1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 4 * 5 * Authors: 6 * Alexander Graf <agraf@suse.de> 7 * Kevin Wolf <mail@kevin-wolf.de> 8 * Paul Mackerras <paulus@samba.org> 9 * 10 * Description: 11 * Functions relating to running KVM on Book 3S processors where 12 * we don't have access to hypervisor mode, and we run the guest 13 * in problem state (user mode). 14 * 15 * This file is derived from arch/powerpc/kvm/44x.c, 16 * by Hollis Blanchard <hollisb@us.ibm.com>. 17 */ 18 19 #include <linux/kvm_host.h> 20 #include <linux/export.h> 21 #include <linux/err.h> 22 #include <linux/slab.h> 23 24 #include <asm/reg.h> 25 #include <asm/cputable.h> 26 #include <asm/cacheflush.h> 27 #include <linux/uaccess.h> 28 #include <asm/interrupt.h> 29 #include <asm/io.h> 30 #include <asm/kvm_ppc.h> 31 #include <asm/kvm_book3s.h> 32 #include <asm/mmu_context.h> 33 #include <asm/switch_to.h> 34 #include <asm/firmware.h> 35 #include <asm/setup.h> 36 #include <linux/gfp.h> 37 #include <linux/sched.h> 38 #include <linux/vmalloc.h> 39 #include <linux/highmem.h> 40 #include <linux/module.h> 41 #include <linux/miscdevice.h> 42 #include <asm/asm-prototypes.h> 43 #include <asm/tm.h> 44 45 #include "book3s.h" 46 47 #define CREATE_TRACE_POINTS 48 #include "trace_pr.h" 49 50 /* #define EXIT_DEBUG */ 51 /* #define DEBUG_EXT */ 52 53 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr, 54 ulong msr); 55 #ifdef CONFIG_PPC_BOOK3S_64 56 static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac); 57 #endif 58 59 /* Some compatibility defines */ 60 #ifdef CONFIG_PPC_BOOK3S_32 61 #define MSR_USER32 MSR_USER 62 #define MSR_USER64 MSR_USER 63 #define HW_PAGE_SIZE PAGE_SIZE 64 #define HPTE_R_M _PAGE_COHERENT 65 #endif 66 67 static bool kvmppc_is_split_real(struct kvm_vcpu *vcpu) 68 { 69 ulong msr = kvmppc_get_msr(vcpu); 70 return (msr & (MSR_IR|MSR_DR)) == MSR_DR; 71 } 72 73 static void kvmppc_fixup_split_real(struct kvm_vcpu *vcpu) 74 { 75 ulong msr = kvmppc_get_msr(vcpu); 76 ulong pc = kvmppc_get_pc(vcpu); 77 78 /* We are in DR only split real mode */ 79 if ((msr & (MSR_IR|MSR_DR)) != MSR_DR) 80 return; 81 82 /* We have not fixed up the guest already */ 83 if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) 84 return; 85 86 /* The code is in fixupable address space */ 87 if (pc & SPLIT_HACK_MASK) 88 return; 89 90 vcpu->arch.hflags |= BOOK3S_HFLAG_SPLIT_HACK; 91 kvmppc_set_pc(vcpu, pc | SPLIT_HACK_OFFS); 92 } 93 94 static void kvmppc_unfixup_split_real(struct kvm_vcpu *vcpu) 95 { 96 if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) { 97 ulong pc = kvmppc_get_pc(vcpu); 98 ulong lr = kvmppc_get_lr(vcpu); 99 if ((pc & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS) 100 kvmppc_set_pc(vcpu, pc & ~SPLIT_HACK_MASK); 101 if ((lr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS) 102 kvmppc_set_lr(vcpu, lr & ~SPLIT_HACK_MASK); 103 vcpu->arch.hflags &= ~BOOK3S_HFLAG_SPLIT_HACK; 104 } 105 } 106 107 static void kvmppc_inject_interrupt_pr(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags) 108 { 109 unsigned long msr, pc, new_msr, new_pc; 110 111 kvmppc_unfixup_split_real(vcpu); 112 113 msr = kvmppc_get_msr(vcpu); 114 pc = kvmppc_get_pc(vcpu); 115 new_msr = vcpu->arch.intr_msr; 116 new_pc = to_book3s(vcpu)->hior + vec; 117 118 #ifdef CONFIG_PPC_BOOK3S_64 119 /* If transactional, change to suspend mode on IRQ delivery */ 120 if (MSR_TM_TRANSACTIONAL(msr)) 121 new_msr |= MSR_TS_S; 122 else 123 new_msr |= msr & MSR_TS_MASK; 124 #endif 125 126 kvmppc_set_srr0(vcpu, pc); 127 kvmppc_set_srr1(vcpu, (msr & SRR1_MSR_BITS) | srr1_flags); 128 kvmppc_set_pc(vcpu, new_pc); 129 kvmppc_set_msr(vcpu, new_msr); 130 } 131 132 static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu) 133 { 134 #ifdef CONFIG_PPC_BOOK3S_64 135 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); 136 memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb)); 137 svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max; 138 svcpu->in_use = 0; 139 svcpu_put(svcpu); 140 #endif 141 142 /* Disable AIL if supported */ 143 if (cpu_has_feature(CPU_FTR_HVMODE) && 144 cpu_has_feature(CPU_FTR_ARCH_207S)) 145 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_AIL); 146 147 vcpu->cpu = smp_processor_id(); 148 #ifdef CONFIG_PPC_BOOK3S_32 149 current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu; 150 #endif 151 152 if (kvmppc_is_split_real(vcpu)) 153 kvmppc_fixup_split_real(vcpu); 154 155 kvmppc_restore_tm_pr(vcpu); 156 } 157 158 static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu) 159 { 160 #ifdef CONFIG_PPC_BOOK3S_64 161 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); 162 if (svcpu->in_use) { 163 kvmppc_copy_from_svcpu(vcpu); 164 } 165 memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb)); 166 to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max; 167 svcpu_put(svcpu); 168 #endif 169 170 if (kvmppc_is_split_real(vcpu)) 171 kvmppc_unfixup_split_real(vcpu); 172 173 kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX); 174 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG); 175 kvmppc_save_tm_pr(vcpu); 176 177 /* Enable AIL if supported */ 178 if (cpu_has_feature(CPU_FTR_HVMODE) && 179 cpu_has_feature(CPU_FTR_ARCH_207S)) 180 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_AIL_3); 181 182 vcpu->cpu = -1; 183 } 184 185 /* Copy data needed by real-mode code from vcpu to shadow vcpu */ 186 void kvmppc_copy_to_svcpu(struct kvm_vcpu *vcpu) 187 { 188 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); 189 190 svcpu->gpr[0] = vcpu->arch.regs.gpr[0]; 191 svcpu->gpr[1] = vcpu->arch.regs.gpr[1]; 192 svcpu->gpr[2] = vcpu->arch.regs.gpr[2]; 193 svcpu->gpr[3] = vcpu->arch.regs.gpr[3]; 194 svcpu->gpr[4] = vcpu->arch.regs.gpr[4]; 195 svcpu->gpr[5] = vcpu->arch.regs.gpr[5]; 196 svcpu->gpr[6] = vcpu->arch.regs.gpr[6]; 197 svcpu->gpr[7] = vcpu->arch.regs.gpr[7]; 198 svcpu->gpr[8] = vcpu->arch.regs.gpr[8]; 199 svcpu->gpr[9] = vcpu->arch.regs.gpr[9]; 200 svcpu->gpr[10] = vcpu->arch.regs.gpr[10]; 201 svcpu->gpr[11] = vcpu->arch.regs.gpr[11]; 202 svcpu->gpr[12] = vcpu->arch.regs.gpr[12]; 203 svcpu->gpr[13] = vcpu->arch.regs.gpr[13]; 204 svcpu->cr = vcpu->arch.regs.ccr; 205 svcpu->xer = vcpu->arch.regs.xer; 206 svcpu->ctr = vcpu->arch.regs.ctr; 207 svcpu->lr = vcpu->arch.regs.link; 208 svcpu->pc = vcpu->arch.regs.nip; 209 #ifdef CONFIG_PPC_BOOK3S_64 210 svcpu->shadow_fscr = vcpu->arch.shadow_fscr; 211 #endif 212 /* 213 * Now also save the current time base value. We use this 214 * to find the guest purr and spurr value. 215 */ 216 vcpu->arch.entry_tb = get_tb(); 217 vcpu->arch.entry_vtb = get_vtb(); 218 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 219 vcpu->arch.entry_ic = mfspr(SPRN_IC); 220 svcpu->in_use = true; 221 222 svcpu_put(svcpu); 223 } 224 225 static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu) 226 { 227 ulong guest_msr = kvmppc_get_msr(vcpu); 228 ulong smsr = guest_msr; 229 230 /* Guest MSR values */ 231 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 232 smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE | 233 MSR_TM | MSR_TS_MASK; 234 #else 235 smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE; 236 #endif 237 /* Process MSR values */ 238 smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE; 239 /* External providers the guest reserved */ 240 smsr |= (guest_msr & vcpu->arch.guest_owned_ext); 241 /* 64-bit Process MSR values */ 242 #ifdef CONFIG_PPC_BOOK3S_64 243 smsr |= MSR_HV; 244 #endif 245 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 246 /* 247 * in guest privileged state, we want to fail all TM transactions. 248 * So disable MSR TM bit so that all tbegin. will be able to be 249 * trapped into host. 250 */ 251 if (!