1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 4 * 5 * Authors: 6 * Alexander Graf <agraf@suse.de> 7 * Kevin Wolf <mail@kevin-wolf.de> 8 * Paul Mackerras <paulus@samba.org> 9 * 10 * Description: 11 * Functions relating to running KVM on Book 3S processors where 12 * we don't have access to hypervisor mode, and we run the guest 13 * in problem state (user mode). 14 * 15 * This file is derived from arch/powerpc/kvm/44x.c, 16 * by Hollis Blanchard <hollisb@us.ibm.com>. 17 */ 18 19 #include <linux/kvm_host.h> 20 #include <linux/export.h> 21 #include <linux/err.h> 22 #include <linux/slab.h> 23 24 #include <asm/reg.h> 25 #include <asm/cputable.h> 26 #include <asm/cacheflush.h> 27 #include <linux/uaccess.h> 28 #include <asm/io.h> 29 #include <asm/kvm_ppc.h> 30 #include <asm/kvm_book3s.h> 31 #include <asm/mmu_context.h> 32 #include <asm/switch_to.h> 33 #include <asm/firmware.h> 34 #include <asm/setup.h> 35 #include <linux/gfp.h> 36 #include <linux/sched.h> 37 #include <linux/vmalloc.h> 38 #include <linux/highmem.h> 39 #include <linux/module.h> 40 #include <linux/miscdevice.h> 41 #include <asm/asm-prototypes.h> 42 #include <asm/tm.h> 43 44 #include "book3s.h" 45 46 #define CREATE_TRACE_POINTS 47 #include "trace_pr.h" 48 49 /* #define EXIT_DEBUG */ 50 /* #define DEBUG_EXT */ 51 52 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr, 53 ulong msr); 54 #ifdef CONFIG_PPC_BOOK3S_64 55 static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac); 56 #endif 57 58 /* Some compatibility defines */ 59 #ifdef CONFIG_PPC_BOOK3S_32 60 #define MSR_USER32 MSR_USER 61 #define MSR_USER64 MSR_USER 62 #define HW_PAGE_SIZE PAGE_SIZE 63 #define HPTE_R_M _PAGE_COHERENT 64 #endif 65 66 static bool kvmppc_is_split_real(struct kvm_vcpu *vcpu) 67 { 68 ulong msr = kvmppc_get_msr(vcpu); 69 return (msr & (MSR_IR|MSR_DR)) == MSR_DR; 70 } 71 72 static void kvmppc_fixup_split_real(struct kvm_vcpu *vcpu) 73 { 74 ulong msr = kvmppc_get_msr(vcpu); 75 ulong pc = kvmppc_get_pc(vcpu); 76 77 /* We are in DR only split real mode */ 78 if ((msr & (MSR_IR|MSR_DR)) != MSR_DR) 79 return; 80 81 /* We have not fixed up the guest already */ 82 if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) 83 return; 84 85 /* The code is in fixupable address space */ 86 if (pc & SPLIT_HACK_MASK) 87 return; 88 89 vcpu->arch.hflags |= BOOK3S_HFLAG_SPLIT_HACK; 90 kvmppc_set_pc(vcpu, pc | SPLIT_HACK_OFFS); 91 } 92 93 static void kvmppc_unfixup_split_real(struct kvm_vcpu *vcpu) 94 { 95 if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) { 96 ulong pc = kvmppc_get_pc(vcpu); 97 ulong lr = kvmppc_get_lr(vcpu); 98 if ((pc & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS) 99 kvmppc_set_pc(vcpu, pc & ~SPLIT_HACK_MASK); 100 if ((lr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS) 101 kvmppc_set_lr(vcpu, lr & ~SPLIT_HACK_MASK); 102 vcpu->arch.hflags &= ~BOOK3S_HFLAG_SPLIT_HACK; 103 } 104 } 105 106 static void kvmppc_inject_interrupt_pr(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags) 107 { 108 unsigned long msr, pc, new_msr, new_pc; 109 110 kvmppc_unfixup_split_real(vcpu); 111 112 msr = kvmppc_get_msr(vcpu); 113 pc = kvmppc_get_pc(vcpu); 114 new_msr = vcpu->arch.intr_msr; 115 new_pc = to_book3s(vcpu)->hior + vec; 116 117 #ifdef CONFIG_PPC_BOOK3S_64 118 /* If transactional, change to suspend mode on IRQ delivery */ 119 if (MSR_TM_TRANSACTIONAL(msr)) 120 new_msr |= MSR_TS_S; 121 else 122 new_msr |= msr & MSR_TS_MASK; 123 #endif 124 125 kvmppc_set_srr0(vcpu, pc); 126 kvmppc_set_srr1(vcpu, (msr & SRR1_MSR_BITS) | srr1_flags); 127 kvmppc_set_pc(vcpu, new_pc); 128 kvmppc_set_msr(vcpu, new_msr); 129 } 130 131 static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu) 132 { 133 #ifdef CONFIG_PPC_BOOK3S_64 134 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); 135 memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb)); 136 svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max; 137 svcpu->in_use = 0; 138 svcpu_put(svcpu); 139 #endif 140 141 /* Disable AIL if supported */ 142 if (cpu_has_feature(CPU_FTR_HVMODE) && 143 cpu_has_feature(CPU_FTR_ARCH_207S)) 144 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_AIL); 145 146 vcpu->cpu = smp_processor_id(); 147 #ifdef CONFIG_PPC_BOOK3S_32 148 current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu; 149 #endif 150 151 if (kvmppc_is_split_real(vcpu)) 152 kvmppc_fixup_split_real(vcpu); 153 154 kvmppc_restore_tm_pr(vcpu); 155 } 156 157 static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu) 158 { 159 #ifdef CONFIG_PPC_BOOK3S_64 160 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); 161 if (svcpu->in_use) { 162 kvmppc_copy_from_svcpu(vcpu); 163 } 164 memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb)); 165 to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max; 166 svcpu_put(svcpu); 167 #endif 168 169 if (kvmppc_is_split_real(vcpu)) 170 kvmppc_unfixup_split_real(vcpu); 171 172 kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX); 173 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG); 174 kvmppc_save_tm_pr(vcpu); 175 176 /* Enable AIL if supported */ 177 if (cpu_has_feature(CPU_FTR_HVMODE) && 178 cpu_has_feature(CPU_FTR_ARCH_207S)) 179 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_AIL_3); 180 181 vcpu->cpu = -1; 182 } 183 184 /* Copy data needed by real-mode code from vcpu to shadow vcpu */ 185 void kvmppc_copy_to_svcpu(struct kvm_vcpu *vcpu) 186 { 187 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); 188 189 svcpu->gpr[0] = vcpu->arch.regs.gpr[0]; 190 svcpu->gpr[1] = vcpu->arch.regs.gpr[1]; 191 svcpu->gpr[2] = vcpu->arch.regs.gpr[2]; 192 svcpu->gpr[3] = vcpu->arch.regs.gpr[3]; 193 svcpu->gpr[4] = vcpu->arch.regs.gpr[4]; 194 svcpu->gpr[5] = vcpu->arch.regs.gpr[5]; 195 svcpu->gpr[6] = vcpu->arch.regs.gpr[6]; 196 svcpu->gpr[7] = vcpu->arch.regs.gpr[7]; 197 svcpu->gpr[8] = vcpu->arch.regs.gpr[8]; 198 svcpu->gpr[9] = vcpu->arch.regs.gpr[9]; 199 svcpu->gpr[10] = vcpu->arch.regs.gpr[10]; 200 svcpu->gpr[11] = vcpu->arch.regs.gpr[11]; 201 svcpu->gpr[12] = vcpu->arch.regs.gpr[12]; 202 svcpu->gpr[13] = vcpu->arch.regs.gpr[13]; 203 svcpu->cr = vcpu->arch.regs.ccr; 204 svcpu->xer = vcpu->arch.regs.xer; 205 svcpu->ctr = vcpu->arch.regs.ctr; 206 svcpu->lr = vcpu->arch.regs.link; 207 svcpu->pc = vcpu->arch.regs.nip; 208 #ifdef CONFIG_PPC_BOOK3S_64 209 svcpu->shadow_fscr = vcpu->arch.shadow_fscr; 210 #endif 211 /* 212 * Now also save the current time base value. We use this 213 * to find the guest purr and spurr value. 214 */ 215 vcpu->arch.entry_tb = get_tb(); 216 vcpu->arch.entry_vtb = get_vtb(); 217 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 218 vcpu->arch.entry_ic = mfspr(SPRN_IC); 219 svcpu->in_use = true; 220 221 svcpu_put(svcpu); 222 } 223 224 static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu) 225 { 226 ulong guest_msr = kvmppc_get_msr(vcpu); 227 ulong smsr = guest_msr; 228 229 /* Guest MSR values */ 230 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 231 smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE | 232 MSR_TM | MSR_TS_MASK; 233 #else 234 smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE; 235 #endif 236 /* Process MSR values */ 237 smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE; 238 /* External providers the guest reserved */ 239 smsr |= (guest_msr & vcpu->arch.guest_owned_ext); 240 /* 64-bit Process MSR values */ 241 #ifdef CONFIG_PPC_BOOK3S_64 242 smsr |= MSR_ISF | MSR_HV; 243 #endif 244 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 245 /* 246 * in guest privileged state, we want to fail all TM transactions. 247 * So disable MSR TM bit so that all tbegin. will be able to be 248 * trapped into host. 249 */ 250 if (!