xref: /openbmc/linux/arch/powerpc/kvm/book3s_pr.c (revision be709d48)
1 /*
2  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
3  *
4  * Authors:
5  *    Alexander Graf <agraf@suse.de>
6  *    Kevin Wolf <mail@kevin-wolf.de>
7  *    Paul Mackerras <paulus@samba.org>
8  *
9  * Description:
10  * Functions relating to running KVM on Book 3S processors where
11  * we don't have access to hypervisor mode, and we run the guest
12  * in problem state (user mode).
13  *
14  * This file is derived from arch/powerpc/kvm/44x.c,
15  * by Hollis Blanchard <hollisb@us.ibm.com>.
16  *
17  * This program is free software; you can redistribute it and/or modify
18  * it under the terms of the GNU General Public License, version 2, as
19  * published by the Free Software Foundation.
20  */
21 
22 #include <linux/kvm_host.h>
23 #include <linux/export.h>
24 #include <linux/err.h>
25 #include <linux/slab.h>
26 
27 #include <asm/reg.h>
28 #include <asm/cputable.h>
29 #include <asm/cacheflush.h>
30 #include <linux/uaccess.h>
31 #include <asm/io.h>
32 #include <asm/kvm_ppc.h>
33 #include <asm/kvm_book3s.h>
34 #include <asm/mmu_context.h>
35 #include <asm/switch_to.h>
36 #include <asm/firmware.h>
37 #include <asm/setup.h>
38 #include <linux/gfp.h>
39 #include <linux/sched.h>
40 #include <linux/vmalloc.h>
41 #include <linux/highmem.h>
42 #include <linux/module.h>
43 #include <linux/miscdevice.h>
44 #include <asm/asm-prototypes.h>
45 #include <asm/tm.h>
46 
47 #include "book3s.h"
48 
49 #define CREATE_TRACE_POINTS
50 #include "trace_pr.h"
51 
52 /* #define EXIT_DEBUG */
53 /* #define DEBUG_EXT */
54 
55 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
56 			     ulong msr);
57 #ifdef CONFIG_PPC_BOOK3S_64
58 static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac);
59 #endif
60 
61 /* Some compatibility defines */
62 #ifdef CONFIG_PPC_BOOK3S_32
63 #define MSR_USER32 MSR_USER
64 #define MSR_USER64 MSR_USER
65 #define HW_PAGE_SIZE PAGE_SIZE
66 #define HPTE_R_M   _PAGE_COHERENT
67 #endif
68 
69 static bool kvmppc_is_split_real(struct kvm_vcpu *vcpu)
70 {
71 	ulong msr = kvmppc_get_msr(vcpu);
72 	return (msr & (MSR_IR|MSR_DR)) == MSR_DR;
73 }
74 
75 static void kvmppc_fixup_split_real(struct kvm_vcpu *vcpu)
76 {
77 	ulong msr = kvmppc_get_msr(vcpu);
78 	ulong pc = kvmppc_get_pc(vcpu);
79 
80 	/* We are in DR only split real mode */
81 	if ((msr & (MSR_IR|MSR_DR)) != MSR_DR)
82 		return;
83 
84 	/* We have not fixed up the guest already */
85 	if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK)
86 		return;
87 
88 	/* The code is in fixupable address space */
89 	if (pc & SPLIT_HACK_MASK)
90 		return;
91 
92 	vcpu->arch.hflags |= BOOK3S_HFLAG_SPLIT_HACK;
93 	kvmppc_set_pc(vcpu, pc | SPLIT_HACK_OFFS);
94 }
95 
96 void kvmppc_unfixup_split_real(struct kvm_vcpu *vcpu);
97 
98 static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu)
99 {
100 #ifdef CONFIG_PPC_BOOK3S_64
101 	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
102 	memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb));
103 	svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max;
104 	svcpu->in_use = 0;
105 	svcpu_put(svcpu);
106 #endif
107 
108 	/* Disable AIL if supported */
109 	if (cpu_has_feature(CPU_FTR_HVMODE) &&
110 	    cpu_has_feature(CPU_FTR_ARCH_207S))
111 		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_AIL);
112 
113 	vcpu->cpu = smp_processor_id();
114 #ifdef CONFIG_PPC_BOOK3S_32
115 	current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu;
116 #endif
117 
118 	if (kvmppc_is_split_real(vcpu))
119 		kvmppc_fixup_split_real(vcpu);
120 
121 	kvmppc_restore_tm_pr(vcpu);
122 }
123 
124 static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu)
125 {
126 #ifdef CONFIG_PPC_BOOK3S_64
127 	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
128 	if (svcpu->in_use) {
129 		kvmppc_copy_from_svcpu(vcpu);
130 	}
131 	memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb));
132 	to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max;
133 	svcpu_put(svcpu);
134 #endif
135 
136 	if (kvmppc_is_split_real(vcpu))
137 		kvmppc_unfixup_split_real(vcpu);
138 
139 	kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
140 	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
141 	kvmppc_save_tm_pr(vcpu);
142 
143 	/* Enable AIL if supported */
144 	if (cpu_has_feature(CPU_FTR_HVMODE) &&
145 	    cpu_has_feature(CPU_FTR_ARCH_207S))
146 		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_AIL_3);
147 
148 	vcpu->cpu = -1;
149 }
150 
151 /* Copy data needed by real-mode code from vcpu to shadow vcpu */
152 void kvmppc_copy_to_svcpu(struct kvm_vcpu *vcpu)
153 {
154 	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
155 
156 	svcpu->gpr[0] = vcpu->arch.regs.gpr[0];
157 	svcpu->gpr[1] = vcpu->arch.regs.gpr[1];
158 	svcpu->gpr[2] = vcpu->arch.regs.gpr[2];
159 	svcpu->gpr[3] = vcpu->arch.regs.gpr[3];
160 	svcpu->gpr[4] = vcpu->arch.regs.gpr[4];
161 	svcpu->gpr[5] = vcpu->arch.regs.gpr[5];
162 	svcpu->gpr[6] = vcpu->arch.regs.gpr[6];
163 	svcpu->gpr[7] = vcpu->arch.regs.gpr[7];
164 	svcpu->gpr[8] = vcpu->arch.regs.gpr[8];
165 	svcpu->gpr[9] = vcpu->arch.regs.gpr[9];
166 	svcpu->gpr[10] = vcpu->arch.regs.gpr[10];
167 	svcpu->gpr[11] = vcpu->arch.regs.gpr[11];
168 	svcpu->gpr[12] = vcpu->arch.regs.gpr[12];
169 	svcpu->gpr[13] = vcpu->arch.regs.gpr[13];
170 	svcpu->cr  = vcpu->arch.regs.ccr;
171 	svcpu->xer = vcpu->arch.regs.xer;
172 	svcpu->ctr = vcpu->arch.regs.ctr;
173 	svcpu->lr  = vcpu->arch.regs.link;
174 	svcpu->pc  = vcpu->arch.regs.nip;
175 #ifdef CONFIG_PPC_BOOK3S_64
176 	svcpu->shadow_fscr = vcpu->arch.shadow_fscr;
177 #endif
178 	/*
179 	 * Now also save the current time base value. We use this
180 	 * to find the guest purr and spurr value.
181 	 */
182 	vcpu->arch.entry_tb = get_tb();
183 	vcpu->arch.entry_vtb = get_vtb();
184 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
185 		vcpu->arch.entry_ic = mfspr(SPRN_IC);
186 	svcpu->in_use = true;
187 
188 	svcpu_put(svcpu);
189 }
190 
191 static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
192 {
193 	ulong guest_msr = kvmppc_get_msr(vcpu);
194 	ulong smsr = guest_msr;
195 
196 	/* Guest MSR values */
197 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
198 	smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE |
199 		MSR_TM | MSR_TS_MASK;
200 #else
201 	smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE;
202 #endif
203 	/* Process MSR values */
204 	smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE;
205 	/* External providers the guest reserved */
206 	smsr |= (guest_msr & vcpu->arch.guest_owned_ext);
207 	/* 64-bit Process MSR values */
208 #ifdef CONFIG_PPC_BOOK3S_64
209 	smsr |= MSR_ISF | MSR_HV;
210 #endif
211 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
212 	/*
213 	 * in guest privileged state, we want to fail all TM transactions.
214 	 * So disable MSR TM bit so that all tbegin. will be able to be
215 	 * trapped into host.
216 	 */
217 	if (!(guest_msr & MSR_PR))
218 		smsr &= ~MSR_TM;
219 #endif
220 	vcpu->arch.shadow_msr = smsr;
221 }
222 
223 /* Copy data touched by real-mode code from shadow vcpu back to vcpu */
224 void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu)
225 {
226 	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
227 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
228 	ulong old_msr;
229 #endif
230 
231 	/*
232 	 * Maybe we were already preempted and synced the svcpu from
233 	 * our preempt notifiers. Don't bother touching this svcpu then.
234 	 */
235 	if (!svcpu->in_use)
236 		goto out;
237 
238 	vcpu->arch.regs.gpr[0] = svcpu->gpr[0];
239 	vcpu->arch.regs.gpr[1] = svcpu->gpr[1];
240 	vcpu->arch.regs.gpr[2] = svcpu->gpr[2];
241 	vcpu->arch.regs.gpr[3] = svcpu->gpr[3];
242 	vcpu->arch.regs.gpr[4] = svcpu->gpr[4];
243 	vcpu->arch.regs.gpr[5] = svcpu->gpr[5];
244 	vcpu->arch.regs.gpr[6] = svcpu->gpr[6];
245 	vcpu->arch.regs.gpr[7] = svcpu->gpr[7];
246 	vcpu->arch.regs.gpr[8] = svcpu->gpr[8];
247 	vcpu->arch.regs.gpr[9] = svcpu->gpr[9];
248 	vcpu->arch.regs.gpr[10] = svcpu->gpr[10];
249 	vcpu->arch.regs.gpr[11] = svcpu->gpr[11];
250 	vcpu->arch.regs.gpr[12] = svcpu->gpr[12];
251 	vcpu->arch.regs.gpr[13] = svcpu->gpr[13];
252 	vcpu->arch.regs.ccr  = svcpu->cr;
253 	vcpu->arch.regs.xer = svcpu->xer;
254 	vcpu->arch.regs.ctr = svcpu->ctr;
255 	vcpu->arch.regs.link  = svcpu->lr;
256 	vcpu->arch.regs.nip  = svcpu->pc;
257 	vcpu->arch.shadow_srr1 = svcpu->shadow_srr1;
258 	vcpu->arch.fault_dar   = svcpu->fault_dar;
259 	vcpu->arch.fault_dsisr = svcpu->fault_dsisr;
260 	vcpu->arch.last_inst   = svcpu->last_inst;
261 #ifdef CONFIG_PPC_BOOK3S_64
262 	vcpu->arch.shadow_fscr = svcpu->shadow_fscr;
263 #endif
264 	/*
265 	 * Update purr and spurr using time base on exit.