(guest_msr & MSR_PR)) 252 smsr &= ~MSR_TM; 253 #endif 254 vcpu->arch.shadow_msr = smsr; 255 } 256 257 /* Copy data touched by real-mode code from shadow vcpu back to vcpu */ 258 void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu) 259 { 260 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); 261 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 262 ulong old_msr; 263 #endif 264 265 /* 266 * Maybe we were already preempted and synced the svcpu from 267 * our preempt notifiers. Don't bother touching this svcpu then. 268 */ 269 if (!svcpu->in_use) 270 goto out; 271 272 vcpu->arch.regs.gpr[0] = svcpu->gpr[0]; 273 vcpu->arch.regs.gpr[1] = svcpu->gpr[1]; 274 vcpu->arch.regs.gpr[2] = svcpu->gpr[2]; 275 vcpu->arch.regs.gpr[3] = svcpu->gpr[3]; 276 vcpu->arch.regs.gpr[4] = svcpu->gpr[4]; 277 vcpu->arch.regs.gpr[5] = svcpu->gpr[5]; 278 vcpu->arch.regs.gpr[6] = svcpu->gpr[6]; 279 vcpu->arch.regs.gpr[7] = svcpu->gpr[7]; 280 vcpu->arch.regs.gpr[8] = svcpu->gpr[8]; 281 vcpu->arch.regs.gpr[9] = svcpu->gpr[9]; 282 vcpu->arch.regs.gpr[10] = svcpu->gpr[10]; 283 vcpu->arch.regs.gpr[11] = svcpu->gpr[11]; 284 vcpu->arch.regs.gpr[12] = svcpu->gpr[12]; 285 vcpu->arch.regs.gpr[13] = svcpu->gpr[13]; 286 vcpu->arch.regs.ccr = svcpu->cr; 287 vcpu->arch.regs.xer = svcpu->xer; 288 vcpu->arch.regs.ctr = svcpu->ctr; 289 vcpu->arch.regs.link = svcpu->lr; 290 vcpu->arch.regs.nip = svcpu->pc; 291 vcpu->arch.shadow_srr1 = svcpu->shadow_srr1; 292 vcpu->arch.fault_dar = svcpu->fault_dar; 293 vcpu->arch.fault_dsisr = svcpu->fault_dsisr; 294 vcpu->arch.last_inst = svcpu->last_inst; 295 #ifdef CONFIG_PPC_BOOK3S_64 296 vcpu->arch.shadow_fscr = svcpu->shadow_fscr; 297 #endif 298 /* 299 * Update purr and spurr using time base on exit. 300 */ 301 vcpu->arch.purr += get_tb() - vcpu->arch.entry_tb; 302 vcpu->arch.spurr += get_tb() - vcpu->arch.entry_tb; 303 to_book3s(vcpu)->vtb += get_vtb() - vcpu->arch.entry_vtb; 304 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 305 vcpu->arch.ic += mfspr(SPRN_IC) - vcpu->arch.entry_ic; 306 307 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 308 /* 309 * Unlike other MSR bits, MSR[TS]bits can be changed at guest without 310 * notifying host: 311 * modified by unprivileged instructions like "tbegin"/"tend"/ 312 * "tresume"/"tsuspend" in PR KVM guest. 313 * 314 * It is necessary to sync here to calculate a correct shadow_msr. 315 * 316 * privileged guest's tbegin will be failed at present. So we 317 * only take care of problem state guest. 318 */ 319 old_msr = kvmppc_get_msr(vcpu); 320 if (unlikely((old_msr & MSR_PR) && 321 (vcpu->arch.shadow_srr1 & (MSR_TS_MASK)) != 322 (old_msr & (MSR_TS_MASK)))) { 323 old_msr &= ~(MSR_TS_MASK); 324 old_msr |= (vcpu->arch.shadow_srr1 & (MSR_TS_MASK)); 325 kvmppc_set_msr_fast(vcpu, old_msr); 326 kvmppc_recalc_shadow_msr(vcpu); 327 } 328 #endif 329 330 svcpu->in_use = false; 331 332 out: 333 svcpu_put(svcpu); 334 } 335 336 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 337 void kvmppc_save_tm_sprs(struct kvm_vcpu *vcpu) 338 { 339 tm_enable(); 340 vcpu->arch.tfhar = mfspr(SPRN_TFHAR); 341 vcpu->arch.texasr = mfspr(SPRN_TEXASR); 342 vcpu->arch.tfiar = mfspr(SPRN_TFIAR); 343 tm_disable(); 344 } 345 346 void kvmppc_restore_tm_sprs(struct kvm_vcpu *vcpu) 347 { 348 tm_enable(); 349 mtspr(SPRN_TFHAR, vcpu->arch.tfhar); 350 mtspr(SPRN_TEXASR, vcpu->arch.texasr); 351 mtspr(SPRN_TFIAR, vcpu->arch.tfiar); 352 tm_disable(); 353 } 354 355 /* loadup math bits which is enabled at kvmppc_get_msr() but not enabled at 356 * hardware. 357 */ 358 static void kvmppc_handle_lost_math_exts(struct kvm_vcpu *vcpu) 359 { 360 ulong exit_nr; 361 ulong ext_diff = (kvmppc_get_msr(vcpu) & ~vcpu->arch.guest_owned_ext) & 362 (MSR_FP | MSR_VEC | MSR_VSX); 363 364 if (!ext_diff) 365 return; 366 367 if (ext_diff == MSR_FP) 368 exit_nr = BOOK3S_INTERRUPT_FP_UNAVAIL; 369 else if (ext_diff == MSR_VEC) 370 exit_nr = BOOK3S_INTERRUPT_ALTIVEC; 371 else 372 exit_nr = BOOK3S_INTERRUPT_VSX; 373 374 kvmppc_handle_ext(vcpu, exit_nr, ext_diff); 375 } 376 377 void kvmppc_save_tm_pr(struct kvm_vcpu *vcpu) 378 { 379 if (!(MSR_TM_ACTIVE(kvmppc_get_msr(vcpu)))) { 380 kvmppc_save_tm_sprs(vcpu); 381 return; 382 } 383 384 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG); 385 kvmppc_giveup_ext(vcpu, MSR_VSX); 386 387 preempt_disable(); 388 _kvmppc_save_tm_pr(vcpu, mfmsr()); 389 preempt_enable(); 390 } 391 392 void kvmppc_restore_tm_pr(struct kvm_vcpu *vcpu) 393 { 394 if (!MSR_TM_ACTIVE(kvmppc_get_msr(vcpu))) { 395 kvmppc_restore_tm_sprs(vcpu); 396 if (kvmppc_get_msr(vcpu) & MSR_TM) { 397 kvmppc_handle_lost_math_exts(vcpu); 398 if (vcpu->arch.fscr & FSCR_TAR) 399 kvmppc_handle_fac(vcpu, FSCR_TAR_LG); 400 } 401 return; 402 } 403 404 preempt_disable(); 405 _kvmppc_restore_tm_pr(vcpu, kvmppc_get_msr(vcpu)); 406 preempt_enable(); 407 408 if (kvmppc_get_msr(vcpu) & MSR_TM) { 409 kvmppc_handle_lost_math_exts(vcpu); 410 if (vcpu->arch.fscr & FSCR_TAR) 411 kvmppc_handle_fac(vcpu, FSCR_TAR_LG); 412 } 413 } 414 #endif 415 416 static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu) 417 { 418 int r = 1; /* Indicate we want to get back into the guest */ 419 420 /* We misuse TLB_FLUSH to indicate that we want to clear 421 all shadow cache entries */ 422 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 423 kvmppc_mmu_pte_flush(vcpu, 0, 0); 424 425 return r; 426 } 427 428 /************* MMU Notifiers *************/ 429 static bool do_kvm_unmap_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 430 { 431 unsigned long i; 432 struct kvm_vcpu *vcpu; 433 434 kvm_for_each_vcpu(i, vcpu, kvm) 435 kvmppc_mmu_pte_pflush(vcpu, range->start << PAGE_SHIFT, 436 range->end << PAGE_SHIFT); 437 438 return false; 439 } 440 441 static bool kvm_unmap_gfn_range_pr(struct kvm *kvm, struct kvm_gfn_range *range) 442 { 443 return do_kvm_unmap_gfn(kvm, range); 444 } 445 446 static bool kvm_age_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range) 447 { 448 /* XXX could be more clever ;) */ 449 return false; 450 } 451 452 static bool kvm_test_age_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range) 453 { 454 /* XXX could be more clever ;) */ 455 return false; 456 } 457 458 static bool kvm_set_spte_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range) 459 { 460 /* The page will get remapped properly on its next fault */ 461 return do_kvm_unmap_gfn(kvm, range); 462 } 463 464 /*****************************************/ 465 466 static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr) 467 { 468 ulong old_msr; 469 470 /* For PAPR guest, make sure MSR reflects guest mode */ 471 if (vcpu->arch.papr_enabled) 472 msr = (msr & ~MSR_HV) | MSR_ME; 473 474 #ifdef EXIT_DEBUG 475 printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr); 476 #endif 477 478 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 479 /* We should never target guest MSR to TS=10 && PR=0, 480 * since we always fail transaction for guest privilege 481 * state. 482 */ 483 if (!(msr & MSR_PR) && MSR_TM_TRANSACTIONAL(msr)) 484 kvmppc_emulate_tabort(vcpu, 485 TM_CAUSE_KVM_FAC_UNAV | TM_CAUSE_PERSISTENT); 486 #endif 487 488 old_msr = kvmppc_get_msr(vcpu); 489 msr &= to_book3s(vcpu)->msr_mask; 490 kvmppc_set_msr_fast(vcpu, msr); 491 kvmppc_recalc_shadow_msr(vcpu); 492 493 if (msr & MSR_POW) { 494 if (!vcpu->arch.pending_exceptions) { 495 kvm_vcpu_halt(vcpu); 496 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 497 vcpu->stat.generic.halt_wakeup++; 498 499 /* Unset POW bit after we woke up */ 500 msr &= ~MSR_POW; 501 kvmppc_set_msr_fast(vcpu, msr); 502 } 503 } 504 505 if (kvmppc_is_split_real(vcpu)) 506 kvmppc_fixup_split_real(vcpu); 507 else 508 kvmppc_unfixup_split_real(vcpu); 509 510 if ((kvmppc_get_msr(vcpu) & (MSR_PR|MSR_IR|MSR_DR)) != 511 (old_msr & (MSR_PR|MSR_IR|MSR_DR))) { 512 kvmppc_mmu_flush_segments(vcpu); 513 kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)); 514 515 /* Preload magic page segment when in kernel mode */ 516 if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) { 517 struct kvm_vcpu_arch *a = &vcpu->arch; 518 519 if (msr & MSR_DR) 520 kvmppc_mmu_map_segment(vcpu, a->magic_page_ea); 521 else 522 kvmppc_mmu_map_segment(vcpu, a->magic_page_pa); 523 } 524 } 525 526 /* 527 * When switching from 32 to 64-bit, we may have a stale 32-bit 528 * magic page around, we need to flush it. Typically 32-bit magic 529 * page will be instantiated when calling into RTAS. Note: We 530 * assume that such transition only happens while in kernel mode, 531 * ie, we never transition from user 32-bit to kernel 64-bit with 532 * a 32-bit magic page around. 