(guest_msr & MSR_PR)) 251 smsr &= ~MSR_TM; 252 #endif 253 vcpu->arch.shadow_msr = smsr; 254 } 255 256 /* Copy data touched by real-mode code from shadow vcpu back to vcpu */ 257 void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu) 258 { 259 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); 260 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 261 ulong old_msr; 262 #endif 263 264 /* 265 * Maybe we were already preempted and synced the svcpu from 266 * our preempt notifiers. Don't bother touching this svcpu then. 267 */ 268 if (!svcpu->in_use) 269 goto out; 270 271 vcpu->arch.regs.gpr[0] = svcpu->gpr[0]; 272 vcpu->arch.regs.gpr[1] = svcpu->gpr[1]; 273 vcpu->arch.regs.gpr[2] = svcpu->gpr[2]; 274 vcpu->arch.regs.gpr[3] = svcpu->gpr[3]; 275 vcpu->arch.regs.gpr[4] = svcpu->gpr[4]; 276 vcpu->arch.regs.gpr[5] = svcpu->gpr[5]; 277 vcpu->arch.regs.gpr[6] = svcpu->gpr[6]; 278 vcpu->arch.regs.gpr[7] = svcpu->gpr[7]; 279 vcpu->arch.regs.gpr[8] = svcpu->gpr[8]; 280 vcpu->arch.regs.gpr[9] = svcpu->gpr[9]; 281 vcpu->arch.regs.gpr[10] = svcpu->gpr[10]; 282 vcpu->arch.regs.gpr[11] = svcpu->gpr[11]; 283 vcpu->arch.regs.gpr[12] = svcpu->gpr[12]; 284 vcpu->arch.regs.gpr[13] = svcpu->gpr[13]; 285 vcpu->arch.regs.ccr = svcpu->cr; 286 vcpu->arch.regs.xer = svcpu->xer; 287 vcpu->arch.regs.ctr = svcpu->ctr; 288 vcpu->arch.regs.link = svcpu->lr; 289 vcpu->arch.regs.nip = svcpu->pc; 290 vcpu->arch.shadow_srr1 = svcpu->shadow_srr1; 291 vcpu->arch.fault_dar = svcpu->fault_dar; 292 vcpu->arch.fault_dsisr = svcpu->fault_dsisr; 293 vcpu->arch.last_inst = svcpu->last_inst; 294 #ifdef CONFIG_PPC_BOOK3S_64 295 vcpu->arch.shadow_fscr = svcpu->shadow_fscr; 296 #endif 297 /* 298 * Update purr and spurr using time base on exit. 299 */ 300 vcpu->arch.purr += get_tb() - vcpu->arch.entry_tb; 301 vcpu->arch.spurr += get_tb() - vcpu->arch.entry_tb; 302 to_book3s(vcpu)->vtb += get_vtb() - vcpu->arch.entry_vtb; 303 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 304 vcpu->arch.ic += mfspr(SPRN_IC) - vcpu->arch.entry_ic; 305 306 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 307 /* 308 * Unlike other MSR bits, MSR[TS]bits can be changed at guest without 309 * notifying host: 310 * modified by unprivileged instructions like "tbegin"/"tend"/ 311 * "tresume"/"tsuspend" in PR KVM guest. 312 * 313 * It is necessary to sync here to calculate a correct shadow_msr. 314 * 315 * privileged guest's tbegin will be failed at present. So we 316 * only take care of problem state guest. 317 */ 318 old_msr = kvmppc_get_msr(vcpu); 319 if (unlikely((old_msr & MSR_PR) && 320 (vcpu->arch.shadow_srr1 & (MSR_TS_MASK)) != 321 (old_msr & (MSR_TS_MASK)))) { 322 old_msr &= ~(MSR_TS_MASK); 323 old_msr |= (vcpu->arch.shadow_srr1 & (MSR_TS_MASK)); 324 kvmppc_set_msr_fast(vcpu, old_msr); 325 kvmppc_recalc_shadow_msr(vcpu); 326 } 327 #endif 328 329 svcpu->in_use = false; 330 331 out: 332 svcpu_put(svcpu); 333 } 334 335 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 336 void kvmppc_save_tm_sprs(struct kvm_vcpu *vcpu) 337 { 338 tm_enable(); 339 vcpu->arch.tfhar = mfspr(SPRN_TFHAR); 340 vcpu->arch.texasr = mfspr(SPRN_TEXASR); 341 vcpu->arch.tfiar = mfspr(SPRN_TFIAR); 342 tm_disable(); 343 } 344 345 void kvmppc_restore_tm_sprs(struct kvm_vcpu *vcpu) 346 { 347 tm_enable(); 348 mtspr(SPRN_TFHAR, vcpu->arch.tfhar); 349 mtspr(SPRN_TEXASR, vcpu->arch.texasr); 350 mtspr(SPRN_TFIAR, vcpu->arch.tfiar); 351 tm_disable(); 352 } 353 354 /* loadup math bits which is enabled at kvmppc_get_msr() but not enabled at 355 * hardware. 356 */ 357 static void kvmppc_handle_lost_math_exts(struct kvm_vcpu *vcpu) 358 { 359 ulong exit_nr; 360 ulong ext_diff = (kvmppc_get_msr(vcpu) & ~vcpu->arch.guest_owned_ext) & 361 (MSR_FP | MSR_VEC | MSR_VSX); 362 363 if (!ext_diff) 364 return; 365 366 if (ext_diff == MSR_FP) 367 exit_nr = BOOK3S_INTERRUPT_FP_UNAVAIL; 368 else if (ext_diff == MSR_VEC) 369 exit_nr = BOOK3S_INTERRUPT_ALTIVEC; 370 else 371 exit_nr = BOOK3S_INTERRUPT_VSX; 372 373 kvmppc_handle_ext(vcpu, exit_nr, ext_diff); 374 } 375 376 void kvmppc_save_tm_pr(struct kvm_vcpu *vcpu) 377 { 378 if (!(MSR_TM_ACTIVE(kvmppc_get_msr(vcpu)))) { 379 kvmppc_save_tm_sprs(vcpu); 380 return; 381 } 382 383 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG); 384 kvmppc_giveup_ext(vcpu, MSR_VSX); 385 386 preempt_disable(); 387 _kvmppc_save_tm_pr(vcpu, mfmsr()); 388 preempt_enable(); 389 } 390 391 void kvmppc_restore_tm_pr(struct kvm_vcpu *vcpu) 392 { 393 if (!MSR_TM_ACTIVE(kvmppc_get_msr(vcpu))) { 394 kvmppc_restore_tm_sprs(vcpu); 395 if (kvmppc_get_msr(vcpu) & MSR_TM) { 396 kvmppc_handle_lost_math_exts(vcpu); 397 if (vcpu->arch.fscr & FSCR_TAR) 398 kvmppc_handle_fac(vcpu, FSCR_TAR_LG); 399 } 400 return; 401 } 402 403 preempt_disable(); 404 _kvmppc_restore_tm_pr(vcpu, kvmppc_get_msr(vcpu)); 405 preempt_enable(); 406 407 if (kvmppc_get_msr(vcpu) & MSR_TM) { 408 kvmppc_handle_lost_math_exts(vcpu); 409 if (vcpu->arch.fscr & FSCR_TAR) 410 kvmppc_handle_fac(vcpu, FSCR_TAR_LG); 411 } 412 } 413 #endif 414 415 static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu) 416 { 417 int r = 1; /* Indicate we want to get back into the guest */ 418 419 /* We misuse TLB_FLUSH to indicate that we want to clear 420 all shadow cache entries */ 421 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 422 kvmppc_mmu_pte_flush(vcpu, 0, 0); 423 424 return r; 425 } 426 427 /************* MMU Notifiers *************/ 428 static void do_kvm_unmap_hva(struct kvm *kvm, unsigned long start, 429 unsigned long end) 430 { 431 long i; 432 struct kvm_vcpu *vcpu; 433 struct kvm_memslots *slots; 434 struct kvm_memory_slot *memslot; 435 436 slots = kvm_memslots(kvm); 437 kvm_for_each_memslot(memslot, slots) { 438 unsigned long hva_start, hva_end; 439 gfn_t gfn, gfn_end; 440 441 hva_start = max(start, memslot->userspace_addr); 442 hva_end = min(end, memslot->userspace_addr + 443 (memslot->npages << PAGE_SHIFT)); 444 if (hva_start >= hva_end) 445 continue; 446 /* 447 * {gfn(page) | page intersects with [hva_start, hva_end)} = 448 * {gfn, gfn+1, ..., gfn_end-1}. 449 */ 450 gfn = hva_to_gfn_memslot(hva_start, memslot); 451 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot); 452 kvm_for_each_vcpu(i, vcpu, kvm) 453 kvmppc_mmu_pte_pflush(vcpu, gfn << PAGE_SHIFT, 454 gfn_end << PAGE_SHIFT); 455 } 456 } 457 458 static int kvm_unmap_hva_range_pr(struct kvm *kvm, unsigned long start, 459 unsigned long end) 460 { 461 do_kvm_unmap_hva(kvm, start, end); 462 463 return 0; 464 } 465 466 static int kvm_age_hva_pr(struct kvm *kvm, unsigned long start, 467 unsigned long end) 468 { 469 /* XXX could be more clever ;) */ 470 return 0; 471 } 472 473 static int kvm_test_age_hva_pr(struct kvm *kvm, unsigned long hva) 474 { 475 /* XXX could be more clever ;) */ 476 return 0; 477 } 478 479 static void kvm_set_spte_hva_pr(struct kvm *kvm, unsigned long hva, pte_t pte) 480 { 481 /* The page will get remapped properly on its next fault */ 482 do_kvm_unmap_hva(kvm, hva, hva + PAGE_SIZE); 483 } 484 485 /*****************************************/ 486 487 static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr) 488 { 489 ulong old_msr; 490 491 /* For PAPR guest, make sure MSR reflects guest mode */ 492 if (vcpu->arch.papr_enabled) 493 msr = (msr & ~MSR_HV) | MSR_ME; 494 495 #ifdef EXIT_DEBUG 496 printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr); 497 #endif 498 499 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 500 /* We should never target guest MSR to TS=10 && PR=0, 501 * since we always fail transaction for guest privilege 502 * state. 503 */ 504 if (!