel("Out of bounds !\n");
1157 		return -EINVAL;
1158 	}
1159 	xc = kzalloc(sizeof(*xc), GFP_KERNEL);
1160 	if (!xc)
1161 		return -ENOMEM;
1162 
1163 	/* We need to synchronize with queue provisioning */
1164 	mutex_lock(&vcpu->kvm->lock);
1165 	vcpu->arch.xive_vcpu = xc;
1166 	xc->xive = xive;
1167 	xc->vcpu = vcpu;
1168 	xc->server_num = cpu;
1169 	xc->vp_id = xive_vp(xive, cpu);
1170 	xc->mfrr = 0xff;
1171 	xc->valid = true;
1172 
1173 	r = xive_native_get_vp_info(xc->vp_id, &xc->vp_cam, &xc->vp_chip_id);
1174 	if (r)
1175 		goto bail;
1176 
1177 	/* Configure VCPU fields for use by assembly push/pull */
1178 	vcpu->arch.xive_saved_state.w01 = cpu_to_be64(0xff000000);
1179 	vcpu->arch.xive_cam_word = cpu_to_be32(xc->vp_cam | TM_QW1W2_VO);
1180 
1181 	/* Allocate IPI */
1182 	xc->vp_ipi = xive_native_alloc_irq();
1183 	if (!xc->vp_ipi) {
1184 		pr_err("Failed to allocate xive irq for VCPU IPI\n");
1185 		r = -EIO;
1186 		goto bail;
1187 	}
1188 	pr_devel(" IPI=0x%x\n", xc->vp_ipi);
1189 
1190 	r = xive_native_populate_irq_data(xc->vp_ipi, &xc->vp_ipi_data);
1191 	if (r)
1192 		goto bail;
1193 
1194 	/*
1195 	 * Enable the VP first as the single escalation mode will
1196 	 * affect escalation interrupts numbering
1197 	 */
1198 	r = xive_native_enable_vp(xc->vp_id, xive->single_escalation);
1199 	if (r) {
1200 		pr_err("Failed to enable VP in OPAL, err %d\n", r);
1201 		goto bail;
1202 	}
1203 
1204 	/*
1205 	 * Initialize queues. Initially we set them all for no queueing
1206 	 * and we enable escalation for queue 0 only which we'll use for
1207 	 * our mfrr change notifications. If the VCPU is hot-plugged, we
1208 	 * do handle provisioning however based on the existing "map"
1209 	 * of enabled queues.
1210 	 */
1211 	for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1212 		struct xive_q *q = &xc->queues[i];
1213 
1214 		/* Single escalation, no queue 7 */
1215 		if (i == 7 && xive->single_escalation)
1216 			break;
1217 
1218 		/* Is queue already enabled ? Provision it */
1219 		if (xive->qmap & (1 << i)) {
1220 			r = xive_provision_queue(vcpu, i);
1221 			if (r == 0 && !xive->single_escalation)
1222 				xive_attach_escalation(vcpu, i);
1223 			if (r)
1224 				goto bail;
1225 		} else {
1226 			r = xive_native_configure_queue(xc->vp_id,
1227 							q, i, NULL, 0, true);
1228 			if (r) {
1229 				pr_err("Failed to configure queue %d for VCPU %d\n",
1230 				       i, cpu);
1231 				goto bail;
1232 			}
1233 		}
1234 	}
1235 
1236 	/* If not done above, attach priority 0 escalation */
1237 	r = xive_attach_escalation(vcpu, 0);
1238 	if (r)
1239 		goto bail;
1240 
1241 	/* Route the IPI */
1242 	r = xive_native_configure_irq(xc->vp_ipi, xc->vp_id, 0, XICS_IPI);
1243 	if (!r)
1244 		xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_00);
1245 
1246 bail:
1247 	mutex_unlock(&vcpu->kvm->lock);
1248 	if (r) {
1249 		kvmppc_xive_cleanup_vcpu(vcpu);
1250 		return r;
1251 	}
1252 
1253 	vcpu->arch.irq_type = KVMPPC_IRQ_XICS;
1254 	return 0;
1255 }
1256 
1257 /*
1258  * Scanning of queues before/after migration save
1259  */
1260 static void xive_pre_save_set_queued(struct kvmppc_xive *xive, u32 irq)
1261 {
1262 	struct kvmppc_xive_src_block *sb;
1263 	struct kvmppc_xive_irq_state *state;
1264 	u16 idx;
1265 
1266 	sb = kvmppc_xive_find_source(xive, irq, &idx);
1267 	if (!sb)
1268 		return;
1269 
1270 	state = &sb->irq_state[idx];
1271 
1272 	/* Some sanity checking */
1273 	if (!state->valid) {
1274 		pr_err("invalid irq 0x%x in cpu queue!\n", irq);
1275 		return;
1276 	}
1277 
1278 	/*
1279 	 * If the interrupt is in a queue it should have P set.