533 */ 534 if (vcpu->arch.magic_page_pa && 535 !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) { 536 /* going from RTAS to normal kernel code */ 537 kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa, 538 ~0xFFFUL); 539 } 540 541 /* Preload FPU if it's enabled */ 542 if (kvmppc_get_msr(vcpu) & MSR_FP) 543 kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP); 544 545 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 546 if (kvmppc_get_msr(vcpu) & MSR_TM) 547 kvmppc_handle_lost_math_exts(vcpu); 548 #endif 549 } 550 551 static void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr) 552 { 553 u32 host_pvr; 554 555 vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB; 556 vcpu->arch.pvr = pvr; 557 #ifdef CONFIG_PPC_BOOK3S_64 558 if ((pvr >= 0x330000) && (pvr < 0x70330000)) { 559 kvmppc_mmu_book3s_64_init(vcpu); 560 if (!to_book3s(vcpu)->hior_explicit) 561 to_book3s(vcpu)->hior = 0xfff00000; 562 to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL; 563 vcpu->arch.cpu_type = KVM_CPU_3S_64; 564 } else 565 #endif 566 { 567 kvmppc_mmu_book3s_32_init(vcpu); 568 if (!to_book3s(vcpu)->hior_explicit) 569 to_book3s(vcpu)->hior = 0; 570 to_book3s(vcpu)->msr_mask = 0xffffffffULL; 571 vcpu->arch.cpu_type = KVM_CPU_3S_32; 572 } 573 574 kvmppc_sanity_check(vcpu); 575 576 /* If we are in hypervisor level on 970, we can tell the CPU to 577 * treat DCBZ as 32 bytes store */ 578 vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32; 579 if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) && 580 !strcmp(cur_cpu_spec->platform, "ppc970")) 581 vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32; 582 583 /* Cell performs badly if MSR_FEx are set. So let's hope nobody 584 really needs them in a VM on Cell and force disable them. */ 585 if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be")) 586 to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1); 587 588 /* 589 * If they're asking for POWER6 or later, set the flag 590 * indicating that we can do multiple large page sizes 591 * and 1TB segments. 592 * Also set the flag that indicates that tlbie has the large 593 * page bit in the RB operand instead of the instruction. 594 */ 595 switch (PVR_VER(pvr)) { 596 case PVR_POWER6: 597 case PVR_POWER7: 598 case PVR_POWER7p: 599 case PVR_POWER8: 600 case PVR_POWER8E: 601 case PVR_POWER8NVL: 602 case PVR_POWER9: 603 vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE | 604 BOOK3S_HFLAG_NEW_TLBIE; 605 break; 606 } 607 608 #ifdef CONFIG_PPC_BOOK3S_32 609 /* 32 bit Book3S always has 32 byte dcbz */ 610 vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32; 611 #endif 612 613 /* On some CPUs we can execute paired single operations natively */ 614 asm ( "mfpvr %0" : "=r"(host_pvr)); 615 switch (host_pvr) { 616 case 0x00080200: /* lonestar 2.0 */ 617 case 0x00088202: /* lonestar 2.2 */ 618 case 0x70000100: /* gekko 1.0 */ 619 case 0x00080100: /* gekko 2.0 */ 620 case 0x00083203: /* gekko 2.3a */ 621 case 0x00083213: /* gekko 2.3b */ 622 case 0x00083204: /* gekko 2.4 */ 623 case 0x00083214: /* gekko 2.4e (8SE) - retail HW2 */ 624 case 0x00087200: /* broadway */ 625 vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS; 626 /* Enable HID2.PSE - in case we need it later */ 627 mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29)); 628 } 629 } 630 631 /* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To 632 * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to 633 * emulate 32 bytes dcbz length. 634 * 635 * The Book3s_64 inventors also realized this case and implemented a special bit 636 * in the HID5 register, which is a hypervisor ressource. Thus we can't use it. 637 * 638 * My approach here is to patch the dcbz instruction on executing pages. 639 */ 640 static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte) 641 { 642 struct page *hpage; 643 u64 hpage_offset; 644 u32 *page; 645 int i; 646 647 hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT); 648 if (is_error_page(hpage)) 649 return; 650 651 hpage_offset = pte->raddr & ~PAGE_MASK; 652 hpage_offset &= ~0xFFFULL; 653 hpage_offset /= 4; 654 655 get_page(hpage); 656 page = kmap_atomic(hpage); 657 658 /* patch dcbz into reserved instruction, so we trap */ 659 for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++) 660 if ((be32_to_cpu(page[i]) & 0xff0007ff) == INS_DCBZ) 661 page[i] &= cpu_to_be32(0xfffffff7); 662 663 kunmap_atomic(page); 664 put_page(hpage); 665 } 666 667 static bool kvmppc_visible_gpa(struct kvm_vcpu *vcpu, gpa_t gpa) 668 { 669 ulong mp_pa = vcpu->arch.magic_page_pa; 670 671 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) 672 mp_pa = (uint32_t)mp_pa; 673 674 gpa &= ~0xFFFULL; 675 if (unlikely(mp_pa) && unlikely((mp_pa & KVM_PAM) == (gpa & KVM_PAM))) { 676 return true; 677 } 678 679 return kvm_is_visible_gfn(vcpu->kvm, gpa >> PAGE_SHIFT); 680 } 681 682 static int kvmppc_handle_pagefault(struct kvm_vcpu *vcpu, 683 ulong eaddr, int vec) 684 { 685 bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE); 686 bool iswrite = false; 687 int r = RESUME_GUEST; 688 int relocated; 689 int page_found = 0; 690 struct kvmppc_pte pte = { 0 }; 691 bool dr = (kvmppc_get_msr(vcpu) & MSR_DR) ? true : false; 692 bool ir = (kvmppc_get_msr(vcpu) & MSR_IR) ? true : false; 693 u64 vsid; 694 695 relocated = data ? dr : ir; 696 if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE)) 697 iswrite = true; 698 699 /* Resolve real address if translation turned on */ 700 if (relocated) { 701 page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite); 702 } else { 703 pte.may_execute = true; 704 pte.may_read = true; 705 pte.may_write = true; 706 pte.raddr = eaddr & KVM_PAM; 707 pte.eaddr = eaddr; 708 pte.vpage = eaddr >> 12; 709 pte.page_size = MMU_PAGE_64K; 710 pte.wimg = HPTE_R_M; 711 } 712 713 switch (kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) { 714 case 0: 715 pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12)); 716 break; 717 case MSR_DR: 718 if (!data && 719 (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) && 720 ((pte.raddr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)) 721 pte.raddr &= ~SPLIT_HACK_MASK; 722 fallthrough; 723 case MSR_IR: 724 vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid); 725 726 if ((kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) == MSR_DR) 727 pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12)); 728 else 729 pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12)); 730 pte.vpage |= vsid; 731 732 if (vsid == -1) 733 page_found = -EINVAL; 734 break; 735 } 736 737 if (vcpu->arch.mmu.is_dcbz32(vcpu) && 738 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) { 739 /* 740 * If we do the dcbz hack, we have to NX on every execution, 741 * so we can patch the executing code. This renders our guest 742 * NX-less. 743 */ 744 pte.may_execute = !data; 745 } 746 747 if (page_found == -ENOENT || page_found == -EPERM) { 748 /* Page not found in guest PTE entries, or protection fault */ 749 u64 flags; 750 751 if (page_found == -EPERM) 752 flags = DSISR_PROTFAULT; 753 else 754 flags = DSISR_NOHPTE; 755 if (data) { 756 flags |= vcpu->arch.fault_dsisr & DSISR_ISSTORE; 757 kvmppc_core_queue_data_storage(vcpu, eaddr, flags); 758 } else { 759 kvmppc_core_queue_inst_storage(vcpu, flags); 760 } 761 } else if (page_found == -EINVAL) { 762 /* Page not found in guest SLB */ 763 kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu)); 764 kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80); 765 } else if (kvmppc_visible_gpa(vcpu, pte.raddr)) { 766 if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) { 767 /* 768 * There is already a host HPTE there, presumably 769 * a read-only one for a page the guest thinks 770 * is writable, so get rid of it first. 