266 	 */
267 	vcpu->arch.purr += get_tb() - vcpu->arch.entry_tb;
268 	vcpu->arch.spurr += get_tb() - vcpu->arch.entry_tb;
269 	to_book3s(vcpu)->vtb += get_vtb() - vcpu->arch.entry_vtb;
270 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
271 		vcpu->arch.ic += mfspr(SPRN_IC) - vcpu->arch.entry_ic;
272 
273 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
274 	/*
275 	 * Unlike other MSR bits, MSR[TS]bits can be changed at guest without
276 	 * notifying host:
277 	 *  modified by unprivileged instructions like "tbegin"/"tend"/
278 	 * "tresume"/"tsuspend" in PR KVM guest.
279 	 *
280 	 * It is necessary to sync here to calculate a correct shadow_msr.
281 	 *
282 	 * privileged guest's tbegin will be failed at present. So we
283 	 * only take care of problem state guest.
284 	 */
285 	old_msr = kvmppc_get_msr(vcpu);
286 	if (unlikely((old_msr & MSR_PR) &&
287 		(vcpu->arch.shadow_srr1 & (MSR_TS_MASK)) !=
288 				(old_msr & (MSR_TS_MASK)))) {
289 		old_msr &= ~(MSR_TS_MASK);
290 		old_msr |= (vcpu->arch.shadow_srr1 & (MSR_TS_MASK));
291 		kvmppc_set_msr_fast(vcpu, old_msr);
292 		kvmppc_recalc_shadow_msr(vcpu);
293 	}
294 #endif
295 
296 	svcpu->in_use = false;
297 
298 out:
299 	svcpu_put(svcpu);
300 }
301 
302 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
303 void kvmppc_save_tm_sprs(struct kvm_vcpu *vcpu)
304 {
305 	tm_enable();
306 	vcpu->arch.tfhar = mfspr(SPRN_TFHAR);
307 	vcpu->arch.texasr = mfspr(SPRN_TEXASR);
308 	vcpu->arch.tfiar = mfspr(SPRN_TFIAR);
309 	tm_disable();
310 }
311 
312 void kvmppc_restore_tm_sprs(struct kvm_vcpu *vcpu)
313 {
314 	tm_enable();
315 	mtspr(SPRN_TFHAR, vcpu->arch.tfhar);
316 	mtspr(SPRN_TEXASR, vcpu->arch.texasr);
317 	mtspr(SPRN_TFIAR, vcpu->arch.tfiar);
318 	tm_disable();
319 }
320 
321 /* loadup math bits which is enabled at kvmppc_get_msr() but not enabled at
322  * hardware.
323  */
324 static void kvmppc_handle_lost_math_exts(struct kvm_vcpu *vcpu)
325 {
326 	ulong exit_nr;
327 	ulong ext_diff = (kvmppc_get_msr(vcpu) & ~vcpu->arch.guest_owned_ext) &
328 		(MSR_FP | MSR_VEC | MSR_VSX);
329 
330 	if (!ext_diff)
331 		return;
332 
333 	if (ext_diff == MSR_FP)
334 		exit_nr = BOOK3S_INTERRUPT_FP_UNAVAIL;
335 	else if (ext_diff == MSR_VEC)
336 		exit_nr = BOOK3S_INTERRUPT_ALTIVEC;
337 	else
338 		exit_nr = BOOK3S_INTERRUPT_VSX;
339 
340 	kvmppc_handle_ext(vcpu, exit_nr, ext_diff);
341 }
342 
343 void kvmppc_save_tm_pr(struct kvm_vcpu *vcpu)
344 {
345 	if (!(MSR_TM_ACTIVE(kvmppc_get_msr(vcpu)))) {
346 		kvmppc_save_tm_sprs(vcpu);
347 		return;
348 	}
349 
350 	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
351 	kvmppc_giveup_ext(vcpu, MSR_VSX);
352 
353 	preempt_disable();
354 	_kvmppc_save_tm_pr(vcpu, mfmsr());
355 	preempt_enable();
356 }
357 
358 void kvmppc_restore_tm_pr(struct kvm_vcpu *vcpu)
359 {
360 	if (!MSR_TM_ACTIVE(kvmppc_get_msr(vcpu))) {
361 		kvmppc_restore_tm_sprs(vcpu);
362 		if (kvmppc_get_msr(vcpu) & MSR_TM) {
363 			kvmppc_handle_lost_math_exts(vcpu);
364 			if (vcpu->arch.fscr & FSCR_TAR)
365 				kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
366 		}
367 		return;
368 	}
369 
370 	preempt_disable();
371 	_kvmppc_restore_tm_pr(vcpu, kvmppc_get_msr(vcpu));
372 	preempt_enable();
373 
374 	if (kvmppc_get_msr(vcpu) & MSR_TM) {
375 		kvmppc_handle_lost_math_exts(vcpu);
376 		if (vcpu->arch.fscr & FSCR_TAR)
377 			kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
378 	}
379 }
380 #endif
381 
382 static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu)
383 {
384 	int r = 1; /* Indicate we want to get back into the guest */
385 
386 	/* We misuse TLB_FLUSH to indicate that we want to clear
387 	   all shadow cache entries */
388 	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
389 		kvmppc_mmu_pte_flush(vcpu, 0, 0);
390 
391 	return r;
392 }
393 
394 /************* MMU Notifiers *************/
395 static void do_kvm_unmap_hva(struct kvm *kvm, unsigned long start,
396 			     unsigned long end)
397 {
398 	long i;
399 	struct kvm_vcpu *vcpu;
400 	struct kvm_memslots *slots;
401 	struct kvm_memory_slot *memslot;
402 
403 	slots = kvm_memslots(kvm);
404 	kvm_for_each_memslot(memslot, slots) {
405 		unsigned long hva_start, hva_end;
406 		gfn_t gfn, gfn_end;
407 
408 		hva_start = max(start, memslot->userspace_addr);
409 		hva_end = min(end, memslot->userspace_addr +
410 					(memslot->npages << PAGE_SHIFT));
411 		if (hva_start >= hva_end)
412 			continue;
413 		/*
414 		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
415 		 * {gfn, gfn+1, ..., gfn_end-1}.
416 		 */
417 		gfn = hva_to_gfn_memslot(hva_start, memslot);
418 		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
419 		kvm_for_each_vcpu(i, vcpu, kvm)
420 			kvmppc_mmu_pte_pflush(vcpu, gfn << PAGE_SHIFT,
421 					      gfn_end << PAGE_SHIFT);
422 	}
423 }
424 
425 static int kvm_unmap_hva_range_pr(struct kvm *kvm, unsigned long start,
426 				  unsigned long end)
427 {
428 	do_kvm_unmap_hva(kvm, start, end);
429 
430 	return 0;
431 }
432 
433 static int kvm_age_hva_pr(struct kvm *kvm, unsigned long start,
434 			  unsigned long end)
435 {
436 	/* XXX could be more clever ;) */
437 	return 0;
438 }
439 
440 static int kvm_test_age_hva_pr(struct kvm *kvm, unsigned long hva)
441 {
442 	/* XXX could be more clever ;) */
443 	return 0;
444 }
445 
446 static void kvm_set_spte_hva_pr(struct kvm *kvm, unsigned long hva, pte_t pte)
447 {
448 	/* The page will get remapped properly on its next fault */
449 	do_kvm_unmap_hva(kvm, hva, hva + PAGE_SIZE);
450 }
451 
452 /*****************************************/
453 
454 static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr)
455 {
456 	ulong old_msr;
457 
458 	/* For PAPR guest, make sure MSR reflects guest mode */
459 	if (vcpu->arch.papr_enabled)
460 		msr = (msr & ~MSR_HV) | MSR_ME;
461 
462 #ifdef EXIT_DEBUG
463 	printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
464 #endif
465 
466 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
467 	/* We should never target guest MSR to TS=10 && PR=0,
468 	 * since we always fail transaction for guest privilege
469 	 * state.
470 	 */
471 	if (!(msr & MSR_PR) && MSR_TM_TRANSACTIONAL(msr))
472 		kvmppc_emulate_tabort(vcpu,
473 			TM_CAUSE_KVM_FAC_UNAV | TM_CAUSE_PERSISTENT);
474 #endif
475 
476 	old_msr = kvmppc_get_msr(vcpu);
477 	msr &= to_book3s(vcpu)->msr_mask;
478 	kvmppc_set_msr_fast(vcpu, msr);
479 	kvmppc_recalc_shadow_msr(vcpu);
480 
481 	if (msr & MSR_POW) {
482 		if (!vcpu->arch.pending_exceptions) {
483 			kvm_vcpu_block(vcpu);
484 			kvm_clear_request(KVM_REQ_UNHALT, vcpu);
485 			vcpu->stat.halt_wakeup++;
486 
487 			/* Unset POW bit after we woke up */
488 			msr &= ~MSR_POW;
489 			kvmppc_set_msr_fast(vcpu, msr);
490 		}
491 	}
492 
493 	if (kvmppc_is_split_real(vcpu))
494 		kvmppc_fixup_split_real(vcpu);
495 	else
496 		kvmppc_unfixup_split_real(vcpu);
497 
498 	if ((kvmppc_get_msr(vcpu) & (MSR_PR|MSR_IR|MSR_DR)) !=
499 		   (old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
500 		kvmppc_mmu_flush_segments(vcpu);
501 		kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
502 
503 		/* Preload magic page segment when in kernel mode */
504 		if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) {
505 			struct kvm_vcpu_arch *a = &vcpu->arch;
506 
507 			if (msr & MSR_DR)
508 				kvmppc_mmu_map_segment(vcpu, a->magic_page_ea);
509 			else
510 				kvmppc_mmu_map_segment(vcpu, a->magic_page_pa);
511 		}
512 	}
513 
514 	/*
515 	 * When switching from 32 to 64-bit, we may have a stale 32-bit
516 	 * magic page around, we need to flush it. Typically 32-bit magic
517 	 * page will be instantiated when calling into RTAS. Note: We
518 	 * assume that such transition only happens while in kernel mode,
519 	 * ie, we never transition from user 32-bit to kernel 64-bit with
520 	 * a 32-bit magic page around.