1280 	 * We warn so that gets reported. A backtrace isn't useful
1281 	 * so no need to use a WARN_ON.
1282 	 */
1283 	if (!state->saved_p)
1284 		pr_err("Interrupt 0x%x is marked in a queue but P not set !\n", irq);
1285 
1286 	/* Set flag */
1287 	state->in_queue = true;
1288 }
1289 
1290 static void xive_pre_save_mask_irq(struct kvmppc_xive *xive,
1291 				   struct kvmppc_xive_src_block *sb,
1292 				   u32 irq)
1293 {
1294 	struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
1295 
1296 	if (!state->valid)
1297 		return;
1298 
1299 	/* Mask and save state, this will also sync HW queues */
1300 	state->saved_scan_prio = xive_lock_and_mask(xive, sb, state);
1301 
1302 	/* Transfer P and Q */
1303 	state->saved_p = state->old_p;
1304 	state->saved_q = state->old_q;
1305 
1306 	/* Unlock */
1307 	arch_spin_unlock(&sb->lock);
1308 }
1309 
1310 static void xive_pre_save_unmask_irq(struct kvmppc_xive *xive,
1311 				     struct kvmppc_xive_src_block *sb,
1312 				     u32 irq)
1313 {
1314 	struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
1315 
1316 	if (!state->valid)
1317 		return;
1318 
1319 	/*
1320 	 * Lock / exclude EOI (not technically necessary if the
1321 	 * guest isn't running concurrently. If this becomes a
1322 	 * performance issue we can probably remove the lock.
1323 	 */
1324 	xive_lock_for_unmask(sb, state);
1325 
1326 	/* Restore mask/prio if it wasn't masked */
1327 	if (state->saved_scan_prio != MASKED)
1328 		xive_finish_unmask(xive, sb, state, state->saved_scan_prio);
1329 
1330 	/* Unlock */
1331 	arch_spin_unlock(&sb->lock);
1332 }
1333 
1334 static void xive_pre_save_queue(struct kvmppc_xive *xive, struct xive_q *q)
1335 {
1336 	u32 idx = q->idx;
1337 	u32 toggle = q->toggle;
1338 	u32 irq;
1339 
1340 	do {
1341 		irq = __xive_read_eq(q->qpage, q->msk, &idx, &toggle);
1342 		if (irq > XICS_IPI)
1343 			xive_pre_save_set_queued(xive, irq);
1344 	} while(irq);
1345 }
1346 
1347 static void xive_pre_save_scan(struct kvmppc_xive *xive)
1348 {
1349 	struct kvm_vcpu *vcpu = NULL;
1350 	int i, j;
1351 
1352 	/*
1353 	 * See comment in xive_get_source() about how this
1354 	 * work. Collect a stable state for all interrupts
1355 	 */
1356 	for (i = 0; i <= xive->max_sbid; i++) {
1357 		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1358 		if (!sb)
1359 			continue;
1360 		for (j = 0;  j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1361 			xive_pre_save_mask_irq(xive, sb, j);
1362 	}
1363 
1364 	/* Then scan the queues and update the "in_queue" flag */
1365 	kvm_for_each_vcpu(i, vcpu, xive->kvm) {
1366 		struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1367 		if (!xc)
1368 			continue;
1369 		for (j = 0; j < KVMPPC_XIVE_Q_COUNT; j++) {
1370 			if (xc->queues[j].qpage)
1371 				xive_pre_save_queue(xive, &xc->queues[j]);
1372 		}
1373 	}
1374 
1375 	/* Finally restore interrupt states */
1376 	for (i = 0; i <= xive->max_sbid; i++) {
1377 		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1378 		if (!sb)
1379 			continue;
1380 		for (j = 0;  j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1381 			xive_pre_save_unmask_irq(xive, sb, j);
1382 	}
1383 }
1384 
1385 static void xive_post_save_scan(struct kvmppc_xive *xive)
1386 {
1387 	u32 i, j;
1388 
1389 	/* Clear all the in_queue flags */
1390 	for (i = 0; i <= xive->max_sbid; i++) {
1391 		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1392 		if (!sb)
1393 			continue;
1394 		for (j = 0;  j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1395 			sb->irq_state[j].in_queue = false;
1396 	}
1397 
1398 	/* Next get_source() will do a new scan */
1399 	xive->saved_src_count = 0;
1400 }
1401 
1402 /*
1403  * This returns the source configuration and state to user space.
