xref: /openbmc/linux/arch/powerpc/kvm/book3s_pr.c (revision d0b73b48)
1 /*
2  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
3  *
4  * Authors:
5  *    Alexander Graf <agraf@suse.de>
6  *    Kevin Wolf <mail@kevin-wolf.de>
7  *    Paul Mackerras <paulus@samba.org>
8  *
9  * Description:
10  * Functions relating to running KVM on Book 3S processors where
11  * we don't have access to hypervisor mode, and we run the guest
12  * in problem state (user mode).
13  *
14  * This file is derived from arch/powerpc/kvm/44x.c,
15  * by Hollis Blanchard <hollisb@us.ibm.com>.
16  *
17  * This program is free software; you can redistribute it and/or modify
18  * it under the terms of the GNU General Public License, version 2, as
19  * published by the Free Software Foundation.
20  */
21 
22 #include <linux/kvm_host.h>
23 #include <linux/export.h>
24 #include <linux/err.h>
25 #include <linux/slab.h>
26 
27 #include <asm/reg.h>
28 #include <asm/cputable.h>
29 #include <asm/cacheflush.h>
30 #include <asm/tlbflush.h>
31 #include <asm/uaccess.h>
32 #include <asm/io.h>
33 #include <asm/kvm_ppc.h>
34 #include <asm/kvm_book3s.h>
35 #include <asm/mmu_context.h>
36 #include <asm/switch_to.h>
37 #include <linux/gfp.h>
38 #include <linux/sched.h>
39 #include <linux/vmalloc.h>
40 #include <linux/highmem.h>
41 
42 #include "trace.h"
43 
44 /* #define EXIT_DEBUG */
45 /* #define DEBUG_EXT */
46 
47 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
48 			     ulong msr);
49 
50 /* Some compatibility defines */
51 #ifdef CONFIG_PPC_BOOK3S_32
52 #define MSR_USER32 MSR_USER
53 #define MSR_USER64 MSR_USER
54 #define HW_PAGE_SIZE PAGE_SIZE
55 #endif
56 
57 void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
58 {
59 #ifdef CONFIG_PPC_BOOK3S_64
60 	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
61 	memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb));
62 	memcpy(&get_paca()->shadow_vcpu, to_book3s(vcpu)->shadow_vcpu,
63 	       sizeof(get_paca()->shadow_vcpu));
64 	svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max;
65 	svcpu_put(svcpu);
66 #endif
67 	vcpu->cpu = smp_processor_id();
68 #ifdef CONFIG_PPC_BOOK3S_32
69 	current->thread.kvm_shadow_vcpu = to_book3s(vcpu)->shadow_vcpu;
70 #endif
71 }
72 
73 void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
74 {
75 #ifdef CONFIG_PPC_BOOK3S_64
76 	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
77 	memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb));
78 	memcpy(to_book3s(vcpu)->shadow_vcpu, &get_paca()->shadow_vcpu,
79 	       sizeof(get_paca()->shadow_vcpu));
80 	to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max;
81 	svcpu_put(svcpu);
82 #endif
83 
84 	kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
85 	vcpu->cpu = -1;
86 }
87 
88 int kvmppc_core_check_requests(struct kvm_vcpu *vcpu)
89 {
90 	int r = 1; /* Indicate we want to get back into the guest */
91 
92 	/* We misuse TLB_FLUSH to indicate that we want to clear
93 	   all shadow cache entries */
94 	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
95 		kvmppc_mmu_pte_flush(vcpu, 0, 0);
96 
97 	return r;
98 }
99 
100 /************* MMU Notifiers *************/
101 
102 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
103 {
104 	trace_kvm_unmap_hva(hva);
105 
106 	/*
107 	 * Flush all shadow tlb entries everywhere. This is slow, but
108 	 * we are 100% sure that we catch the to be unmapped page
109 	 */
110 	kvm_flush_remote_tlbs(kvm);
111 
112 	return 0;
113 }
114 
115 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
116 {
117 	/* kvm_unmap_hva flushes everything anyways */
118 	kvm_unmap_hva(kvm, start);
119 
120 	return 0;
121 }
122 
123 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
124 {
125 	/* XXX could be more clever ;) */
126 	return 0;
127 }
128 
129 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
130 {
131 	/* XXX could be more clever ;) */
132 	return 0;
133 }
134 
135 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
136 {
137 	/* The page will get remapped properly on its next fault */
138 	kvm_unmap_hva(kvm, hva);
139 }
140 
141 /*****************************************/
142 
143 static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
144 {
145 	ulong smsr = vcpu->arch.shared->msr;
146 
147 	/* Guest MSR values */
148 	smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE;
149 	/* Process MSR values */
150 	smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE;
151 	/* External providers the guest reserved */
152 	smsr |= (vcpu->arch.shared->msr & vcpu->arch.guest_owned_ext);
153 	/* 64-bit Process MSR values */
154 #ifdef CONFIG_PPC_BOOK3S_64
155 	smsr |= MSR_ISF | MSR_HV;
156 #endif
157 	vcpu->arch.shadow_msr = smsr;
158 }
159 
160 void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
161 {
162 	ulong old_msr = vcpu->arch.shared->msr;
163 
164 #ifdef EXIT_DEBUG
165 	printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
166 #endif
167 
168 	msr &= to_book3s(vcpu)->msr_mask;
169 	vcpu->arch.shared->msr = msr;
170 	kvmppc_recalc_shadow_msr(vcpu);
171 
172 	if (msr & MSR_POW) {
173 		if (!vcpu->arch.pending_exceptions) {
174 			kvm_vcpu_block(vcpu);
175 			clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
176 			vcpu->stat.halt_wakeup++;
177 
178 			/* Unset POW bit after we woke up */
179 			msr &= ~MSR_POW;
180 			vcpu->arch.shared->msr = msr;
181 		}
182 	}
183 
184 	if ((vcpu->arch.shared->msr & (MSR_PR|MSR_IR|MSR_DR)) !=
185 		   (old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
186 		kvmppc_mmu_flush_segments(vcpu);
187 		kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
188 
189 		/* Preload magic page segment when in kernel mode */
190 		if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) {
191 			struct kvm_vcpu_arch *a = &vcpu->arch;
192 
193 			if (msr & MSR_DR)
194 				kvmppc_mmu_map_segment(vcpu, a->magic_page_ea);
195 			else
196 				kvmppc_mmu_map_segment(vcpu, a->magic_page_pa);
197 		}
198 	}
199 
200 	/*
201 	 * When switching from 32 to 64-bit, we may have a stale 32-bit
202 	 * magic page around, we need to flush it. Typically 32-bit magic
203 	 * page will be instanciated when calling into RTAS. Note: We
204 	 * assume that such transition only happens while in kernel mode,
205 	 * ie, we never transition from user 32-bit to kernel 64-bit with
206 	 * a 32-bit magic page around.
