1 /* 2 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 3 * 4 * Authors: 5 * Alexander Graf <agraf@suse.de> 6 * Kevin Wolf <mail@kevin-wolf.de> 7 * Paul Mackerras <paulus@samba.org> 8 * 9 * Description: 10 * Functions relating to running KVM on Book 3S processors where 11 * we don't have access to hypervisor mode, and we run the guest 12 * in problem state (user mode). 13 * 14 * This file is derived from arch/powerpc/kvm/44x.c, 15 * by Hollis Blanchard <hollisb@us.ibm.com>. 16 * 17 * This program is free software; you can redistribute it and/or modify 18 * it under the terms of the GNU General Public License, version 2, as 19 * published by the Free Software Foundation. 20 */ 21 22 #include <linux/kvm_host.h> 23 #include <linux/export.h> 24 #include <linux/err.h> 25 #include <linux/slab.h> 26 27 #include <asm/reg.h> 28 #include <asm/cputable.h> 29 #include <asm/cacheflush.h> 30 #include <linux/uaccess.h> 31 #include <asm/io.h> 32 #include <asm/kvm_ppc.h> 33 #include <asm/kvm_book3s.h> 34 #include <asm/mmu_context.h> 35 #include <asm/switch_to.h> 36 #include <asm/firmware.h> 37 #include <asm/setup.h> 38 #include <linux/gfp.h> 39 #include <linux/sched.h> 40 #include <linux/vmalloc.h> 41 #include <linux/highmem.h> 42 #include <linux/module.h> 43 #include <linux/miscdevice.h> 44 #include <asm/asm-prototypes.h> 45 #include <asm/tm.h> 46 47 #include "book3s.h" 48 49 #define CREATE_TRACE_POINTS 50 #include "trace_pr.h" 51 52 /* #define EXIT_DEBUG */ 53 /* #define DEBUG_EXT */ 54 55 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr, 56 ulong msr); 57 #ifdef CONFIG_PPC_BOOK3S_64 58 static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac); 59 #endif 60 61 /* Some compatibility defines */ 62 #ifdef CONFIG_PPC_BOOK3S_32 63 #define MSR_USER32 MSR_USER 64 #define MSR_USER64 MSR_USER 65 #define HW_PAGE_SIZE PAGE_SIZE 66 #define HPTE_R_M _PAGE_COHERENT 67 #endif 68 69 static bool kvmppc_is_split_real(struct kvm_vcpu *vcpu) 70 { 71 ulong msr = kvmppc_get_msr(vcpu); 72 return (msr & (MSR_IR|MSR_DR)) == MSR_DR; 73 } 74 75 static void kvmppc_fixup_split_real(struct kvm_vcpu *vcpu) 76 { 77 ulong msr = kvmppc_get_msr(vcpu); 78 ulong pc = kvmppc_get_pc(vcpu); 79 80 /* We are in DR only split real mode */ 81 if ((msr & (MSR_IR|MSR_DR)) != MSR_DR) 82 return; 83 84 /* We have not fixed up the guest already */ 85 if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) 86 return; 87 88 /* The code is in fixupable address space */ 89 if (pc & SPLIT_HACK_MASK) 90 return; 91 92 vcpu->arch.hflags |= BOOK3S_HFLAG_SPLIT_HACK; 93 kvmppc_set_pc(vcpu, pc | SPLIT_HACK_OFFS); 94 } 95 96 void kvmppc_unfixup_split_real(struct kvm_vcpu *vcpu); 97 98 static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu) 99 { 100 #ifdef CONFIG_PPC_BOOK3S_64 101 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); 102 memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb)); 103 svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max; 104 svcpu->in_use = 0; 105 svcpu_put(svcpu); 106 #endif 107 108 /* Disable AIL if supported */ 109 if (cpu_has_feature(CPU_FTR_HVMODE) && 110 cpu_has_feature(CPU_FTR_ARCH_207S)) 111 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_AIL); 112 113 vcpu->cpu = smp_processor_id(); 114 #ifdef CONFIG_PPC_BOOK3S_32 115 current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu; 116 #endif 117 118 if (kvmppc_is_split_real(vcpu)) 119 kvmppc_fixup_split_real(vcpu); 120 121 kvmppc_restore_tm_pr(vcpu); 122 } 123 124 static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu) 125 { 126 #ifdef CONFIG_PPC_BOOK3S_64 127 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); 128 if (svcpu->in_use) { 129 kvmppc_copy_from_svcpu(vcpu); 130 } 131 memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb)); 132 to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max; 133 svcpu_put(svcpu); 134 #endif 135 136 if (kvmppc_is_split_real(vcpu)) 137 kvmppc_unfixup_split_real(vcpu); 138 139 kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX); 140 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG); 141 kvmppc_save_tm_pr(vcpu); 142 143 /* Enable AIL if supported */ 144 if (cpu_has_feature(CPU_FTR_HVMODE) && 145 cpu_has_feature(CPU_FTR_ARCH_207S)) 146 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_AIL_3); 147 148 vcpu->cpu = -1; 149 } 150 151 /* Copy data needed by real-mode code from vcpu to shadow vcpu */ 152 void kvmppc_copy_to_svcpu(struct kvm_vcpu *vcpu) 153 { 154 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); 155 156 svcpu->gpr[0] = vcpu->arch.regs.gpr[0]; 157 svcpu->gpr[1] = vcpu->arch.regs.gpr[1]; 158 svcpu->gpr[2] = vcpu->arch.regs.gpr[2]; 159 svcpu->gpr[3] = vcpu->arch.regs.gpr[3]; 160 svcpu->gpr[4] = vcpu->arch.regs.gpr[4]; 161 svcpu->gpr[5] = vcpu->arch.regs.gpr[5]; 162 svcpu->gpr[6] = vcpu->arch.regs.gpr[6]; 163 svcpu->gpr[7] = vcpu->arch.regs.gpr[7]; 164 svcpu->gpr[8] = vcpu->arch.regs.gpr[8]; 165 svcpu->gpr[9] = vcpu->arch.regs.gpr[9]; 166 svcpu->gpr[10] = vcpu->arch.regs.gpr[10]; 167 svcpu->gpr[11] = vcpu->arch.regs.gpr[11]; 168 svcpu->gpr[12] = vcpu->arch.regs.gpr[12]; 169 svcpu->gpr[13] = vcpu->arch.regs.gpr[13]; 170 svcpu->cr = vcpu->arch.cr; 171 svcpu->xer = vcpu->arch.regs.xer; 172 svcpu->ctr = vcpu->arch.regs.ctr; 173 svcpu->lr = vcpu->arch.regs.link; 174 svcpu->pc = vcpu->arch.regs.nip; 175 #ifdef CONFIG_PPC_BOOK3S_64 176 svcpu->shadow_fscr = vcpu->arch.shadow_fscr; 177 #endif 178 /* 179 * Now also save the current time base value. We use this 180 * to find the guest purr and spurr value. 