1404  */
1405 static int xive_get_source(struct kvmppc_xive *xive, long irq, u64 addr)
1406 {
1407 	struct kvmppc_xive_src_block *sb;
1408 	struct kvmppc_xive_irq_state *state;
1409 	u64 __user *ubufp = (u64 __user *) addr;
1410 	u64 val, prio;
1411 	u16 idx;
1412 
1413 	sb = kvmppc_xive_find_source(xive, irq, &idx);
1414 	if (!sb)
1415 		return -ENOENT;
1416 
1417 	state = &sb->irq_state[idx];
1418 
1419 	if (!state->valid)
1420 		return -ENOENT;
1421 
1422 	pr_devel("get_source(%ld)...\n", irq);
1423 
1424 	/*
1425 	 * So to properly save the state into something that looks like a
1426 	 * XICS migration stream we cannot treat interrupts individually.
1427 	 *
1428 	 * We need, instead, mask them all (& save their previous PQ state)
1429 	 * to get a stable state in the HW, then sync them to ensure that
1430 	 * any interrupt that had already fired hits its queue, and finally
1431 	 * scan all the queues to collect which interrupts are still present
1432 	 * in the queues, so we can set the "pending" flag on them and
1433 	 * they can be resent on restore.
1434 	 *
1435 	 * So we do it all when the "first" interrupt gets saved, all the
1436 	 * state is collected at that point, the rest of xive_get_source()
1437 	 * will merely collect and convert that state to the expected
1438 	 * userspace bit mask.
1439 	 */
1440 	if (xive->saved_src_count == 0)
1441 		xive_pre_save_scan(xive);
1442 	xive->saved_src_count++;
1443 
1444 	/* Convert saved state into something compatible with xics */
1445 	val = state->act_server;
1446 	prio = state->saved_scan_prio;
1447 
1448 	if (prio == MASKED) {
1449 		val |= KVM_XICS_MASKED;
1450 		prio = state->saved_priority;
1451 	}
1452 	val |= prio << KVM_XICS_PRIORITY_SHIFT;
1453 	if (state->lsi) {
1454 		val |= KVM_XICS_LEVEL_SENSITIVE;
1455 		if (state->saved_p)
1456 			val |= KVM_XICS_PENDING;
1457 	} else {
1458 		if (state->saved_p)
1459 			val |= KVM_XICS_PRESENTED;
1460 
1461 		if (state->saved_q)
1462 			val |= KVM_XICS_QUEUED;
1463 
1464 		/*
1465 		 * We mark it pending (which will attempt a re-delivery)
1466 		 * if we are in a queue *or* we were masked and had
1467 		 * Q set which is equivalent to the XICS "masked pending"
1468 		 * state
1469 		 */
1470 		if (state->in_queue || (prio == MASKED && state->saved_q))
1471 			val |= KVM_XICS_PENDING;
1472 	}
1473 
1474 	/*
1475 	 * If that was the last interrupt saved, reset the
1476 	 * in_queue flags
1477 	 */
1478 	if (xive->saved_src_count == xive->src_count)
1479 		xive_post_save_scan(xive);
1480 
1481 	/* Copy the result to userspace */
1482 	if (put_user(val, ubufp))
1483 		return -EFAULT;
1484 
1485 	return 0;
1486 }
1487 
1488 static struct kvmppc_xive_src_block *xive_create_src_block(struct kvmppc_xive *xive,
1489 							   int irq)
1490 {
1491 	struct kvm *kvm = xive->kvm;
1492 	struct kvmppc_xive_src_block *sb;
1493 	int i, bid;
1494 
1495 	bid = irq >> KVMPPC_XICS_ICS_SHIFT;
1496 
1497 	mutex_lock(&kvm->lock);
1498 
1499 	/* block already exists - somebody else got here first */
1500 	if (xive->src_blocks[bid])
1501 		goto out;
1502 
1503 	/* Create the ICS */