207 	 */
208 	if (vcpu->arch.magic_page_pa &&
209 	    !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) {
210 		/* going from RTAS to normal kernel code */
211 		kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa,
212 				     ~0xFFFUL);
213 	}
214 
215 	/* Preload FPU if it's enabled */
216 	if (vcpu->arch.shared->msr & MSR_FP)
217 		kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
218 }
219 
220 void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
221 {
222 	u32 host_pvr;
223 
224 	vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
225 	vcpu->arch.pvr = pvr;
226 #ifdef CONFIG_PPC_BOOK3S_64
227 	if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
228 		kvmppc_mmu_book3s_64_init(vcpu);
229 		if (!to_book3s(vcpu)->hior_explicit)
230 			to_book3s(vcpu)->hior = 0xfff00000;
231 		to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
232 		vcpu->arch.cpu_type = KVM_CPU_3S_64;
233 	} else
234 #endif
235 	{
236 		kvmppc_mmu_book3s_32_init(vcpu);
237 		if (!to_book3s(vcpu)->hior_explicit)
238 			to_book3s(vcpu)->hior = 0;
239 		to_book3s(vcpu)->msr_mask = 0xffffffffULL;
240 		vcpu->arch.cpu_type = KVM_CPU_3S_32;
241 	}
242 
243 	kvmppc_sanity_check(vcpu);
244 
245 	/* If we are in hypervisor level on 970, we can tell the CPU to
246 	 * treat DCBZ as 32 bytes store */
247 	vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
248 	if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
249 	    !strcmp(cur_cpu_spec->platform, "ppc970"))
250 		vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
251 
252 	/* Cell performs badly if MSR_FEx are set. So let's hope nobody
253 	   really needs them in a VM on Cell and force disable them. */
254 	if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
255 		to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);
256 
257 #ifdef CONFIG_PPC_BOOK3S_32
258 	/* 32 bit Book3S always has 32 byte dcbz */
259 	vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
260 #endif
261 
262 	/* On some CPUs we can execute paired single operations natively */
263 	asm ( "mfpvr %0" : "=r"(host_pvr));
264 	switch (host_pvr) {
265 	case 0x00080200:	/* lonestar 2.0 */
266 	case 0x00088202:	/* lonestar 2.2 */
267 	case 0x70000100:	/* gekko 1.0 */
268 	case 0x00080100:	/* gekko 2.0 */
269 	case 0x00083203:	/* gekko 2.3a */
270 	case 0x00083213:	/* gekko 2.3b */
271 	case 0x00083204:	/* gekko 2.4 */
272 	case 0x00083214:	/* gekko 2.4e (8SE) - retail HW2 */
273 	case 0x00087200:	/* broadway */
274 		vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
275 		/* Enable HID2.PSE - in case we need it later */
276 		mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
277 	}
278 }
279 
280 /* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
281  * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
282  * emulate 32 bytes dcbz length.
283  *
284  * The Book3s_64 inventors also realized this case and implemented a special bit
285  * in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
286  *
287  * My approach here is to patch the dcbz instruction on executing pages.
288  */
289 static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
290 {
291 	struct page *hpage;
292 	u64 hpage_offset;
293 	u32 *page;
294 	int i;
295 
296 	hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
297 	if (is_error_page(hpage))
298 		return;
299 
300 	hpage_offset = pte->raddr & ~PAGE_MASK;
301 	hpage_offset &= ~0xFFFULL;
302 	hpage_offset /= 4;
303 
304 	get_page(hpage);
305 	page = kmap_atomic(hpage);
306 
307 	/* patch dcbz into reserved instruction, so we trap */
308 	for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
309 		if ((page[i] & 0xff0007ff) == INS_DCBZ)
310 			page[i] &= 0xfffffff7;
311 
312 	kunmap_atomic(page);
313 	put_page(hpage);
314 }
315 
316 static int kvmppc_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
317 {
318 	ulong mp_pa = vcpu->arch.magic_page_pa;
319 
320 	if (!(vcpu->arch.shared->msr & MSR_SF))
321 		mp_pa = (uint32_t)mp_pa;
322 
323 	if (unlikely(mp_pa) &&
324 	    unlikely((mp_pa & KVM_PAM) >> PAGE_SHIFT == gfn)) {
325 		return 1;
326 	}
327 
328 	return kvm_is_visible_gfn(vcpu->kvm, gfn);
329 }
330 
331 int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu,
332 			    ulong eaddr, int vec)
333 {
334 	bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
335 	int r = RESUME_GUEST;
336 	int relocated;
337 	int page_found = 0;
338 	struct kvmppc_pte pte;
339 	bool is_mmio = false;
340 	bool dr = (vcpu->arch.shared->msr & MSR_DR) ? true : false;
341 	bool ir = (vcpu->arch.shared->msr & MSR_IR) ? true : false;
342 	u64 vsid;
343 
344 	relocated = data ? dr : ir;
345 
346 	/* Resolve real address if translation turned on */
347 	if (relocated) {
348 		page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data);
349 	} else {
350 		pte.may_execute = true;
351 		pte.may_read = true;
352 		pte.may_write = true;
353 		pte.raddr = eaddr & KVM_PAM;
354 		pte.eaddr = eaddr;
355 		pte.vpage = eaddr >> 12;
356 	}
357 
358 	switch (vcpu->arch.shared->msr & (MSR_DR|MSR_IR)) {
359 	case 0:
360 		pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
361 		break;
362 	case MSR_DR:
363 	case MSR_IR:
364 		vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);
365 
366 		if ((vcpu->arch.shared->msr & (MSR_DR|MSR_IR)) == MSR_DR)
367 			pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
368 		else
369 			pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
370 		pte.vpage |= vsid;
371 
372 		if (vsid == -1)
373 			page_found = -EINVAL;
374 		break;
375 	}
376 
377 	if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
378 	   (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
379 		/*
380 		 * If we do the dcbz hack, we have to NX on every execution,
381 		 * so we can patch the executing code. This renders our guest
382 		 * NX-less.