521 	 */
522 	if (vcpu->arch.magic_page_pa &&
523 	    !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) {
524 		/* going from RTAS to normal kernel code */
525 		kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa,
526 				     ~0xFFFUL);
527 	}
528 
529 	/* Preload FPU if it's enabled */
530 	if (kvmppc_get_msr(vcpu) & MSR_FP)
531 		kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
532 
533 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
534 	if (kvmppc_get_msr(vcpu) & MSR_TM)
535 		kvmppc_handle_lost_math_exts(vcpu);
536 #endif
537 }
538 
539 void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr)
540 {
541 	u32 host_pvr;
542 
543 	vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
544 	vcpu->arch.pvr = pvr;
545 #ifdef CONFIG_PPC_BOOK3S_64
546 	if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
547 		kvmppc_mmu_book3s_64_init(vcpu);
548 		if (!to_book3s(vcpu)->hior_explicit)
549 			to_book3s(vcpu)->hior = 0xfff00000;
550 		to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
551 		vcpu->arch.cpu_type = KVM_CPU_3S_64;
552 	} else
553 #endif
554 	{
555 		kvmppc_mmu_book3s_32_init(vcpu);
556 		if (!to_book3s(vcpu)->hior_explicit)
557 			to_book3s(vcpu)->hior = 0;
558 		to_book3s(vcpu)->msr_mask = 0xffffffffULL;
559 		vcpu->arch.cpu_type = KVM_CPU_3S_32;
560 	}
561 
562 	kvmppc_sanity_check(vcpu);
563 
564 	/* If we are in hypervisor level on 970, we can tell the CPU to
565 	 * treat DCBZ as 32 bytes store */
566 	vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
567 	if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
568 	    !strcmp(cur_cpu_spec->platform, "ppc970"))
569 		vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
570 
571 	/* Cell performs badly if MSR_FEx are set. So let's hope nobody
572 	   really needs them in a VM on Cell and force disable them. */
573 	if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
574 		to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);
575 
576 	/*
577 	 * If they're asking for POWER6 or later, set the flag
578 	 * indicating that we can do multiple large page sizes
579 	 * and 1TB segments.
580 	 * Also set the flag that indicates that tlbie has the large
581 	 * page bit in the RB operand instead of the instruction.
582 	 */
583 	switch (PVR_VER(pvr)) {
584 	case PVR_POWER6:
585 	case PVR_POWER7:
586 	case PVR_POWER7p:
587 	case PVR_POWER8:
588 	case PVR_POWER8E:
589 	case PVR_POWER8NVL:
590 	case PVR_POWER9:
591 		vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE |
592 			BOOK3S_HFLAG_NEW_TLBIE;
593 		break;
594 	}
595 
596 #ifdef CONFIG_PPC_BOOK3S_32
597 	/* 32 bit Book3S always has 32 byte dcbz */
598 	vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
599 #endif
600 
601 	/* On some CPUs we can execute paired single operations natively */
602 	asm ( "mfpvr %0" : "=r"(host_pvr));
603 	switch (host_pvr) {
604 	case 0x00080200:	/* lonestar 2.0 */
605 	case 0x00088202:	/* lonestar 2.2 */
606 	case 0x70000100:	/* gekko 1.0 */
607 	case 0x00080100:	/* gekko 2.0 */
608 	case 0x00083203:	/* gekko 2.3a */
609 	case 0x00083213:	/* gekko 2.3b */
610 	case 0x00083204:	/* gekko 2.4 */
611 	case 0x00083214:	/* gekko 2.4e (8SE) - retail HW2 */
612 	case 0x00087200:	/* broadway */
613 		vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
614 		/* Enable HID2.PSE - in case we need it later */
615 		mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
616 	}
617 }
618 
619 /* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
620  * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
621  * emulate 32 bytes dcbz length.
622  *
623  * The Book3s_64 inventors also realized this case and implemented a special bit
624  * in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
625  *
626  * My approach here is to patch the dcbz instruction on executing pages.
627  */
628 static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
629 {
630 	struct page *hpage;
631 	u64 hpage_offset;
632 	u32 *page;
633 	int i;
634 
635 	hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
636 	if (is_error_page(hpage))
637 		return;
638 
639 	hpage_offset = pte->raddr & ~PAGE_MASK;
640 	hpage_offset &= ~0xFFFULL;
641 	hpage_offset /= 4;
642 
643 	get_page(hpage);
644 	page = kmap_atomic(hpage);
645 
646 	/* patch dcbz into reserved instruction, so we trap */
647 	for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
648 		if ((be32_to_cpu(page[i]) & 0xff0007ff) == INS_DCBZ)
649 			page[i] &= cpu_to_be32(0xfffffff7);
650 
651 	kunmap_atomic(page);
652 	put_page(hpage);
653 }
654 
655 static bool kvmppc_visible_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
656 {
657 	ulong mp_pa = vcpu->arch.magic_page_pa;
658 
659 	if (!(kvmppc_get_msr(vcpu) & MSR_SF))
660 		mp_pa = (uint32_t)mp_pa;
661 
662 	gpa &= ~0xFFFULL;
663 	if (unlikely(mp_pa) && unlikely((mp_pa & KVM_PAM) == (gpa & KVM_PAM))) {
664 		return true;
665 	}
666 
667 	return kvm_is_visible_gfn(vcpu->kvm, gpa >> PAGE_SHIFT);
668 }
669 
670 int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu,
671 			    ulong eaddr, int vec)
672 {
673 	bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
674 	bool iswrite = false;
675 	int r = RESUME_GUEST;
676 	int relocated;
677 	int page_found = 0;
678 	struct kvmppc_pte pte = { 0 };
679 	bool dr = (kvmppc_get_msr(vcpu) & MSR_DR) ? true : false;
680 	bool ir = (kvmppc_get_msr(vcpu) & MSR_IR) ? true : false;
681 	u64 vsid;
682 
683 	relocated = data ? dr : ir;
684 	if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE))
685 		iswrite = true;
686 
687 	/* Resolve real address if translation turned on */
688 	if (relocated) {
689 		page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite);
690 	} else {
691 		pte.may_execute = true;
692 		pte.may_read = true;
693 		pte.may_write = true;
694 		pte.raddr = eaddr & KVM_PAM;
695 		pte.eaddr = eaddr;
696 		pte.vpage = eaddr >> 12;
697 		pte.page_size = MMU_PAGE_64K;
698 		pte.wimg = HPTE_R_M;
699 	}
700 
701 	switch (kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) {
702 	case 0:
703 		pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
704 		break;
705 	case MSR_DR:
706 		if (!data &&
707 		    (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) &&
708 		    ((pte.raddr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS))
709 			pte.raddr &= ~SPLIT_HACK_MASK;
710 		/* fall through */
711 	case MSR_IR:
712 		vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);
713 
714 		if ((kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) == MSR_DR)
715 			pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
716 		else
717 			pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
718 		pte.vpage |= vsid;
719 
720 		if (vsid == -1)
721 			page_found = -EINVAL;
722 		break;
723 	}
724 
725 	if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
726 	   (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
727 		/*
728 		 * If we do the dcbz hack, we have to NX on every execution,
729 		 * so we can patch the executing code. This renders our guest
730 		 * NX-less.
731 		 */
732 		pte.may_execute = !data;
733 	}
734 
735 	if (page_found == -ENOENT || page_found == -EPERM) {
736 		/* Page not found in guest PTE entries, or protection fault */
737 		u64 flags;
738 
739 		if (page_found == -EPERM)
740 			flags = DSISR_PROTFAULT;
741 		else
742 			flags = DSISR_NOHPTE;
743 		if (data) {
744 			flags |= vcpu->arch.fault_dsisr & DSISR_ISSTORE;
745 			kvmppc_core_queue_data_storage(vcpu, eaddr, flags);
746 		} else {
747 			kvmppc_core_queue_inst_storage(vcpu, flags);
748 		}
749 	} else if (page_found == -EINVAL) {
750 		/* Page not found in guest SLB */
751 		kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
752 		kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
753 	} else if (kvmppc_visible_gpa(vcpu, pte.raddr)) {
754 		if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) {
755 			/*
756 			 * There is already a host HPTE there, presumably
757 			 * a read-only one for a page the guest thinks
758 			 * is writable, so get rid of it first.
759 			 */
760 			kvmppc_mmu_unmap_page(vcpu, &pte);
761 		}
762 		/* The guest's PTE is not mapped yet. Map on the host */
763 		if (kvmppc_mmu_map_page(vcpu, &pte, iswrite) == -EIO) {
764 			/* Exit KVM if mapping failed */
765 			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
766 			return RESUME_HOST;
767 		}
768 		if (data)
769 			vcpu->stat.sp_storage++;
770 		else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
771 			 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
772 			kvmppc_patch_dcbz(vcpu, &pte);
773 	} else {
774 		/* MMIO */
775 		vcpu->stat.mmio_exits++;
776 		vcpu->arch.paddr_accessed = pte.raddr;
777 		vcpu->arch.vaddr_accessed = pte.eaddr;
778 		r = kvmppc_emulate_mmio(run, vcpu);
779 		if ( r == RESUME_HOST_NV )
780 			r = RESUME_HOST;
781 	}
782 
783 	return r;
784 }
785 
786 /* Give up external provider (FPU, Altivec, VSX) */
787 void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
788 {
789 	struct thread_struct *t = &current->thread;
790 
791 	/*
792 	 * VSX instructions can access FP and vector registers, so if
793 	 * we are giving up VSX, make sure we give up FP and VMX as well.