(msr & MSR_PR) && MSR_TM_TRANSACTIONAL(msr)) 505 kvmppc_emulate_tabort(vcpu, 506 TM_CAUSE_KVM_FAC_UNAV | TM_CAUSE_PERSISTENT); 507 #endif 508 509 old_msr = kvmppc_get_msr(vcpu); 510 msr &= to_book3s(vcpu)->msr_mask; 511 kvmppc_set_msr_fast(vcpu, msr); 512 kvmppc_recalc_shadow_msr(vcpu); 513 514 if (msr & MSR_POW) { 515 if (!vcpu->arch.pending_exceptions) { 516 kvm_vcpu_block(vcpu); 517 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 518 vcpu->stat.halt_wakeup++; 519 520 /* Unset POW bit after we woke up */ 521 msr &= ~MSR_POW; 522 kvmppc_set_msr_fast(vcpu, msr); 523 } 524 } 525 526 if (kvmppc_is_split_real(vcpu)) 527 kvmppc_fixup_split_real(vcpu); 528 else 529 kvmppc_unfixup_split_real(vcpu); 530 531 if ((kvmppc_get_msr(vcpu) & (MSR_PR|MSR_IR|MSR_DR)) != 532 (old_msr & (MSR_PR|MSR_IR|MSR_DR))) { 533 kvmppc_mmu_flush_segments(vcpu); 534 kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)); 535 536 /* Preload magic page segment when in kernel mode */ 537 if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) { 538 struct kvm_vcpu_arch *a = &vcpu->arch; 539 540 if (msr & MSR_DR) 541 kvmppc_mmu_map_segment(vcpu, a->magic_page_ea); 542 else 543 kvmppc_mmu_map_segment(vcpu, a->magic_page_pa); 544 } 545 } 546 547 /* 548 * When switching from 32 to 64-bit, we may have a stale 32-bit 549 * magic page around, we need to flush it. Typically 32-bit magic 550 * page will be instantiated when calling into RTAS. Note: We 551 * assume that such transition only happens while in kernel mode, 552 * ie, we never transition from user 32-bit to kernel 64-bit with 553 * a 32-bit magic page around. 554 */ 555 if (vcpu->arch.magic_page_pa && 556 !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) { 557 /* going from RTAS to normal kernel code */ 558 kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa, 559 ~0xFFFUL); 560 } 561 562 /* Preload FPU if it's enabled */ 563 if (kvmppc_get_msr(vcpu) & MSR_FP) 564 kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP); 565 566 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 567 if (kvmppc_get_msr(vcpu) & MSR_TM) 568 kvmppc_handle_lost_math_exts(vcpu); 569 #endif 570 } 571 572 void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr) 573 { 574 u32 host_pvr; 575 576 vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB; 577 vcpu->arch.pvr = pvr; 578 #ifdef CONFIG_PPC_BOOK3S_64 579 if ((pvr >= 0x330000) && (pvr < 0x70330000)) { 580 kvmppc_mmu_book3s_64_init(vcpu); 581 if (!to_book3s(vcpu)->hior_explicit) 582 to_book3s(vcpu)->hior = 0xfff00000; 583 to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL; 584 vcpu->arch.cpu_type = KVM_CPU_3S_64; 585 } else 586 #endif 587 { 588 kvmppc_mmu_book3s_32_init(vcpu); 589 if (!to_book3s(vcpu)->hior_explicit) 590 to_book3s(vcpu)->hior = 0; 591 to_book3s(vcpu)->msr_mask = 0xffffffffULL; 592 vcpu->arch.cpu_type = KVM_CPU_3S_32; 593 } 594 595 kvmppc_sanity_check(vcpu); 596 597 /* If we are in hypervisor level on 970, we can tell the CPU to 598 * treat DCBZ as 32 bytes store */ 599 vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32; 600 if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) && 601 !strcmp(cur_cpu_spec->platform, "ppc970")) 602 vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32; 603 604 /* Cell performs badly if MSR_FEx are set. So let's hope nobody 605 really needs them in a VM on Cell and force disable them. */ 606 if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be")) 607 to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1); 608 609 /* 610 * If they're asking for POWER6 or later, set the flag 611 * indicating that we can do multiple large page sizes 612 * and 1TB segments. 613 * Also set the flag that indicates that tlbie has the large 614 * page bit in the RB operand instead of the instruction. 615 */ 616 switch (PVR_VER(pvr)) { 617 case PVR_POWER6: 618 case PVR_POWER7: 619 case PVR_POWER7p: 620 case PVR_POWER8: 621 case PVR_POWER8E: 622 case PVR_POWER8NVL: 623 case PVR_POWER9: 624 vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE | 625 BOOK3S_HFLAG_NEW_TLBIE; 626 break; 627 } 628 629 #ifdef CONFIG_PPC_BOOK3S_32 630 /* 32 bit Book3S always has 32 byte dcbz */ 631 vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32; 632 #endif 633 634 /* On some CPUs we can execute paired single operations natively */ 635 asm ( "mfpvr %0" : "=r"(host_pvr)); 636 switch (host_pvr) { 637 case 0x00080200: /* lonestar 2.0 */ 638 case 0x00088202: /* lonestar 2.2 */ 639 case 0x70000100: /* gekko 1.0 */ 640 case 0x00080100: /* gekko 2.0 */ 641 case 0x00083203: /* gekko 2.3a */ 642 case 0x00083213: /* gekko 2.3b */ 643 case 0x00083204: /* gekko 2.4 */ 644 case 0x00083214: /* gekko 2.4e (8SE) - retail HW2 */ 645 case 0x00087200: /* broadway */ 646 vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS; 647 /* Enable HID2.PSE - in case we need it later */ 648 mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29)); 649 } 650 } 651 652 /* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To 653 * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to 654 * emulate 32 bytes dcbz length. 655 * 656 * The Book3s_64 inventors also realized this case and implemented a special bit 657 * in the HID5 register, which is a hypervisor ressource. Thus we can't use it. 658 * 659 * My approach here is to patch the dcbz instruction on executing pages. 660 */ 661 static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte) 662 { 663 struct page *hpage; 664 u64 hpage_offset; 665 u32 *page; 666 int i; 667 668 hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT); 669 if (is_error_page(hpage)) 670 return; 671 672 hpage_offset = pte->raddr & ~PAGE_MASK; 673 hpage_offset &= ~0xFFFULL; 674 hpage_offset /= 4; 675 676 get_page(hpage); 677 page = kmap_atomic(hpage); 678 679 /* patch dcbz into reserved instruction, so we trap */ 680 for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++) 681 if ((be32_to_cpu(page[i]) & 0xff0007ff) == INS_DCBZ) 682 page[i] &= cpu_to_be32(0xfffffff7); 683 684 kunmap_atomic(page); 685 put_page(hpage); 686 } 687 688 static bool kvmppc_visible_gpa(struct kvm_vcpu *vcpu, gpa_t gpa) 689 { 690 ulong mp_pa = vcpu->arch.magic_page_pa; 691 692 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) 693 mp_pa = (uint32_t)mp_pa; 694 695 gpa &= ~0xFFFULL; 696 if (unlikely(mp_pa) && unlikely((mp_pa & KVM_PAM) == (gpa & KVM_PAM))) { 697 return true; 698 } 699 700 return kvm_is_visible_gfn(vcpu->kvm, gpa >> PAGE_SHIFT); 701 } 702 703 int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu, 704 ulong eaddr, int vec) 705 { 706 bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE); 707 bool iswrite = false; 708 int r = RESUME_GUEST; 709 int relocated; 710 int page_found = 0; 711 struct kvmppc_pte pte = { 0 }; 712 bool dr = (kvmppc_get_msr(vcpu) & MSR_DR) ? true : false; 713 bool ir = (kvmppc_get_msr(vcpu) & MSR_IR) ? true : false; 714 u64 vsid; 715 716 relocated = data ? dr : ir; 717 if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE)) 718 iswrite = true; 719 720 /* Resolve real address if translation turned on */ 721 if (relocated) { 722 page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite); 723 } else { 724 pte.may_execute = true; 725 pte.may_read = true; 726 pte.may_write = true; 727 pte.raddr = eaddr & KVM_PAM; 728 pte.eaddr = eaddr; 729 pte.vpage = eaddr >> 12; 730 pte.page_size = MMU_PAGE_64K; 731 pte.wimg = HPTE_R_M; 732 } 733 734 switch (kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) { 735 case 0: 736 pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12)); 737 break; 738 case MSR_DR: 739 if (!data && 740 (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) && 741 ((pte.raddr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)) 742 pte.raddr &= ~SPLIT_HACK_MASK; 743 /* fall through */ 744 case MSR_IR: 745 vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid); 746 747 if ((kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) == MSR_DR) 748 pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12)); 749 else 750 pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12)); 751 pte.vpage |= vsid; 752 753 if (vsid == -1) 754 page_found = -EINVAL; 755 break; 756 } 757 758 if (vcpu->arch.mmu.is_dcbz32(vcpu) && 759 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) { 760 /* 761 * If we do the dcbz hack, we have to NX on every execution, 762 * so we can patch the executing code. This renders our guest 763 * NX-less. 764 */ 765 pte.may_execute = !data; 766 } 767 768 if (page_found == -ENOENT || page_found == -EPERM) { 769 /* Page not found in guest PTE entries, or protection fault */ 770 u64 flags; 771 772 if (page_found == -EPERM) 773 flags = DSISR_PROTFAULT; 774 else 775 flags = DSISR_NOHPTE; 776 if (data) { 777 flags |= vcpu->arch.fault_dsisr & DSISR_ISSTORE; 778 kvmppc_core_queue_data_storage(vcpu, eaddr, flags); 779 } else { 780 kvmppc_core_queue_inst_storage(vcpu, flags); 781 } 782 } else if (page_found == -EINVAL) { 783 /* Page not found in guest SLB */ 784 kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu)); 785 kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80); 786 } else if (kvmppc_visible_gpa(vcpu, pte.raddr)) { 787 if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) { 788 /* 789 * There is already a host HPTE there, presumably 790 * a read-only one for a page the guest thinks 791 * is writable, so get rid of it first. 