383 		 */
384 		pte.may_execute = !data;
385 	}
386 
387 	if (page_found == -ENOENT) {
388 		/* Page not found in guest PTE entries */
389 		struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
390 		vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu);
391 		vcpu->arch.shared->dsisr = svcpu->fault_dsisr;
392 		vcpu->arch.shared->msr |=
393 			(svcpu->shadow_srr1 & 0x00000000f8000000ULL);
394 		svcpu_put(svcpu);
395 		kvmppc_book3s_queue_irqprio(vcpu, vec);
396 	} else if (page_found == -EPERM) {
397 		/* Storage protection */
398 		struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
399 		vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu);
400 		vcpu->arch.shared->dsisr = svcpu->fault_dsisr & ~DSISR_NOHPTE;
401 		vcpu->arch.shared->dsisr |= DSISR_PROTFAULT;
402 		vcpu->arch.shared->msr |=
403 			svcpu->shadow_srr1 & 0x00000000f8000000ULL;
404 		svcpu_put(svcpu);
405 		kvmppc_book3s_queue_irqprio(vcpu, vec);
406 	} else if (page_found == -EINVAL) {
407 		/* Page not found in guest SLB */
408 		vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu);
409 		kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
410 	} else if (!is_mmio &&
411 		   kvmppc_visible_gfn(vcpu, pte.raddr >> PAGE_SHIFT)) {
412 		/* The guest's PTE is not mapped yet. Map on the host */
413 		kvmppc_mmu_map_page(vcpu, &pte);
414 		if (data)
415 			vcpu->stat.sp_storage++;
416 		else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
417 			(!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
418 			kvmppc_patch_dcbz(vcpu, &pte);
419 	} else {
420 		/* MMIO */
421 		vcpu->stat.mmio_exits++;
422 		vcpu->arch.paddr_accessed = pte.raddr;
423 		vcpu->arch.vaddr_accessed = pte.eaddr;
424 		r = kvmppc_emulate_mmio(run, vcpu);
425 		if ( r == RESUME_HOST_NV )
426 			r = RESUME_HOST;
427 	}
428 
429 	return r;
430 }
431 
432 static inline int get_fpr_index(int i)
433 {
434 	return i * TS_FPRWIDTH;
435 }
436 
437 /* Give up external provider (FPU, Altivec, VSX) */
438 void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
439 {
440 	struct thread_struct *t = &current->thread;
441 	u64 *vcpu_fpr = vcpu->arch.fpr;
442 #ifdef CONFIG_VSX
443 	u64 *vcpu_vsx = vcpu->arch.vsr;
444 #endif
445 	u64 *thread_fpr = (u64*)t->fpr;
446 	int i;
447 
448 	/*
449 	 * VSX instructions can access FP and vector registers, so if
450 	 * we are giving up VSX, make sure we give up FP and VMX as well.
451 	 */
452 	if (msr & MSR_VSX)
453 		msr |= MSR_FP | MSR_VEC;
454 
455 	msr &= vcpu->arch.guest_owned_ext;
456 	if (!msr)
457 		return;
458 
459 #ifdef DEBUG_EXT
460 	printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
461 #endif
462 
463 	if (msr & MSR_FP) {
464 		/*
465 		 * Note that on CPUs with VSX, giveup_fpu stores
466 		 * both the traditional FP registers and the added VSX
467 		 * registers into thread.fpr[].