1504 	sb = kzalloc(sizeof(*sb), GFP_KERNEL);
1505 	if (!sb)
1506 		goto out;
1507 
1508 	sb->id = bid;
1509 
1510 	for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
1511 		sb->irq_state[i].number = (bid << KVMPPC_XICS_ICS_SHIFT) | i;
1512 		sb->irq_state[i].guest_priority = MASKED;
1513 		sb->irq_state[i].saved_priority = MASKED;
1514 		sb->irq_state[i].act_priority = MASKED;
1515 	}
1516 	smp_wmb();
1517 	xive->src_blocks[bid] = sb;
1518 
1519 	if (bid > xive->max_sbid)
1520 		xive->max_sbid = bid;
1521 
1522 out:
1523 	mutex_unlock(&kvm->lock);
1524 	return xive->src_blocks[bid];
1525 }
1526 
1527 static bool xive_check_delayed_irq(struct kvmppc_xive *xive, u32 irq)
1528 {
1529 	struct kvm *kvm = xive->kvm;
1530 	struct kvm_vcpu *vcpu = NULL;
1531 	int i;
1532 
1533 	kvm_for_each_vcpu(i, vcpu, kvm) {
1534 		struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1535 
1536 		if (!xc)
1537 			continue;
1538 
1539 		if (xc->delayed_irq == irq) {
1540 			xc->delayed_irq = 0;
1541 			xive->delayed_irqs--;
1542 			return true;
1543 		}
1544 	}
1545 	return false;
1546 }
1547 
1548 static int xive_set_source(struct kvmppc_xive *xive, long irq, u64 addr)
1549 {
1550 	struct kvmppc_xive_src_block *sb;
1551 	struct kvmppc_xive_irq_state *state;
1552 	u64 __user *ubufp = (u64 __user *) addr;
1553 	u16 idx;
1554 	u64 val;
1555 	u8 act_prio, guest_prio;
1556 	u32 server;
1557 	int rc = 0;
1558 
1559 	if (irq < KVMPPC_XICS_FIRST_IRQ || irq >= KVMPPC_XICS_NR_IRQS)
1560 		return -ENOENT;
1561 
1562 	pr_devel("set_source(irq=0x%lx)\n", irq);
1563 
1564 	/* Find the source */
1565 	sb = kvmppc_xive_find_source(xive, irq, &idx);
1566 	if (!sb) {
1567 		pr_devel("No source, creating source block...\n");
1568 		sb = xive_create_src_block(xive, irq);
1569 		if (!sb) {
1570 			pr_devel("Failed to create block...\n");
1571 			return -ENOMEM;
1572 		}
1573 	}
1574 	state = &sb->irq_state[idx];
1575 
1576 	/* Read user passed data */
1577 	if (get_user(val, ubufp)) {
1578 		pr_devel("fault getting user info !\n");
1579 		return -EFAULT;
1580 	}
1581 
1582 	server = val & KVM_XICS_DESTINATION_MASK;
1583 	guest_prio = val >> KVM_XICS_PRIORITY_SHIFT;
1584 
1585 	pr_devel("  val=0x016%llx (server=0x%x, guest_prio=%d)\n",
1586 		 val, server, guest_prio);
1587 
1588 	/*
1589 	 * If the source doesn't already have an IPI, allocate
1590 	 * one and get the corresponding data
1591 	 */
1592 	if (!state->ipi_number) {
1593 		state->ipi_number = xive_native_alloc_irq();
1594 		if (state->ipi_number == 0) {
1595 			pr_devel("Failed to allocate IPI !\n");
1596 			return -ENOMEM;
1597 		}
1598 		xive_native_populate_irq_data(state->ipi_number, &state->ipi_data);
1599 		pr_devel(" src_ipi=0x%x\n", state->ipi_number);
1600 	}
1601 
1602 	/*
1603 	 * We use lock_and_mask() to set us in the right masked
1604 	 * state. We will override that state from the saved state
1605 	 * further down, but this will handle the cases of interrupts
1606 	 * that need FW masking. We set the initial guest_priority to
1607 	 * 0 before calling it to ensure it actually performs the masking.