792 */ 793 kvmppc_mmu_unmap_page(vcpu, &pte); 794 } 795 /* The guest's PTE is not mapped yet. Map on the host */ 796 if (kvmppc_mmu_map_page(vcpu, &pte, iswrite) == -EIO) { 797 /* Exit KVM if mapping failed */ 798 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 799 return RESUME_HOST; 800 } 801 if (data) 802 vcpu->stat.sp_storage++; 803 else if (vcpu->arch.mmu.is_dcbz32(vcpu) && 804 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) 805 kvmppc_patch_dcbz(vcpu, &pte); 806 } else { 807 /* MMIO */ 808 vcpu->stat.mmio_exits++; 809 vcpu->arch.paddr_accessed = pte.raddr; 810 vcpu->arch.vaddr_accessed = pte.eaddr; 811 r = kvmppc_emulate_mmio(run, vcpu); 812 if ( r == RESUME_HOST_NV ) 813 r = RESUME_HOST; 814 } 815 816 return r; 817 } 818 819 /* Give up external provider (FPU, Altivec, VSX) */ 820 void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr) 821 { 822 struct thread_struct *t = ¤t->thread; 823 824 /* 825 * VSX instructions can access FP and vector registers, so if 826 * we are giving up VSX, make sure we give up FP and VMX as well. 827 */ 828 if (msr & MSR_VSX) 829 msr |= MSR_FP | MSR_VEC; 830 831 msr &= vcpu->arch.guest_owned_ext; 832 if (!msr) 833 return; 834 835 #ifdef DEBUG_EXT 836 printk(KERN_INFO "Giving up ext 0x%lx\n", msr); 837 #endif 838 839 if (msr & MSR_FP) { 840 /* 841 * Note that on CPUs with VSX, giveup_fpu stores 842 * both the traditional FP registers and the added VSX 843 * registers into thread.fp_state.fpr[]. 844 */ 845 if (t->regs->msr & MSR_FP) 846 giveup_fpu(current); 847 t->fp_save_area = NULL; 848 } 849 850 #ifdef CONFIG_ALTIVEC 851 if (msr & MSR_VEC) { 852 if (current->thread.regs->msr & MSR_VEC) 853 giveup_altivec(current); 854 t->vr_save_area = NULL; 855 } 856 #endif 857 858 vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX); 859 kvmppc_recalc_shadow_msr(vcpu); 860 } 861 862 /* Give up facility (TAR / EBB / DSCR) */ 863 void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac) 864 { 865 #ifdef CONFIG_PPC_BOOK3S_64 866 if (!(vcpu->arch.shadow_fscr & (1ULL << fac))) { 867 /* Facility not available to the guest, ignore giveup request*/ 868 return; 869 } 870 871 switch (fac) { 872 case FSCR_TAR_LG: 873 vcpu->arch.tar = mfspr(SPRN_TAR); 874 mtspr(SPRN_TAR, current->thread.tar); 875 vcpu->arch.shadow_fscr &= ~FSCR_TAR; 876 break; 877 } 878 #endif 879 } 880 881 /* Handle external providers (FPU, Altivec, VSX) */ 882 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr, 883 ulong msr) 884 { 885 struct thread_struct *t = ¤t->thread; 886 887 /* When we have paired singles, we emulate in software */ 888 if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) 889 return RESUME_GUEST; 890 891 if (!(kvmppc_get_msr(vcpu) & msr)) { 892 kvmppc_book3s_queue_irqprio(vcpu, exit_nr); 893 return RESUME_GUEST; 894 } 895 896 if (msr == MSR_VSX) { 897 /* No VSX? Give an illegal instruction interrupt */ 898 #ifdef CONFIG_VSX 899 if (!cpu_has_feature(CPU_FTR_VSX)) 900 #endif 901 { 902 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 903 return RESUME_GUEST; 904 } 905 906 /* 907 * We have to load up all the FP and VMX registers before 908 * we can let the guest use VSX instructions. 909 */ 910 msr = MSR_FP | MSR_VEC | MSR_VSX; 911 } 912 913 /* See if we already own all the ext(s) needed */ 914 msr &= ~vcpu->arch.guest_owned_ext; 915 if (!msr) 916 return RESUME_GUEST; 917 918 #ifdef DEBUG_EXT 919 printk(KERN_INFO "Loading up ext 0x%lx\n", msr); 920 #endif 921 922 if (msr & MSR_FP) { 923 preempt_disable(); 924 enable_kernel_fp(); 925 load_fp_state(&vcpu->arch.fp); 926 disable_kernel_fp(); 927 t->fp_save_area = &vcpu->arch.fp; 928 preempt_enable(); 929 } 930 931 if (msr & MSR_VEC) { 932 #ifdef CONFIG_ALTIVEC 933 preempt_disable(); 934 enable_kernel_altivec(); 935 load_vr_state(&vcpu->arch.vr); 936 disable_kernel_altivec(); 937 t->vr_save_area = &vcpu->arch.vr; 938 preempt_enable(); 939 #endif 940 } 941 942 t->regs->msr |= msr; 943 vcpu->arch.guest_owned_ext |= msr; 944 kvmppc_recalc_shadow_msr(vcpu); 945 946 return RESUME_GUEST; 947 } 948 949 /* 950 * Kernel code using FP or VMX could have flushed guest state to 951 * the thread_struct; if so, get it back now. 952 */ 953 static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu) 954 { 955 unsigned long lost_ext; 956 957 lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr; 958 if (!lost_ext) 959 return; 960 961 if (lost_ext & MSR_FP) { 962 preempt_disable(); 963 enable_kernel_fp(); 964 load_fp_state(&vcpu->arch.fp); 965 disable_kernel_fp(); 966 preempt_enable(); 967 } 968 #ifdef CONFIG_ALTIVEC 969 if (lost_ext & MSR_VEC) { 970 preempt_disable(); 971 enable_kernel_altivec(); 972 load_vr_state(&vcpu->arch.vr); 973 disable_kernel_altivec(); 974 preempt_enable(); 975 } 976 #endif 977 current->thread.regs->msr |= lost_ext; 978 } 979 980 #ifdef CONFIG_PPC_BOOK3S_64 981 982 void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac) 983 { 984 /* Inject the Interrupt Cause field and trigger a guest interrupt */ 985 vcpu->arch.fscr &= ~(0xffULL << 56); 986 vcpu->arch.fscr |= (fac << 56); 987 kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL); 988 } 989 990 static void kvmppc_emulate_fac(struct kvm_vcpu *vcpu, ulong fac) 991 { 992 enum emulation_result er = EMULATE_FAIL; 993 994 if (!(kvmppc_get_msr(vcpu) & MSR_PR)) 995 er = kvmppc_emulate_instruction(vcpu->run, vcpu); 996 997 if ((er != EMULATE_DONE) && (er != EMULATE_AGAIN)) { 998 /* Couldn't emulate, trigger interrupt in guest */ 999 kvmppc_trigger_fac_interrupt(vcpu, fac); 1000 } 1001 } 1002 1003 /* Enable facilities (TAR, EBB, DSCR) for the guest */ 1004 static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac) 1005 { 1006 bool guest_fac_enabled; 1007 BUG_ON(!cpu_has_feature(CPU_FTR_ARCH_207S)); 1008 1009 /* 1010 * Not every facility is enabled by FSCR bits, check whether the 1011 * guest has this facility enabled at all. 1012 */ 1013 switch (fac) { 1014 case FSCR_TAR_LG: 1015 case FSCR_EBB_LG: 1016 guest_fac_enabled = (vcpu->arch.fscr & (1ULL << fac)); 1017 break; 1018 case FSCR_TM_LG: 1019 guest_fac_enabled = kvmppc_get_msr(vcpu) & MSR_TM; 1020 break; 1021 default: 1022 guest_fac_enabled = false; 1023 break; 1024 } 1025 1026 if (!guest_fac_enabled) { 1027 /* Facility not enabled by the guest */ 1028 kvmppc_trigger_fac_interrupt(vcpu, fac); 1029 return RESUME_GUEST; 1030 } 1031 1032 switch (fac) { 1033 case FSCR_TAR_LG: 1034 /* TAR switching isn't lazy in Linux yet */ 1035 current->thread.tar = mfspr(SPRN_TAR); 1036 mtspr(SPRN_TAR, vcpu->arch.tar); 1037 vcpu->arch.shadow_fscr |= FSCR_TAR; 1038 break; 1039 default: 1040 kvmppc_emulate_fac(vcpu, fac); 1041 break; 1042 } 1043 1044 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1045 /* Since we disabled MSR_TM at privilege state, the mfspr instruction 1046 * for TM spr can trigger TM fac unavailable. In this case, the 1047 * emulation is handled by kvmppc_emulate_fac(), which invokes 1048 * kvmppc_emulate_mfspr() finally. But note the mfspr can include 1049 * RT for NV registers. So it need to restore those NV reg to reflect 1050 * the update. 1051 */ 1052 if ((fac == FSCR_TM_LG) && !