468 		 */
469 		giveup_fpu(current);
470 		for (i = 0; i < ARRAY_SIZE(vcpu->arch.fpr); i++)
471 			vcpu_fpr[i] = thread_fpr[get_fpr_index(i)];
472 
473 		vcpu->arch.fpscr = t->fpscr.val;
474 
475 #ifdef CONFIG_VSX
476 		if (cpu_has_feature(CPU_FTR_VSX))
477 			for (i = 0; i < ARRAY_SIZE(vcpu->arch.vsr) / 2; i++)
478 				vcpu_vsx[i] = thread_fpr[get_fpr_index(i) + 1];
479 #endif
480 	}
481 
482 #ifdef CONFIG_ALTIVEC
483 	if (msr & MSR_VEC) {
484 		giveup_altivec(current);
485 		memcpy(vcpu->arch.vr, t->vr, sizeof(vcpu->arch.vr));
486 		vcpu->arch.vscr = t->vscr;
487 	}
488 #endif
489 
490 	vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX);
491 	kvmppc_recalc_shadow_msr(vcpu);
492 }
493 
494 static int kvmppc_read_inst(struct kvm_vcpu *vcpu)
495 {
496 	ulong srr0 = kvmppc_get_pc(vcpu);
497 	u32 last_inst = kvmppc_get_last_inst(vcpu);
498 	int ret;
499 
500 	ret = kvmppc_ld(vcpu, &srr0, sizeof(u32), &last_inst, false);
501 	if (ret == -ENOENT) {
502 		ulong msr = vcpu->arch.shared->msr;
503 
504 		msr = kvmppc_set_field(msr, 33, 33, 1);
505 		msr = kvmppc_set_field(msr, 34, 36, 0);
506 		vcpu->arch.shared->msr = kvmppc_set_field(msr, 42, 47, 0);
507 		kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_INST_STORAGE);
508 		return EMULATE_AGAIN;
509 	}
510 
511 	return EMULATE_DONE;
512 }
513 
514 static int kvmppc_check_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr)
515 {
516 
517 	/* Need to do paired single emulation? */
518 	if (!(vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE))
519 		return EMULATE_DONE;
520 
521 	/* Read out the instruction */
522 	if (kvmppc_read_inst(vcpu) == EMULATE_DONE)
523 		/* Need to emulate */
524 		return EMULATE_FAIL;
525 
526 	return EMULATE_AGAIN;
527 }
528 
529 /* Handle external providers (FPU, Altivec, VSX) */
530 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
531 			     ulong msr)
532 {
533 	struct thread_struct *t = &current->thread;
534 	u64 *vcpu_fpr = vcpu->arch.fpr;
535 #ifdef CONFIG_VSX
536 	u64 *vcpu_vsx = vcpu->arch.vsr;
537 #endif
538 	u64 *thread_fpr = (u64*)t->fpr;
539 	int i;
540 
541 	/* When we have paired singles, we emulate in software */
542 	if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
543 		return RESUME_GUEST;
544 
545 	if (!(vcpu->arch.shared->msr & msr)) {
546 		kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
547 		return RESUME_GUEST;
548 	}
549 
550 	if (msr == MSR_VSX) {
551 		/* No VSX?  Give an illegal instruction interrupt */
552 #ifdef CONFIG_VSX
553 		if (!cpu_has_feature(CPU_FTR_VSX))
554 #endif
555 		{
556 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
557 			return RESUME_GUEST;
558 		}
559 
560 		/*
561 		 * We have to load up all the FP and VMX registers before
562 		 * we can let the guest use VSX instructions.
563 		 */
564 		msr = MSR_FP | MSR_VEC | MSR_VSX;
565 	}
566 
567 	/* See if we already own all the ext(s) needed */
568 	msr &= ~vcpu->arch.guest_owned_ext;
569 	if (!msr)
570 		return RESUME_GUEST;
571 
572 #ifdef DEBUG_EXT
573 	printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
574 #endif
575 
576 	current->thread.regs->msr |= msr;
577 
578 	if (msr & MSR_FP) {
579 		for (i = 0; i < ARRAY_SIZE(vcpu->arch.fpr); i++)
580 			thread_fpr[get_fpr_index(i)] = vcpu_fpr[i];
581 #ifdef CONFIG_VSX
582 		for (i = 0; i < ARRAY_SIZE(vcpu->arch.vsr) / 2; i++)
583 			thread_fpr[get_fpr_index(i) + 1] = vcpu_vsx[i];
584 #endif
585 		t->fpscr.val = vcpu->arch.fpscr;
586 		t->fpexc_mode = 0;
587 		kvmppc_load_up_fpu();
588 	}
589 
590 	if (msr & MSR_VEC) {
591 #ifdef CONFIG_ALTIVEC
592 		memcpy(t->vr, vcpu->arch.vr, sizeof(vcpu->arch.vr));
593 		t->vscr = vcpu->arch.vscr;
594 		t->vrsave = -1;
595 		kvmppc_load_up_altivec();
596 #endif
597 	}
598 
599 	vcpu->arch.guest_owned_ext |= msr;
600 	kvmppc_recalc_shadow_msr(vcpu);
601 
602 	return RESUME_GUEST;
603 }
604 
605 int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
606                        unsigned int exit_nr)
607 {
608 	int r = RESUME_HOST;
609 	int s;
610 
611 	vcpu->stat.sum_exits++;
612 
613 	run->exit_reason = KVM_EXIT_UNKNOWN;
614 	run->ready_for_interrupt_injection = 1;
615 
616 	/* We get here with MSR.EE=1 */
617 
618 	trace_kvm_exit(exit_nr, vcpu);
619 	kvm_guest_exit();
620 
621 	switch (exit_nr) {
622 	case BOOK3S_INTERRUPT_INST_STORAGE:
623 	{
624 		struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
625 		ulong shadow_srr1 = svcpu->shadow_srr1;
626 		vcpu->stat.pf_instruc++;
627 
628 #ifdef CONFIG_PPC_BOOK3S_32
629 		/* We set segments as unused segments when invalidating them. So
630 		 * treat the respective fault as segment fault. */
631 		if (svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT] == SR_INVALID) {
632 			kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
633 			r = RESUME_GUEST;
634 			svcpu_put(svcpu);
635 			break;
636 		}
637 #endif
638 		svcpu_put(svcpu);
639 
640 		/* only care about PTEG not found errors, but leave NX alone */
641 		if (shadow_srr1 & 0x40000000) {
642 			r = kvmppc_handle_pagefault(run, vcpu, kvmppc_get_pc(vcpu), exit_nr);
643 			vcpu->stat.sp_instruc++;
644 		} else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
645 			  (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
646 			/*
647 			 * XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
648 			 *     so we can't use the NX bit inside the guest. Let's cross our fingers,
649 			 *     that no guest that needs the dcbz hack does NX.
