1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2012 Michael Ellerman, IBM Corporation. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/kvm_host.h> 8 #include <linux/kvm.h> 9 #include <linux/err.h> 10 11 #include <linux/uaccess.h> 12 #include <asm/kvm_book3s.h> 13 #include <asm/kvm_ppc.h> 14 #include <asm/hvcall.h> 15 #include <asm/rtas.h> 16 #include <asm/xive.h> 17 18 #ifdef CONFIG_KVM_XICS 19 static void kvm_rtas_set_xive(struct kvm_vcpu *vcpu, struct rtas_args *args) 20 { 21 u32 irq, server, priority; 22 int rc; 23 24 if (be32_to_cpu(args->nargs) != 3 || be32_to_cpu(args->nret) != 1) { 25 rc = -3; 26 goto out; 27 } 28 29 irq = be32_to_cpu(args->args[0]); 30 server = be32_to_cpu(args->args[1]); 31 priority = be32_to_cpu(args->args[2]); 32 33 if (xics_on_xive()) 34 rc = kvmppc_xive_set_xive(vcpu->kvm, irq, server, priority); 35 else 36 rc = kvmppc_xics_set_xive(vcpu->kvm, irq, server, priority); 37 if (rc) 38 rc = -3; 39 out: 40 args->rets[0] = cpu_to_be32(rc); 41 } 42 43 static void kvm_rtas_get_xive(struct kvm_vcpu *vcpu, struct rtas_args *args) 44 { 45 u32 irq, server, priority; 46 int rc; 47 48 if (be32_to_cpu(args->nargs) != 1 || be32_to_cpu(args->nret) != 3) { 49 rc = -3; 50 goto out; 51 } 52 53 irq = be32_to_cpu(args->args[0]); 54 55 server = priority = 0; 56 if (xics_on_xive()) 57 rc = kvmppc_xive_get_xive(vcpu->kvm, irq, &server, &priority); 58 else 59 rc = kvmppc_xics_get_xive(vcpu->kvm, irq, &server, &priority); 60 if (rc) { 61 rc = -3; 62 goto out; 63 } 64 65 args->rets[1] = cpu_to_be32(server); 66 args->rets[2] = cpu_to_be32(priority); 67 out: 68 args->rets[0] = cpu_to_be32(rc); 69 } 70 71 static void kvm_rtas_int_off(struct kvm_vcpu *vcpu, struct rtas_args *args) 72 { 73 u32 irq; 74 int rc; 75 76 if (be32_to_cpu(args->nargs) != 1 || be32_to_cpu(args->nret) != 1) { 77 rc = -3; 78 goto out; 79 } 80 81 irq = be32_to_cpu(args->args[0]); 82 83 if (xics_on_xive()) 84 rc = kvmppc_xive_int_off(vcpu->kvm, irq); 85 else 86 rc = kvmppc_xics_int_off(vcpu->kvm, irq); 87 if (rc) 88 rc = -3; 89 out: 90 args->rets[0] = cpu_to_be32(rc); 91 } 92 93 static void kvm_rtas_int_on(struct kvm_vcpu *vcpu, struct rtas_args *args) 94 { 95 u32 irq; 96 int rc; 97 98 if (be32_to_cpu(args->nargs) != 1 || be32_to_cpu(args->nret) != 1) { 99 rc = -3; 100 goto out; 101 } 102 103 irq = be32_to_cpu(args->args[0]); 104 105 if (xics_on_xive()) 106 rc = kvmppc_xive_int_on(vcpu->kvm, irq); 107 else 108 rc = kvmppc_xics_int_on(vcpu->kvm, irq); 109 if (rc) 110 rc = -3; 111 out: 112 args->rets[0] = cpu_to_be32(rc); 113 } 114 #endif /* CONFIG_KVM_XICS */ 115 116 struct rtas_handler { 117 void (*handler)(struct kvm_vcpu *vcpu, struct rtas_args *args); 118 char *name; 119 }; 120 121 static struct rtas_handler rtas_handlers[] = { 122 #ifdef CONFIG_KVM_XICS 123 { .name = "ibm,set-xive", .handler = kvm_rtas_set_xive }, 124 { .name = "ibm,get-xive", .handler = kvm_rtas_get_xive }, 125 { .name = "ibm,int-off", .handler = kvm_rtas_int_off }, 126 { .name = "ibm,int-on", .handler = kvm_rtas_int_on }, 127 #endif 128 }; 129 130 struct rtas_token_definition { 131 struct list_head list; 132 struct rtas_handler *handler; 133 u64 token; 134 }; 135 136 static int rtas_name_matches(char *s1, char *s2) 137 { 138 struct kvm_rtas_token_args args; 139 return !strncmp(s1, s2, sizeof(args.name)); 140 } 141 142 static int rtas_token_undefine(struct kvm *kvm, char *name) 143 { 144 struct rtas_token_definition *d, *tmp; 145 146 lockdep_assert_held(&kvm->arch.rtas_token_lock); 147 148 list_for_each_entry_safe(d, tmp, &kvm->arch.rtas_tokens, list) { 149 if (rtas_name_matches(d->handler->name, name)) { 150 list_del(&d->list); 151 kfree(d); 152 return 0; 153 } 154 } 155 156 /* It's not an error to undefine an undefined token */ 157 return 0; 158 } 159 160 static int rtas_token_define(struct kvm *kvm, char *name, u64 token) 161 { 162 struct rtas_token_definition *d; 163 struct