794 	 */
795 	if (msr & MSR_VSX)
796 		msr |= MSR_FP | MSR_VEC;
797 
798 	msr &= vcpu->arch.guest_owned_ext;
799 	if (!msr)
800 		return;
801 
802 #ifdef DEBUG_EXT
803 	printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
804 #endif
805 
806 	if (msr & MSR_FP) {
807 		/*
808 		 * Note that on CPUs with VSX, giveup_fpu stores
809 		 * both the traditional FP registers and the added VSX
810 		 * registers into thread.fp_state.fpr[].
811 		 */
812 		if (t->regs->msr & MSR_FP)
813 			giveup_fpu(current);
814 		t->fp_save_area = NULL;
815 	}
816 
817 #ifdef CONFIG_ALTIVEC
818 	if (msr & MSR_VEC) {
819 		if (current->thread.regs->msr & MSR_VEC)
820 			giveup_altivec(current);
821 		t->vr_save_area = NULL;
822 	}
823 #endif
824 
825 	vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX);
826 	kvmppc_recalc_shadow_msr(vcpu);
827 }
828 
829 /* Give up facility (TAR / EBB / DSCR) */
830 void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac)
831 {
832 #ifdef CONFIG_PPC_BOOK3S_64
833 	if (!(vcpu->arch.shadow_fscr & (1ULL << fac))) {
834 		/* Facility not available to the guest, ignore giveup request*/
835 		return;
836 	}
837 
838 	switch (fac) {
839 	case FSCR_TAR_LG:
840 		vcpu->arch.tar = mfspr(SPRN_TAR);
841 		mtspr(SPRN_TAR, current->thread.tar);
842 		vcpu->arch.shadow_fscr &= ~FSCR_TAR;
843 		break;
844 	}
845 #endif
846 }
847 
848 /* Handle external providers (FPU, Altivec, VSX) */
849 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
850 			     ulong msr)
851 {
852 	struct thread_struct *t = &current->thread;
853 
854 	/* When we have paired singles, we emulate in software */
855 	if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
856 		return RESUME_GUEST;
857 
858 	if (!(kvmppc_get_msr(vcpu) & msr)) {
859 		kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
860 		return RESUME_GUEST;
861 	}
862 
863 	if (msr == MSR_VSX) {
864 		/* No VSX?  Give an illegal instruction interrupt */
865 #ifdef CONFIG_VSX
866 		if (!cpu_has_feature(CPU_FTR_VSX))
867 #endif
868 		{
869 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
870 			return RESUME_GUEST;
871 		}
872 
873 		/*
874 		 * We have to load up all the FP and VMX registers before
875 		 * we can let the guest use VSX instructions.
876 		 */
877 		msr = MSR_FP | MSR_VEC | MSR_VSX;
878 	}
879 
880 	/* See if we already own all the ext(s) needed */
881 	msr &= ~vcpu->arch.guest_owned_ext;
882 	if (!msr)
883 		return RESUME_GUEST;
884 
885 #ifdef DEBUG_EXT
886 	printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
887 #endif
888 
889 	if (msr & MSR_FP) {
890 		preempt_disable();
891 		enable_kernel_fp();
892 		load_fp_state(&vcpu->arch.fp);
893 		disable_kernel_fp();
894 		t->fp_save_area = &vcpu->arch.fp;
895 		preempt_enable();
896 	}
897 
898 	if (msr & MSR_VEC) {
899 #ifdef CONFIG_ALTIVEC
900 		preempt_disable();
901 		enable_kernel_altivec();
902 		load_vr_state(&vcpu->arch.vr);
903 		disable_kernel_altivec();
904 		t->vr_save_area = &vcpu->arch.vr;
905 		preempt_enable();
906 #endif
907 	}
908 
909 	t->regs->msr |= msr;
910 	vcpu->arch.guest_owned_ext |= msr;
911 	kvmppc_recalc_shadow_msr(vcpu);
912 
913 	return RESUME_GUEST;
914 }
915 
916 /*
917  * Kernel code using FP or VMX could have flushed guest state to
918  * the thread_struct; if so, get it back now.
919  */
920 static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu)
921 {
922 	unsigned long lost_ext;
923 
924 	lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr;
925 	if (!lost_ext)
926 		return;
927 
928 	if (lost_ext & MSR_FP) {
929 		preempt_disable();
930 		enable_kernel_fp();
931 		load_fp_state(&vcpu->arch.fp);
932 		disable_kernel_fp();
933 		preempt_enable();
934 	}
935 #ifdef CONFIG_ALTIVEC
936 	if (lost_ext & MSR_VEC) {
937 		preempt_disable();
938 		enable_kernel_altivec();
939 		load_vr_state(&vcpu->arch.vr);
940 		disable_kernel_altivec();
941 		preempt_enable();
942 	}
943 #endif
944 	current->thread.regs->msr |= lost_ext;
945 }
946 
947 #ifdef CONFIG_PPC_BOOK3S_64
948 
949 void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac)
950 {
951 	/* Inject the Interrupt Cause field and trigger a guest interrupt */
952 	vcpu->arch.fscr &= ~(0xffULL << 56);
953 	vcpu->arch.fscr |= (fac << 56);
954 	kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL);
955 }
956 
957 static void kvmppc_emulate_fac(struct kvm_vcpu *vcpu, ulong fac)
958 {
959 	enum emulation_result er = EMULATE_FAIL;
960 
961 	if (!(kvmppc_get_msr(vcpu) & MSR_PR))
962 		er = kvmppc_emulate_instruction(vcpu->run, vcpu);
963 
964 	if ((er != EMULATE_DONE) && (er != EMULATE_AGAIN)) {
965 		/* Couldn't emulate, trigger interrupt in guest */
966 		kvmppc_trigger_fac_interrupt(vcpu, fac);
967 	}
968 }
969 
970 /* Enable facilities (TAR, EBB, DSCR) for the guest */
971 static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac)
972 {
973 	bool guest_fac_enabled;
974 	BUG_ON(!cpu_has_feature(CPU_FTR_ARCH_207S));
975 
976 	/*
977 	 * Not every facility is enabled by FSCR bits, check whether the
978 	 * guest has this facility enabled at all.
979 	 */
980 	switch (fac) {
981 	case FSCR_TAR_LG:
982 	case FSCR_EBB_LG:
983 		guest_fac_enabled = (vcpu->arch.fscr & (1ULL << fac));
984 		break;
985 	case FSCR_TM_LG:
986 		guest_fac_enabled = kvmppc_get_msr(vcpu) & MSR_TM;
987 		break;
988 	default:
989 		guest_fac_enabled = false;
990 		break;
991 	}
992 
993 	if (!guest_fac_enabled) {
994 		/* Facility not enabled by the guest */
995 		kvmppc_trigger_fac_interrupt(vcpu, fac);
996 		return RESUME_GUEST;
997 	}
998 
999 	switch (fac) {
1000 	case FSCR_TAR_LG:
1001 		/* TAR switching isn't lazy in Linux yet */
1002 		current->thread.tar = mfspr(SPRN_TAR);
1003 		mtspr(SPRN_TAR, vcpu->arch.tar);
1004 		vcpu->arch.shadow_fscr |= FSCR_TAR;
1005 		break;
1006 	default:
1007 		kvmppc_emulate_fac(vcpu, fac);
1008 		break;
1009 	}
1010 
1011 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1012 	/* Since we disabled MSR_TM at privilege state, the mfspr instruction
1013 	 * for TM spr can trigger TM fac unavailable. In this case, the
1014 	 * emulation is handled by kvmppc_emulate_fac(), which invokes
1015 	 * kvmppc_emulate_mfspr() finally. But note the mfspr can include
1016 	 * RT for NV registers. So it need to restore those NV reg to reflect
1017 	 * the update.
1018 	 */
1019 	if ((fac == FSCR_TM_LG) && !(kvmppc_get_msr(vcpu) & MSR_PR))
1020 		return RESUME_GUEST_NV;
1021 #endif
1022 
1023 	return RESUME_GUEST;
1024 }
1025 
1026 void kvmppc_set_fscr(struct kvm_vcpu *vcpu, u64 fscr)
1027 {
1028 	if ((vcpu->arch.fscr & FSCR_TAR) && !(fscr & FSCR_TAR)) {
1029 		/* TAR got dropped, drop it in shadow too */
1030 		kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
1031 	} else if (!(vcpu->arch.fscr & FSCR_TAR) && (fscr & FSCR_TAR)) {
1032 		vcpu->arch.fscr = fscr;
1033 		kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
1034 		return;
1035 	}
1036 
1037 	vcpu->arch.fscr = fscr;
1038 }
1039 #endif
1040 
1041 static void kvmppc_setup_debug(struct kvm_vcpu *vcpu)
1042 {
1043 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1044 		u64 msr = kvmppc_get_msr(vcpu);
1045 
1046 		kvmppc_set_msr(vcpu, msr | MSR_SE);
1047 	}
1048 }
1049 
1050 static void kvmppc_clear_debug(struct kvm_vcpu *vcpu)
1051 {
1052 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1053 		u64 msr = kvmppc_get_msr(vcpu);
1054 
1055 		kvmppc_set_msr(vcpu, msr & ~MSR_SE);
1056 	}
1057 }
1058 
1059 static int kvmppc_exit_pr_progint(struct kvm_run *run, struct kvm_vcpu *vcpu,
1060 				  unsigned int exit_nr)
1061 {
1062 	enum emulation_result er;
1063 	ulong flags;
1064 	u32 last_inst;
1065 	int emul, r;
1066 
1067 	/*
1068 	 * shadow_srr1 only contains valid flags if we came here via a program
1069 	 * exception. The other exceptions (emulation assist, FP unavailable,
1070 	 * etc.) do not provide flags in SRR1, so use an illegal-instruction
1071 	 * exception when injecting a program interrupt into the guest.