650 			 */
651 			kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
652 			r = RESUME_GUEST;
653 		} else {
654 			vcpu->arch.shared->msr |= shadow_srr1 & 0x58000000;
655 			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
656 			r = RESUME_GUEST;
657 		}
658 		break;
659 	}
660 	case BOOK3S_INTERRUPT_DATA_STORAGE:
661 	{
662 		ulong dar = kvmppc_get_fault_dar(vcpu);
663 		struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
664 		u32 fault_dsisr = svcpu->fault_dsisr;
665 		vcpu->stat.pf_storage++;
666 
667 #ifdef CONFIG_PPC_BOOK3S_32
668 		/* We set segments as unused segments when invalidating them. So
669 		 * treat the respective fault as segment fault. */
670 		if ((svcpu->sr[dar >> SID_SHIFT]) == SR_INVALID) {
671 			kvmppc_mmu_map_segment(vcpu, dar);
672 			r = RESUME_GUEST;
673 			svcpu_put(svcpu);
674 			break;
675 		}
676 #endif
677 		svcpu_put(svcpu);
678 
679 		/* The only case we need to handle is missing shadow PTEs */
680 		if (fault_dsisr & DSISR_NOHPTE) {
681 			r = kvmppc_handle_pagefault(run, vcpu, dar, exit_nr);
682 		} else {
683 			vcpu->arch.shared->dar = dar;
684 			vcpu->arch.shared->dsisr = fault_dsisr;
685 			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
686 			r = RESUME_GUEST;
687 		}
688 		break;
689 	}
690 	case BOOK3S_INTERRUPT_DATA_SEGMENT:
691 		if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
692 			vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu);
693 			kvmppc_book3s_queue_irqprio(vcpu,
694 				BOOK3S_INTERRUPT_DATA_SEGMENT);
695 		}
696 		r = RESUME_GUEST;
697 		break;
698 	case BOOK3S_INTERRUPT_INST_SEGMENT:
699 		if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
700 			kvmppc_book3s_queue_irqprio(vcpu,
701 				BOOK3S_INTERRUPT_INST_SEGMENT);
702 		}
703 		r = RESUME_GUEST;
704 		break;
705 	/* We're good on these - the host merely wanted to get our attention */
706 	case BOOK3S_INTERRUPT_DECREMENTER:
707 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
708 		vcpu->stat.dec_exits++;
709 		r = RESUME_GUEST;
710 		break;
711 	case BOOK3S_INTERRUPT_EXTERNAL:
712 	case BOOK3S_INTERRUPT_EXTERNAL_LEVEL:
713 	case BOOK3S_INTERRUPT_EXTERNAL_HV:
714 		vcpu->stat.ext_intr_exits++;
715 		r = RESUME_GUEST;
716 		break;
717 	case BOOK3S_INTERRUPT_PERFMON:
718 		r = RESUME_GUEST;
719 		break;
720 	case BOOK3S_INTERRUPT_PROGRAM:
721 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
722 	{
723 		enum emulation_result er;
724 		struct kvmppc_book3s_shadow_vcpu *svcpu;
725 		ulong flags;
726 
727 program_interrupt:
728 		svcpu = svcpu_get(vcpu);
729 		flags = svcpu->shadow_srr1 & 0x1f0000ull;
730 		svcpu_put(svcpu);
731 
732 		if (vcpu->arch.shared->msr & MSR_PR) {
733 #ifdef EXIT_DEBUG
734 			printk(KERN_INFO "Userspace triggered 0x700 exception at 0x%lx (0x%x)\n", kvmppc_get_pc(vcpu), kvmppc_get_last_inst(vcpu));
735 #endif
736 			if ((kvmppc_get_last_inst(vcpu) & 0xff0007ff) !=
737 			    (INS_DCBZ & 0xfffffff7)) {
738 				kvmppc_core_queue_program(vcpu, flags);
739 				r = RESUME_GUEST;
740 				break;
741 			}
742 		}
743 
744 		vcpu->stat.emulated_inst_exits++;
745 		er = kvmppc_emulate_instruction(run, vcpu);
746 		switch (er) {
747 		case EMULATE_DONE:
748 			r = RESUME_GUEST_NV;
749 			break;
750 		case EMULATE_AGAIN:
751 			r = RESUME_GUEST;
752 			break;
753 		case EMULATE_FAIL:
754 			printk(KERN_CRIT "%s: emulation at %lx failed (%08x)\n",
755 			       __func__, kvmppc_get_pc(vcpu), kvmppc_get_last_inst(vcpu));
756 			kvmppc_core_queue_program(vcpu, flags);
757 			r = RESUME_GUEST;
758 			break;
759 		case EMULATE_DO_MMIO:
760 			run->exit_reason = KVM_EXIT_MMIO;
761 			r = RESUME_HOST_NV;
762 			break;
763 		default:
764 			BUG();
765 		}
766 		break;
767 	}
768 	case BOOK3S_INTERRUPT_SYSCALL:
769 		if (vcpu->arch.papr_enabled &&
770 		    (kvmppc_get_last_inst(vcpu) == 0x44000022) &&
771 		    !(vcpu->arch.shared->msr & MSR_PR)) {
772 			/* SC 1 papr hypercalls */
773 			ulong cmd = kvmppc_get_gpr(vcpu, 3);
774 			int i;
775 
776 #ifdef CONFIG_KVM_BOOK3S_64_PR
777 			if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) {
778 				r = RESUME_GUEST;
779 				break;
780 			}
781 #endif
782 
783 			run->papr_hcall.nr = cmd;
784 			for (i = 0; i < 9; ++i) {
785 				ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
786 				run->papr_hcall.args[i] = gpr;
787 			}
788 			run->exit_reason = KVM_EXIT_PAPR_HCALL;
789 			vcpu->arch.hcall_needed = 1;
790 			r = RESUME_HOST;
791 		} else if (vcpu->arch.osi_enabled &&
792 		    (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
793 		    (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
794 			/* MOL hypercalls */
795 			u64 *gprs = run->osi.gprs;
796 			int i;
797 
798 			run->exit_reason = KVM_EXIT_OSI;
799 			for (i = 0; i < 32; i++)
800 				gprs[i] = kvmppc_get_gpr(vcpu, i);
801 			vcpu->arch.osi_needed = 1;
802 			r = RESUME_HOST_NV;
803 		} else if (!(vcpu->arch.shared->msr & MSR_PR) &&
804 		    (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
805 			/* KVM PV hypercalls */
806 			kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
807 			r = RESUME_GUEST;
808 		} else {
809 			/* Guest syscalls */