(kvmppc_get_msr(vcpu) & MSR_PR)) 1053 return RESUME_GUEST_NV; 1054 #endif 1055 1056 return RESUME_GUEST; 1057 } 1058 1059 void kvmppc_set_fscr(struct kvm_vcpu *vcpu, u64 fscr) 1060 { 1061 if ((vcpu->arch.fscr & FSCR_TAR) && !(fscr & FSCR_TAR)) { 1062 /* TAR got dropped, drop it in shadow too */ 1063 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG); 1064 } else if (!(vcpu->arch.fscr & FSCR_TAR) && (fscr & FSCR_TAR)) { 1065 vcpu->arch.fscr = fscr; 1066 kvmppc_handle_fac(vcpu, FSCR_TAR_LG); 1067 return; 1068 } 1069 1070 vcpu->arch.fscr = fscr; 1071 } 1072 #endif 1073 1074 static void kvmppc_setup_debug(struct kvm_vcpu *vcpu) 1075 { 1076 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 1077 u64 msr = kvmppc_get_msr(vcpu); 1078 1079 kvmppc_set_msr(vcpu, msr | MSR_SE); 1080 } 1081 } 1082 1083 static void kvmppc_clear_debug(struct kvm_vcpu *vcpu) 1084 { 1085 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 1086 u64 msr = kvmppc_get_msr(vcpu); 1087 1088 kvmppc_set_msr(vcpu, msr & ~MSR_SE); 1089 } 1090 } 1091 1092 static int kvmppc_exit_pr_progint(struct kvm_run *run, struct kvm_vcpu *vcpu, 1093 unsigned int exit_nr) 1094 { 1095 enum emulation_result er; 1096 ulong flags; 1097 u32 last_inst; 1098 int emul, r; 1099 1100 /* 1101 * shadow_srr1 only contains valid flags if we came here via a program 1102 * exception. The other exceptions (emulation assist, FP unavailable, 1103 * etc.) do not provide flags in SRR1, so use an illegal-instruction 1104 * exception when injecting a program interrupt into the guest. 1105 */ 1106 if (exit_nr == BOOK3S_INTERRUPT_PROGRAM) 1107 flags = vcpu->arch.shadow_srr1 & 0x1f0000ull; 1108 else 1109 flags = SRR1_PROGILL; 1110 1111 emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); 1112 if (emul != EMULATE_DONE) 1113 return RESUME_GUEST; 1114 1115 if (kvmppc_get_msr(vcpu) & MSR_PR) { 1116 #ifdef EXIT_DEBUG 1117 pr_info("Userspace triggered 0x700 exception at\n 0x%lx (0x%x)\n", 1118 kvmppc_get_pc(vcpu), last_inst); 1119 #endif 1120 if ((last_inst & 0xff0007ff) != (INS_DCBZ & 0xfffffff7)) { 1121 kvmppc_core_queue_program(vcpu, flags); 1122 return RESUME_GUEST; 1123 } 1124 } 1125 1126 vcpu->stat.emulated_inst_exits++; 1127 er = kvmppc_emulate_instruction(run, vcpu); 1128 switch (er) { 1129 case EMULATE_DONE: 1130 r = RESUME_GUEST_NV; 1131 break; 1132 case EMULATE_AGAIN: 1133 r = RESUME_GUEST; 1134 break; 1135 case EMULATE_FAIL: 1136 pr_crit("%s: emulation at %lx failed (%08x)\n", 1137 __func__, kvmppc_get_pc(vcpu), last_inst); 1138 kvmppc_core_queue_program(vcpu, flags); 1139 r = RESUME_GUEST; 1140 break; 1141 case EMULATE_DO_MMIO: 1142 run->exit_reason = KVM_EXIT_MMIO; 1143 r = RESUME_HOST_NV; 1144 break; 1145 case EMULATE_EXIT_USER: 1146 r = RESUME_HOST_NV; 1147 break; 1148 default: 1149 BUG(); 1150 } 1151 1152 return r; 1153 } 1154 1155 int kvmppc_handle_exit_pr(struct kvm_run *run, struct kvm_vcpu *vcpu, 1156 unsigned int exit_nr) 1157 { 1158 int r = RESUME_HOST; 1159 int s; 1160 1161 vcpu->stat.sum_exits++; 1162 1163 run->exit_reason = KVM_EXIT_UNKNOWN; 1164 run->ready_for_interrupt_injection = 1; 1165 1166 /* We get here with MSR.EE=1 */ 1167 1168 trace_kvm_exit(exit_nr, vcpu); 1169 guest_exit(); 1170 1171 switch (exit_nr) { 1172 case BOOK3S_INTERRUPT_INST_STORAGE: 1173 { 1174 ulong shadow_srr1 = vcpu->arch.shadow_srr1; 1175 vcpu->stat.pf_instruc++; 1176 1177 if (kvmppc_is_split_real(vcpu)) 1178 kvmppc_fixup_split_real(vcpu); 1179 1180 #ifdef CONFIG_PPC_BOOK3S_32 1181 /* We set segments as unused segments when invalidating them. So 1182 * treat the respective fault as segment fault. */ 1183 { 1184 struct kvmppc_book3s_shadow_vcpu *svcpu; 1185 u32 sr; 1186 1187 svcpu = svcpu_get(vcpu); 1188 sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT]; 1189 svcpu_put(svcpu); 1190 if (sr == SR_INVALID) { 1191 kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)); 1192 r = RESUME_GUEST; 1193 break; 1194 } 1195 } 1196 #endif 1197 1198 /* only care about PTEG not found errors, but leave NX alone */ 1199 if (shadow_srr1 & 0x40000000) { 1200 int idx = srcu_read_lock(&vcpu->kvm->srcu); 1201 r = kvmppc_handle_pagefault(run, vcpu, kvmppc_get_pc(vcpu), exit_nr); 1202 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1203 vcpu->stat.sp_instruc++; 1204 } else if (vcpu->arch.mmu.is_dcbz32(vcpu) && 1205 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) { 1206 /* 1207 * XXX If we do the dcbz hack we use the NX bit to flush&patch the page, 1208 * so we can't use the NX bit inside the guest. Let's cross our fingers, 1209 * that no guest that needs the dcbz hack does NX. 1210 */ 1211 kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL); 1212 r = RESUME_GUEST; 1213 } else { 1214 kvmppc_core_queue_inst_storage(vcpu, 1215 shadow_srr1 & 0x58000000); 1216 r = RESUME_GUEST; 1217 } 1218 break; 1219 } 1220 case BOOK3S_INTERRUPT_DATA_STORAGE: 1221 { 1222 ulong dar = kvmppc_get_fault_dar(vcpu); 1223 u32 fault_dsisr = vcpu->arch.fault_dsisr; 1224 vcpu->stat.pf_storage++; 1225 1226 #ifdef CONFIG_PPC_BOOK3S_32 1227 /* We set segments as unused segments when invalidating them. So 1228 * treat the respective fault as segment fault. */ 1229 { 1230 struct kvmppc_book3s_shadow_vcpu *svcpu; 1231 u32 sr; 1232 1233 svcpu = svcpu_get(vcpu); 1234 sr = svcpu->sr[dar >> SID_SHIFT]; 1235 svcpu_put(svcpu); 1236 if (sr == SR_INVALID) { 1237 kvmppc_mmu_map_segment(vcpu, dar); 1238 r = RESUME_GUEST; 1239 break; 1240 } 1241 } 1242 #endif 1243 1244 /* 1245 * We need to handle missing shadow PTEs, and 1246 * protection faults due to us mapping a page read-only 1247 * when the guest thinks it is writable. 1248 */ 1249 if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) { 1250 int idx = srcu_read_lock(&vcpu->kvm->srcu); 1251 r = kvmppc_handle_pagefault(run, vcpu, dar, exit_nr); 1252 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1253 } else { 1254 kvmppc_core_queue_data_storage(vcpu, dar, fault_dsisr); 1255 r = RESUME_GUEST; 1256 } 1257 break; 1258 } 1259 case BOOK3S_INTERRUPT_DATA_SEGMENT: 1260 if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) { 1261 kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu)); 1262 kvmppc_book3s_queue_irqprio(vcpu, 1263 BOOK3S_INTERRUPT_DATA_SEGMENT); 1264 } 1265 r = RESUME_GUEST; 1266 break; 1267 case BOOK3S_INTERRUPT_INST_SEGMENT: 1268 if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) { 1269 kvmppc_book3s_queue_irqprio(vcpu, 1270 BOOK3S_INTERRUPT_INST_SEGMENT); 1271 } 1272 r = RESUME_GUEST; 1273 break; 1274 /* We're good on these - the host merely wanted to get our attention */ 1275 case BOOK3S_INTERRUPT_DECREMENTER: 1276 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1277 case BOOK3S_INTERRUPT_DOORBELL: 1278 case BOOK3S_INTERRUPT_H_DOORBELL: 1279 vcpu->stat.dec_exits++; 1280 r = RESUME_GUEST; 1281 break; 1282 case BOOK3S_INTERRUPT_EXTERNAL: 1283 case BOOK3S_INTERRUPT_EXTERNAL_HV: 1284 case BOOK3S_INTERRUPT_H_VIRT: 1285 vcpu->stat.ext_intr_exits++; 1286 r = RESUME_GUEST; 1287 break; 1288 case BOOK3S_INTERRUPT_HMI: 1289 case BOOK3S_INTERRUPT_PERFMON: 1290 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1291 r = RESUME_GUEST; 1292 break; 1293 case BOOK3S_INTERRUPT_PROGRAM: 1294 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 1295 r = kvmppc_exit_pr_progint(run, vcpu, exit_nr); 1296 break; 1297 case BOOK3S_INTERRUPT_SYSCALL: 1298 { 1299 u32 last_sc; 1300 int emul; 1301 1302 /* Get last sc for papr */ 1303 if (vcpu->arch.papr_enabled) { 1304 /* The sc instuction points SRR0 to the next inst */ 1305 emul = kvmppc_get_last_inst(vcpu, INST_SC, &last_sc); 1306 if (emul != EMULATE_DONE) { 1307 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) - 4); 1308 r = RESUME_GUEST; 1309 break; 1310 } 1311 } 1312 1313 if (vcpu->arch.papr_enabled && 1314 (last_sc == 0x44000022) && 1315 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 1316 /* SC 1 papr hypercalls */ 1317 ulong cmd = kvmppc_get_gpr(vcpu, 3); 1318 int i; 1319 1320 #ifdef CONFIG_PPC_BOOK3S_64 1321 if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) { 1322 r = RESUME_GUEST; 1323 break; 1324 } 1325 #endif 1326 1327 run->papr_hcall.nr = cmd; 1328 for (i = 0; i < 9; ++i) { 1329 ulong gpr = kvmppc_get_gpr(vcpu, 4 + i); 1330 run->papr_hcall.args[i] = gpr; 1331 } 1332 run->exit_reason = KVM_EXIT_PAPR_HCALL; 1333 vcpu->arch.hcall_needed = 1; 1334 r = RESUME_HOST; 1335 } else if (vcpu->arch.osi_enabled && 1336 (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) && 1337 (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) { 1338 /* MOL hypercalls */ 1339 u64 *gprs = run->osi.gprs; 1340 int i; 1341 1342 run->exit_reason = KVM_EXIT_OSI; 1343 for (i = 0; i < 32; i++) 1344 gprs[i] = kvmppc_get_gpr(vcpu, i); 1345 vcpu->arch.osi_needed = 1; 1346 r = RESUME_HOST_NV; 1347 } else if (!