181 */ 182 vcpu->arch.entry_tb = get_tb(); 183 vcpu->arch.entry_vtb = get_vtb(); 184 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 185 vcpu->arch.entry_ic = mfspr(SPRN_IC); 186 svcpu->in_use = true; 187 188 svcpu_put(svcpu); 189 } 190 191 static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu) 192 { 193 ulong guest_msr = kvmppc_get_msr(vcpu); 194 ulong smsr = guest_msr; 195 196 /* Guest MSR values */ 197 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 198 smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE | 199 MSR_TM | MSR_TS_MASK; 200 #else 201 smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE; 202 #endif 203 /* Process MSR values */ 204 smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE; 205 /* External providers the guest reserved */ 206 smsr |= (guest_msr & vcpu->arch.guest_owned_ext); 207 /* 64-bit Process MSR values */ 208 #ifdef CONFIG_PPC_BOOK3S_64 209 smsr |= MSR_ISF | MSR_HV; 210 #endif 211 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 212 /* 213 * in guest privileged state, we want to fail all TM transactions. 214 * So disable MSR TM bit so that all tbegin. will be able to be 215 * trapped into host. 216 */ 217 if (!(guest_msr & MSR_PR)) 218 smsr &= ~MSR_TM; 219 #endif 220 vcpu->arch.shadow_msr = smsr; 221 } 222 223 /* Copy data touched by real-mode code from shadow vcpu back to vcpu */ 224 void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu) 225 { 226 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); 227 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 228 ulong old_msr; 229 #endif 230 231 /* 232 * Maybe we were already preempted and synced the svcpu from 233 * our preempt notifiers. Don't bother touching this svcpu then. 234 */ 235 if (!svcpu->in_use) 236 goto out; 237 238 vcpu->arch.regs.gpr[0] = svcpu->gpr[0]; 239 vcpu->arch.regs.gpr[1] = svcpu->gpr[1]; 240 vcpu->arch.regs.gpr[2] = svcpu->gpr[2]; 241 vcpu->arch.regs.gpr[3] = svcpu->gpr[3]; 242 vcpu->arch.regs.gpr[4] = svcpu->gpr[4]; 243 vcpu->arch.regs.gpr[5] = svcpu->gpr[5]; 244 vcpu->arch.regs.gpr[6] = svcpu->gpr[6]; 245 vcpu->arch.regs.gpr[7] = svcpu->gpr[7]; 246 vcpu->arch.regs.gpr[8] = svcpu->gpr[8]; 247 vcpu->arch.regs.gpr[9] = svcpu->gpr[9]; 248 vcpu->arch.regs.gpr[10] = svcpu->gpr[10]; 249 vcpu->arch.regs.gpr[11] = svcpu->gpr[11]; 250 vcpu->arch.regs.gpr[12] = svcpu->gpr[12]; 251 vcpu->arch.regs.gpr[13] = svcpu->gpr[13]; 252 vcpu->arch.cr = svcpu->cr; 253 vcpu->arch.regs.xer = svcpu->xer; 254 vcpu->arch.regs.ctr = svcpu->ctr; 255 vcpu->arch.regs.link = svcpu->lr; 256 vcpu->arch.regs.nip = svcpu->pc; 257 vcpu->arch.shadow_srr1 = svcpu->shadow_srr1; 258 vcpu->arch.fault_dar = svcpu->fault_dar; 259 vcpu->arch.fault_dsisr = svcpu->fault_dsisr; 260 vcpu->arch.last_inst = svcpu->last_inst; 261 #ifdef CONFIG_PPC_BOOK3S_64 262 vcpu->arch.shadow_fscr = svcpu->shadow_fscr; 263 #endif 264 /* 265 * Update purr and spurr using time base on exit. 266 */ 267 vcpu->arch.purr += get_tb() - vcpu->arch.entry_tb; 268 vcpu->arch.spurr += get_tb() - vcpu->arch.entry_tb; 269 to_book3s(vcpu)->vtb += get_vtb() - vcpu->arch.entry_vtb; 270 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 271 vcpu->arch.ic += mfspr(SPRN_IC) - vcpu->arch.entry_ic; 272 273 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 274 /* 275 * Unlike other MSR bits, MSR[TS]bits can be changed at guest without 276 * notifying host: 277 * modified by unprivileged instructions like "tbegin"/"tend"/ 278 * "tresume"/"tsuspend" in PR KVM guest. 279 * 280 * It is necessary to sync here to calculate a correct shadow_msr. 281 * 282 * privileged guest's tbegin will be failed at present. So we 283 * only take care of problem state guest. 284 */ 285 old_msr = kvmppc_get_msr(vcpu); 286 if (unlikely((old_msr & MSR_PR) && 287 (vcpu->arch.shadow_srr1 & (MSR_TS_MASK)) != 288 (old_msr & (MSR_TS_MASK)))) { 289 old_msr &= ~(MSR_TS_MASK); 290 old_msr |= (vcpu->arch.shadow_srr1 & (MSR_TS_MASK)); 291 kvmppc_set_msr_fast(vcpu, old_msr); 292 kvmppc_recalc_shadow_msr(vcpu); 293 } 294 #endif 295 296 svcpu->in_use = false; 297 298 out: 299 svcpu_put(svcpu); 300 } 301 302 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 303 void kvmppc_save_tm_sprs(struct kvm_vcpu *vcpu) 304 { 305 tm_enable(); 306 vcpu->arch.tfhar = mfspr(SPRN_TFHAR); 307 vcpu->arch.texasr = mfspr(SPRN_TEXASR); 308 vcpu->arch.tfiar = mfspr(SPRN_TFIAR); 309 tm_disable(); 310 } 311 312 void kvmppc_restore_tm_sprs(struct kvm_vcpu *vcpu) 313 { 314 tm_enable(); 315 mtspr(SPRN_TFHAR, vcpu->arch.tfhar); 316 mtspr(SPRN_TEXASR, vcpu->arch.texasr); 317 mtspr(SPRN_TFIAR, vcpu->arch.tfiar); 318 tm_disable(); 319 } 320 321 /* loadup math bits which is enabled at kvmppc_get_msr() but not enabled at 322 * hardware. 