771 */ 772 kvmppc_mmu_unmap_page(vcpu, &pte); 773 } 774 /* The guest's PTE is not mapped yet. Map on the host */ 775 if (kvmppc_mmu_map_page(vcpu, &pte, iswrite) == -EIO) { 776 /* Exit KVM if mapping failed */ 777 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 778 return RESUME_HOST; 779 } 780 if (data) 781 vcpu->stat.sp_storage++; 782 else if (vcpu->arch.mmu.is_dcbz32(vcpu) && 783 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) 784 kvmppc_patch_dcbz(vcpu, &pte); 785 } else { 786 /* MMIO */ 787 vcpu->stat.mmio_exits++; 788 vcpu->arch.paddr_accessed = pte.raddr; 789 vcpu->arch.vaddr_accessed = pte.eaddr; 790 r = kvmppc_emulate_mmio(vcpu); 791 if ( r == RESUME_HOST_NV ) 792 r = RESUME_HOST; 793 } 794 795 return r; 796 } 797 798 /* Give up external provider (FPU, Altivec, VSX) */ 799 void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr) 800 { 801 struct thread_struct *t = ¤t->thread; 802 803 /* 804 * VSX instructions can access FP and vector registers, so if 805 * we are giving up VSX, make sure we give up FP and VMX as well. 806 */ 807 if (msr & MSR_VSX) 808 msr |= MSR_FP | MSR_VEC; 809 810 msr &= vcpu->arch.guest_owned_ext; 811 if (!msr) 812 return; 813 814 #ifdef DEBUG_EXT 815 printk(KERN_INFO "Giving up ext 0x%lx\n", msr); 816 #endif 817 818 if (msr & MSR_FP) { 819 /* 820 * Note that on CPUs with VSX, giveup_fpu stores 821 * both the traditional FP registers and the added VSX 822 * registers into thread.fp_state.fpr[]. 823 */ 824 if (t->regs->msr & MSR_FP) 825 giveup_fpu(current); 826 t->fp_save_area = NULL; 827 } 828 829 #ifdef CONFIG_ALTIVEC 830 if (msr & MSR_VEC) { 831 if (current->thread.regs->msr & MSR_VEC) 832 giveup_altivec(current); 833 t->vr_save_area = NULL; 834 } 835 #endif 836 837 vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX); 838 kvmppc_recalc_shadow_msr(vcpu); 839 } 840 841 /* Give up facility (TAR / EBB / DSCR) */ 842 void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac) 843 { 844 #ifdef CONFIG_PPC_BOOK3S_64 845 if (!(vcpu->arch.shadow_fscr & (1ULL << fac))) { 846 /* Facility not available to the guest, ignore giveup request*/ 847 return; 848 } 849 850 switch (fac) { 851 case FSCR_TAR_LG: 852 vcpu->arch.tar = mfspr(SPRN_TAR); 853 mtspr(SPRN_TAR, current->thread.tar); 854 vcpu->arch.shadow_fscr &= ~FSCR_TAR; 855 break; 856 } 857 #endif 858 } 859 860 /* Handle external providers (FPU, Altivec, VSX) */ 861 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr, 862 ulong msr) 863 { 864 struct thread_struct *t = ¤t->thread; 865 866 /* When we have paired singles, we emulate in software */ 867 if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) 868 return RESUME_GUEST; 869 870 if (!(kvmppc_get_msr(vcpu) & msr)) { 871 kvmppc_book3s_queue_irqprio(vcpu, exit_nr); 872 return RESUME_GUEST; 873 } 874 875 if (msr == MSR_VSX) { 876 /* No VSX? Give an illegal instruction interrupt */ 877 #ifdef CONFIG_VSX 878 if (!cpu_has_feature(CPU_FTR_VSX)) 879 #endif 880 { 881 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 882 return RESUME_GUEST; 883 } 884 885 /* 886 * We have to load up all the FP and VMX registers before 887 * we can let the guest use VSX instructions. 888 */ 889 msr = MSR_FP | MSR_VEC | MSR_VSX; 890 } 891 892 /* See if we already own all the ext(s) needed */ 893 msr &= ~vcpu->arch.guest_owned_ext; 894 if (!msr) 895 return RESUME_GUEST; 896 897 #ifdef DEBUG_EXT 898 printk(KERN_INFO "Loading up ext 0x%lx\n", msr); 899 #endif 900 901 if (msr & MSR_FP) { 902 preempt_disable(); 903 enable_kernel_fp(); 904 load_fp_state(&vcpu->arch.fp); 905 disable_kernel_fp(); 906 t->fp_save_area = &vcpu->arch.fp; 907 preempt_enable(); 908 } 909 910 if (msr & MSR_VEC) { 911 #ifdef CONFIG_ALTIVEC 912 preempt_disable(); 913 enable_kernel_altivec(); 914 load_vr_state(&vcpu->arch.vr); 915 disable_kernel_altivec(); 916 t->vr_save_area = &vcpu->arch.vr; 917 preempt_enable(); 918 #endif 919 } 920 921 t->regs->msr |= msr; 922 vcpu->arch.guest_owned_ext |= msr; 923 kvmppc_recalc_shadow_msr(vcpu); 924 925 return RESUME_GUEST; 926 } 927 928 /* 929 * Kernel code using FP or VMX could have flushed guest state to 930 * the thread_struct; if so, get it back now. 931 */ 932 static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu) 933 { 934 unsigned long lost_ext; 935 936 lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr; 937 if (!lost_ext) 938 return; 939 940 if (lost_ext & MSR_FP) { 941 preempt_disable(); 942 enable_kernel_fp(); 943 load_fp_state(&vcpu->arch.fp); 944 disable_kernel_fp(); 945 preempt_enable(); 946 } 947 #ifdef CONFIG_ALTIVEC 948 if (lost_ext & MSR_VEC) { 949 preempt_disable(); 950 enable_kernel_altivec(); 951 load_vr_state(&vcpu->arch.vr); 952 disable_kernel_altivec(); 953 preempt_enable(); 954 } 955 #endif 956 current->thread.regs->msr |= lost_ext; 957 } 958 959 #ifdef CONFIG_PPC_BOOK3S_64 960 961 void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac) 962 { 963 /* Inject the Interrupt Cause field and trigger a guest interrupt */ 964 vcpu->arch.fscr &= ~(0xffULL << 56); 965 vcpu->arch.fscr |= (fac << 56); 966 kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL); 967 } 968 969 static void kvmppc_emulate_fac(struct kvm_vcpu *vcpu, ulong fac) 970 { 971 enum emulation_result er = EMULATE_FAIL; 972 973 if (!(kvmppc_get_msr(vcpu) & MSR_PR)) 974 er = kvmppc_emulate_instruction(vcpu); 975 976 if ((er != EMULATE_DONE) && (er != EMULATE_AGAIN)) { 977 /* Couldn't emulate, trigger interrupt in guest */ 978 kvmppc_trigger_fac_interrupt(vcpu, fac); 979 } 980 } 981 982 /* Enable facilities (TAR, EBB, DSCR) for the guest */ 983 static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac) 984 { 985 bool guest_fac_enabled; 986 BUG_ON(!cpu_has_feature(CPU_FTR_ARCH_207S)); 987 988 /* 989 * Not every facility is enabled by FSCR bits, check whether the 990 * guest has this facility enabled at all. 991 */ 992 switch (fac) { 993 case FSCR_TAR_LG: 994 case FSCR_EBB_LG: 995 guest_fac_enabled = (vcpu->arch.fscr & (1ULL << fac)); 996 break; 997 case FSCR_TM_LG: 998 guest_fac_enabled = kvmppc_get_msr(vcpu) & MSR_TM; 999 break; 1000 default: 1001 guest_fac_enabled = false; 1002 break; 1003 } 1004 1005 if (!guest_fac_enabled) { 1006 /* Facility not enabled by the guest */ 1007 kvmppc_trigger_fac_interrupt(vcpu, fac); 1008 return RESUME_GUEST; 1009 } 1010 1011 switch (fac) { 1012 case FSCR_TAR_LG: 1013 /* TAR switching isn't lazy in Linux yet */ 1014 current->thread.tar = mfspr(SPRN_TAR); 1015 mtspr(SPRN_TAR, vcpu->arch.tar); 1016 vcpu->arch.shadow_fscr |= FSCR_TAR; 1017 break; 1018 default: 1019 kvmppc_emulate_fac(vcpu, fac); 1020 break; 1021 } 1022 1023 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1024 /* Since we disabled MSR_TM at privilege state, the mfspr instruction 1025 * for TM spr can trigger TM fac unavailable. In this case, the 1026 * emulation is handled by kvmppc_emulate_fac(), which invokes 1027 * kvmppc_emulate_mfspr() finally. But note the mfspr can include 1028 * RT for NV registers. So it need to restore those NV reg to reflect 1029 * the update. 1030 */ 1031 if ((fac == FSCR_TM_LG) && !