(kvmppc_get_msr(vcpu) & MSR_PR) && 1348 (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) { 1349 /* KVM PV hypercalls */ 1350 kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu)); 1351 r = RESUME_GUEST; 1352 } else { 1353 /* Guest syscalls */ 1354 vcpu->stat.syscall_exits++; 1355 kvmppc_book3s_queue_irqprio(vcpu, exit_nr); 1356 r = RESUME_GUEST; 1357 } 1358 break; 1359 } 1360 case BOOK3S_INTERRUPT_FP_UNAVAIL: 1361 case BOOK3S_INTERRUPT_ALTIVEC: 1362 case BOOK3S_INTERRUPT_VSX: 1363 { 1364 int ext_msr = 0; 1365 int emul; 1366 u32 last_inst; 1367 1368 if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) { 1369 /* Do paired single instruction emulation */ 1370 emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, 1371 &last_inst); 1372 if (emul == EMULATE_DONE) 1373 r = kvmppc_exit_pr_progint(run, vcpu, exit_nr); 1374 else 1375 r = RESUME_GUEST; 1376 1377 break; 1378 } 1379 1380 /* Enable external provider */ 1381 switch (exit_nr) { 1382 case BOOK3S_INTERRUPT_FP_UNAVAIL: 1383 ext_msr = MSR_FP; 1384 break; 1385 1386 case BOOK3S_INTERRUPT_ALTIVEC: 1387 ext_msr = MSR_VEC; 1388 break; 1389 1390 case BOOK3S_INTERRUPT_VSX: 1391 ext_msr = MSR_VSX; 1392 break; 1393 } 1394 1395 r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr); 1396 break; 1397 } 1398 case BOOK3S_INTERRUPT_ALIGNMENT: 1399 { 1400 u32 last_inst; 1401 int emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); 1402 1403 if (emul == EMULATE_DONE) { 1404 u32 dsisr; 1405 u64 dar; 1406 1407 dsisr = kvmppc_alignment_dsisr(vcpu, last_inst); 1408 dar = kvmppc_alignment_dar(vcpu, last_inst); 1409 1410 kvmppc_set_dsisr(vcpu, dsisr); 1411 kvmppc_set_dar(vcpu, dar); 1412 1413 kvmppc_book3s_queue_irqprio(vcpu, exit_nr); 1414 } 1415 r = RESUME_GUEST; 1416 break; 1417 } 1418 #ifdef CONFIG_PPC_BOOK3S_64 1419 case BOOK3S_INTERRUPT_FAC_UNAVAIL: 1420 r = kvmppc_handle_fac(vcpu, vcpu->arch.shadow_fscr >> 56); 1421 break; 1422 #endif 1423 case BOOK3S_INTERRUPT_MACHINE_CHECK: 1424 kvmppc_book3s_queue_irqprio(vcpu, exit_nr); 1425 r = RESUME_GUEST; 1426 break; 1427 case BOOK3S_INTERRUPT_TRACE: 1428 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 1429 run->exit_reason = KVM_EXIT_DEBUG; 1430 r = RESUME_HOST; 1431 } else { 1432 kvmppc_book3s_queue_irqprio(vcpu, exit_nr); 1433 r = RESUME_GUEST; 1434 } 1435 break; 1436 default: 1437 { 1438 ulong shadow_srr1 = vcpu->arch.shadow_srr1; 1439 /* Ugh - bork here! What did we get? */ 1440 printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n", 1441 exit_nr, kvmppc_get_pc(vcpu), shadow_srr1); 1442 r = RESUME_HOST; 1443 BUG(); 1444 break; 1445 } 1446 } 1447 1448 if (!(r & RESUME_HOST)) { 1449 /* To avoid clobbering exit_reason, only check for signals if 1450 * we aren't already exiting to userspace for some other 1451 * reason. */ 1452 1453 /* 1454 * Interrupts could be timers for the guest which we have to 1455 * inject again, so let's postpone them until we're in the guest 1456 * and if we really did time things so badly, then we just exit 1457 * again due to a host external interrupt. 1458 */ 1459 s = kvmppc_prepare_to_enter(vcpu); 1460 if (s <= 0) 1461 r = s; 1462 else { 1463 /* interrupts now hard-disabled */ 1464 kvmppc_fix_ee_before_entry(); 1465 } 1466 1467 kvmppc_handle_lost_ext(vcpu); 1468 } 1469 1470 trace_kvm_book3s_reenter(r, vcpu); 1471 1472 return r; 1473 } 1474 1475 static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu, 1476 struct kvm_sregs *sregs) 1477 { 1478 struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu); 1479 int i; 1480 1481 sregs->pvr = vcpu->arch.pvr; 1482 1483 sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1; 1484 if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) { 1485 for (i = 0; i < 64; i++) { 1486 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i; 1487 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 1488 } 1489 } else { 1490 for (i = 0; i < 16; i++) 1491 sregs->u.s.ppc32.sr[i] = kvmppc_get_sr(vcpu, i); 1492 1493 for (i = 0; i < 8; i++) { 1494 sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw; 1495 sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw; 1496 } 1497 } 1498 1499 return 0; 1500 } 1501 1502 static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu, 1503 struct kvm_sregs *sregs) 1504 { 1505 struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu); 1506 int i; 1507 1508 kvmppc_set_pvr_pr(vcpu, sregs->pvr); 1509 1510 vcpu3s->sdr1 = sregs->u.s.sdr1; 1511 #ifdef CONFIG_PPC_BOOK3S_64 1512 if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) { 1513 /* Flush all SLB entries */ 1514 vcpu->arch.mmu.slbmte(vcpu, 0, 0); 1515 vcpu->arch.mmu.slbia(vcpu); 1516 1517 for (i = 0; i < 64; i++) { 1518 u64 rb = sregs->u.s.ppc64.slb[i].slbe; 1519 u64 rs = sregs->u.s.ppc64.slb[i].slbv; 1520 1521 if (rb & SLB_ESID_V) 1522 vcpu->arch.mmu.slbmte(vcpu, rs, rb); 1523 } 1524 } else 1525 #endif 1526 { 1527 for (i = 0; i < 16; i++) { 1528 vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]); 1529 } 1530 for (i = 0; i < 8; i++) { 1531 kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false, 1532 (u32)sregs->u.s.ppc32.ibat[i]); 1533 kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true, 1534 (u32)(sregs->u.s.ppc32.ibat[i] >> 32)); 1535 kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false, 1536 (u32)sregs->u.s.ppc32.dbat[i]); 1537 kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true, 1538 (u32)(sregs->u.s.ppc32.dbat[i] >> 32)); 1539 } 1540 } 1541 1542 /* Flush the MMU after messing with the segments */ 1543 kvmppc_mmu_pte_flush(vcpu, 0, 0); 1544 1545 return 0; 1546 } 1547 1548 static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id, 1549 union kvmppc_one_reg *val) 1550 { 1551 int r = 0; 1552 1553 switch (id) { 1554 case KVM_REG_PPC_DEBUG_INST: 1555 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); 1556 break; 1557 case KVM_REG_PPC_HIOR: 1558 *val = get_reg_val(id, to_book3s(vcpu)->hior); 1559 break; 1560 case KVM_REG_PPC_VTB: 1561 *val = get_reg_val(id, to_book3s(vcpu)->vtb); 1562 break; 1563 case KVM_REG_PPC_LPCR: 1564 case KVM_REG_PPC_LPCR_64: 1565 /* 1566 * We are only interested in the LPCR_ILE bit 1567 */ 1568 if (vcpu->arch.intr_msr & MSR_LE) 1569 *val = get_reg_val(id, LPCR_ILE); 1570 else 1571 *val = get_reg_val(id, 0); 1572 break; 1573 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1574 case KVM_REG_PPC_TFHAR: 1575 *val = get_reg_val(id, vcpu->arch.tfhar); 1576 break; 1577 case KVM_REG_PPC_TFIAR: 1578 *val = get_reg_val(id, vcpu->arch.tfiar); 1579 break; 1580 case KVM_REG_PPC_TEXASR: 1581 *val = get_reg_val(id, vcpu->arch.texasr); 1582 break; 1583 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1584 *val = get_reg_val(id, 1585 vcpu->arch.gpr_tm[id-KVM_REG_PPC_TM_GPR0]); 1586 break; 1587 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1588 { 1589 int i, j; 1590 1591 i = id - KVM_REG_PPC_TM_VSR0; 1592 if (i < 32) 1593 for (j = 0; j < TS_FPRWIDTH; j++) 1594 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; 1595 else { 1596 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1597 val->vval = vcpu->arch.vr_tm.vr[i-32]; 1598 else 1599 r = -ENXIO; 1600 } 