323 */ 324 static void kvmppc_handle_lost_math_exts(struct kvm_vcpu *vcpu) 325 { 326 ulong exit_nr; 327 ulong ext_diff = (kvmppc_get_msr(vcpu) & ~vcpu->arch.guest_owned_ext) & 328 (MSR_FP | MSR_VEC | MSR_VSX); 329 330 if (!ext_diff) 331 return; 332 333 if (ext_diff == MSR_FP) 334 exit_nr = BOOK3S_INTERRUPT_FP_UNAVAIL; 335 else if (ext_diff == MSR_VEC) 336 exit_nr = BOOK3S_INTERRUPT_ALTIVEC; 337 else 338 exit_nr = BOOK3S_INTERRUPT_VSX; 339 340 kvmppc_handle_ext(vcpu, exit_nr, ext_diff); 341 } 342 343 void kvmppc_save_tm_pr(struct kvm_vcpu *vcpu) 344 { 345 if (!(MSR_TM_ACTIVE(kvmppc_get_msr(vcpu)))) { 346 kvmppc_save_tm_sprs(vcpu); 347 return; 348 } 349 350 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG); 351 kvmppc_giveup_ext(vcpu, MSR_VSX); 352 353 preempt_disable(); 354 _kvmppc_save_tm_pr(vcpu, mfmsr()); 355 preempt_enable(); 356 } 357 358 void kvmppc_restore_tm_pr(struct kvm_vcpu *vcpu) 359 { 360 if (!MSR_TM_ACTIVE(kvmppc_get_msr(vcpu))) { 361 kvmppc_restore_tm_sprs(vcpu); 362 if (kvmppc_get_msr(vcpu) & MSR_TM) { 363 kvmppc_handle_lost_math_exts(vcpu); 364 if (vcpu->arch.fscr & FSCR_TAR) 365 kvmppc_handle_fac(vcpu, FSCR_TAR_LG); 366 } 367 return; 368 } 369 370 preempt_disable(); 371 _kvmppc_restore_tm_pr(vcpu, kvmppc_get_msr(vcpu)); 372 preempt_enable(); 373 374 if (kvmppc_get_msr(vcpu) & MSR_TM) { 375 kvmppc_handle_lost_math_exts(vcpu); 376 if (vcpu->arch.fscr & FSCR_TAR) 377 kvmppc_handle_fac(vcpu, FSCR_TAR_LG); 378 } 379 } 380 #endif 381 382 static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu) 383 { 384 int r = 1; /* Indicate we want to get back into the guest */ 385 386 /* We misuse TLB_FLUSH to indicate that we want to clear 387 all shadow cache entries */ 388 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 389 kvmppc_mmu_pte_flush(vcpu, 0, 0); 390 391 return r; 392 } 393 394 /************* MMU Notifiers *************/ 395 static void do_kvm_unmap_hva(struct kvm *kvm, unsigned long start, 396 unsigned long end) 397 { 398 long i; 399 struct kvm_vcpu *vcpu; 400 struct kvm_memslots *slots; 401 struct kvm_memory_slot *memslot; 402 403 slots = kvm_memslots(kvm); 404 kvm_for_each_memslot(memslot, slots) { 405 unsigned long hva_start, hva_end; 406 gfn_t gfn, gfn_end; 407 408 hva_start = max(start, memslot->userspace_addr); 409 hva_end = min(end, memslot->userspace_addr + 410 (memslot->npages << PAGE_SHIFT)); 411 if (hva_start >= hva_end) 412 continue; 413 /* 414 * {gfn(page) | page intersects with [hva_start, hva_end)} = 415 * {gfn, gfn+1, ..., gfn_end-1}. 416 */ 417 gfn = hva_to_gfn_memslot(hva_start, memslot); 418 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot); 419 kvm_for_each_vcpu(i, vcpu, kvm) 420 kvmppc_mmu_pte_pflush(vcpu, gfn << PAGE_SHIFT, 421 gfn_end << PAGE_SHIFT); 422 } 423 } 424 425 static int kvm_unmap_hva_range_pr(struct kvm *kvm, unsigned long start, 426 unsigned long end) 427 { 428 do_kvm_unmap_hva(kvm, start, end); 429 430 return 0; 431 } 432 433 static int kvm_age_hva_pr(struct kvm *kvm, unsigned long start, 434 unsigned long end) 435 { 436 /* XXX could be more clever ;) */ 437 return 0; 438 } 439 440 static int kvm_test_age_hva_pr(struct kvm *kvm, unsigned long hva) 441 { 442 /* XXX could be more clever ;) */ 443 return 0; 444 } 445 446 static void kvm_set_spte_hva_pr(struct kvm *kvm, unsigned long hva, pte_t pte) 447 { 448 /* The page will get remapped properly on its next fault */ 449 do_kvm_unmap_hva(kvm, hva, hva + PAGE_SIZE); 450 } 451 452 /*****************************************/ 453 454 static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr) 455 { 456 ulong old_msr; 457 458 /* For PAPR guest, make sure MSR reflects guest mode */ 459 if (vcpu->arch.papr_enabled) 460 msr = (msr & ~MSR_HV) | MSR_ME; 461 462 #ifdef EXIT_DEBUG 463 printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr); 464 #endif 465 466 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 467 /* We should never target guest MSR to TS=10 && PR=0, 468 * since we always fail transaction for guest privilege 469 * state. 470 */ 471 if (!(msr & MSR_PR) && MSR_TM_TRANSACTIONAL(msr)) 472 kvmppc_emulate_tabort(vcpu, 473 TM_CAUSE_KVM_FAC_UNAV | TM_CAUSE_PERSISTENT); 474 #endif 475 476 old_msr = kvmppc_get_msr(vcpu); 477 msr &= to_book3s(vcpu)->msr_mask; 478 kvmppc_set_msr_fast(vcpu, msr); 479 kvmppc_recalc_shadow_msr(vcpu); 480 481 if (msr & MSR_POW) { 482 if (!vcpu->arch.pending_exceptions) { 483 kvm_vcpu_block(vcpu); 484 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 485 vcpu->stat.halt_wakeup++; 486 487 /* Unset POW bit after we woke up */ 488 msr &= ~MSR_POW; 489 kvmppc_set_msr_fast(vcpu, msr); 490 } 491 } 492 493 if (kvmppc_is_split_real(vcpu)) 494 kvmppc_fixup_split_real(vcpu); 495 else 496 kvmppc_unfixup_split_real(vcpu); 497 498 if ((kvmppc_get_msr(vcpu) & (MSR_PR|MSR_IR|MSR_DR)) != 499 (old_msr & (MSR_PR|MSR_IR|MSR_DR))) { 500 kvmppc_mmu_flush_segments(vcpu); 501 kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)); 502 503 /* Preload magic page segment when in kernel mode */ 504 if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) { 505 struct kvm_vcpu_arch *a = &vcpu->arch; 506 507 if (msr & MSR_DR) 508 kvmppc_mmu_map_segment(vcpu, a->magic_page_ea); 509 else 510 kvmppc_mmu_map_segment(vcpu, a->magic_page_pa); 511 } 512 } 513 514 /* 515 * When switching from 32 to 64-bit, we may have a stale 32-bit 516 * magic page around, we need to flush it. Typically 32-bit magic 517 * page will be instantiated when calling into RTAS. Note: We 518 * assume that such transition only happens while in kernel mode, 519 * ie, we never transition from user 32-bit to kernel 64-bit with 520 * a 32-bit magic page around. 