1072 	 */
1073 	if (exit_nr == BOOK3S_INTERRUPT_PROGRAM)
1074 		flags = vcpu->arch.shadow_srr1 & 0x1f0000ull;
1075 	else
1076 		flags = SRR1_PROGILL;
1077 
1078 	emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1079 	if (emul != EMULATE_DONE)
1080 		return RESUME_GUEST;
1081 
1082 	if (kvmppc_get_msr(vcpu) & MSR_PR) {
1083 #ifdef EXIT_DEBUG
1084 		pr_info("Userspace triggered 0x700 exception at\n 0x%lx (0x%x)\n",
1085 			kvmppc_get_pc(vcpu), last_inst);
1086 #endif
1087 		if ((last_inst & 0xff0007ff) != (INS_DCBZ & 0xfffffff7)) {
1088 			kvmppc_core_queue_program(vcpu, flags);
1089 			return RESUME_GUEST;
1090 		}
1091 	}
1092 
1093 	vcpu->stat.emulated_inst_exits++;
1094 	er = kvmppc_emulate_instruction(run, vcpu);
1095 	switch (er) {
1096 	case EMULATE_DONE:
1097 		r = RESUME_GUEST_NV;
1098 		break;
1099 	case EMULATE_AGAIN:
1100 		r = RESUME_GUEST;
1101 		break;
1102 	case EMULATE_FAIL:
1103 		pr_crit("%s: emulation at %lx failed (%08x)\n",
1104 			__func__, kvmppc_get_pc(vcpu), last_inst);
1105 		kvmppc_core_queue_program(vcpu, flags);
1106 		r = RESUME_GUEST;
1107 		break;
1108 	case EMULATE_DO_MMIO:
1109 		run->exit_reason = KVM_EXIT_MMIO;
1110 		r = RESUME_HOST_NV;
1111 		break;
1112 	case EMULATE_EXIT_USER:
1113 		r = RESUME_HOST_NV;
1114 		break;
1115 	default:
1116 		BUG();
1117 	}
1118 
1119 	return r;
1120 }
1121 
1122 int kvmppc_handle_exit_pr(struct kvm_run *run, struct kvm_vcpu *vcpu,
1123 			  unsigned int exit_nr)
1124 {
1125 	int r = RESUME_HOST;
1126 	int s;
1127 
1128 	vcpu->stat.sum_exits++;
1129 
1130 	run->exit_reason = KVM_EXIT_UNKNOWN;
1131 	run->ready_for_interrupt_injection = 1;
1132 
1133 	/* We get here with MSR.EE=1 */
1134 
1135 	trace_kvm_exit(exit_nr, vcpu);
1136 	guest_exit();
1137 
1138 	switch (exit_nr) {
1139 	case BOOK3S_INTERRUPT_INST_STORAGE:
1140 	{
1141 		ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1142 		vcpu->stat.pf_instruc++;
1143 
1144 		if (kvmppc_is_split_real(vcpu))
1145 			kvmppc_fixup_split_real(vcpu);
1146 
1147 #ifdef CONFIG_PPC_BOOK3S_32
1148 		/* We set segments as unused segments when invalidating them. So
1149 		 * treat the respective fault as segment fault. */
1150 		{
1151 			struct kvmppc_book3s_shadow_vcpu *svcpu;
1152 			u32 sr;
1153 
1154 			svcpu = svcpu_get(vcpu);
1155 			sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT];
1156 			svcpu_put(svcpu);
1157 			if (sr == SR_INVALID) {
1158 				kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
1159 				r = RESUME_GUEST;
1160 				break;
1161 			}
1162 		}
1163 #endif
1164 
1165 		/* only care about PTEG not found errors, but leave NX alone */
1166 		if (shadow_srr1 & 0x40000000) {
1167 			int idx = srcu_read_lock(&vcpu->kvm->srcu);
1168 			r = kvmppc_handle_pagefault(run, vcpu, kvmppc_get_pc(vcpu), exit_nr);
1169 			srcu_read_unlock(&vcpu->kvm->srcu, idx);
1170 			vcpu->stat.sp_instruc++;
1171 		} else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
1172 			  (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
1173 			/*
1174 			 * XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
1175 			 *     so we can't use the NX bit inside the guest. Let's cross our fingers,
1176 			 *     that no guest that needs the dcbz hack does NX.
1177 			 */
1178 			kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
1179 			r = RESUME_GUEST;
1180 		} else {
1181 			kvmppc_core_queue_inst_storage(vcpu,
1182 						shadow_srr1 & 0x58000000);
1183 			r = RESUME_GUEST;
1184 		}
1185 		break;
1186 	}
1187 	case BOOK3S_INTERRUPT_DATA_STORAGE:
1188 	{
1189 		ulong dar = kvmppc_get_fault_dar(vcpu);
1190 		u32 fault_dsisr = vcpu->arch.fault_dsisr;
1191 		vcpu->stat.pf_storage++;
1192 
1193 #ifdef CONFIG_PPC_BOOK3S_32
1194 		/* We set segments as unused segments when invalidating them. So
1195 		 * treat the respective fault as segment fault. */
1196 		{
1197 			struct kvmppc_book3s_shadow_vcpu *svcpu;
1198 			u32 sr;
1199 
1200 			svcpu = svcpu_get(vcpu);
1201 			sr = svcpu->sr[dar >> SID_SHIFT];
1202 			svcpu_put(svcpu);
1203 			if (sr == SR_INVALID) {
1204 				kvmppc_mmu_map_segment(vcpu, dar);
1205 				r = RESUME_GUEST;
1206 				break;
1207 			}
1208 		}
1209 #endif
1210 
1211 		/*
1212 		 * We need to handle missing shadow PTEs, and
1213 		 * protection faults due to us mapping a page read-only
1214 		 * when the guest thinks it is writable.
1215 		 */
1216 		if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) {
1217 			int idx = srcu_read_lock(&vcpu->kvm->srcu);
1218 			r = kvmppc_handle_pagefault(run, vcpu, dar, exit_nr);
1219 			srcu_read_unlock(&vcpu->kvm->srcu, idx);
1220 		} else {
1221 			kvmppc_core_queue_data_storage(vcpu, dar, fault_dsisr);
1222 			r = RESUME_GUEST;
1223 		}
1224 		break;
1225 	}
1226 	case BOOK3S_INTERRUPT_DATA_SEGMENT:
1227 		if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
1228 			kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
1229 			kvmppc_book3s_queue_irqprio(vcpu,
1230 				BOOK3S_INTERRUPT_DATA_SEGMENT);
1231 		}
1232 		r = RESUME_GUEST;
1233 		break;
1234 	case BOOK3S_INTERRUPT_INST_SEGMENT:
1235 		if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
1236 			kvmppc_book3s_queue_irqprio(vcpu,
1237 				BOOK3S_INTERRUPT_INST_SEGMENT);
1238 		}
1239 		r = RESUME_GUEST;
1240 		break;
1241 	/* We're good on these - the host merely wanted to get our attention */
1242 	case BOOK3S_INTERRUPT_DECREMENTER:
1243 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1244 	case BOOK3S_INTERRUPT_DOORBELL:
1245 	case BOOK3S_INTERRUPT_H_DOORBELL:
1246 		vcpu->stat.dec_exits++;
1247 		r = RESUME_GUEST;
1248 		break;
1249 	case BOOK3S_INTERRUPT_EXTERNAL:
1250 	case BOOK3S_INTERRUPT_EXTERNAL_HV:
1251 	case BOOK3S_INTERRUPT_H_VIRT:
1252 		vcpu->stat.ext_intr_exits++;
1253 		r = RESUME_GUEST;
1254 		break;
1255 	case BOOK3S_INTERRUPT_HMI:
1256 	case BOOK3S_INTERRUPT_PERFMON:
1257 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1258 		r = RESUME_GUEST;
1259 		break;
1260 	case BOOK3S_INTERRUPT_PROGRAM:
1261 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1262 		r = kvmppc_exit_pr_progint(run, vcpu, exit_nr);
1263 		break;
1264 	case BOOK3S_INTERRUPT_SYSCALL:
1265 	{
1266 		u32 last_sc;
1267 		int emul;
1268 
1269 		/* Get last sc for papr */
1270 		if (vcpu->arch.papr_enabled) {
1271 			/* The sc instuction points SRR0 to the next inst */
1272 			emul = kvmppc_get_last_inst(vcpu, INST_SC, &last_sc);
1273 			if (emul != EMULATE_DONE) {
1274 				kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) - 4);
1275 				r = RESUME_GUEST;
1276 				break;
1277 			}
1278 		}
1279 
1280 		if (vcpu->arch.papr_enabled &&
1281 		    (last_sc == 0x44000022) &&
1282 		    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
1283 			/* SC 1 papr hypercalls */
1284 			ulong cmd = kvmppc_get_gpr(vcpu, 3);
1285 			int i;
1286 
1287 #ifdef CONFIG_PPC_BOOK3S_64
1288 			if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) {
1289 				r = RESUME_GUEST;
1290 				break;
1291 			}
1292 #endif
1293 
1294 			run->papr_hcall.nr = cmd;
1295 			for (i = 0; i < 9; ++i) {
1296 				ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
1297 				run->papr_hcall.args[i] = gpr;
1298 			}
1299 			run->exit_reason = KVM_EXIT_PAPR_HCALL;
1300 			vcpu->arch.hcall_needed = 1;
1301 			r = RESUME_HOST;
1302 		} else if (vcpu->arch.osi_enabled &&
1303 		    (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
1304 		    (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
1305 			/* MOL hypercalls */
1306 			u64 *gprs = run->osi.gprs;
1307 			int i;
1308 
1309 			run->exit_reason = KVM_EXIT_OSI;
1310 			for (i = 0; i < 32; i++)
1311 				gprs[i] = kvmppc_get_gpr(vcpu, i);
1312 			vcpu->arch.osi_needed = 1;
1313 			r = RESUME_HOST_NV;
1314 		} else if (!(kvmppc_get_msr(vcpu) & MSR_PR) &&
1315 		    (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
1316 			/* KVM PV hypercalls */
1317 			kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
1318 			r = RESUME_GUEST;
1319 		} else {
1320 			/* Guest syscalls */