810 			vcpu->stat.syscall_exits++;
811 			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
812 			r = RESUME_GUEST;
813 		}
814 		break;
815 	case BOOK3S_INTERRUPT_FP_UNAVAIL:
816 	case BOOK3S_INTERRUPT_ALTIVEC:
817 	case BOOK3S_INTERRUPT_VSX:
818 	{
819 		int ext_msr = 0;
820 
821 		switch (exit_nr) {
822 		case BOOK3S_INTERRUPT_FP_UNAVAIL: ext_msr = MSR_FP;  break;
823 		case BOOK3S_INTERRUPT_ALTIVEC:    ext_msr = MSR_VEC; break;
824 		case BOOK3S_INTERRUPT_VSX:        ext_msr = MSR_VSX; break;
825 		}
826 
827 		switch (kvmppc_check_ext(vcpu, exit_nr)) {
828 		case EMULATE_DONE:
829 			/* everything ok - let's enable the ext */
830 			r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
831 			break;
832 		case EMULATE_FAIL:
833 			/* we need to emulate this instruction */
834 			goto program_interrupt;
835 			break;
836 		default:
837 			/* nothing to worry about - go again */
838 			break;
839 		}
840 		break;
841 	}
842 	case BOOK3S_INTERRUPT_ALIGNMENT:
843 		if (kvmppc_read_inst(vcpu) == EMULATE_DONE) {
844 			vcpu->arch.shared->dsisr = kvmppc_alignment_dsisr(vcpu,
845 				kvmppc_get_last_inst(vcpu));
846 			vcpu->arch.shared->dar = kvmppc_alignment_dar(vcpu,
847 				kvmppc_get_last_inst(vcpu));
848 			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
849 		}
850 		r = RESUME_GUEST;
851 		break;
852 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
853 	case BOOK3S_INTERRUPT_TRACE:
854 		kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
855 		r = RESUME_GUEST;
856 		break;
857 	default:
858 	{
859 		struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
860 		ulong shadow_srr1 = svcpu->shadow_srr1;
861 		svcpu_put(svcpu);
862 		/* Ugh - bork here! What did we get? */
863 		printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
864 			exit_nr, kvmppc_get_pc(vcpu), shadow_srr1);
865 		r = RESUME_HOST;
866 		BUG();
867 		break;
868 	}
869 	}
870 
871 	if (!(r & RESUME_HOST)) {
872 		/* To avoid clobbering exit_reason, only check for signals if
873 		 * we aren't already exiting to userspace for some other
874 		 * reason. */
875 
876 		/*
877 		 * Interrupts could be timers for the guest which we have to
878 		 * inject again, so let's postpone them until we're in the guest
879 		 * and if we really did time things so badly, then we just exit
880 		 * again due to a host external interrupt.
881 		 */
882 		local_irq_disable();
883 		s = kvmppc_prepare_to_enter(vcpu);
884 		if (s <= 0) {
885 			local_irq_enable();
886 			r = s;
887 		} else {
888 			kvmppc_lazy_ee_enable();
889 		}
890 	}
891 
892 	trace_kvm_book3s_reenter(r, vcpu);
893 
894 	return r;
895 }
896 
897 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
898                                   struct kvm_sregs *sregs)
899 {
900 	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
901 	int i;
902 
903 	sregs->pvr = vcpu->arch.pvr;
904 
905 	sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
906 	if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
907 		for (i = 0; i < 64; i++) {
908 			sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i;
909 			sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
910 		}
911 	} else {
912 		for (i = 0; i < 16; i++)
913 			sregs->u.s.ppc32.sr[i] = vcpu->arch.shared->sr[i];
914 
915 		for (i = 0; i < 8; i++) {
916 			sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
917 			sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
918 		}
919 	}
920 
921 	return 0;
922 }
923 
924 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
925                                   struct kvm_sregs *sregs)
926 {
927 	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
928 	int i;
929 
930 	kvmppc_set_pvr(vcpu, sregs->pvr);
931 
932 	vcpu3s->sdr1 = sregs->u.s.sdr1;
933 	if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
934 		for (i = 0; i < 64; i++) {
935 			vcpu->arch.mmu.slbmte(vcpu, sregs->u.s.ppc64.slb[i].slbv,
936 						    sregs->u.s.ppc64.slb[i].slbe);
937 		}
938 	} else {
939 		for (i = 0; i < 16; i++) {
940 			vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
941 		}
942 		for (i = 0; i < 8; i++) {
943 			kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
944 				       (u32)sregs->u.s.ppc32.ibat[i]);
945 			kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
946 				       (u32)(sregs->u.s.ppc32.ibat[i] >> 32));
947 			kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
948 				       (u32)sregs->u.s.ppc32.dbat[i]);
949 			kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
950 				       (u32)(sregs->u.s.ppc32.dbat[i] >> 32));
951 		}
952 	}
953 
954 	/* Flush the MMU after messing with the segments */
955 	kvmppc_mmu_pte_flush(vcpu, 0, 0);
956 
957 	return 0;
958 }
959 
960 int kvmppc_get_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
961 {
962 	int r = 0;
963 
964 	switch (id) {
965 	case KVM_REG_PPC_HIOR:
966 		*val = get_reg_val(id, to_book3s(vcpu)->hior);
967 		break;
968 #ifdef CONFIG_VSX
969 	case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31: {
970 		long int i = id - KVM_REG_PPC_VSR0;
971 
972 		if (!cpu_has_feature(CPU_FTR_VSX)) {
973 			r = -ENXIO;
974 			break;