(kvmppc_get_msr(vcpu) & MSR_PR)) 1032 return RESUME_GUEST_NV; 1033 #endif 1034 1035 return RESUME_GUEST; 1036 } 1037 1038 void kvmppc_set_fscr(struct kvm_vcpu *vcpu, u64 fscr) 1039 { 1040 if ((vcpu->arch.fscr & FSCR_TAR) && !(fscr & FSCR_TAR)) { 1041 /* TAR got dropped, drop it in shadow too */ 1042 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG); 1043 } else if (!(vcpu->arch.fscr & FSCR_TAR) && (fscr & FSCR_TAR)) { 1044 vcpu->arch.fscr = fscr; 1045 kvmppc_handle_fac(vcpu, FSCR_TAR_LG); 1046 return; 1047 } 1048 1049 vcpu->arch.fscr = fscr; 1050 } 1051 #endif 1052 1053 static void kvmppc_setup_debug(struct kvm_vcpu *vcpu) 1054 { 1055 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 1056 u64 msr = kvmppc_get_msr(vcpu); 1057 1058 kvmppc_set_msr(vcpu, msr | MSR_SE); 1059 } 1060 } 1061 1062 static void kvmppc_clear_debug(struct kvm_vcpu *vcpu) 1063 { 1064 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 1065 u64 msr = kvmppc_get_msr(vcpu); 1066 1067 kvmppc_set_msr(vcpu, msr & ~MSR_SE); 1068 } 1069 } 1070 1071 static int kvmppc_exit_pr_progint(struct kvm_vcpu *vcpu, unsigned int exit_nr) 1072 { 1073 enum emulation_result er; 1074 ulong flags; 1075 u32 last_inst; 1076 int emul, r; 1077 1078 /* 1079 * shadow_srr1 only contains valid flags if we came here via a program 1080 * exception. The other exceptions (emulation assist, FP unavailable, 1081 * etc.) do not provide flags in SRR1, so use an illegal-instruction 1082 * exception when injecting a program interrupt into the guest. 1083 */ 1084 if (exit_nr == BOOK3S_INTERRUPT_PROGRAM) 1085 flags = vcpu->arch.shadow_srr1 & 0x1f0000ull; 1086 else 1087 flags = SRR1_PROGILL; 1088 1089 emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); 1090 if (emul != EMULATE_DONE) 1091 return RESUME_GUEST; 1092 1093 if (kvmppc_get_msr(vcpu) & MSR_PR) { 1094 #ifdef EXIT_DEBUG 1095 pr_info("Userspace triggered 0x700 exception at\n 0x%lx (0x%x)\n", 1096 kvmppc_get_pc(vcpu), last_inst); 1097 #endif 1098 if ((last_inst & 0xff0007ff) != (INS_DCBZ & 0xfffffff7)) { 1099 kvmppc_core_queue_program(vcpu, flags); 1100 return RESUME_GUEST; 1101 } 1102 } 1103 1104 vcpu->stat.emulated_inst_exits++; 1105 er = kvmppc_emulate_instruction(vcpu); 1106 switch (er) { 1107 case EMULATE_DONE: 1108 r = RESUME_GUEST_NV; 1109 break; 1110 case EMULATE_AGAIN: 1111 r = RESUME_GUEST; 1112 break; 1113 case EMULATE_FAIL: 1114 pr_crit("%s: emulation at %lx failed (%08x)\n", 1115 __func__, kvmppc_get_pc(vcpu), last_inst); 1116 kvmppc_core_queue_program(vcpu, flags); 1117 r = RESUME_GUEST; 1118 break; 1119 case EMULATE_DO_MMIO: 1120 vcpu->run->exit_reason = KVM_EXIT_MMIO; 1121 r = RESUME_HOST_NV; 1122 break; 1123 case EMULATE_EXIT_USER: 1124 r = RESUME_HOST_NV; 1125 break; 1126 default: 1127 BUG(); 1128 } 1129 1130 return r; 1131 } 1132 1133 int kvmppc_handle_exit_pr(struct kvm_vcpu *vcpu, unsigned int exit_nr) 1134 { 1135 struct kvm_run *run = vcpu->run; 1136 int r = RESUME_HOST; 1137 int s; 1138 1139 vcpu->stat.sum_exits++; 1140 1141 run->exit_reason = KVM_EXIT_UNKNOWN; 1142 run->ready_for_interrupt_injection = 1; 1143 1144 /* We get here with MSR.EE=1 */ 1145 1146 trace_kvm_exit(exit_nr, vcpu); 1147 guest_exit(); 1148 1149 switch (exit_nr) { 1150 case BOOK3S_INTERRUPT_INST_STORAGE: 1151 { 1152 ulong shadow_srr1 = vcpu->arch.shadow_srr1; 1153 vcpu->stat.pf_instruc++; 1154 1155 if (kvmppc_is_split_real(vcpu)) 1156 kvmppc_fixup_split_real(vcpu); 1157 1158 #ifdef CONFIG_PPC_BOOK3S_32 1159 /* We set segments as unused segments when invalidating them. So 1160 * treat the respective fault as segment fault. */ 1161 { 1162 struct kvmppc_book3s_shadow_vcpu *svcpu; 1163 u32 sr; 1164 1165 svcpu = svcpu_get(vcpu); 1166 sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT]; 1167 svcpu_put(svcpu); 1168 if (sr == SR_INVALID) { 1169 kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)); 1170 r = RESUME_GUEST; 1171 break; 1172 } 1173 } 1174 #endif 1175 1176 /* only care about PTEG not found errors, but leave NX alone */ 1177 if (shadow_srr1 & 0x40000000) { 1178 int idx = srcu_read_lock(&vcpu->kvm->srcu); 1179 r = kvmppc_handle_pagefault(vcpu, kvmppc_get_pc(vcpu), exit_nr); 1180 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1181 vcpu->stat.sp_instruc++; 1182 } else if (vcpu->arch.mmu.is_dcbz32(vcpu) && 1183 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) { 1184 /* 1185 * XXX If we do the dcbz hack we use the NX bit to flush&patch the page, 1186 * so we can't use the NX bit inside the guest. Let's cross our fingers, 1187 * that no guest that needs the dcbz hack does NX. 1188 */ 1189 kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL); 1190 r = RESUME_GUEST; 1191 } else { 1192 kvmppc_core_queue_inst_storage(vcpu, 1193 shadow_srr1 & 0x58000000); 1194 r = RESUME_GUEST; 1195 } 1196 break; 1197 } 1198 case BOOK3S_INTERRUPT_DATA_STORAGE: 1199 { 1200 ulong dar = kvmppc_get_fault_dar(vcpu); 1201 u32 fault_dsisr = vcpu->arch.fault_dsisr; 1202 vcpu->stat.pf_storage++; 1203 1204 #ifdef CONFIG_PPC_BOOK3S_32 1205 /* We set segments as unused segments when invalidating them. So 1206 * treat the respective fault as segment fault. */ 1207 { 1208 struct kvmppc_book3s_shadow_vcpu *svcpu; 1209 u32 sr; 1210 1211 svcpu = svcpu_get(vcpu); 1212 sr = svcpu->sr[dar >> SID_SHIFT]; 1213 svcpu_put(svcpu); 1214 if (sr == SR_INVALID) { 1215 kvmppc_mmu_map_segment(vcpu, dar); 1216 r = RESUME_GUEST; 1217 break; 1218 } 1219 } 1220 #endif 1221 1222 /* 1223 * We need to handle missing shadow PTEs, and 1224 * protection faults due to us mapping a page read-only 1225 * when the guest thinks it is writable. 1226 */ 1227 if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) { 1228 int idx = srcu_read_lock(&vcpu->kvm->srcu); 1229 r = kvmppc_handle_pagefault(vcpu, dar, exit_nr); 1230 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1231 } else { 1232 kvmppc_core_queue_data_storage(vcpu, dar, fault_dsisr); 1233 r = RESUME_GUEST; 1234 } 1235 break; 1236 } 1237 case BOOK3S_INTERRUPT_DATA_SEGMENT: 1238 if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) { 1239 kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu)); 1240 kvmppc_book3s_queue_irqprio(vcpu, 1241 BOOK3S_INTERRUPT_DATA_SEGMENT); 1242 } 1243 r = RESUME_GUEST; 1244 break; 1245 case BOOK3S_INTERRUPT_INST_SEGMENT: 1246 if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) { 1247 kvmppc_book3s_queue_irqprio(vcpu, 1248 BOOK3S_INTERRUPT_INST_SEGMENT); 1249 } 1250 r = RESUME_GUEST; 1251 break; 1252 /* We're good on these - the host merely wanted to get our attention */ 1253 case BOOK3S_INTERRUPT_DECREMENTER: 1254 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1255 case BOOK3S_INTERRUPT_DOORBELL: 1256 case BOOK3S_INTERRUPT_H_DOORBELL: 1257 vcpu->stat.dec_exits++; 1258 r = RESUME_GUEST; 1259 break; 1260 case BOOK3S_INTERRUPT_EXTERNAL: 1261 case BOOK3S_INTERRUPT_EXTERNAL_HV: 1262 case BOOK3S_INTERRUPT_H_VIRT: 1263 vcpu->stat.ext_intr_exits++; 1264 r = RESUME_GUEST; 1265 break; 1266 case BOOK3S_INTERRUPT_HMI: 1267 case BOOK3S_INTERRUPT_PERFMON: 1268 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1269 r = RESUME_GUEST; 1270 break; 1271 case BOOK3S_INTERRUPT_PROGRAM: 1272 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 1273 r = kvmppc_exit_pr_progint(vcpu, exit_nr); 1274 break; 1275 case BOOK3S_INTERRUPT_SYSCALL: 1276 { 1277 u32 last_sc; 1278 int emul; 1279 1280 /* Get last sc for papr */ 1281 if (vcpu->arch.papr_enabled) { 1282 /* The sc instuction points SRR0 to the next inst */ 1283 emul = kvmppc_get_last_inst(vcpu, INST_SC, &last_sc); 1284 if (emul != EMULATE_DONE) { 1285 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) - 4); 1286 r = RESUME_GUEST; 1287 break; 1288 } 1289 } 1290 1291 if (vcpu->arch.papr_enabled && 1292 (last_sc == 0x44000022) && 1293 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 1294 /* SC 1 papr hypercalls */ 1295 ulong cmd = kvmppc_get_gpr(vcpu, 3); 1296 int i; 1297 1298 #ifdef CONFIG_PPC_BOOK3S_64 1299 if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) { 1300 r = RESUME_GUEST; 1301 break; 1302 } 1303 #endif 1304 1305 run->papr_hcall.nr = cmd; 1306 for (i = 0; i < 9; ++i) { 1307 ulong gpr = kvmppc_get_gpr(vcpu, 4 + i); 1308 run->papr_hcall.args[i] = gpr; 1309 } 1310 run->exit_reason = KVM_EXIT_PAPR_HCALL; 1311 vcpu->arch.hcall_needed = 1; 1312 r = RESUME_HOST; 1313 } else if (vcpu->arch.osi_enabled && 1314 (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) && 1315 (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) { 1316 /* MOL hypercalls */ 1317 u64 *gprs = run->osi.gprs; 1318 int i; 1319 1320 run->exit_reason = KVM_EXIT_OSI; 1321 for (i = 0; i < 32; i++) 1322 gprs[i] = kvmppc_get_gpr(vcpu, i); 1323 vcpu->arch.osi_needed = 1; 1324 r = RESUME_HOST_NV; 1325 } else if (!