1608 	 */
1609 	state->guest_priority = 0;
1610 	xive_lock_and_mask(xive, sb, state);
1611 
1612 	/*
1613 	 * Now, we select a target if we have one. If we don't we
1614 	 * leave the interrupt untargetted. It means that an interrupt
1615 	 * can become "untargetted" accross migration if it was masked
1616 	 * by set_xive() but there is little we can do about it.
1617 	 */
1618 
1619 	/* First convert prio and mark interrupt as untargetted */
1620 	act_prio = xive_prio_from_guest(guest_prio);
1621 	state->act_priority = MASKED;
1622 
1623 	/*
1624 	 * We need to drop the lock due to the mutex below. Hopefully
1625 	 * nothing is touching that interrupt yet since it hasn't been
1626 	 * advertized to a running guest yet
1627 	 */
1628 	arch_spin_unlock(&sb->lock);
1629 
1630 	/* If we have a priority target the interrupt */
1631 	if (act_prio != MASKED) {
1632 		/* First, check provisioning of queues */
1633 		mutex_lock(&xive->kvm->lock);
1634 		rc = xive_check_provisioning(xive->kvm, act_prio);
1635 		mutex_unlock(&xive->kvm->lock);
1636 
1637 		/* Target interrupt */
1638 		if (rc == 0)
1639 			rc = xive_target_interrupt(xive->kvm, state,
1640 						   server, act_prio);
1641 		/*
1642 		 * If provisioning or targetting failed, leave it
1643 		 * alone and masked. It will remain disabled until
1644 		 * the guest re-targets it.
1645 		 */
1646 	}
1647 
1648 	/*
1649 	 * Find out if this was a delayed irq stashed in an ICP,
1650 	 * in which case, treat it as pending
1651 	 */
1652 	if (xive->delayed_irqs && xive_check_delayed_irq(xive, irq)) {
1653 		val |= KVM_XICS_PENDING;
1654 		pr_devel("  Found delayed ! forcing PENDING !\n");
1655 	}
1656 
1657 	/* Cleanup the SW state */
1658 	state->old_p = false;
1659 	state->old_q = false;
1660 	state->lsi = false;
1661 	state->asserted = false;
1662 
1663 	/* Restore LSI state */
1664 	if (val & KVM_XICS_LEVEL_SENSITIVE) {
1665 		state->lsi = true;
1666 		if (val & KVM_XICS_PENDING)
1667 			state->asserted = true;
1668 		pr_devel("  LSI ! Asserted=%d\n", state->asserted);
1669 	}
1670 
1671 	/*
1672 	 * Restore P and Q. If the interrupt was pending, we
1673 	 * force Q and !P, which will trigger a resend.
1674 	 *
1675 	 * That means that a guest that had both an interrupt
1676 	 * pending (queued) and Q set will restore with only
1677 	 * one instance of that interrupt instead of 2, but that
1678 	 * is perfectly fine as coalescing interrupts that haven't
1679 	 * been presented yet is always allowed.
1680 	 */
1681 	if (val & KVM_XICS_PRESENTED && !(val & KVM_XICS_PENDING))
1682 		state->old_p = true;
1683 	if (val & KVM_XICS_QUEUED || val & KVM_XICS_PENDING)
1684 		state->old_q = true;
1685 
1686 	pr_devel("  P=%d, Q=%d\n", state->old_p, state->old_q);
1687 
1688 	/*
1689 	 * If the interrupt was unmasked, update guest priority and
1690 	 * perform the appropriate state transition and do a
1691 	 * re-trigger if necessary.