1601 break; 1602 } 1603 case KVM_REG_PPC_TM_CR: 1604 *val = get_reg_val(id, vcpu->arch.cr_tm); 1605 break; 1606 case KVM_REG_PPC_TM_XER: 1607 *val = get_reg_val(id, vcpu->arch.xer_tm); 1608 break; 1609 case KVM_REG_PPC_TM_LR: 1610 *val = get_reg_val(id, vcpu->arch.lr_tm); 1611 break; 1612 case KVM_REG_PPC_TM_CTR: 1613 *val = get_reg_val(id, vcpu->arch.ctr_tm); 1614 break; 1615 case KVM_REG_PPC_TM_FPSCR: 1616 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); 1617 break; 1618 case KVM_REG_PPC_TM_AMR: 1619 *val = get_reg_val(id, vcpu->arch.amr_tm); 1620 break; 1621 case KVM_REG_PPC_TM_PPR: 1622 *val = get_reg_val(id, vcpu->arch.ppr_tm); 1623 break; 1624 case KVM_REG_PPC_TM_VRSAVE: 1625 *val = get_reg_val(id, vcpu->arch.vrsave_tm); 1626 break; 1627 case KVM_REG_PPC_TM_VSCR: 1628 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1629 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); 1630 else 1631 r = -ENXIO; 1632 break; 1633 case KVM_REG_PPC_TM_DSCR: 1634 *val = get_reg_val(id, vcpu->arch.dscr_tm); 1635 break; 1636 case KVM_REG_PPC_TM_TAR: 1637 *val = get_reg_val(id, vcpu->arch.tar_tm); 1638 break; 1639 #endif 1640 default: 1641 r = -EINVAL; 1642 break; 1643 } 1644 1645 return r; 1646 } 1647 1648 static void kvmppc_set_lpcr_pr(struct kvm_vcpu *vcpu, u64 new_lpcr) 1649 { 1650 if (new_lpcr & LPCR_ILE) 1651 vcpu->arch.intr_msr |= MSR_LE; 1652 else 1653 vcpu->arch.intr_msr &= ~MSR_LE; 1654 } 1655 1656 static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id, 1657 union kvmppc_one_reg *val) 1658 { 1659 int r = 0; 1660 1661 switch (id) { 1662 case KVM_REG_PPC_HIOR: 1663 to_book3s(vcpu)->hior = set_reg_val(id, *val); 1664 to_book3s(vcpu)->hior_explicit = true; 1665 break; 1666 case KVM_REG_PPC_VTB: 1667 to_book3s(vcpu)->vtb = set_reg_val(id, *val); 1668 break; 1669 case KVM_REG_PPC_LPCR: 1670 case KVM_REG_PPC_LPCR_64: 1671 kvmppc_set_lpcr_pr(vcpu, set_reg_val(id, *val)); 1672 break; 1673 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1674 case KVM_REG_PPC_TFHAR: 1675 vcpu->arch.tfhar = set_reg_val(id, *val); 1676 break; 1677 case KVM_REG_PPC_TFIAR: 1678 vcpu->arch.tfiar = set_reg_val(id, *val); 1679 break; 1680 case KVM_REG_PPC_TEXASR: 1681 vcpu->arch.texasr = set_reg_val(id, *val); 1682 break; 1683 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1684 vcpu->arch.gpr_tm[id - KVM_REG_PPC_TM_GPR0] = 1685 set_reg_val(id, *val); 1686 break; 1687 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1688 { 1689 int i, j; 1690 1691 i = id - KVM_REG_PPC_TM_VSR0; 1692 if (i < 32) 1693 for (j = 0; j < TS_FPRWIDTH; j++) 1694 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; 1695 else 1696 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1697 vcpu->arch.vr_tm.vr[i-32] = val->vval; 1698 else 1699 r = -ENXIO; 1700 break; 1701 } 1702 case KVM_REG_PPC_TM_CR: 1703 vcpu->arch.cr_tm = set_reg_val(id, *val); 1704 break; 1705 case KVM_REG_PPC_TM_XER: 1706 vcpu->arch.xer_tm = set_reg_val(id, *val); 1707 break; 1708 case KVM_REG_PPC_TM_LR: 1709 vcpu->arch.lr_tm = set_reg_val(id, *val); 1710 break; 1711 case KVM_REG_PPC_TM_CTR: 1712 vcpu->arch.ctr_tm = set_reg_val(id, *val); 1713 break; 1714 case KVM_REG_PPC_TM_FPSCR: 1715 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); 1716 break; 1717 case KVM_REG_PPC_TM_AMR: 1718 vcpu->arch.amr_tm = set_reg_val(id, *val); 1719 break; 1720 case KVM_REG_PPC_TM_PPR: 1721 vcpu->arch.ppr_tm = set_reg_val(id, *val); 1722 break; 1723 case KVM_REG_PPC_TM_VRSAVE: 1724 vcpu->arch.vrsave_tm = set_reg_val(id, *val); 1725 break; 1726 case KVM_REG_PPC_TM_VSCR: 1727 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1728 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); 1729 else 1730 r = -ENXIO; 1731 break; 1732 case KVM_REG_PPC_TM_DSCR: 1733 vcpu->arch.dscr_tm = set_reg_val(id, *val); 1734 break; 1735 case KVM_REG_PPC_TM_TAR: 1736 vcpu->arch.tar_tm = set_reg_val(id, *val); 1737 break; 1738 #endif 1739 default: 1740 r = -EINVAL; 1741 break; 1742 } 1743 1744 return r; 1745 } 1746 1747 static int kvmppc_core_vcpu_create_pr(struct kvm_vcpu *vcpu) 1748 { 1749 struct kvmppc_vcpu_book3s *vcpu_book3s; 1750 unsigned long p; 1751 int err; 1752 1753 err = -ENOMEM; 1754 1755 vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s)); 1756 if (!vcpu_book3s) 1757 goto out; 1758 vcpu->arch.book3s = vcpu_book3s; 1759 1760 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER 1761 vcpu->arch.shadow_vcpu = 1762 kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL); 1763 if (!vcpu->arch.shadow_vcpu) 1764 goto free_vcpu3s; 1765 #endif 1766 1767 p = __get_free_page(GFP_KERNEL|__GFP_ZERO); 1768 if (!p) 1769 goto free_shadow_vcpu; 1770 vcpu->arch.shared = (void *)p; 1771 #ifdef CONFIG_PPC_BOOK3S_64 1772 /* Always start the shared struct in native endian mode */ 1773 #ifdef __BIG_ENDIAN__ 1774 vcpu->arch.shared_big_endian = true; 1775 #else 1776 vcpu->arch.shared_big_endian = false; 1777 #endif 1778 1779 /* 1780 * Default to the same as the host if we're on sufficiently 1781 * recent machine that we have 1TB segments; 1782 * otherwise default to PPC970FX. 1783 */ 1784 vcpu->arch.pvr = 0x3C0301; 1785 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1786 vcpu->arch.pvr = mfspr(SPRN_PVR); 1787 vcpu->arch.intr_msr = MSR_SF; 1788 #else 1789 /* default to book3s_32 (750) */ 1790 vcpu->arch.pvr = 0x84202; 1791 vcpu->arch.intr_msr = 0; 1792 #endif 1793 kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr); 1794 vcpu->arch.slb_nr = 64; 1795 1796 vcpu->arch.shadow_msr = MSR_USER64 & ~MSR_LE; 1797 1798 err = kvmppc_mmu_init(vcpu); 1799 if (err < 0) 1800 goto free_shared_page; 1801 1802 return 0; 1803 1804 free_shared_page: 1805 free_page((unsigned long)vcpu->arch.shared); 1806 free_shadow_vcpu: 1807 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER 1808 kfree(vcpu->arch.shadow_vcpu); 1809 free_vcpu3s: 1810 #endif 1811 vfree(vcpu_book3s); 1812 out: 1813 return err; 1814 } 1815 1816 static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu) 1817 { 1818 struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu); 1819 1820 free_page((unsigned long)vcpu->arch.shared & PAGE_MASK); 1821 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER 1822 kfree(vcpu->arch.shadow_vcpu); 1823 #endif 1824 vfree(vcpu_book3s); 1825 } 1826 1827 static int kvmppc_vcpu_run_pr(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) 1828 { 1829 int ret; 1830 #ifdef CONFIG_ALTIVEC 1831 unsigned long uninitialized_var(vrsave); 1832 #endif 1833 1834 /* Check if we can run the vcpu at all */ 1835 if (!vcpu->arch.sane) { 1836 kvm_run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1837 ret = -EINVAL; 1838 goto out; 1839 } 1840 1841 kvmppc_setup_debug(vcpu); 1842 1843 /* 1844 * Interrupts could be timers for the guest which we have to inject 1845 * again, so let's postpone them until we're in the guest and if we 1846 * really did time things so badly, then we just exit again due to 1847 * a host external interrupt. 