(kvmppc_get_msr(vcpu) & MSR_PR) && 1326 (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) { 1327 /* KVM PV hypercalls */ 1328 kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu)); 1329 r = RESUME_GUEST; 1330 } else { 1331 /* Guest syscalls */ 1332 vcpu->stat.syscall_exits++; 1333 kvmppc_book3s_queue_irqprio(vcpu, exit_nr); 1334 r = RESUME_GUEST; 1335 } 1336 break; 1337 } 1338 case BOOK3S_INTERRUPT_FP_UNAVAIL: 1339 case BOOK3S_INTERRUPT_ALTIVEC: 1340 case BOOK3S_INTERRUPT_VSX: 1341 { 1342 int ext_msr = 0; 1343 int emul; 1344 u32 last_inst; 1345 1346 if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) { 1347 /* Do paired single instruction emulation */ 1348 emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, 1349 &last_inst); 1350 if (emul == EMULATE_DONE) 1351 r = kvmppc_exit_pr_progint(vcpu, exit_nr); 1352 else 1353 r = RESUME_GUEST; 1354 1355 break; 1356 } 1357 1358 /* Enable external provider */ 1359 switch (exit_nr) { 1360 case BOOK3S_INTERRUPT_FP_UNAVAIL: 1361 ext_msr = MSR_FP; 1362 break; 1363 1364 case BOOK3S_INTERRUPT_ALTIVEC: 1365 ext_msr = MSR_VEC; 1366 break; 1367 1368 case BOOK3S_INTERRUPT_VSX: 1369 ext_msr = MSR_VSX; 1370 break; 1371 } 1372 1373 r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr); 1374 break; 1375 } 1376 case BOOK3S_INTERRUPT_ALIGNMENT: 1377 { 1378 u32 last_inst; 1379 int emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); 1380 1381 if (emul == EMULATE_DONE) { 1382 u32 dsisr; 1383 u64 dar; 1384 1385 dsisr = kvmppc_alignment_dsisr(vcpu, last_inst); 1386 dar = kvmppc_alignment_dar(vcpu, last_inst); 1387 1388 kvmppc_set_dsisr(vcpu, dsisr); 1389 kvmppc_set_dar(vcpu, dar); 1390 1391 kvmppc_book3s_queue_irqprio(vcpu, exit_nr); 1392 } 1393 r = RESUME_GUEST; 1394 break; 1395 } 1396 #ifdef CONFIG_PPC_BOOK3S_64 1397 case BOOK3S_INTERRUPT_FAC_UNAVAIL: 1398 r = kvmppc_handle_fac(vcpu, vcpu->arch.shadow_fscr >> 56); 1399 break; 1400 #endif 1401 case BOOK3S_INTERRUPT_MACHINE_CHECK: 1402 kvmppc_book3s_queue_irqprio(vcpu, exit_nr); 1403 r = RESUME_GUEST; 1404 break; 1405 case BOOK3S_INTERRUPT_TRACE: 1406 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 1407 run->exit_reason = KVM_EXIT_DEBUG; 1408 r = RESUME_HOST; 1409 } else { 1410 kvmppc_book3s_queue_irqprio(vcpu, exit_nr); 1411 r = RESUME_GUEST; 1412 } 1413 break; 1414 default: 1415 { 1416 ulong shadow_srr1 = vcpu->arch.shadow_srr1; 1417 /* Ugh - bork here! What did we get? */ 1418 printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n", 1419 exit_nr, kvmppc_get_pc(vcpu), shadow_srr1); 1420 r = RESUME_HOST; 1421 BUG(); 1422 break; 1423 } 1424 } 1425 1426 if (!(r & RESUME_HOST)) { 1427 /* To avoid clobbering exit_reason, only check for signals if 1428 * we aren't already exiting to userspace for some other 1429 * reason. */ 1430 1431 /* 1432 * Interrupts could be timers for the guest which we have to 1433 * inject again, so let's postpone them until we're in the guest 1434 * and if we really did time things so badly, then we just exit 1435 * again due to a host external interrupt. 1436 */ 1437 s = kvmppc_prepare_to_enter(vcpu); 1438 if (s <= 0) 1439 r = s; 1440 else { 1441 /* interrupts now hard-disabled */ 1442 kvmppc_fix_ee_before_entry(); 1443 } 1444 1445 kvmppc_handle_lost_ext(vcpu); 1446 } 1447 1448 trace_kvm_book3s_reenter(r, vcpu); 1449 1450 return r; 1451 } 1452 1453 static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu, 1454 struct kvm_sregs *sregs) 1455 { 1456 struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu); 1457 int i; 1458 1459 sregs->pvr = vcpu->arch.pvr; 1460 1461 sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1; 1462 if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) { 1463 for (i = 0; i < 64; i++) { 1464 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i; 1465 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 1466 } 1467 } else { 1468 for (i = 0; i < 16; i++) 1469 sregs->u.s.ppc32.sr[i] = kvmppc_get_sr(vcpu, i); 1470 1471 for (i = 0; i < 8; i++) { 1472 sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw; 1473 sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw; 1474 } 1475 } 1476 1477 return 0; 1478 } 1479 1480 static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu, 1481 struct kvm_sregs *sregs) 1482 { 1483 struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu); 1484 int i; 1485 1486 kvmppc_set_pvr_pr(vcpu, sregs->pvr); 1487 1488 vcpu3s->sdr1 = sregs->u.s.sdr1; 1489 #ifdef CONFIG_PPC_BOOK3S_64 1490 if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) { 1491 /* Flush all SLB entries */ 1492 vcpu->arch.mmu.slbmte(vcpu, 0, 0); 1493 vcpu->arch.mmu.slbia(vcpu); 1494 1495 for (i = 0; i < 64; i++) { 1496 u64 rb = sregs->u.s.ppc64.slb[i].slbe; 1497 u64 rs = sregs->u.s.ppc64.slb[i].slbv; 1498 1499 if (rb & SLB_ESID_V) 1500 vcpu->arch.mmu.slbmte(vcpu, rs, rb); 1501 } 1502 } else 1503 #endif 1504 { 1505 for (i = 0; i < 16; i++) { 1506 vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]); 1507 } 1508 for (i = 0; i < 8; i++) { 1509 kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false, 1510 (u32)sregs->u.s.ppc32.ibat[i]); 1511 kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true, 1512 (u32)(sregs->u.s.ppc32.ibat[i] >> 32)); 1513 kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false, 1514 (u32)sregs->u.s.ppc32.dbat[i]); 1515 kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true, 1516 (u32)(sregs->u.s.ppc32.dbat[i] >> 32)); 1517 } 1518 } 1519 1520 /* Flush the MMU after messing with the segments */ 1521 kvmppc_mmu_pte_flush(vcpu, 0, 0); 1522 1523 return 0; 1524 } 1525 1526 static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id, 1527 union kvmppc_one_reg *val) 1528 { 1529 int r = 0; 1530 1531 switch (id) { 1532 case KVM_REG_PPC_DEBUG_INST: 1533 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); 1534 break; 1535 case KVM_REG_PPC_HIOR: 1536 *val = get_reg_val(id, to_book3s(vcpu)->hior); 1537 break; 1538 case KVM_REG_PPC_VTB: 1539 *val = get_reg_val(id, to_book3s(vcpu)->vtb); 1540 break; 1541 case KVM_REG_PPC_LPCR: 1542 case KVM_REG_PPC_LPCR_64: 1543 /* 1544 * We are only interested in the LPCR_ILE bit 1545 */ 1546 if (vcpu->arch.intr_msr & MSR_LE) 1547 *val = get_reg_val(id, LPCR_ILE); 1548 else 1549 *val = get_reg_val(id, 0); 1550 break; 1551 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1552 case KVM_REG_PPC_TFHAR: 1553 *val = get_reg_val(id, vcpu->arch.tfhar); 1554 break; 1555 case KVM_REG_PPC_TFIAR: 1556 *val = get_reg_val(id, vcpu->arch.tfiar); 1557 break; 1558 case KVM_REG_PPC_TEXASR: 1559 *val = get_reg_val(id, vcpu->arch.texasr); 1560 break; 1561 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1562 *val = get_reg_val(id, 1563 vcpu->arch.gpr_tm[id-KVM_REG_PPC_TM_GPR0]); 1564 break; 1565 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1566 { 1567 int i, j; 1568 1569 i = id - KVM_REG_PPC_TM_VSR0; 1570 if (i < 32) 1571 for (j = 0; j < TS_FPRWIDTH; j++) 