1692 	 */
1693 	if (val & KVM_XICS_MASKED) {
1694 		pr_devel("  masked, saving prio\n");
1695 		state->guest_priority = MASKED;
1696 		state->saved_priority = guest_prio;
1697 	} else {
1698 		pr_devel("  unmasked, restoring to prio %d\n", guest_prio);
1699 		xive_finish_unmask(xive, sb, state, guest_prio);
1700 		state->saved_priority = guest_prio;
1701 	}
1702 
1703 	/* Increment the number of valid sources and mark this one valid */
1704 	if (!state->valid)
1705 		xive->src_count++;
1706 	state->valid = true;
1707 
1708 	return 0;
1709 }
1710 
1711 int kvmppc_xive_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1712 			bool line_status)
1713 {
1714 	struct kvmppc_xive *xive = kvm->arch.xive;
1715 	struct kvmppc_xive_src_block *sb;
1716 	struct kvmppc_xive_irq_state *state;
1717 	u16 idx;
1718 
1719 	if (!xive)
1720 		return -ENODEV;
1721 
1722 	sb = kvmppc_xive_find_source(xive, irq, &idx);
1723 	if (!sb)
1724 		return -EINVAL;
1725 
1726 	/* Perform locklessly .... (we need to do some RCUisms here...) */
1727 	state = &sb->irq_state[idx];
1728 	if (!state->valid)
1729 		return -EINVAL;
1730 
1731 	/* We don't allow a trigger on a passed-through interrupt */
1732 	if (state->pt_number)
1733 		return -EINVAL;
1734 
1735 	if ((level == 1 && state->lsi) || level == KVM_INTERRUPT_SET_LEVEL)
1736 		state->asserted = 1;
1737 	else if (level == 0 || level == KVM_INTERRUPT_UNSET) {
1738 		state->asserted = 0;
1739 		return 0;
1740 	}
1741 
1742 	/* Trigger the IPI */
1743 	xive_irq_trigger(&state->ipi_data);
1744 
1745 	return 0;
1746 }
1747 
1748 static int xive_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1749 {
1750 	struct kvmppc_xive *xive = dev->private;
1751 
1752 	/* We honor the existing XICS ioctl */
1753 	switch (attr->group) {
1754 	case KVM_DEV_XICS_GRP_SOURCES:
1755 		return xive_set_source(xive, attr->attr, attr->addr);
1756 	}
1757 	return -ENXIO;
1758 }
1759 
1760 static int xive_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1761 {
1762 	struct kvmppc_xive *xive = dev->private;
1763 
1764 	/* We honor the existing XICS ioctl */
1765 	switch (attr->group) {
1766 	case KVM_DEV_XICS_GRP_SOURCES:
1767 		return xive_get_source(xive, attr->attr, attr->addr);
1768 	}
1769 	return -ENXIO;
1770 }
1771 
1772 static int xive_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1773 {
1774 	/* We honor the same limits as XICS, at least for now */
1775 	switch (attr->group) {
1776 	case KVM_DEV_XICS_GRP_SOURCES:
1777 		if (attr->attr >= KVMPPC_XICS_FIRST_IRQ &&
1778 		    attr->attr < KVMPPC_XICS_NR_IRQS)
1779 			return 0;
1780 		break;
1781 	}
1782 	return -ENXIO;
1783 }
1784 
1785 static void kvmppc_xive_cleanup_irq(u32 hw_num, struct xive_irq_data *xd)
1786 {
1787 	xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01);
1788 	xive_native_configure_irq(hw_num, 0, MASKED, 0);
1789 	xive_cleanup_irq_data(xd);
1790 }
1791 
1792 static void kvmppc_xive_free_sources(struct kvmppc_xive_src_block *sb)
1793 {
1794 	int i;
1795 
1796 	for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
1797 		struct kvmppc_xive_irq_state *state = &sb->irq_state[i];
1798 
1799 		if (!state->valid)
1800 			continue;
1801 
1802 		kvmppc_xive_cleanup_irq(state->ipi_number, &state->ipi_data);