1848 */ 1849 ret = kvmppc_prepare_to_enter(vcpu); 1850 if (ret <= 0) 1851 goto out; 1852 /* interrupts now hard-disabled */ 1853 1854 /* Save FPU, Altivec and VSX state */ 1855 giveup_all(current); 1856 1857 /* Preload FPU if it's enabled */ 1858 if (kvmppc_get_msr(vcpu) & MSR_FP) 1859 kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP); 1860 1861 kvmppc_fix_ee_before_entry(); 1862 1863 ret = __kvmppc_vcpu_run(kvm_run, vcpu); 1864 1865 kvmppc_clear_debug(vcpu); 1866 1867 /* No need for guest_exit. It's done in handle_exit. 1868 We also get here with interrupts enabled. */ 1869 1870 /* Make sure we save the guest FPU/Altivec/VSX state */ 1871 kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX); 1872 1873 /* Make sure we save the guest TAR/EBB/DSCR state */ 1874 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG); 1875 1876 out: 1877 vcpu->mode = OUTSIDE_GUEST_MODE; 1878 return ret; 1879 } 1880 1881 /* 1882 * Get (and clear) the dirty memory log for a memory slot. 1883 */ 1884 static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm, 1885 struct kvm_dirty_log *log) 1886 { 1887 struct kvm_memslots *slots; 1888 struct kvm_memory_slot *memslot; 1889 struct kvm_vcpu *vcpu; 1890 ulong ga, ga_end; 1891 int is_dirty = 0; 1892 int r; 1893 unsigned long n; 1894 1895 mutex_lock(&kvm->slots_lock); 1896 1897 r = kvm_get_dirty_log(kvm, log, &is_dirty); 1898 if (r) 1899 goto out; 1900 1901 /* If nothing is dirty, don't bother messing with page tables. */ 1902 if (is_dirty) { 1903 slots = kvm_memslots(kvm); 1904 memslot = id_to_memslot(slots, log->slot); 1905 1906 ga = memslot->base_gfn << PAGE_SHIFT; 1907 ga_end = ga + (memslot->npages << PAGE_SHIFT); 1908 1909 kvm_for_each_vcpu(n, vcpu, kvm) 1910 kvmppc_mmu_pte_pflush(vcpu, ga, ga_end); 1911 1912 n = kvm_dirty_bitmap_bytes(memslot); 1913 memset(memslot->dirty_bitmap, 0, n); 1914 } 1915 1916 r = 0; 1917 out: 1918 mutex_unlock(&kvm->slots_lock); 1919 return r; 1920 } 1921 1922 static void kvmppc_core_flush_memslot_pr(struct kvm *kvm, 1923 struct kvm_memory_slot *memslot) 1924 { 1925 return; 1926 } 1927 1928 static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm, 1929 struct kvm_memory_slot *memslot, 1930 const struct kvm_userspace_memory_region *mem) 1931 { 1932 return 0; 1933 } 1934 1935 static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm, 1936 const struct kvm_userspace_memory_region *mem, 1937 const struct kvm_memory_slot *old, 1938 const struct kvm_memory_slot *new, 1939 enum kvm_mr_change change) 1940 { 1941 return; 1942 } 1943 1944 static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *free, 1945 struct kvm_memory_slot *dont) 1946 { 1947 return; 1948 } 1949 1950 static int kvmppc_core_create_memslot_pr(struct kvm_memory_slot *slot, 1951 unsigned long npages) 1952 { 1953 return 0; 1954 } 1955 1956 1957 #ifdef CONFIG_PPC64 1958 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm, 1959 struct kvm_ppc_smmu_info *info) 1960 { 1961 long int i; 1962 struct kvm_vcpu *vcpu; 1963 1964 info->flags = 0; 1965 1966 /* SLB is always 64 entries */ 1967 info->slb_size = 64; 1968 1969 /* Standard 4k base page size segment */ 1970 info->sps[0].page_shift = 12; 1971 info->sps[0].slb_enc = 0; 1972 info->sps[0].enc[0].page_shift = 12; 1973 info->sps[0].enc[0].pte_enc = 0; 1974 1975 /* 1976 * 64k large page size. 1977 * We only want to put this in if the CPUs we're emulating 1978 * support it, but unfortunately we don't have a vcpu easily 1979 * to hand here to test. Just pick the first vcpu, and if 1980 * that doesn't exist yet, report the minimum capability, 1981 * i.e., no 64k pages. 1982 * 1T segment support goes along with 64k pages. 1983 */ 1984 i = 1; 1985 vcpu = kvm_get_vcpu(kvm, 0); 1986 if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) { 1987 info->flags = KVM_PPC_1T_SEGMENTS; 1988 info->sps[i].page_shift = 16; 1989 info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01; 1990 info->sps[i].enc[0].page_shift = 16; 1991 info->sps[i].enc[0].pte_enc = 1; 1992 ++i; 1993 } 1994 1995 /* Standard 16M large page size segment */ 1996 info->sps[i].page_shift = 24; 1997 info->sps[i].slb_enc = SLB_VSID_L; 1998 info->sps[i].enc[0].page_shift = 24; 1999 info->sps[i].enc[0].pte_enc = 0; 2000 2001 return 0; 2002 } 2003 2004 static int kvm_configure_mmu_pr(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg) 2005 { 2006 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2007 return -ENODEV; 2008 /* Require flags and process table base and size to all be zero. */ 2009 if (cfg->flags || cfg->process_table) 2010 return -EINVAL; 2011 return 0; 2012 } 2013 2014 #else 2015 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm, 2016 struct kvm_ppc_smmu_info *info) 2017 { 2018 /* We should not get called */ 2019 BUG(); 2020 return 0; 2021 } 2022 #endif /* CONFIG_PPC64 */ 2023 2024 static unsigned int kvm_global_user_count = 0; 2025 static DEFINE_SPINLOCK(kvm_global_user_count_lock); 2026 2027 static int kvmppc_core_init_vm_pr(struct kvm *kvm) 2028 { 2029 mutex_init(&kvm->arch.hpt_mutex); 2030 2031 #ifdef CONFIG_PPC_BOOK3S_64 2032 /* Start out with the default set of hcalls enabled */ 2033 kvmppc_pr_init_default_hcalls(kvm); 2034 #endif 2035 2036 if (firmware_has_feature(FW_FEATURE_SET_MODE)) { 2037 spin_lock(&kvm_global_user_count_lock); 2038 if (++kvm_global_user_count == 1) 2039 pseries_disable_reloc_on_exc(); 2040 spin_unlock(&kvm_global_user_count_lock); 2041 } 2042 return 0; 2043 } 2044 2045 static void kvmppc_core_destroy_vm_pr(struct kvm *kvm) 2046 { 2047 #ifdef CONFIG_PPC64 2048 WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables)); 2049 #endif 2050 2051 if (firmware_has_feature(FW_FEATURE_SET_MODE)) { 2052 spin_lock(&kvm_global_user_count_lock); 2053 BUG_ON(kvm_global_user_count == 0); 2054 if (--kvm_global_user_count == 0) 2055 pseries_enable_reloc_on_exc(); 2056 spin_unlock(&kvm_global_user_count_lock); 2057 } 2058 } 2059 2060 static int kvmppc_core_check_processor_compat_pr(void) 2061 { 2062 /* 2063 * PR KVM can work on POWER9 inside a guest partition 2064 * running in HPT mode. It can't work if we are using 2065 * radix translation (because radix provides no way for 2066 * a process to have unique translations in quadrant 3). 2067 */ 2068 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled()) 2069 return -EIO; 2070 return 0; 2071 } 2072 2073 static long kvm_arch_vm_ioctl_pr(struct file *filp, 2074 unsigned int ioctl, unsigned long arg) 2075 { 2076 return -ENOTTY; 2077 } 2078 2079 static struct kvmppc_ops kvm_ops_pr = { 2080 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr, 2081 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr, 2082 .get_one_reg = kvmppc_get_one_reg_pr, 2083 .set_one_reg = kvmppc_set_one_reg_pr, 2084 .vcpu_load = kvmppc_core_vcpu_load_pr, 2085 .vcpu_put = kvmppc_core_vcpu_put_pr, 2086 .inject_interrupt = kvmppc_inject_interrupt_pr, 2087 .set_msr = kvmppc_set_msr_pr, 2088 .vcpu_run = kvmppc_vcpu_run_pr, 2089 .vcpu_create = kvmppc_core_vcpu_create_pr, 2090 .vcpu_free = kvmppc_core_vcpu_free_pr, 2091 .check_requests = kvmppc_core_check_requests_pr, 2092 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr, 2093 .flush_memslot = kvmppc_core_flush_memslot_pr, 2094 .prepare_memory_region = kvmppc_core_prepare_memory_region_pr, 2095 .commit_memory_region = kvmppc_core_commit_memory_region_pr, 2096 .unmap_hva_range = kvm_unmap_hva_range_pr, 2097 .age_hva = kvm_age_hva_pr, 2098 .test_age_hva = kvm_test_age_hva_pr, 2099 .set_spte_hva = kvm_set_spte_hva_pr, 2100 .mmu_destroy = kvmppc_mmu_destroy_pr, 2101 .free_memslot = kvmppc_core_free_memslot_pr, 2102 .create_memslot = kvmppc_core_create_memslot_pr, 2103 .init_vm = kvmppc_core_init_vm_pr, 2104 .destroy_vm = kvmppc_core_destroy_vm_pr, 2105 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr, 2106 .emulate_op = kvmppc_core_emulate_op_pr, 2107 .emulate_mtspr = kvmppc_core_emulate_mtspr_pr, 2108 .emulate_mfspr = kvmppc_core_emulate_mfspr_pr, 2109 .fast_vcpu_kick = kvm_vcpu_kick, 2110 .arch_vm_ioctl = kvm_arch_vm_ioctl_pr, 2111 #ifdef CONFIG_PPC_BOOK3S_64 2112 .hcall_implemented = kvmppc_hcall_impl_pr, 2113 .configure_mmu = kvm_configure_mmu_pr, 2114 #endif 2115 .giveup_ext = kvmppc_giveup_ext, 2116 }; 2117 2118 2119 int kvmppc_book3s_init_pr(void) 2120 { 2121 int r; 2122 2123 r = kvmppc_core_check_processor_compat_pr(); 2124 if (r < 0) 2125 return r; 2126 2127 kvm_ops_pr.owner = THIS_MODULE; 2128 kvmppc_pr_ops = &kvm_ops_pr; 2129 2130 r = kvmppc_mmu_hpte_sysinit(); 2131 return r; 2132 } 2133 2134 void kvmppc_book3s_exit_pr(void) 2135 { 2136 kvmppc_pr_ops = NULL; 2137 kvmppc_mmu_hpte_sysexit(); 2138 } 2139 2140 /* 2141 * We only support separate modules for book3s 64 2142 */ 2143 #ifdef CONFIG_PPC_BOOK3S_64 2144 2145 module_init(kvmppc_book3s_init_pr); 2146 module_exit(kvmppc_book3s_exit_pr); 2147 2148 MODULE_LICENSE("GPL"); 2149 MODULE_ALIAS_MISCDEV(KVM_MINOR); 2150 MODULE_ALIAS("devname:kvm"); 2151 #endif 2152