521 */ 522 if (vcpu->arch.magic_page_pa && 523 !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) { 524 /* going from RTAS to normal kernel code */ 525 kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa, 526 ~0xFFFUL); 527 } 528 529 /* Preload FPU if it's enabled */ 530 if (kvmppc_get_msr(vcpu) & MSR_FP) 531 kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP); 532 533 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 534 if (kvmppc_get_msr(vcpu) & MSR_TM) 535 kvmppc_handle_lost_math_exts(vcpu); 536 #endif 537 } 538 539 void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr) 540 { 541 u32 host_pvr; 542 543 vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB; 544 vcpu->arch.pvr = pvr; 545 #ifdef CONFIG_PPC_BOOK3S_64 546 if ((pvr >= 0x330000) && (pvr < 0x70330000)) { 547 kvmppc_mmu_book3s_64_init(vcpu); 548 if (!to_book3s(vcpu)->hior_explicit) 549 to_book3s(vcpu)->hior = 0xfff00000; 550 to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL; 551 vcpu->arch.cpu_type = KVM_CPU_3S_64; 552 } else 553 #endif 554 { 555 kvmppc_mmu_book3s_32_init(vcpu); 556 if (!to_book3s(vcpu)->hior_explicit) 557 to_book3s(vcpu)->hior = 0; 558 to_book3s(vcpu)->msr_mask = 0xffffffffULL; 559 vcpu->arch.cpu_type = KVM_CPU_3S_32; 560 } 561 562 kvmppc_sanity_check(vcpu); 563 564 /* If we are in hypervisor level on 970, we can tell the CPU to 565 * treat DCBZ as 32 bytes store */ 566 vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32; 567 if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) && 568 !strcmp(cur_cpu_spec->platform, "ppc970")) 569 vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32; 570 571 /* Cell performs badly if MSR_FEx are set. So let's hope nobody 572 really needs them in a VM on Cell and force disable them. */ 573 if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be")) 574 to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1); 575 576 /* 577 * If they're asking for POWER6 or later, set the flag 578 * indicating that we can do multiple large page sizes 579 * and 1TB segments. 580 * Also set the flag that indicates that tlbie has the large 581 * page bit in the RB operand instead of the instruction. 582 */ 583 switch (PVR_VER(pvr)) { 584 case PVR_POWER6: 585 case PVR_POWER7: 586 case PVR_POWER7p: 587 case PVR_POWER8: 588 case PVR_POWER8E: 589 case PVR_POWER8NVL: 590 vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE | 591 BOOK3S_HFLAG_NEW_TLBIE; 592 break; 593 } 594 595 #ifdef CONFIG_PPC_BOOK3S_32 596 /* 32 bit Book3S always has 32 byte dcbz */ 597 vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32; 598 #endif 599 600 /* On some CPUs we can execute paired single operations natively */ 601 asm ( "mfpvr %0" : "=r"(host_pvr)); 602 switch (host_pvr) { 603 case 0x00080200: /* lonestar 2.0 */ 604 case 0x00088202: /* lonestar 2.2 */ 605 case 0x70000100: /* gekko 1.0 */ 606 case 0x00080100: /* gekko 2.0 */ 607 case 0x00083203: /* gekko 2.3a */ 608 case 0x00083213: /* gekko 2.3b */ 609 case 0x00083204: /* gekko 2.4 */ 610 case 0x00083214: /* gekko 2.4e (8SE) - retail HW2 */ 611 case 0x00087200: /* broadway */ 612 vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS; 613 /* Enable HID2.PSE - in case we need it later */ 614 mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29)); 615 } 616 } 617 618 /* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To 619 * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to 620 * emulate 32 bytes dcbz length. 621 * 622 * The Book3s_64 inventors also realized this case and implemented a special bit 623 * in the HID5 register, which is a hypervisor ressource. Thus we can't use it. 624 * 625 * My approach here is to patch the dcbz instruction on executing pages. 