1803 		xive_native_free_irq(state->ipi_number);
1804 
1805 		/* Pass-through, cleanup too */
1806 		if (state->pt_number)
1807 			kvmppc_xive_cleanup_irq(state->pt_number, state->pt_data);
1808 
1809 		state->valid = false;
1810 	}
1811 }
1812 
1813 static void kvmppc_xive_free(struct kvm_device *dev)
1814 {
1815 	struct kvmppc_xive *xive = dev->private;
1816 	struct kvm *kvm = xive->kvm;
1817 	int i;
1818 
1819 	debugfs_remove(xive->dentry);
1820 
1821 	if (kvm)
1822 		kvm->arch.xive = NULL;
1823 
1824 	/* Mask and free interrupts */
1825 	for (i = 0; i <= xive->max_sbid; i++) {
1826 		if (xive->src_blocks[i])
1827 			kvmppc_xive_free_sources(xive->src_blocks[i]);
1828 		kfree(xive->src_blocks[i]);
1829 		xive->src_blocks[i] = NULL;
1830 	}
1831 
1832 	if (xive->vp_base != XIVE_INVALID_VP)
1833 		xive_native_free_vp_block(xive->vp_base);
1834 
1835 
1836 	kfree(xive);
1837 	kfree(dev);
1838 }
1839 
1840 static int kvmppc_xive_create(struct kvm_device *dev, u32 type)
1841 {
1842 	struct kvmppc_xive *xive;
1843 	struct kvm *kvm = dev->kvm;
1844 	int ret = 0;
1845 
1846 	pr_devel("Creating xive for partition\n");
1847 
1848 	xive = kzalloc(sizeof(*xive), GFP_KERNEL);
1849 	if (!xive)
1850 		return -ENOMEM;
1851 
1852 	dev->private = xive;
1853 	xive->dev = dev;
1854 	xive->kvm = kvm;
1855 
1856 	/* Already there ? */
1857 	if (kvm->arch.xive)
1858 		ret = -EEXIST;
1859 	else
1860 		kvm->arch.xive = xive;
1861 
1862 	/* We use the default queue size set by the host */
1863 	xive->q_order = xive_native_default_eq_shift();
1864 	if (xive->q_order < PAGE_SHIFT)
1865 		xive->q_page_order = 0;
1866 	else
1867 		xive->q_page_order = xive->q_order - PAGE_SHIFT;
1868 
1869 	/* Allocate a bunch of VPs */
1870 	xive->vp_base = xive_native_alloc_vp_block(KVM_MAX_VCPUS);
1871 	pr_devel("VP_Base=%x\n", xive->vp_base);
1872 
1873 	if (xive->vp_base == XIVE_INVALID_VP)
1874 		ret = -ENOMEM;
1875 
1876 	xive->single_escalation = xive_native_has_single_escalation();
1877 
1878 	if (ret) {
1879 		kfree(xive);
1880 		return ret;
1881 	}
1882 
1883 	return 0;
1884 }
1885 
1886 
1887 static int xive_debug_show(struct seq_file *m, void *private)
1888 {
1889 	struct kvmppc_xive *xive = m->private;
1890 	struct kvm *kvm = xive->kvm;
1891 	struct kvm_vcpu *vcpu;
1892 	u64 t_rm_h_xirr = 0;
1893 	u64 t_rm_h_ipoll = 0;
1894 	u64 t_rm_h_cppr = 0;
1895 	u64 t_rm_h_eoi = 0;
1896 	u64 t_rm_h_ipi = 0;
1897 	u64 t_vm_h_xirr = 0;
1898 	u64 t_vm_h_ipoll = 0;
1899 	u64 t_vm_h_cppr = 0;
1900 	u64 t_vm_h_eoi = 0;
1901 	u64 t_vm_h_ipi = 0;
1902 	unsigned int i;
1903 
1904 	if (!kvm)
1905 		return 0;
1906 
1907 	seq_printf(m, "=========\nVCPU state\n=========\n");
1908 
1909 	kvm_for_each_vcpu(i, vcpu, kvm) {
1910 		struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1911 		unsigned int i;
1912 
1913 		if (!xc)
1914 			continue;
1915 
1916 		seq_printf(m, "cpu server %#x CPPR:%#x HWCPPR:%#x"
1917 			   " MFRR:%#x PEND:%#x h_xirr: R=%lld V=%lld\n",
1918 			   xc->server_num, xc->cppr, xc->hw_cppr,
1919 			   xc->mfrr, xc->pending,
1920 			   xc->stat_rm_h_xirr, xc->stat_vm_h_xirr);
1921 		for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1922 			struct xive_q *q = &xc->queues[i];