rtas_handler *h = NULL; 164 bool found; 165 int i; 166 167 lockdep_assert_held(&kvm->arch.rtas_token_lock); 168 169 list_for_each_entry(d, &kvm->arch.rtas_tokens, list) { 170 if (d->token == token) 171 return -EEXIST; 172 } 173 174 found = false; 175 for (i = 0; i < ARRAY_SIZE(rtas_handlers); i++) { 176 h = &rtas_handlers[i]; 177 if (rtas_name_matches(h->name, name)) { 178 found = true; 179 break; 180 } 181 } 182 183 if (!found) 184 return -ENOENT; 185 186 d = kzalloc(sizeof(*d), GFP_KERNEL); 187 if (!d) 188 return -ENOMEM; 189 190 d->handler = h; 191 d->token = token; 192 193 list_add_tail(&d->list, &kvm->arch.rtas_tokens); 194 195 return 0; 196 } 197 198 int kvm_vm_ioctl_rtas_define_token(struct kvm *kvm, void __user *argp) 199 { 200 struct kvm_rtas_token_args args; 201 int rc; 202 203 if (copy_from_user(&args, argp, sizeof(args))) 204 return -EFAULT; 205 206 mutex_lock(&kvm->arch.rtas_token_lock); 207 208 if (args.token) 209 rc = rtas_token_define(kvm, args.name, args.token); 210 else 211 rc = rtas_token_undefine(kvm, args.name); 212 213 mutex_unlock(&kvm->arch.rtas_token_lock); 214 215 return rc; 216 } 217 218 int kvmppc_rtas_hcall(struct kvm_vcpu *vcpu) 219 { 220 struct rtas_token_definition *d; 221 struct rtas_args args; 222 rtas_arg_t *orig_rets; 223 gpa_t args_phys; 224 int rc; 225 226 /* 227 * r4 contains the guest physical address of the RTAS args 228 * Mask off the top 4 bits since this is a guest real address 229 */ 230 args_phys = kvmppc_get_gpr(vcpu, 4) & KVM_PAM; 231 232 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 233 rc = kvm_read_guest(vcpu->kvm, args_phys, &args, sizeof(args)); 234 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 235 if (rc) 236 goto fail; 237 238 /* 239 * args->rets is a pointer into args->args. Now that we've 240 * copied args we need to fix it up to point into our copy, 241 * not the guest args. We also need to save the original 242 * value so we can restore it on the way out. 243 */ 244 orig_rets = args.rets; 245 if (be32_to_cpu(args.nargs) >= ARRAY_SIZE(args.args)) { 246 /* 247 * Don't overflow our args array: ensure there is room for 248 * at least rets[0] (even if the call specifies 0 nret). 249 * 250 * Each handler must then check for the correct nargs and nret 251 * values, but they may always return failure in rets[0]. 252 */ 253 rc = -EINVAL; 254 goto fail; 255 } 256 args.rets = &args.args[be32_to_cpu(args.nargs)]; 257 258 mutex_lock(&vcpu->kvm->arch.rtas_token_lock); 259 260 rc = -ENOENT; 261 list_for_each_entry(d, &vcpu->kvm->arch.rtas_tokens, list) { 262 if (d->token == be32_to_cpu(args.token)) { 263 d->handler->handler(vcpu, &args); 264 rc = 0; 265 break; 266 } 267 } 268 269 mutex_unlock(&vcpu->kvm->arch.rtas_token_lock); 270 271 if (rc == 0) { 272 args.rets = orig_rets; 273 rc = kvm_write_guest(vcpu->kvm, args_phys, &args, sizeof(args)); 274 if (rc) 275 goto fail; 276 } 277 278 return rc; 279 280 fail: 281 /* 282 * We only get here if the guest has called RTAS with a bogus 283 * args pointer or nargs/nret values that would overflow the 284 * array. That means we can't get to the args, and so we can't 285 * fail the RTAS call. So fail right out to userspace, which 286 * should kill the guest. 287 * 288 * SLOF should actually pass the hcall return value from the 289 * rtas handler call in r3, so enter_rtas could be modified to 290 * return a failure indication in r3 and we could return such 291 * errors to the guest rather than failing to host userspace. 292 * However old guests that don't test for failure could then 293 * continue silently after errors, so for now we won't do this. 294 */ 295 return rc; 296 } 297 EXPORT_SYMBOL_GPL(kvmppc_rtas_hcall); 298 299 void kvmppc_rtas_tokens_free(struct kvm *kvm) 300 { 301 struct rtas_token_definition *d, *tmp; 302 303 list_for_each_entry_safe(d, tmp, &kvm->arch.rtas_tokens, list) { 304 list_del(&d->list); 305 kfree(d); 306 } 307 } 308