626 */ 627 static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte) 628 { 629 struct page *hpage; 630 u64 hpage_offset; 631 u32 *page; 632 int i; 633 634 hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT); 635 if (is_error_page(hpage)) 636 return; 637 638 hpage_offset = pte->raddr & ~PAGE_MASK; 639 hpage_offset &= ~0xFFFULL; 640 hpage_offset /= 4; 641 642 get_page(hpage); 643 page = kmap_atomic(hpage); 644 645 /* patch dcbz into reserved instruction, so we trap */ 646 for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++) 647 if ((be32_to_cpu(page[i]) & 0xff0007ff) == INS_DCBZ) 648 page[i] &= cpu_to_be32(0xfffffff7); 649 650 kunmap_atomic(page); 651 put_page(hpage); 652 } 653 654 static bool kvmppc_visible_gpa(struct kvm_vcpu *vcpu, gpa_t gpa) 655 { 656 ulong mp_pa = vcpu->arch.magic_page_pa; 657 658 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) 659 mp_pa = (uint32_t)mp_pa; 660 661 gpa &= ~0xFFFULL; 662 if (unlikely(mp_pa) && unlikely((mp_pa & KVM_PAM) == (gpa & KVM_PAM))) { 663 return true; 664 } 665 666 return kvm_is_visible_gfn(vcpu->kvm, gpa >> PAGE_SHIFT); 667 } 668 669 int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu, 670 ulong eaddr, int vec) 671 { 672 bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE); 673 bool iswrite = false; 674 int r = RESUME_GUEST; 675 int relocated; 676 int page_found = 0; 677 struct kvmppc_pte pte = { 0 }; 678 bool dr = (kvmppc_get_msr(vcpu) & MSR_DR) ? true : false; 679 bool ir = (kvmppc_get_msr(vcpu) & MSR_IR) ? true : false; 680 u64 vsid; 681 682 relocated = data ? dr : ir; 683 if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE)) 684 iswrite = true; 685 686 /* Resolve real address if translation turned on */ 687 if (relocated) { 688 page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite); 689 } else { 690 pte.may_execute = true; 691 pte.may_read = true; 692 pte.may_write = true; 693 pte.raddr = eaddr & KVM_PAM; 694 pte.eaddr = eaddr; 695 pte.vpage = eaddr >> 12; 696 pte.page_size = MMU_PAGE_64K; 697 pte.wimg = HPTE_R_M; 698 } 699 700 switch (kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) { 701 case 0: 702 pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12)); 703 break; 704 case MSR_DR: 705 if (!data && 706 (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) && 707 ((pte.raddr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)) 708 pte.raddr &= ~SPLIT_HACK_MASK; 709 /* fall through */ 710 case MSR_IR: 711 vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid); 712 713 if ((kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) == MSR_DR) 714 pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12)); 715 else 716 pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12)); 717 pte.vpage |= vsid; 718 719 if (vsid == -1) 720 page_found = -EINVAL; 721 break; 722 } 723 724 if (vcpu->arch.mmu.is_dcbz32(vcpu) && 725 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) { 726 /* 727 * If we do the dcbz hack, we have to NX on every execution, 728 * so we can patch the executing code. This renders our guest 729 * NX-less. 730 */ 731 pte.may_execute = !data; 732 } 733 734 if (page_found == -ENOENT || page_found == -EPERM) { 735 /* Page not found in guest PTE entries, or protection fault */ 736 u64 flags; 737 738 if (page_found == -EPERM) 739 flags = DSISR_PROTFAULT; 740 else 741 flags = DSISR_NOHPTE; 742 if (data) { 743 flags |= vcpu->arch.fault_dsisr & DSISR_ISSTORE; 744 kvmppc_core_queue_data_storage(vcpu, eaddr, flags); 745 } else { 746 kvmppc_core_queue_inst_storage(vcpu, flags); 747 } 748 } else if (page_found == -EINVAL) { 749 /* Page not found in guest SLB */ 750 kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu)); 751 kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80); 752 } else if (kvmppc_visible_gpa(vcpu, pte.raddr)) { 753 if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) { 754 /* 755 * There is already a host HPTE there, presumably 756 * a read-only one for a page the guest thinks 757 * is writable, so get rid of it first. 758 */ 759 kvmppc_mmu_unmap_page(vcpu, &pte); 760 } 761 /* The guest's PTE is not mapped yet. Map on the host */ 762 if (kvmppc_mmu_map_page(vcpu, &pte, iswrite) == -EIO) { 763 /* Exit KVM if mapping failed */ 764 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 765 return RESUME_HOST; 766 } 767 if (data) 768 vcpu->stat.sp_storage++; 769 else if (vcpu->arch.mmu.is_dcbz32(vcpu) && 770 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) 771 kvmppc_patch_dcbz(vcpu, &pte); 772 } else { 773 /* MMIO */ 774 vcpu->stat.mmio_exits++; 775 vcpu->arch.paddr_accessed = pte.raddr; 776 vcpu->arch.vaddr_accessed = pte.eaddr; 777 r = kvmppc_emulate_mmio(run, vcpu); 778 if ( r == RESUME_HOST_NV ) 779 r = RESUME_HOST; 780 } 781 782 return r; 783 } 784 785 /* Give up external provider (FPU, Altivec, VSX) */ 786 void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr) 787 { 788 struct thread_struct *t = ¤t->thread; 789 790 /* 791 * VSX instructions can access FP and vector registers, so if 792 * we are giving up VSX, make sure we give up FP and VMX as well. 793 */ 794 if (msr & MSR_VSX) 795 msr |= MSR_FP | MSR_VEC; 796 797 msr &= vcpu->arch.guest_owned_ext; 798 if (!msr) 799 return; 800 801 #ifdef DEBUG_EXT 802 printk(KERN_INFO "Giving up ext 0x%lx\n", msr); 803 #endif 804 805 if (msr & MSR_FP) { 806 /* 807 * Note that on CPUs with VSX, giveup_fpu stores 808 * both the traditional FP registers and the added VSX 809 * registers into thread.fp_state.fpr[]. 810 */ 811 if (t->regs->msr & MSR_FP) 812 giveup_fpu(current); 813 t->fp_save_area = NULL; 814 } 815 816 #ifdef CONFIG_ALTIVEC 817 if (msr & MSR_VEC) { 818 if (current->thread.regs->msr & MSR_VEC) 819 giveup_altivec(current); 820 t->vr_save_area = NULL; 821 } 822 #endif 823 824 vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX); 825 kvmppc_recalc_shadow_msr(vcpu); 826 } 827 828 /* Give up facility (TAR / EBB / DSCR) */ 829 void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac) 830 { 831 #ifdef CONFIG_PPC_BOOK3S_64 832 if (!