1572 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; 1573 else { 1574 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1575 val->vval = vcpu->arch.vr_tm.vr[i-32]; 1576 else 1577 r = -ENXIO; 1578 } 1579 break; 1580 } 1581 case KVM_REG_PPC_TM_CR: 1582 *val = get_reg_val(id, vcpu->arch.cr_tm); 1583 break; 1584 case KVM_REG_PPC_TM_XER: 1585 *val = get_reg_val(id, vcpu->arch.xer_tm); 1586 break; 1587 case KVM_REG_PPC_TM_LR: 1588 *val = get_reg_val(id, vcpu->arch.lr_tm); 1589 break; 1590 case KVM_REG_PPC_TM_CTR: 1591 *val = get_reg_val(id, vcpu->arch.ctr_tm); 1592 break; 1593 case KVM_REG_PPC_TM_FPSCR: 1594 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); 1595 break; 1596 case KVM_REG_PPC_TM_AMR: 1597 *val = get_reg_val(id, vcpu->arch.amr_tm); 1598 break; 1599 case KVM_REG_PPC_TM_PPR: 1600 *val = get_reg_val(id, vcpu->arch.ppr_tm); 1601 break; 1602 case KVM_REG_PPC_TM_VRSAVE: 1603 *val = get_reg_val(id, vcpu->arch.vrsave_tm); 1604 break; 1605 case KVM_REG_PPC_TM_VSCR: 1606 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1607 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); 1608 else 1609 r = -ENXIO; 1610 break; 1611 case KVM_REG_PPC_TM_DSCR: 1612 *val = get_reg_val(id, vcpu->arch.dscr_tm); 1613 break; 1614 case KVM_REG_PPC_TM_TAR: 1615 *val = get_reg_val(id, vcpu->arch.tar_tm); 1616 break; 1617 #endif 1618 default: 1619 r = -EINVAL; 1620 break; 1621 } 1622 1623 return r; 1624 } 1625 1626 static void kvmppc_set_lpcr_pr(struct kvm_vcpu *vcpu, u64 new_lpcr) 1627 { 1628 if (new_lpcr & LPCR_ILE) 1629 vcpu->arch.intr_msr |= MSR_LE; 1630 else 1631 vcpu->arch.intr_msr &= ~MSR_LE; 1632 } 1633 1634 static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id, 1635 union kvmppc_one_reg *val) 1636 { 1637 int r = 0; 1638 1639 switch (id) { 1640 case KVM_REG_PPC_HIOR: 1641 to_book3s(vcpu)->hior = set_reg_val(id, *val); 1642 to_book3s(vcpu)->hior_explicit = true; 1643 break; 1644 case KVM_REG_PPC_VTB: 1645 to_book3s(vcpu)->vtb = set_reg_val(id, *val); 1646 break; 1647 case KVM_REG_PPC_LPCR: 1648 case KVM_REG_PPC_LPCR_64: 1649 kvmppc_set_lpcr_pr(vcpu, set_reg_val(id, *val)); 1650 break; 1651 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1652 case KVM_REG_PPC_TFHAR: 1653 vcpu->arch.tfhar = set_reg_val(id, *val); 1654 break; 1655 case KVM_REG_PPC_TFIAR: 1656 vcpu->arch.tfiar = set_reg_val(id, *val); 1657 break; 1658 case KVM_REG_PPC_TEXASR: 1659 vcpu->arch.texasr = set_reg_val(id, *val); 1660 break; 1661 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1662 vcpu->arch.gpr_tm[id - KVM_REG_PPC_TM_GPR0] = 1663 set_reg_val(id, *val); 1664 break; 1665 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1666 { 1667 int i, j; 1668 1669 i = id - KVM_REG_PPC_TM_VSR0; 1670 if (i < 32) 1671 for (j = 0; j < TS_FPRWIDTH; j++) 1672 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; 1673 else 1674 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1675 vcpu->arch.vr_tm.vr[i-32] = val->vval; 1676 else 1677 r = -ENXIO; 1678 break; 1679 } 1680 case KVM_REG_PPC_TM_CR: 1681 vcpu->arch.cr_tm = set_reg_val(id, *val); 1682 break; 1683 case KVM_REG_PPC_TM_XER: 1684 vcpu->arch.xer_tm = set_reg_val(id, *val); 1685 break; 1686 case KVM_REG_PPC_TM_LR: 1687 vcpu->arch.lr_tm = set_reg_val(id, *val); 1688 break; 1689 case KVM_REG_PPC_TM_CTR: 1690 vcpu->arch.ctr_tm = set_reg_val(id, *val); 1691 break; 1692 case KVM_REG_PPC_TM_FPSCR: 1693 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); 1694 break; 1695 case KVM_REG_PPC_TM_AMR: 1696 vcpu->arch.amr_tm = set_reg_val(id, *val); 1697 break; 1698 case KVM_REG_PPC_TM_PPR: 1699 vcpu->arch.ppr_tm = set_reg_val(id, *val); 1700 break; 1701 case KVM_REG_PPC_TM_VRSAVE: 1702 vcpu->arch.vrsave_tm = set_reg_val(id, *val); 1703 break; 1704 case KVM_REG_PPC_TM_VSCR: 1705 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1706 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); 1707 else 1708 r = -ENXIO; 1709 break; 1710 case KVM_REG_PPC_TM_DSCR: 1711 vcpu->arch.dscr_tm = set_reg_val(id, *val); 1712 break; 1713 case KVM_REG_PPC_TM_TAR: 1714 vcpu->arch.tar_tm = set_reg_val(id, *val); 1715 break; 1716 #endif 1717 default: 1718 r = -EINVAL; 1719 break; 1720 } 1721 1722 return r; 1723 } 1724 1725 static int kvmppc_core_vcpu_create_pr(struct kvm_vcpu *vcpu) 1726 { 1727 struct kvmppc_vcpu_book3s *vcpu_book3s; 1728 unsigned long p; 1729 int err; 1730 1731 err = -ENOMEM; 1732 1733 vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s)); 1734 if (!vcpu_book3s) 1735 goto out; 1736 vcpu->arch.book3s = vcpu_book3s; 1737 1738 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER 1739 vcpu->arch.shadow_vcpu = 1740 kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL); 1741 if (!vcpu->arch.shadow_vcpu) 1742 goto free_vcpu3s; 1743 #endif 1744 1745 p = __get_free_page(GFP_KERNEL|__GFP_ZERO); 1746 if (!p) 1747 goto free_shadow_vcpu; 1748 vcpu->arch.shared = (void *)p; 1749 #ifdef CONFIG_PPC_BOOK3S_64 1750 /* Always start the shared struct in native endian mode */ 1751 #ifdef __BIG_ENDIAN__ 1752 vcpu->arch.shared_big_endian = true; 1753 #else 1754 vcpu->arch.shared_big_endian = false; 1755 #endif 1756 1757 /* 1758 * Default to the same as the host if we're on sufficiently 1759 * recent machine that we have 1TB segments; 1760 * otherwise default to PPC970FX. 1761 */ 1762 vcpu->arch.pvr = 0x3C0301; 1763 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1764 vcpu->arch.pvr = mfspr(SPRN_PVR); 1765 vcpu->arch.intr_msr = MSR_SF; 1766 #else 1767 /* default to book3s_32 (750) */ 1768 vcpu->arch.pvr = 0x84202; 1769 vcpu->arch.intr_msr = 0; 1770 #endif 1771 kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr); 1772 vcpu->arch.slb_nr = 64; 1773 1774 vcpu->arch.shadow_msr = MSR_USER64 & ~MSR_LE; 1775 1776 err = kvmppc_mmu_init_pr(vcpu); 1777 if (err < 0) 1778 goto free_shared_page; 1779 1780 return 0; 1781 1782 free_shared_page: 1783 free_page((unsigned long)vcpu->arch.shared); 1784 free_shadow_vcpu: 1785 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER 1786 kfree(vcpu->arch.shadow_vcpu); 1787 free_vcpu3s: 1788 #endif 1789 vfree(vcpu_book3s); 1790 out: 1791 return err; 1792 } 1793 1794 static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu) 1795 { 1796 struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu); 1797 1798 kvmppc_mmu_destroy_pr(vcpu); 1799 free_page((unsigned long)vcpu->arch.shared & PAGE_MASK); 1800 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER 1801 kfree(vcpu->arch.shadow_vcpu); 1802 #endif 1803 vfree(vcpu_book3s); 1804 } 1805 1806 static int kvmppc_vcpu_run_pr(struct kvm_vcpu *vcpu) 1807 { 1808 int ret; 1809 1810 /* Check if we can run the vcpu at all */ 1811 if (!vcpu->arch.sane) { 1812 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1813 ret = -EINVAL; 1814 goto out; 1815 } 1816 1817 kvmppc_setup_debug(vcpu); 1818 1819 /* 1820 * Interrupts could be timers for the guest which we have to inject 1821 * again, so let's postpone them until we're in the guest and if we 1822 * really did time things so badly, then we just exit again due to 1823 * a host external interrupt. 