1321 			vcpu->stat.syscall_exits++;
1322 			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1323 			r = RESUME_GUEST;
1324 		}
1325 		break;
1326 	}
1327 	case BOOK3S_INTERRUPT_FP_UNAVAIL:
1328 	case BOOK3S_INTERRUPT_ALTIVEC:
1329 	case BOOK3S_INTERRUPT_VSX:
1330 	{
1331 		int ext_msr = 0;
1332 		int emul;
1333 		u32 last_inst;
1334 
1335 		if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) {
1336 			/* Do paired single instruction emulation */
1337 			emul = kvmppc_get_last_inst(vcpu, INST_GENERIC,
1338 						    &last_inst);
1339 			if (emul == EMULATE_DONE)
1340 				r = kvmppc_exit_pr_progint(run, vcpu, exit_nr);
1341 			else
1342 				r = RESUME_GUEST;
1343 
1344 			break;
1345 		}
1346 
1347 		/* Enable external provider */
1348 		switch (exit_nr) {
1349 		case BOOK3S_INTERRUPT_FP_UNAVAIL:
1350 			ext_msr = MSR_FP;
1351 			break;
1352 
1353 		case BOOK3S_INTERRUPT_ALTIVEC:
1354 			ext_msr = MSR_VEC;
1355 			break;
1356 
1357 		case BOOK3S_INTERRUPT_VSX:
1358 			ext_msr = MSR_VSX;
1359 			break;
1360 		}
1361 
1362 		r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
1363 		break;
1364 	}
1365 	case BOOK3S_INTERRUPT_ALIGNMENT:
1366 	{
1367 		u32 last_inst;
1368 		int emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1369 
1370 		if (emul == EMULATE_DONE) {
1371 			u32 dsisr;
1372 			u64 dar;
1373 
1374 			dsisr = kvmppc_alignment_dsisr(vcpu, last_inst);
1375 			dar = kvmppc_alignment_dar(vcpu, last_inst);
1376 
1377 			kvmppc_set_dsisr(vcpu, dsisr);
1378 			kvmppc_set_dar(vcpu, dar);
1379 
1380 			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1381 		}
1382 		r = RESUME_GUEST;
1383 		break;
1384 	}
1385 #ifdef CONFIG_PPC_BOOK3S_64
1386 	case BOOK3S_INTERRUPT_FAC_UNAVAIL:
1387 		r = kvmppc_handle_fac(vcpu, vcpu->arch.shadow_fscr >> 56);
1388 		break;
1389 #endif
1390 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1391 		kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1392 		r = RESUME_GUEST;
1393 		break;
1394 	case BOOK3S_INTERRUPT_TRACE:
1395 		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1396 			run->exit_reason = KVM_EXIT_DEBUG;
1397 			r = RESUME_HOST;
1398 		} else {
1399 			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1400 			r = RESUME_GUEST;
1401 		}
1402 		break;
1403 	default:
1404 	{
1405 		ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1406 		/* Ugh - bork here! What did we get? */
1407 		printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
1408 			exit_nr, kvmppc_get_pc(vcpu), shadow_srr1);
1409 		r = RESUME_HOST;
1410 		BUG();
1411 		break;
1412 	}
1413 	}
1414 
1415 	if (!(r & RESUME_HOST)) {
1416 		/* To avoid clobbering exit_reason, only check for signals if
1417 		 * we aren't already exiting to userspace for some other
1418 		 * reason. */
1419 
1420 		/*
1421 		 * Interrupts could be timers for the guest which we have to
1422 		 * inject again, so let's postpone them until we're in the guest
1423 		 * and if we really did time things so badly, then we just exit
1424 		 * again due to a host external interrupt.
1425 		 */
1426 		s = kvmppc_prepare_to_enter(vcpu);
1427 		if (s <= 0)
1428 			r = s;
1429 		else {
1430 			/* interrupts now hard-disabled */
1431 			kvmppc_fix_ee_before_entry();
1432 		}
1433 
1434 		kvmppc_handle_lost_ext(vcpu);
1435 	}
1436 
1437 	trace_kvm_book3s_reenter(r, vcpu);
1438 
1439 	return r;
1440 }
1441 
1442 static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu,
1443 					    struct kvm_sregs *sregs)
1444 {
1445 	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
1446 	int i;
1447 
1448 	sregs->pvr = vcpu->arch.pvr;
1449 
1450 	sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
1451 	if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1452 		for (i = 0; i < 64; i++) {
1453 			sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i;
1454 			sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1455 		}
1456 	} else {
1457 		for (i = 0; i < 16; i++)
1458 			sregs->u.s.ppc32.sr[i] = kvmppc_get_sr(vcpu, i);
1459 
1460 		for (i = 0; i < 8; i++) {
1461 			sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
1462 			sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
1463 		}
1464 	}
1465 
1466 	return 0;
1467 }
1468 
1469 static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu,
1470 					    struct kvm_sregs *sregs)
1471 {
1472 	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
1473 	int i;
1474 
1475 	kvmppc_set_pvr_pr(vcpu, sregs->pvr);
1476 
1477 	vcpu3s->sdr1 = sregs->u.s.sdr1;
1478 #ifdef CONFIG_PPC_BOOK3S_64
1479 	if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1480 		/* Flush all SLB entries */
1481 		vcpu->arch.mmu.slbmte(vcpu, 0, 0);
1482 		vcpu->arch.mmu.slbia(vcpu);
1483 
1484 		for (i = 0; i < 64; i++) {
1485 			u64 rb = sregs->u.s.ppc64.slb[i].slbe;
1486 			u64 rs = sregs->u.s.ppc64.slb[i].slbv;
1487 
1488 			if (rb & SLB_ESID_V)
1489 				vcpu->arch.mmu.slbmte(vcpu, rs, rb);
1490 		}
1491 	} else
1492 #endif
1493 	{
1494 		for (i = 0; i < 16; i++) {
1495 			vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
1496 		}
1497 		for (i = 0; i < 8; i++) {
1498 			kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
1499 				       (u32)sregs->u.s.ppc32.ibat[i]);
1500 			kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
1501 				       (u32)(sregs->u.s.ppc32.ibat[i] >> 32));
1502 			kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
1503 				       (u32)sregs->u.s.ppc32.dbat[i]);
1504 			kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
1505 				       (u32)(sregs->u.s.ppc32.dbat[i] >> 32));
1506 		}
1507 	}
1508 
1509 	/* Flush the MMU after messing with the segments */
1510 	kvmppc_mmu_pte_flush(vcpu, 0, 0);
1511 
1512 	return 0;
1513 }
1514 
1515 static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
1516 				 union kvmppc_one_reg *val)
1517 {
1518 	int r = 0;
1519 
1520 	switch (id) {
1521 	case KVM_REG_PPC_DEBUG_INST:
1522 		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1523 		break;
1524 	case KVM_REG_PPC_HIOR:
1525 		*val = get_reg_val(id, to_book3s(vcpu)->hior);
1526 		break;
1527 	case KVM_REG_PPC_VTB:
1528 		*val = get_reg_val(id, to_book3s(vcpu)->vtb);
1529 		break;
1530 	case KVM_REG_PPC_LPCR:
1531 	case KVM_REG_PPC_LPCR_64:
1532 		/*
1533 		 * We are only interested in the LPCR_ILE bit
1534 		 */
1535 		if (vcpu->arch.intr_msr & MSR_LE)
1536 			*val = get_reg_val(id, LPCR_ILE);
1537 		else
1538 			*val = get_reg_val(id, 0);
1539 		break;
1540 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1541 	case KVM_REG_PPC_TFHAR:
1542 		*val = get_reg_val(id, vcpu->arch.tfhar);
1543 		break;
1544 	case KVM_REG_PPC_TFIAR:
1545 		*val = get_reg_val(id, vcpu->arch.tfiar);
1546 		break;
1547 	case KVM_REG_PPC_TEXASR:
1548 		*val = get_reg_val(id, vcpu->arch.texasr);
1549 		break;
1550 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1551 		*val = get_reg_val(id,
1552 				vcpu->arch.gpr_tm[id-KVM_REG_PPC_TM_GPR0]);
1553 		break;
1554 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1555 	{
1556 		int i, j;
1557 
1558 		i = id - KVM_REG_PPC_TM_VSR0;
1559 		if (i < 32)
1560 			for (j = 0; j < TS_FPRWIDTH; j++)
1561 				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1562 		else {
1563 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1564 				val->vval = vcpu->arch.vr_tm.vr[i-32];
1565 			else
1566 				r = -ENXIO;
1567 		}
1568 		break;
1569 	}
1570 	case KVM_REG_PPC_TM_CR:
1571 		*val = get_reg_val(id, vcpu->arch.cr_tm);
1572 		break;
1573 	case KVM_REG_PPC_TM_XER:
1574 		*val = get_reg_val(id, vcpu->arch.xer_tm);
1575 		break;
1576 	case KVM_REG_PPC_TM_LR:
1577 		*val = get_reg_val(id, vcpu->arch.lr_tm);
1578 		break;
1579 	case KVM_REG_PPC_TM_CTR:
1580 		*val = get_reg_val(id, vcpu->arch.ctr_tm);
1581 		break;
1582 	case KVM_REG_PPC_TM_FPSCR:
1583 		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1584 		break;
1585 	case KVM_REG_PPC_TM_AMR:
1586 		*val = get_reg_val(id, vcpu->arch.amr_tm);
1587 		break;
1588 	case KVM_REG_PPC_TM_PPR:
1589 		*val = get_reg_val(id, vcpu->arch.ppr_tm);
1590 		break;
1591 	case KVM_REG_PPC_TM_VRSAVE:
1592 		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
1593 		break;
1594 	case KVM_REG_PPC_TM_VSCR:
1595 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1596 			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1597 		else
1598 			r = -ENXIO;
1599 		break;
1600 	case KVM_REG_PPC_TM_DSCR:
1601 		*val = get_reg_val(id, vcpu->arch.dscr_tm);
1602 		break;
1603 	case KVM_REG_PPC_TM_TAR:
1604 		*val = get_reg_val(id, vcpu->arch.tar_tm);
1605 		break;
1606 #endif
1607 	default:
1608 		r = -EINVAL;
1609 		break;
1610 	}
1611 
1612 	return r;
1613 }
1614 
1615 static void kvmppc_set_lpcr_pr(struct kvm_vcpu *vcpu, u64 new_lpcr)
1616 {
1617 	if (new_lpcr & LPCR_ILE)
1618 		vcpu->arch.intr_msr |= MSR_LE;
1619 	else
1620 		vcpu->arch.intr_msr &= ~MSR_LE;
1621 }
1622 
1623 static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
1624 				 union kvmppc_one_reg *val)
1625 {
1626 	int r = 0;
1627 
1628 	switch (id) {
1629 	case KVM_REG_PPC_HIOR:
1630 		to_book3s(vcpu)->hior = set_reg_val(id, *val);
1631 		to_book3s(vcpu)->hior_explicit = true;
1632 		break;
1633 	case KVM_REG_PPC_VTB:
1634 		to_book3s(vcpu)->vtb = set_reg_val(id, *val);
1635 		break;
1636 	case KVM_REG_PPC_LPCR:
1637 	case KVM_REG_PPC_LPCR_64:
1638 		kvmppc_set_lpcr_pr(vcpu, set_reg_val(id, *val));
1639 		break;
1640 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1641 	case KVM_REG_PPC_TFHAR:
1642 		vcpu->arch.tfhar = set_reg_val(id, *val);
1643 		break;
1644 	case KVM_REG_PPC_TFIAR:
1645 		vcpu->arch.tfiar = set_reg_val(id, *val);
1646 		break;
1647 	case KVM_REG_PPC_TEXASR:
1648 		vcpu->arch.texasr = set_reg_val(id, *val);
1649 		break;
1650 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1651 		vcpu->arch.gpr_tm[id - KVM_REG_PPC_TM_GPR0] =
1652 			set_reg_val(id, *val);
1653 		break;
1654 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1655 	{
1656 		int i, j;
1657 
1658 		i = id - KVM_REG_PPC_TM_VSR0;
1659 		if (i < 32)
1660 			for (j = 0; j < TS_FPRWIDTH; j++)
1661 				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1662 		else
1663 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1664 				vcpu->arch.vr_tm.vr[i-32] = val->vval;
1665 			else
1666 				r = -ENXIO;
1667 		break;
1668 	}
1669 	case KVM_REG_PPC_TM_CR:
1670 		vcpu->arch.cr_tm = set_reg_val(id, *val);
1671 		break;
1672 	case KVM_REG_PPC_TM_XER:
1673 		vcpu->arch.xer_tm = set_reg_val(id, *val);
1674 		break;
1675 	case KVM_REG_PPC_TM_LR:
1676 		vcpu->arch.lr_tm = set_reg_val(id, *val);
1677 		break;
1678 	case KVM_REG_PPC_TM_CTR:
1679 		vcpu->arch.ctr_tm = set_reg_val(id, *val);
1680 		break;
1681 	case KVM_REG_PPC_TM_FPSCR:
1682 		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1683 		break;
1684 	case KVM_REG_PPC_TM_AMR:
1685 		vcpu->arch.amr_tm = set_reg_val(id, *val);
1686 		break;
1687 	case KVM_REG_PPC_TM_PPR:
1688 		vcpu->arch.ppr_tm = set_reg_val(id, *val);
1689 		break;
1690 	case KVM_REG_PPC_TM_VRSAVE:
1691 		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1692 		break;
1693 	case KVM_REG_PPC_TM_VSCR:
1694 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1695 			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1696 		else
1697 			r = -ENXIO;
1698 		break;
1699 	case KVM_REG_PPC_TM_DSCR:
1700 		vcpu->arch.dscr_tm = set_reg_val(id, *val);
1701 		break;
1702 	case KVM_REG_PPC_TM_TAR:
1703 		vcpu->arch.tar_tm = set_reg_val(id, *val);
1704 		break;
1705 #endif
1706 	default:
1707 		r = -EINVAL;
1708 		break;
1709 	}
1710 
1711 	return r;
1712 }
1713 
1714 static struct kvm_vcpu *kvmppc_core_vcpu_create_pr(struct kvm *kvm,
1715 						   unsigned int id)
1716 {
1717 	struct kvmppc_vcpu_book3s *vcpu_book3s;
1718 	struct kvm_vcpu *vcpu;
1719 	int err = -ENOMEM;
1720 	unsigned long p;
1721 
1722 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1723 	if (!vcpu)
1724 		goto out;
1725 
1726 	vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s));
1727 	if (!vcpu_book3s)
1728 		goto free_vcpu;
1729 	vcpu->arch.book3s = vcpu_book3s;
1730 
1731 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1732 	vcpu->arch.shadow_vcpu =
1733 		kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL);
1734 	if (!vcpu->arch.shadow_vcpu)
1735 		goto free_vcpu3s;
1736 #endif
1737 
1738 	err = kvm_vcpu_init(vcpu, kvm, id);
1739 	if (err)
1740 		goto free_shadow_vcpu;
1741 
1742 	err = -ENOMEM;
1743 	p = __get_free_page(GFP_KERNEL|__GFP_ZERO);
1744 	if (!p)
1745 		goto uninit_vcpu;
1746 	vcpu->arch.shared = (void *)p;
1747 #ifdef CONFIG_PPC_BOOK3S_64
1748 	/* Always start the shared struct in native endian mode */
1749 #ifdef __BIG_ENDIAN__
1750         vcpu->arch.shared_big_endian = true;
1751 #else
1752         vcpu->arch.shared_big_endian = false;
1753 #endif
1754 
1755 	/*
1756 	 * Default to the same as the host if we're on sufficiently
1757 	 * recent machine that we have 1TB segments;
1758 	 * otherwise default to PPC970FX.
1759 	 */
1760 	vcpu->arch.pvr = 0x3C0301;
1761 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1762 		vcpu->arch.pvr = mfspr(SPRN_PVR);
1763 	vcpu->arch.intr_msr = MSR_SF;
1764 #else
1765 	/* default to book3s_32 (750) */
1766 	vcpu->arch.pvr = 0x84202;
1767 #endif
1768 	kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr);
1769 	vcpu->arch.slb_nr = 64;
1770 
1771 	vcpu->arch.shadow_msr = MSR_USER64 & ~MSR_LE;
1772 
1773 	err = kvmppc_mmu_init(vcpu);
1774 	if (err < 0)
1775 		goto uninit_vcpu;
1776 
1777 	return vcpu;
1778 
1779 uninit_vcpu:
1780 	kvm_vcpu_uninit(vcpu);
1781 free_shadow_vcpu:
1782 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1783 	kfree(vcpu->arch.shadow_vcpu);
1784 free_vcpu3s:
1785 #endif
1786 	vfree(vcpu_book3s);
1787 free_vcpu:
1788 	kmem_cache_free(kvm_vcpu_cache, vcpu);
1789 out:
1790 	return ERR_PTR(err);
1791 }
1792 
1793 static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu)
1794 {
1795 	struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
1796 
1797 	free_page((unsigned long)vcpu->arch.shared & PAGE_MASK);
1798 	kvm_vcpu_uninit(vcpu);
1799 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1800 	kfree(vcpu->arch.shadow_vcpu);
1801 #endif
1802 	vfree(vcpu_book3s);
1803 	kmem_cache_free(kvm_vcpu_cache, vcpu);
1804 }
1805 
1806 static int kvmppc_vcpu_run_pr(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1807 {
1808 	int ret;
1809 #ifdef CONFIG_ALTIVEC
1810 	unsigned long uninitialized_var(vrsave);
1811 #endif
1812 
1813 	/* Check if we can run the vcpu at all */
1814 	if (!vcpu->arch.sane) {
1815 		kvm_run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1816 		ret = -EINVAL;
1817 		goto out;
1818 	}
1819 
1820 	kvmppc_setup_debug(vcpu);
1821 
1822 	/*
1823 	 * Interrupts could be timers for the guest which we have to inject
1824 	 * again, so let's postpone them until we're in the guest and if we
1825 	 * really did time things so badly, then we just exit again due to
1826 	 * a host external interrupt.
1827 	 */
1828 	ret = kvmppc_prepare_to_enter(vcpu);
1829 	if (ret <= 0)
1830 		goto out;
1831 	/* interrupts now hard-disabled */
1832 
1833 	/* Save FPU, Altivec and VSX state */
1834 	giveup_all(current);
1835 
1836 	/* Preload FPU if it's enabled */
1837 	if (kvmppc_get_msr(vcpu) & MSR_FP)
1838 		kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
1839 
1840 	kvmppc_fix_ee_before_entry();
1841 
1842 	ret = __kvmppc_vcpu_run(kvm_run, vcpu);
1843 
1844 	kvmppc_clear_debug(vcpu);
1845 
1846 	/* No need for guest_exit. It's done in handle_exit.
1847 	   We also get here with interrupts enabled. */
1848 
1849 	/* Make sure we save the guest FPU/Altivec/VSX state */
1850 	kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
1851 
1852 	/* Make sure we save the guest TAR/EBB/DSCR state */
1853 	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
1854 
1855 out:
1856 	vcpu->mode = OUTSIDE_GUEST_MODE;
1857 	return ret;
1858 }
1859 
1860 /*
1861  * Get (and clear) the dirty memory log for a memory slot.