(vcpu->arch.shadow_fscr & (1ULL << fac))) { 833 /* Facility not available to the guest, ignore giveup request*/ 834 return; 835 } 836 837 switch (fac) { 838 case FSCR_TAR_LG: 839 vcpu->arch.tar = mfspr(SPRN_TAR); 840 mtspr(SPRN_TAR, current->thread.tar); 841 vcpu->arch.shadow_fscr &= ~FSCR_TAR; 842 break; 843 } 844 #endif 845 } 846 847 /* Handle external providers (FPU, Altivec, VSX) */ 848 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr, 849 ulong msr) 850 { 851 struct thread_struct *t = ¤t->thread; 852 853 /* When we have paired singles, we emulate in software */ 854 if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) 855 return RESUME_GUEST; 856 857 if (!(kvmppc_get_msr(vcpu) & msr)) { 858 kvmppc_book3s_queue_irqprio(vcpu, exit_nr); 859 return RESUME_GUEST; 860 } 861 862 if (msr == MSR_VSX) { 863 /* No VSX? Give an illegal instruction interrupt */ 864 #ifdef CONFIG_VSX 865 if (!cpu_has_feature(CPU_FTR_VSX)) 866 #endif 867 { 868 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 869 return RESUME_GUEST; 870 } 871 872 /* 873 * We have to load up all the FP and VMX registers before 874 * we can let the guest use VSX instructions. 875 */ 876 msr = MSR_FP | MSR_VEC | MSR_VSX; 877 } 878 879 /* See if we already own all the ext(s) needed */ 880 msr &= ~vcpu->arch.guest_owned_ext; 881 if (!msr) 882 return RESUME_GUEST; 883 884 #ifdef DEBUG_EXT 885 printk(KERN_INFO "Loading up ext 0x%lx\n", msr); 886 #endif 887 888 if (msr & MSR_FP) { 889 preempt_disable(); 890 enable_kernel_fp(); 891 load_fp_state(&vcpu->arch.fp); 892 disable_kernel_fp(); 893 t->fp_save_area = &vcpu->arch.fp; 894 preempt_enable(); 895 } 896 897 if (msr & MSR_VEC) { 898 #ifdef CONFIG_ALTIVEC 899 preempt_disable(); 900 enable_kernel_altivec(); 901 load_vr_state(&vcpu->arch.vr); 902 disable_kernel_altivec(); 903 t->vr_save_area = &vcpu->arch.vr; 904 preempt_enable(); 905 #endif 906 } 907 908 t->regs->msr |= msr; 909 vcpu->arch.guest_owned_ext |= msr; 910 kvmppc_recalc_shadow_msr(vcpu); 911 912 return RESUME_GUEST; 913 } 914 915 /* 916 * Kernel code using FP or VMX could have flushed guest state to 917 * the thread_struct; if so, get it back now. 918 */ 919 static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu) 920 { 921 unsigned long lost_ext; 922 923 lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr; 924 if (!lost_ext) 925 return; 926 927 if (lost_ext & MSR_FP) { 928 preempt_disable(); 929 enable_kernel_fp(); 930 load_fp_state(&vcpu->arch.fp); 931 disable_kernel_fp(); 932 preempt_enable(); 933 } 934 #ifdef CONFIG_ALTIVEC 935 if (lost_ext & MSR_VEC) { 936 preempt_disable(); 937 enable_kernel_altivec(); 938 load_vr_state(&vcpu->arch.vr); 939 disable_kernel_altivec(); 940 preempt_enable(); 941 } 942 #endif 943 current->thread.regs->msr |= lost_ext; 944 } 945 946 #ifdef CONFIG_PPC_BOOK3S_64 947 948 void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac) 949 { 950 /* Inject the Interrupt Cause field and trigger a guest interrupt */ 951 vcpu->arch.fscr &= ~(0xffULL << 56); 952 vcpu->arch.fscr |= (fac << 56); 953 kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL); 954 } 955 956 static void kvmppc_emulate_fac(struct kvm_vcpu *vcpu, ulong fac) 957 { 958 enum emulation_result er = EMULATE_FAIL; 959 960 if (!(kvmppc_get_msr(vcpu) & MSR_PR)) 961 er = kvmppc_emulate_instruction(vcpu->run, vcpu); 962 963 if ((er != EMULATE_DONE) && (er != EMULATE_AGAIN)) { 964 /* Couldn't emulate, trigger interrupt in guest */ 965 kvmppc_trigger_fac_interrupt(vcpu, fac); 966 } 967 } 968 969 /* Enable facilities (TAR, EBB, DSCR) for the guest */ 970 static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac) 971 { 972 bool guest_fac_enabled; 973 BUG_ON(!cpu_has_feature(CPU_FTR_ARCH_207S)); 974 975 /* 976 * Not every facility is enabled by FSCR bits, check whether the 977 * guest has this facility enabled at all. 978 */ 979 switch (fac) { 980 case FSCR_TAR_LG: 981 case FSCR_EBB_LG: 982 guest_fac_enabled = (vcpu->arch.fscr & (1ULL << fac)); 983 break; 984 case FSCR_TM_LG: 985 guest_fac_enabled = kvmppc_get_msr(vcpu) & MSR_TM; 986 break; 987 default: 988 guest_fac_enabled = false; 989 break; 990 } 991 992 if (!guest_fac_enabled) { 993 /* Facility not enabled by the guest */ 994 kvmppc_trigger_fac_interrupt(vcpu, fac); 995 return RESUME_GUEST; 996 } 997 998 switch (fac) { 999 case FSCR_TAR_LG: 1000 /* TAR switching isn't lazy in Linux yet */ 1001 current->thread.tar = mfspr(SPRN_TAR); 1002 mtspr(SPRN_TAR, vcpu->arch.tar); 1003 vcpu->arch.shadow_fscr |= FSCR_TAR; 1004 break; 1005 default: 1006 kvmppc_emulate_fac(vcpu, fac); 1007 break; 1008 } 1009 1010 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1011 /* Since we disabled MSR_TM at privilege state, the mfspr instruction 1012 * for TM spr can trigger TM fac unavailable. In this case, the 1013 * emulation is handled by kvmppc_emulate_fac(), which invokes 1014 * kvmppc_emulate_mfspr() finally. But note the mfspr can include 1015 * RT for NV registers. So it need to restore those NV reg to reflect 1016 * the update. 