1923 			u32 i0, i1, idx;
1924 
1925 			if (!q->qpage && !xc->esc_virq[i])
1926 				continue;
1927 
1928 			seq_printf(m, " [q%d]: ", i);
1929 
1930 			if (q->qpage) {
1931 				idx = q->idx;
1932 				i0 = be32_to_cpup(q->qpage + idx);
1933 				idx = (idx + 1) & q->msk;
1934 				i1 = be32_to_cpup(q->qpage + idx);
1935 				seq_printf(m, "T=%d %08x %08x... \n", q->toggle, i0, i1);
1936 			}
1937 			if (xc->esc_virq[i]) {
1938 				struct irq_data *d = irq_get_irq_data(xc->esc_virq[i]);
1939 				struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
1940 				u64 pq = xive_vm_esb_load(xd, XIVE_ESB_GET);
1941 				seq_printf(m, "E:%c%c I(%d:%llx:%llx)",
1942 					   (pq & XIVE_ESB_VAL_P) ? 'P' : 'p',
1943 					   (pq & XIVE_ESB_VAL_Q) ? 'Q' : 'q',
1944 					   xc->esc_virq[i], pq, xd->eoi_page);
1945 				seq_printf(m, "\n");
1946 			}
1947 		}
1948 
1949 		t_rm_h_xirr += xc->stat_rm_h_xirr;
1950 		t_rm_h_ipoll += xc->stat_rm_h_ipoll;
1951 		t_rm_h_cppr += xc->stat_rm_h_cppr;
1952 		t_rm_h_eoi += xc->stat_rm_h_eoi;
1953 		t_rm_h_ipi += xc->stat_rm_h_ipi;
1954 		t_vm_h_xirr += xc->stat_vm_h_xirr;
1955 		t_vm_h_ipoll += xc->stat_vm_h_ipoll;
1956 		t_vm_h_cppr += xc->stat_vm_h_cppr;
1957 		t_vm_h_eoi += xc->stat_vm_h_eoi;
1958 		t_vm_h_ipi += xc->stat_vm_h_ipi;
1959 	}
1960 
1961 	seq_printf(m, "Hcalls totals\n");
1962 	seq_printf(m, " H_XIRR  R=%10lld V=%10lld\n", t_rm_h_xirr, t_vm_h_xirr);
1963 	seq_printf(m, " H_IPOLL R=%10lld V=%10lld\n", t_rm_h_ipoll, t_vm_h_ipoll);
1964 	seq_printf(m, " H_CPPR  R=%10lld V=%10lld\n", t_rm_h_cppr, t_vm_h_cppr);
1965 	seq_printf(m, " H_EOI   R=%10lld V=%10lld\n", t_rm_h_eoi, t_vm_h_eoi);
1966 	seq_printf(m, " H_IPI   R=%10lld V=%10lld\n", t_rm_h_ipi, t_vm_h_ipi);
1967 
1968 	return 0;
1969 }
1970 
1971 DEFINE_SHOW_ATTRIBUTE(xive_debug);
1972 
1973 static void xive_debugfs_init(struct kvmppc_xive *xive)
1974 {
1975 	char *name;
1976 
1977 	name = kasprintf(GFP_KERNEL, "kvm-xive-%p", xive);
1978 	if (!name) {
1979 		pr_err("%s: no memory for name\n", __func__);
1980 		return;
1981 	}
1982 
1983 	xive->dentry = debugfs_create_file(name, S_IRUGO, powerpc_debugfs_root,
1984 					   xive, &xive_debug_fops);
1985 
1986 	pr_debug("%s: created %s\n", __func__, name);
1987 	kfree(name);
1988 }
1989 
1990 static void kvmppc_xive_init(struct kvm_device *dev)
1991 {
1992 	struct kvmppc_xive *xive = (struct kvmppc_xive *)dev->private;
1993 
1994 	/* Register some debug interfaces */
1995 	xive_debugfs_init(xive);
1996 }
1997 
1998 struct kvm_device_ops kvm_xive_ops = {
1999 	.name = "kvm-xive",
2000 	.create = kvmppc_xive_create,
2001 	.init = kvmppc_xive_init,
2002 	.destroy = kvmppc_xive_free,
2003 	.set_attr = xive_set_attr,
2004 	.get_attr = xive_get_attr,
2005 	.has_attr = xive_has_attr,
2006 };
2007 
2008 void kvmppc_xive_init_module(void)
2009 {
2010 	__xive_vm_h_xirr = xive_vm_h_xirr;
2011 	__xive_vm_h_ipoll = xive_vm_h_ipoll;
2012 	__xive_vm_h_ipi = xive_vm_h_ipi;
2013 	__xive_vm_h_cppr = xive_vm_h_cppr;
2014 	__xive_vm_h_eoi = xive_vm_h_eoi;
2015 }
2016 
2017 void kvmppc_xive_exit_module(void)
2018 {
2019 	__xive_vm_h_xirr = NULL;
2020 	__xive_vm_h_ipoll = NULL;
2021 	__xive_vm_h_ipi = NULL;
2022 	__xive_vm_h_cppr = NULL;
2023 	__xive_vm_h_eoi = NULL;
2024 }
2025