975 		}
976 		val->vsxval[0] = vcpu->arch.fpr[i];
977 		val->vsxval[1] = vcpu->arch.vsr[i];
978 		break;
979 	}
980 #endif /* CONFIG_VSX */
981 	default:
982 		r = -EINVAL;
983 		break;
984 	}
985 
986 	return r;
987 }
988 
989 int kvmppc_set_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
990 {
991 	int r = 0;
992 
993 	switch (id) {
994 	case KVM_REG_PPC_HIOR:
995 		to_book3s(vcpu)->hior = set_reg_val(id, *val);
996 		to_book3s(vcpu)->hior_explicit = true;
997 		break;
998 #ifdef CONFIG_VSX
999 	case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31: {
1000 		long int i = id - KVM_REG_PPC_VSR0;
1001 
1002 		if (!cpu_has_feature(CPU_FTR_VSX)) {
1003 			r = -ENXIO;
1004 			break;
1005 		}
1006 		vcpu->arch.fpr[i] = val->vsxval[0];
1007 		vcpu->arch.vsr[i] = val->vsxval[1];
1008 		break;
1009 	}
1010 #endif /* CONFIG_VSX */
1011 	default:
1012 		r = -EINVAL;
1013 		break;
1014 	}
1015 
1016 	return r;
1017 }
1018 
1019 int kvmppc_core_check_processor_compat(void)
1020 {
1021 	return 0;
1022 }
1023 
1024 struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
1025 {
1026 	struct kvmppc_vcpu_book3s *vcpu_book3s;
1027 	struct kvm_vcpu *vcpu;
1028 	int err = -ENOMEM;
1029 	unsigned long p;
1030 
1031 	vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s));
1032 	if (!vcpu_book3s)
1033 		goto out;
1034 
1035 	vcpu_book3s->shadow_vcpu = (struct kvmppc_book3s_shadow_vcpu *)
1036 		kzalloc(sizeof(*vcpu_book3s->shadow_vcpu), GFP_KERNEL);
1037 	if (!vcpu_book3s->shadow_vcpu)
1038 		goto free_vcpu;
1039 
1040 	vcpu = &vcpu_book3s->vcpu;
1041 	err = kvm_vcpu_init(vcpu, kvm, id);
1042 	if (err)
1043 		goto free_shadow_vcpu;
1044 
1045 	p = __get_free_page(GFP_KERNEL|__GFP_ZERO);
1046 	/* the real shared page fills the last 4k of our page */
1047 	vcpu->arch.shared = (void*)(p + PAGE_SIZE - 4096);
1048 	if (!p)
1049 		goto uninit_vcpu;
1050 
1051 #ifdef CONFIG_PPC_BOOK3S_64
1052 	/* default to book3s_64 (970fx) */
1053 	vcpu->arch.pvr = 0x3C0301;
1054 #else
1055 	/* default to book3s_32 (750) */
1056 	vcpu->arch.pvr = 0x84202;
1057 #endif
1058 	kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
1059 	vcpu->arch.slb_nr = 64;
1060 
1061 	vcpu->arch.shadow_msr = MSR_USER64;
1062 
1063 	err = kvmppc_mmu_init(vcpu);
1064 	if (err < 0)
1065 		goto uninit_vcpu;
1066 
1067 	return vcpu;
1068 
1069 uninit_vcpu:
1070 	kvm_vcpu_uninit(vcpu);
1071 free_shadow_vcpu:
1072 	kfree(vcpu_book3s->shadow_vcpu);
1073 free_vcpu:
1074 	vfree(vcpu_book3s);
1075 out:
1076 	return ERR_PTR(err);
1077 }
1078 
1079 void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
1080 {
1081 	struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
1082 
1083 	free_page((unsigned long)vcpu->arch.shared & PAGE_MASK);
1084 	kvm_vcpu_uninit(vcpu);
1085 	kfree(vcpu_book3s->shadow_vcpu);
1086 	vfree(vcpu_book3s);
1087 }
1088 
1089 int kvmppc_vcpu_run(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1090 {
1091 	int ret;
1092 	double fpr[32][TS_FPRWIDTH];
1093 	unsigned int fpscr;
1094 	int fpexc_mode;
1095 #ifdef CONFIG_ALTIVEC
1096 	vector128 vr[32];
1097 	vector128 vscr;
1098 	unsigned long uninitialized_var(vrsave);
1099 	int used_vr;
1100 #endif
1101 #ifdef CONFIG_VSX
1102 	int used_vsr;
1103 #endif
1104 	ulong ext_msr;
1105 
1106 	/* Check if we can run the vcpu at all */
1107 	if (!vcpu->arch.sane) {
1108 		kvm_run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1109 		ret = -EINVAL;
1110 		goto out;
1111 	}
1112 
1113 	/*
1114 	 * Interrupts could be timers for the guest which we have to inject
1115 	 * again, so let's postpone them until we're in the guest and if we
1116 	 * really did time things so badly, then we just exit again due to
1117 	 * a host external interrupt.
1118 	 */
1119 	local_irq_disable();
1120 	ret = kvmppc_prepare_to_enter(vcpu);
1121 	if (ret <= 0) {
1122 		local_irq_enable();
1123 		goto out;
1124 	}
1125 
1126 	/* Save FPU state in stack */
1127 	if (current->thread.regs->msr & MSR_FP)
1128 		giveup_fpu(current);
1129 	memcpy(fpr, current->thread.fpr, sizeof(current->thread.fpr));
1130 	fpscr = current->thread.fpscr.val;
1131 	fpexc_mode = current->thread.fpexc_mode;
1132 
1133 #ifdef CONFIG_ALTIVEC
1134 	/* Save Altivec state in stack */
1135 	used_vr = current->thread.used_vr;
1136 	if (used_vr) {
1137 		if (current->thread.regs->msr & MSR_VEC)
1138 			giveup_altivec(current);
1139 		memcpy(vr, current->thread.vr, sizeof(current->thread.vr));
1140 		vscr = current->thread.vscr;
1141 		vrsave = current->thread.vrsave;
1142 	}
1143 #endif
1144 
1145 #ifdef CONFIG_VSX
1146 	/* Save VSX state in stack */
1147 	used_vsr = current->thread.used_vsr;
1148 	if (used_vsr && (current->thread.regs->msr & MSR_VSX))
1149 		__giveup_vsx(current);
1150 #endif
1151 
1152 	/* Remember the MSR with disabled extensions */
1153 	ext_msr = current->thread.regs->msr;
1154 
1155 	/* Preload FPU if it's enabled */
1156 	if (vcpu->arch.shared->msr & MSR_FP)
1157 		kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
1158 
1159 	kvmppc_lazy_ee_enable();
1160 
1161 	ret = __kvmppc_vcpu_run(kvm_run, vcpu);
1162 
1163 	/* No need for kvm_guest_exit. It's done in handle_exit.