1017 */ 1018 if ((fac == FSCR_TM_LG) && !(kvmppc_get_msr(vcpu) & MSR_PR)) 1019 return RESUME_GUEST_NV; 1020 #endif 1021 1022 return RESUME_GUEST; 1023 } 1024 1025 void kvmppc_set_fscr(struct kvm_vcpu *vcpu, u64 fscr) 1026 { 1027 if ((vcpu->arch.fscr & FSCR_TAR) && !(fscr & FSCR_TAR)) { 1028 /* TAR got dropped, drop it in shadow too */ 1029 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG); 1030 } else if (!(vcpu->arch.fscr & FSCR_TAR) && (fscr & FSCR_TAR)) { 1031 vcpu->arch.fscr = fscr; 1032 kvmppc_handle_fac(vcpu, FSCR_TAR_LG); 1033 return; 1034 } 1035 1036 vcpu->arch.fscr = fscr; 1037 } 1038 #endif 1039 1040 static void kvmppc_setup_debug(struct kvm_vcpu *vcpu) 1041 { 1042 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 1043 u64 msr = kvmppc_get_msr(vcpu); 1044 1045 kvmppc_set_msr(vcpu, msr | MSR_SE); 1046 } 1047 } 1048 1049 static void kvmppc_clear_debug(struct kvm_vcpu *vcpu) 1050 { 1051 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 1052 u64 msr = kvmppc_get_msr(vcpu); 1053 1054 kvmppc_set_msr(vcpu, msr & ~MSR_SE); 1055 } 1056 } 1057 1058 static int kvmppc_exit_pr_progint(struct kvm_run *run, struct kvm_vcpu *vcpu, 1059 unsigned int exit_nr) 1060 { 1061 enum emulation_result er; 1062 ulong flags; 1063 u32 last_inst; 1064 int emul, r; 1065 1066 /* 1067 * shadow_srr1 only contains valid flags if we came here via a program 1068 * exception. The other exceptions (emulation assist, FP unavailable, 1069 * etc.) do not provide flags in SRR1, so use an illegal-instruction 1070 * exception when injecting a program interrupt into the guest. 1071 */ 1072 if (exit_nr == BOOK3S_INTERRUPT_PROGRAM) 1073 flags = vcpu->arch.shadow_srr1 & 0x1f0000ull; 1074 else 1075 flags = SRR1_PROGILL; 1076 1077 emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); 1078 if (emul != EMULATE_DONE) 1079 return RESUME_GUEST; 1080 1081 if (kvmppc_get_msr(vcpu) & MSR_PR) { 1082 #ifdef EXIT_DEBUG 1083 pr_info("Userspace triggered 0x700 exception at\n 0x%lx (0x%x)\n", 1084 kvmppc_get_pc(vcpu), last_inst); 1085 #endif 1086 if ((last_inst & 0xff0007ff) != (INS_DCBZ & 0xfffffff7)) { 1087 kvmppc_core_queue_program(vcpu, flags); 1088 return RESUME_GUEST; 1089 } 1090 } 1091 1092 vcpu->stat.emulated_inst_exits++; 1093 er = kvmppc_emulate_instruction(run, vcpu); 1094 switch (er) { 1095 case EMULATE_DONE: 1096 r = RESUME_GUEST_NV; 1097 break; 1098 case EMULATE_AGAIN: 1099 r = RESUME_GUEST; 1100 break; 1101 case EMULATE_FAIL: 1102 pr_crit("%s: emulation at %lx failed (%08x)\n", 1103 __func__, kvmppc_get_pc(vcpu), last_inst); 1104 kvmppc_core_queue_program(vcpu, flags); 1105 r = RESUME_GUEST; 1106 break; 1107 case EMULATE_DO_MMIO: 1108 run->exit_reason = KVM_EXIT_MMIO; 1109 r = RESUME_HOST_NV; 1110 break; 1111 case EMULATE_EXIT_USER: 1112 r = RESUME_HOST_NV; 1113 break; 1114 default: 1115 BUG(); 1116 } 1117 1118 return r; 1119 } 1120 1121 int kvmppc_handle_exit_pr(struct kvm_run *run, struct kvm_vcpu *vcpu, 1122 unsigned int exit_nr) 1123 { 1124 int r = RESUME_HOST; 1125 int s; 1126 1127 vcpu->stat.sum_exits++; 1128 1129 run->exit_reason = KVM_EXIT_UNKNOWN; 1130 run->ready_for_interrupt_injection = 1; 1131 1132 /* We get here with MSR.EE=1 */ 1133 1134 trace_kvm_exit(exit_nr, vcpu); 1135 guest_exit(); 1136 1137 switch (exit_nr) { 1138 case BOOK3S_INTERRUPT_INST_STORAGE: 1139 { 1140 ulong shadow_srr1 = vcpu->arch.shadow_srr1; 1141 vcpu->stat.pf_instruc++; 1142 1143 if (kvmppc_is_split_real(vcpu)) 1144 kvmppc_fixup_split_real(vcpu); 1145 1146 #ifdef CONFIG_PPC_BOOK3S_32 1147 /* We set segments as unused segments when invalidating them. So 1148 * treat the respective fault as segment fault. */ 1149 { 1150 struct kvmppc_book3s_shadow_vcpu *svcpu; 1151 u32 sr; 1152 1153 svcpu = svcpu_get(vcpu); 1154 sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT]; 1155 svcpu_put(svcpu); 1156 if (sr == SR_INVALID) { 1157 kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)); 1158 r = RESUME_GUEST; 1159 break; 1160 } 1161 } 1162 #endif 1163 1164 /* only care about PTEG not found errors, but leave NX alone */ 1165 if (shadow_srr1 & 0x40000000) { 1166 int idx = srcu_read_lock(&vcpu->kvm->srcu); 1167 r = kvmppc_handle_pagefault(run, vcpu, kvmppc_get_pc(vcpu), exit_nr); 1168 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1169 vcpu->stat.sp_instruc++; 1170 } else if (vcpu->arch.mmu.is_dcbz32(vcpu) && 1171 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) { 1172 /* 1173 * XXX If we do the dcbz hack we use the NX bit to flush&patch the page, 1174 * so we can't use the NX bit inside the guest. Let's cross our fingers, 1175 * that no guest that needs the dcbz hack does NX. 1176 */ 1177 kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL); 1178 r = RESUME_GUEST; 1179 } else { 1180 kvmppc_core_queue_inst_storage(vcpu, 1181 shadow_srr1 & 0x58000000); 1182 r = RESUME_GUEST; 1183 } 1184 break; 1185 } 1186 case BOOK3S_INTERRUPT_DATA_STORAGE: 1187 { 1188 ulong dar = kvmppc_get_fault_dar(vcpu); 1189 u32 fault_dsisr = vcpu->arch.fault_dsisr; 1190 vcpu->stat.pf_storage++; 1191 1192 #ifdef CONFIG_PPC_BOOK3S_32 1193 /* We set segments as unused segments when invalidating them. So 1194 * treat the respective fault as segment fault. */ 1195 { 1196 struct kvmppc_book3s_shadow_vcpu *svcpu; 1197 u32 sr; 1198 1199 svcpu = svcpu_get(vcpu); 1200 sr = svcpu->sr[dar >> SID_SHIFT]; 1201 svcpu_put(svcpu); 1202 if (sr == SR_INVALID) { 1203 kvmppc_mmu_map_segment(vcpu, dar); 1204 r = RESUME_GUEST; 1205 break; 1206 } 1207 } 1208 #endif 1209 1210 /* 1211 * We need to handle missing shadow PTEs, and 1212 * protection faults due to us mapping a page read-only 1213 * when the guest thinks it is writable. 