1862  */
1863 static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm,
1864 					 struct kvm_dirty_log *log)
1865 {
1866 	struct kvm_memslots *slots;
1867 	struct kvm_memory_slot *memslot;
1868 	struct kvm_vcpu *vcpu;
1869 	ulong ga, ga_end;
1870 	int is_dirty = 0;
1871 	int r;
1872 	unsigned long n;
1873 
1874 	mutex_lock(&kvm->slots_lock);
1875 
1876 	r = kvm_get_dirty_log(kvm, log, &is_dirty);
1877 	if (r)
1878 		goto out;
1879 
1880 	/* If nothing is dirty, don't bother messing with page tables. */
1881 	if (is_dirty) {
1882 		slots = kvm_memslots(kvm);
1883 		memslot = id_to_memslot(slots, log->slot);
1884 
1885 		ga = memslot->base_gfn << PAGE_SHIFT;
1886 		ga_end = ga + (memslot->npages << PAGE_SHIFT);
1887 
1888 		kvm_for_each_vcpu(n, vcpu, kvm)
1889 			kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);
1890 
1891 		n = kvm_dirty_bitmap_bytes(memslot);
1892 		memset(memslot->dirty_bitmap, 0, n);
1893 	}
1894 
1895 	r = 0;
1896 out:
1897 	mutex_unlock(&kvm->slots_lock);
1898 	return r;
1899 }
1900 
1901 static void kvmppc_core_flush_memslot_pr(struct kvm *kvm,
1902 					 struct kvm_memory_slot *memslot)
1903 {
1904 	return;
1905 }
1906 
1907 static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm,
1908 					struct kvm_memory_slot *memslot,
1909 					const struct kvm_userspace_memory_region *mem)
1910 {
1911 	return 0;
1912 }
1913 
1914 static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm,
1915 				const struct kvm_userspace_memory_region *mem,
1916 				const struct kvm_memory_slot *old,
1917 				const struct kvm_memory_slot *new,
1918 				enum kvm_mr_change change)
1919 {
1920 	return;
1921 }
1922 
1923 static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *free,
1924 					struct kvm_memory_slot *dont)
1925 {
1926 	return;
1927 }
1928 
1929 static int kvmppc_core_create_memslot_pr(struct kvm_memory_slot *slot,
1930 					 unsigned long npages)
1931 {
1932 	return 0;
1933 }
1934 
1935 
1936 #ifdef CONFIG_PPC64
1937 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
1938 					 struct kvm_ppc_smmu_info *info)
1939 {
1940 	long int i;
1941 	struct kvm_vcpu *vcpu;
1942 
1943 	info->flags = 0;
1944 
1945 	/* SLB is always 64 entries */
1946 	info->slb_size = 64;
1947 
1948 	/* Standard 4k base page size segment */
1949 	info->sps[0].page_shift = 12;
1950 	info->sps[0].slb_enc = 0;
1951 	info->sps[0].enc[0].page_shift = 12;
1952 	info->sps[0].enc[0].pte_enc = 0;
1953 
1954 	/*
1955 	 * 64k large page size.
1956 	 * We only want to put this in if the CPUs we're emulating
1957 	 * support it, but unfortunately we don't have a vcpu easily
1958 	 * to hand here to test.  Just pick the first vcpu, and if
1959 	 * that doesn't exist yet, report the minimum capability,
1960 	 * i.e., no 64k pages.
1961 	 * 1T segment support goes along with 64k pages.
1962 	 */
1963 	i = 1;
1964 	vcpu = kvm_get_vcpu(kvm, 0);
1965 	if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) {
1966 		info->flags = KVM_PPC_1T_SEGMENTS;
1967 		info->sps[i].page_shift = 16;
1968 		info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01;
1969 		info->sps[i].enc[0].page_shift = 16;
1970 		info->sps[i].enc[0].pte_enc = 1;
1971 		++i;
1972 	}
1973 
1974 	/* Standard 16M large page size segment */
1975 	info->sps[i].page_shift = 24;
1976 	info->sps[i].slb_enc = SLB_VSID_L;
1977 	info->sps[i].enc[0].page_shift = 24;
1978 	info->sps[i].enc[0].pte_enc = 0;
1979 
1980 	return 0;
1981 }
1982 
1983 static int kvm_configure_mmu_pr(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
1984 {
1985 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
1986 		return -ENODEV;
1987 	/* Require flags and process table base and size to all be zero. */
1988 	if (cfg->flags || cfg->process_table)
1989 		return -EINVAL;
1990 	return 0;
1991 }
1992 
1993 #else
1994 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
1995 					 struct kvm_ppc_smmu_info *info)
1996 {
1997 	/* We should not get called */
1998 	BUG();
1999 }
2000 #endif /* CONFIG_PPC64 */
2001 
2002 static unsigned int kvm_global_user_count = 0;
2003 static DEFINE_SPINLOCK(kvm_global_user_count_lock);
2004 
2005 static int kvmppc_core_init_vm_pr(struct kvm *kvm)
2006 {
2007 	mutex_init(&kvm->arch.hpt_mutex);
2008 
2009 #ifdef CONFIG_PPC_BOOK3S_64
2010 	/* Start out with the default set of hcalls enabled */
2011 	kvmppc_pr_init_default_hcalls(kvm);
2012 #endif
2013 
2014 	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
2015 		spin_lock(&kvm_global_user_count_lock);
2016 		if (++kvm_global_user_count == 1)
2017 			pseries_disable_reloc_on_exc();
2018 		spin_unlock(&kvm_global_user_count_lock);
2019 	}
2020 	return 0;
2021 }
2022 
2023 static void kvmppc_core_destroy_vm_pr(struct kvm *kvm)
2024 {
2025 #ifdef CONFIG_PPC64
2026 	WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
2027 #endif
2028 
2029 	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
2030 		spin_lock(&kvm_global_user_count_lock);
2031 		BUG_ON(kvm_global_user_count == 0);
2032 		if (--kvm_global_user_count == 0)
2033 			pseries_enable_reloc_on_exc();
2034 		spin_unlock(&kvm_global_user_count_lock);
2035 	}
2036 }
2037 
2038 static int kvmppc_core_check_processor_compat_pr(void)
2039 {
2040 	/*
2041 	 * PR KVM can work on POWER9 inside a guest partition
2042 	 * running in HPT mode.  It can't work if we are using
2043 	 * radix translation (because radix provides no way for
2044 	 * a process to have unique translations in quadrant 3).
2045 	 */
2046 	if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
2047 		return -EIO;
2048 	return 0;
2049 }
2050 
2051 static long kvm_arch_vm_ioctl_pr(struct file *filp,
2052 				 unsigned int ioctl, unsigned long arg)
2053 {
2054 	return -ENOTTY;
2055 }
2056 
2057 static struct kvmppc_ops kvm_ops_pr = {
2058 	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr,
2059 	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr,
2060 	.get_one_reg = kvmppc_get_one_reg_pr,
2061 	.set_one_reg = kvmppc_set_one_reg_pr,
2062 	.vcpu_load   = kvmppc_core_vcpu_load_pr,
2063 	.vcpu_put    = kvmppc_core_vcpu_put_pr,
2064 	.set_msr     = kvmppc_set_msr_pr,
2065 	.vcpu_run    = kvmppc_vcpu_run_pr,
2066 	.vcpu_create = kvmppc_core_vcpu_create_pr,
2067 	.vcpu_free   = kvmppc_core_vcpu_free_pr,
2068 	.check_requests = kvmppc_core_check_requests_pr,
2069 	.get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr,
2070 	.flush_memslot = kvmppc_core_flush_memslot_pr,
2071 	.prepare_memory_region = kvmppc_core_prepare_memory_region_pr,
2072 	.commit_memory_region = kvmppc_core_commit_memory_region_pr,
2073 	.unmap_hva_range = kvm_unmap_hva_range_pr,
2074 	.age_hva  = kvm_age_hva_pr,
2075 	.test_age_hva = kvm_test_age_hva_pr,
2076 	.set_spte_hva = kvm_set_spte_hva_pr,
2077 	.mmu_destroy  = kvmppc_mmu_destroy_pr,
2078 	.free_memslot = kvmppc_core_free_memslot_pr,
2079 	.create_memslot = kvmppc_core_create_memslot_pr,
2080 	.init_vm = kvmppc_core_init_vm_pr,
2081 	.destroy_vm = kvmppc_core_destroy_vm_pr,
2082 	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr,
2083 	.emulate_op = kvmppc_core_emulate_op_pr,
2084 	.emulate_mtspr = kvmppc_core_emulate_mtspr_pr,
2085 	.emulate_mfspr = kvmppc_core_emulate_mfspr_pr,
2086 	.fast_vcpu_kick = kvm_vcpu_kick,
2087 	.arch_vm_ioctl  = kvm_arch_vm_ioctl_pr,
2088 #ifdef CONFIG_PPC_BOOK3S_64
2089 	.hcall_implemented = kvmppc_hcall_impl_pr,
2090 	.configure_mmu = kvm_configure_mmu_pr,
2091 #endif
2092 	.giveup_ext = kvmppc_giveup_ext,
2093 };
2094 
2095 
2096 int kvmppc_book3s_init_pr(void)
2097 {
2098 	int r;
2099 
2100 	r = kvmppc_core_check_processor_compat_pr();
2101 	if (r < 0)
2102 		return r;
2103 
2104 	kvm_ops_pr.owner = THIS_MODULE;
2105 	kvmppc_pr_ops = &kvm_ops_pr;
2106 
2107 	r = kvmppc_mmu_hpte_sysinit();
2108 	return r;
2109 }
2110 
2111 void kvmppc_book3s_exit_pr(void)
2112 {
2113 	kvmppc_pr_ops = NULL;
2114 	kvmppc_mmu_hpte_sysexit();
2115 }
2116 
2117 /*
2118  * We only support separate modules for book3s 64
2119  */
2120 #ifdef CONFIG_PPC_BOOK3S_64
2121 
2122 module_init(kvmppc_book3s_init_pr);
2123 module_exit(kvmppc_book3s_exit_pr);
2124 
2125 MODULE_LICENSE("GPL");
2126 MODULE_ALIAS_MISCDEV(KVM_MINOR);
2127 MODULE_ALIAS("devname:kvm");
2128 #endif
2129