1164 	   We also get here with interrupts enabled. */
1165 
1166 	/* Make sure we save the guest FPU/Altivec/VSX state */
1167 	kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
1168 
1169 	current->thread.regs->msr = ext_msr;
1170 
1171 	/* Restore FPU/VSX state from stack */
1172 	memcpy(current->thread.fpr, fpr, sizeof(current->thread.fpr));
1173 	current->thread.fpscr.val = fpscr;
1174 	current->thread.fpexc_mode = fpexc_mode;
1175 
1176 #ifdef CONFIG_ALTIVEC
1177 	/* Restore Altivec state from stack */
1178 	if (used_vr && current->thread.used_vr) {
1179 		memcpy(current->thread.vr, vr, sizeof(current->thread.vr));
1180 		current->thread.vscr = vscr;
1181 		current->thread.vrsave = vrsave;
1182 	}
1183 	current->thread.used_vr = used_vr;
1184 #endif
1185 
1186 #ifdef CONFIG_VSX
1187 	current->thread.used_vsr = used_vsr;
1188 #endif
1189 
1190 out:
1191 	vcpu->mode = OUTSIDE_GUEST_MODE;
1192 	return ret;
1193 }
1194 
1195 /*
1196  * Get (and clear) the dirty memory log for a memory slot.
1197  */
1198 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1199 				      struct kvm_dirty_log *log)
1200 {
1201 	struct kvm_memory_slot *memslot;
1202 	struct kvm_vcpu *vcpu;
1203 	ulong ga, ga_end;
1204 	int is_dirty = 0;
1205 	int r;
1206 	unsigned long n;
1207 
1208 	mutex_lock(&kvm->slots_lock);
1209 
1210 	r = kvm_get_dirty_log(kvm, log, &is_dirty);
1211 	if (r)
1212 		goto out;
1213 
1214 	/* If nothing is dirty, don't bother messing with page tables. */
1215 	if (is_dirty) {
1216 		memslot = id_to_memslot(kvm->memslots, log->slot);
1217 
1218 		ga = memslot->base_gfn << PAGE_SHIFT;
1219 		ga_end = ga + (memslot->npages << PAGE_SHIFT);
1220 
1221 		kvm_for_each_vcpu(n, vcpu, kvm)
1222 			kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);
1223 
1224 		n = kvm_dirty_bitmap_bytes(memslot);
1225 		memset(memslot->dirty_bitmap, 0, n);
1226 	}
1227 
1228 	r = 0;
1229 out:
1230 	mutex_unlock(&kvm->slots_lock);
1231 	return r;
1232 }
1233 
1234 #ifdef CONFIG_PPC64
1235 int kvm_vm_ioctl_get_smmu_info(struct kvm *kvm, struct kvm_ppc_smmu_info *info)
1236 {
1237 	/* No flags */
1238 	info->flags = 0;
1239 
1240 	/* SLB is always 64 entries */
1241 	info->slb_size = 64;
1242 
1243 	/* Standard 4k base page size segment */
1244 	info->sps[0].page_shift = 12;
1245 	info->sps[0].slb_enc = 0;
1246 	info->sps[0].enc[0].page_shift = 12;
1247 	info->sps[0].enc[0].pte_enc = 0;
1248 
1249 	/* Standard 16M large page size segment */
1250 	info->sps[1].page_shift = 24;
1251 	info->sps[1].slb_enc = SLB_VSID_L;
1252 	info->sps[1].enc[0].page_shift = 24;
1253 	info->sps[1].enc[0].pte_enc = 0;
1254 
1255 	return 0;
1256 }
1257 #endif /* CONFIG_PPC64 */
1258 
1259 void kvmppc_core_free_memslot(struct kvm_memory_slot *free,
1260 			      struct kvm_memory_slot *dont)
1261 {
1262 }
1263 
1264 int kvmppc_core_create_memslot(struct kvm_memory_slot *slot,
1265 			       unsigned long npages)
1266 {
1267 	return 0;
1268 }
1269 
1270 int kvmppc_core_prepare_memory_region(struct kvm *kvm,
1271 				      struct kvm_memory_slot *memslot,
1272 				      struct kvm_userspace_memory_region *mem)
1273 {
1274 	return 0;
1275 }
1276 
1277 void kvmppc_core_commit_memory_region(struct kvm *kvm,
1278 				struct kvm_userspace_memory_region *mem,
1279 				struct kvm_memory_slot old)
1280 {
1281 }
1282 
1283 void kvmppc_core_flush_memslot(struct kvm *kvm, struct kvm_memory_slot *memslot)
1284 {
1285 }
1286 
1287 int kvmppc_core_init_vm(struct kvm *kvm)
1288 {
1289 #ifdef CONFIG_PPC64
1290 	INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
1291 #endif
1292 
1293 	return 0;
1294 }
1295 
1296 void kvmppc_core_destroy_vm(struct kvm *kvm)
1297 {
1298 #ifdef CONFIG_PPC64
1299 	WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
1300 #endif
1301 }
1302 
1303 static int kvmppc_book3s_init(void)
1304 {
1305 	int r;
1306 
1307 	r = kvm_init(NULL, sizeof(struct kvmppc_vcpu_book3s), 0,
1308 		     THIS_MODULE);
1309 
1310 	if (r)
1311 		return r;
1312 
1313 	r = kvmppc_mmu_hpte_sysinit();
1314 
1315 	return r;
1316 }
1317 
1318 static void kvmppc_book3s_exit(void)
1319 {
1320 	kvmppc_mmu_hpte_sysexit();
1321 	kvm_exit();
1322 }
1323 
1324 module_init(kvmppc_book3s_init);
1325 module_exit(kvmppc_book3s_exit);
1326