1824 */ 1825 ret = kvmppc_prepare_to_enter(vcpu); 1826 if (ret <= 0) 1827 goto out; 1828 /* interrupts now hard-disabled */ 1829 1830 /* Save FPU, Altivec and VSX state */ 1831 giveup_all(current); 1832 1833 /* Preload FPU if it's enabled */ 1834 if (kvmppc_get_msr(vcpu) & MSR_FP) 1835 kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP); 1836 1837 kvmppc_fix_ee_before_entry(); 1838 1839 ret = __kvmppc_vcpu_run(vcpu); 1840 1841 kvmppc_clear_debug(vcpu); 1842 1843 /* No need for guest_exit. It's done in handle_exit. 1844 We also get here with interrupts enabled. */ 1845 1846 /* Make sure we save the guest FPU/Altivec/VSX state */ 1847 kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX); 1848 1849 /* Make sure we save the guest TAR/EBB/DSCR state */ 1850 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG); 1851 1852 srr_regs_clobbered(); 1853 out: 1854 vcpu->mode = OUTSIDE_GUEST_MODE; 1855 return ret; 1856 } 1857 1858 /* 1859 * Get (and clear) the dirty memory log for a memory slot. 1860 */ 1861 static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm, 1862 struct kvm_dirty_log *log) 1863 { 1864 struct kvm_memory_slot *memslot; 1865 struct kvm_vcpu *vcpu; 1866 ulong ga, ga_end; 1867 int is_dirty = 0; 1868 int r; 1869 unsigned long n; 1870 1871 mutex_lock(&kvm->slots_lock); 1872 1873 r = kvm_get_dirty_log(kvm, log, &is_dirty, &memslot); 1874 if (r) 1875 goto out; 1876 1877 /* If nothing is dirty, don't bother messing with page tables. */ 1878 if (is_dirty) { 1879 ga = memslot->base_gfn << PAGE_SHIFT; 1880 ga_end = ga + (memslot->npages << PAGE_SHIFT); 1881 1882 kvm_for_each_vcpu(n, vcpu, kvm) 1883 kvmppc_mmu_pte_pflush(vcpu, ga, ga_end); 1884 1885 n = kvm_dirty_bitmap_bytes(memslot); 1886 memset(memslot->dirty_bitmap, 0, n); 1887 } 1888 1889 r = 0; 1890 out: 1891 mutex_unlock(&kvm->slots_lock); 1892 return r; 1893 } 1894 1895 static void kvmppc_core_flush_memslot_pr(struct kvm *kvm, 1896 struct kvm_memory_slot *memslot) 1897 { 1898 return; 1899 } 1900 1901 static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm, 1902 const struct kvm_memory_slot *old, 1903 struct kvm_memory_slot *new, 1904 enum kvm_mr_change change) 1905 { 1906 return 0; 1907 } 1908 1909 static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm, 1910 struct kvm_memory_slot *old, 1911 const struct kvm_memory_slot *new, 1912 enum kvm_mr_change change) 1913 { 1914 return; 1915 } 1916 1917 static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *slot) 1918 { 1919 return; 1920 } 1921 1922 #ifdef CONFIG_PPC64 1923 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm, 1924 struct kvm_ppc_smmu_info *info) 1925 { 1926 long int i; 1927 struct kvm_vcpu *vcpu; 1928 1929 info->flags = 0; 1930 1931 /* SLB is always 64 entries */ 1932 info->slb_size = 64; 1933 1934 /* Standard 4k base page size segment */ 1935 info->sps[0].page_shift = 12; 1936 info->sps[0].slb_enc = 0; 1937 info->sps[0].enc[0].page_shift = 12; 1938 info->sps[0].enc[0].pte_enc = 0; 1939 1940 /* 1941 * 64k large page size. 1942 * We only want to put this in if the CPUs we're emulating 1943 * support it, but unfortunately we don't have a vcpu easily 1944 * to hand here to test. Just pick the first vcpu, and if 1945 * that doesn't exist yet, report the minimum capability, 1946 * i.e., no 64k pages. 1947 * 1T segment support goes along with 64k pages. 1948 */ 1949 i = 1; 1950 vcpu = kvm_get_vcpu(kvm, 0); 1951 if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) { 1952 info->flags = KVM_PPC_1T_SEGMENTS; 1953 info->sps[i].page_shift = 16; 1954 info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01; 1955 info->sps[i].enc[0].page_shift = 16; 1956 info->sps[i].enc[0].pte_enc = 1; 1957 ++i; 1958 } 1959 1960 /* Standard 16M large page size segment */ 1961 info->sps[i].page_shift = 24; 1962 info->sps[i].slb_enc = SLB_VSID_L; 1963 info->sps[i].enc[0].page_shift = 24; 1964 info->sps[i].enc[0].pte_enc = 0; 1965 1966 return 0; 1967 } 1968 1969 static int kvm_configure_mmu_pr(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg) 1970 { 1971 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1972 return -ENODEV; 1973 /* Require flags and process table base and size to all be zero. */ 1974 if (cfg->flags || cfg->process_table) 1975 return -EINVAL; 1976 return 0; 1977 } 1978 1979 #else 1980 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm, 1981 struct kvm_ppc_smmu_info *info) 1982 { 1983 /* We should not get called */ 1984 BUG(); 1985 return 0; 1986 } 1987 #endif /* CONFIG_PPC64 */ 1988 1989 static unsigned int kvm_global_user_count = 0; 1990 static DEFINE_SPINLOCK(kvm_global_user_count_lock); 1991 1992 static int kvmppc_core_init_vm_pr(struct kvm *kvm) 1993 { 1994 mutex_init(&kvm->arch.hpt_mutex); 1995 1996 #ifdef CONFIG_PPC_BOOK3S_64 1997 /* Start out with the default set of hcalls enabled */ 1998 kvmppc_pr_init_default_hcalls(kvm); 1999 #endif 2000 2001 if (firmware_has_feature(FW_FEATURE_SET_MODE)) { 2002 spin_lock(&kvm_global_user_count_lock); 2003 if (++kvm_global_user_count == 1) 2004 pseries_disable_reloc_on_exc(); 2005 spin_unlock(&kvm_global_user_count_lock); 2006 } 2007 return 0; 2008 } 2009 2010 static void kvmppc_core_destroy_vm_pr(struct kvm *kvm) 2011 { 2012 #ifdef CONFIG_PPC64 2013 WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables)); 2014 #endif 2015 2016 if (firmware_has_feature(FW_FEATURE_SET_MODE)) { 2017 spin_lock(&kvm_global_user_count_lock); 2018 BUG_ON(kvm_global_user_count == 0); 2019 if (--kvm_global_user_count == 0) 2020 pseries_enable_reloc_on_exc(); 2021 spin_unlock(&kvm_global_user_count_lock); 2022 } 2023 } 2024 2025 static int kvmppc_core_check_processor_compat_pr(void) 2026 { 2027 /* 2028 * PR KVM can work on POWER9 inside a guest partition 2029 * running in HPT mode. It can't work if we are using 2030 * radix translation (because radix provides no way for 2031 * a process to have unique translations in quadrant 3). 2032 */ 2033 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled()) 2034 return -EIO; 2035 return 0; 2036 } 2037 2038 static long kvm_arch_vm_ioctl_pr(struct file *filp, 2039 unsigned int ioctl, unsigned long arg) 2040 { 2041 return -ENOTTY; 2042 } 2043 2044 static struct kvmppc_ops kvm_ops_pr = { 2045 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr, 2046 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr, 2047 .get_one_reg = kvmppc_get_one_reg_pr, 2048 .set_one_reg = kvmppc_set_one_reg_pr, 2049 .vcpu_load = kvmppc_core_vcpu_load_pr, 2050 .vcpu_put = kvmppc_core_vcpu_put_pr, 2051 .inject_interrupt = kvmppc_inject_interrupt_pr, 2052 .set_msr = kvmppc_set_msr_pr, 2053 .vcpu_run = kvmppc_vcpu_run_pr, 2054 .vcpu_create = kvmppc_core_vcpu_create_pr, 2055 .vcpu_free = kvmppc_core_vcpu_free_pr, 2056 .check_requests = kvmppc_core_check_requests_pr, 2057 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr, 2058 .flush_memslot = kvmppc_core_flush_memslot_pr, 2059 .prepare_memory_region = kvmppc_core_prepare_memory_region_pr, 2060 .commit_memory_region = kvmppc_core_commit_memory_region_pr, 2061 .unmap_gfn_range = kvm_unmap_gfn_range_pr, 2062 .age_gfn = kvm_age_gfn_pr, 2063 .test_age_gfn = kvm_test_age_gfn_pr, 2064 .set_spte_gfn = kvm_set_spte_gfn_pr, 2065 .free_memslot = kvmppc_core_free_memslot_pr, 2066 .init_vm = kvmppc_core_init_vm_pr, 2067 .destroy_vm = kvmppc_core_destroy_vm_pr, 2068 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr, 2069 .emulate_op = kvmppc_core_emulate_op_pr, 2070 .emulate_mtspr = kvmppc_core_emulate_mtspr_pr, 2071 .emulate_mfspr = kvmppc_core_emulate_mfspr_pr, 2072 .fast_vcpu_kick = kvm_vcpu_kick, 2073 .arch_vm_ioctl = kvm_arch_vm_ioctl_pr, 2074 #ifdef CONFIG_PPC_BOOK3S_64 2075 .hcall_implemented = kvmppc_hcall_impl_pr, 2076 .configure_mmu = kvm_configure_mmu_pr, 2077 #endif 2078 .giveup_ext = kvmppc_giveup_ext, 2079 }; 2080 2081 2082 int kvmppc_book3s_init_pr(void) 2083 { 2084 int r; 2085 2086 r = kvmppc_core_check_processor_compat_pr(); 2087 if (r < 0) 2088 return r; 2089 2090 kvm_ops_pr.owner = THIS_MODULE; 2091 kvmppc_pr_ops = &kvm_ops_pr; 2092 2093 r = kvmppc_mmu_hpte_sysinit(); 2094 return r; 2095 } 2096 2097 void kvmppc_book3s_exit_pr(void) 2098 { 2099 kvmppc_pr_ops = NULL; 2100 kvmppc_mmu_hpte_sysexit(); 2101 } 2102 2103 /* 2104 * We only support separate modules for book3s 64 2105 */ 2106 #ifdef CONFIG_PPC_BOOK3S_64 2107 2108 module_init(kvmppc_book3s_init_pr); 2109 module_exit(kvmppc_book3s_exit_pr); 2110 2111 MODULE_LICENSE("GPL"); 2112 MODULE_ALIAS_MISCDEV(KVM_MINOR); 2113 MODULE_ALIAS("devname:kvm"); 2114 #endif 2115