1214 */ 1215 if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) { 1216 int idx = srcu_read_lock(&vcpu->kvm->srcu); 1217 r = kvmppc_handle_pagefault(run, vcpu, dar, exit_nr); 1218 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1219 } else { 1220 kvmppc_core_queue_data_storage(vcpu, dar, fault_dsisr); 1221 r = RESUME_GUEST; 1222 } 1223 break; 1224 } 1225 case BOOK3S_INTERRUPT_DATA_SEGMENT: 1226 if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) { 1227 kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu)); 1228 kvmppc_book3s_queue_irqprio(vcpu, 1229 BOOK3S_INTERRUPT_DATA_SEGMENT); 1230 } 1231 r = RESUME_GUEST; 1232 break; 1233 case BOOK3S_INTERRUPT_INST_SEGMENT: 1234 if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) { 1235 kvmppc_book3s_queue_irqprio(vcpu, 1236 BOOK3S_INTERRUPT_INST_SEGMENT); 1237 } 1238 r = RESUME_GUEST; 1239 break; 1240 /* We're good on these - the host merely wanted to get our attention */ 1241 case BOOK3S_INTERRUPT_DECREMENTER: 1242 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1243 case BOOK3S_INTERRUPT_DOORBELL: 1244 case BOOK3S_INTERRUPT_H_DOORBELL: 1245 vcpu->stat.dec_exits++; 1246 r = RESUME_GUEST; 1247 break; 1248 case BOOK3S_INTERRUPT_EXTERNAL: 1249 case BOOK3S_INTERRUPT_EXTERNAL_LEVEL: 1250 case BOOK3S_INTERRUPT_EXTERNAL_HV: 1251 case BOOK3S_INTERRUPT_H_VIRT: 1252 vcpu->stat.ext_intr_exits++; 1253 r = RESUME_GUEST; 1254 break; 1255 case BOOK3S_INTERRUPT_HMI: 1256 case BOOK3S_INTERRUPT_PERFMON: 1257 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1258 r = RESUME_GUEST; 1259 break; 1260 case BOOK3S_INTERRUPT_PROGRAM: 1261 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 1262 r = kvmppc_exit_pr_progint(run, vcpu, exit_nr); 1263 break; 1264 case BOOK3S_INTERRUPT_SYSCALL: 1265 { 1266 u32 last_sc; 1267 int emul; 1268 1269 /* Get last sc for papr */ 1270 if (vcpu->arch.papr_enabled) { 1271 /* The sc instuction points SRR0 to the next inst */ 1272 emul = kvmppc_get_last_inst(vcpu, INST_SC, &last_sc); 1273 if (emul != EMULATE_DONE) { 1274 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) - 4); 1275 r = RESUME_GUEST; 1276 break; 1277 } 1278 } 1279 1280 if (vcpu->arch.papr_enabled && 1281 (last_sc == 0x44000022) && 1282 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 1283 /* SC 1 papr hypercalls */ 1284 ulong cmd = kvmppc_get_gpr(vcpu, 3); 1285 int i; 1286 1287 #ifdef CONFIG_PPC_BOOK3S_64 1288 if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) { 1289 r = RESUME_GUEST; 1290 break; 1291 } 1292 #endif 1293 1294 run->papr_hcall.nr = cmd; 1295 for (i = 0; i < 9; ++i) { 1296 ulong gpr = kvmppc_get_gpr(vcpu, 4 + i); 1297 run->papr_hcall.args[i] = gpr; 1298 } 1299 run->exit_reason = KVM_EXIT_PAPR_HCALL; 1300 vcpu->arch.hcall_needed = 1; 1301 r = RESUME_HOST; 1302 } else if (vcpu->arch.osi_enabled && 1303 (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) && 1304 (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) { 1305 /* MOL hypercalls */ 1306 u64 *gprs = run->osi.gprs; 1307 int i; 1308 1309 run->exit_reason = KVM_EXIT_OSI; 1310 for (i = 0; i < 32; i++) 1311 gprs[i] = kvmppc_get_gpr(vcpu, i); 1312 vcpu->arch.osi_needed = 1; 1313 r = RESUME_HOST_NV; 1314 } else if (!(kvmppc_get_msr(vcpu) & MSR_PR) && 1315 (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) { 1316 /* KVM PV hypercalls */ 1317 kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu)); 1318 r = RESUME_GUEST; 1319 } else { 1320 /* Guest syscalls */ 1321 vcpu->stat.syscall_exits++; 1322 kvmppc_book3s_queue_irqprio(vcpu, exit_nr); 1323 r = RESUME_GUEST; 1324 } 1325 break; 1326 } 1327 case BOOK3S_INTERRUPT_FP_UNAVAIL: 1328 case BOOK3S_INTERRUPT_ALTIVEC: 1329 case BOOK3S_INTERRUPT_VSX: 1330 { 1331 int ext_msr = 0; 1332 int emul; 1333 u32 last_inst; 1334 1335 if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) { 1336 /* Do paired single instruction emulation */ 1337 emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, 1338 &last_inst); 1339 if (emul == EMULATE_DONE) 1340 r = kvmppc_exit_pr_progint(run, vcpu, exit_nr); 1341 else 1342 r = RESUME_GUEST; 1343 1344 break; 1345 } 1346 1347 /* Enable external provider */ 1348 switch (exit_nr) { 1349 case BOOK3S_INTERRUPT_FP_UNAVAIL: 1350 ext_msr = MSR_FP; 1351 break; 1352 1353 case BOOK3S_INTERRUPT_ALTIVEC: 1354 ext_msr = MSR_VEC; 1355 break; 1356 1357 case BOOK3S_INTERRUPT_VSX: 1358 ext_msr = MSR_VSX; 1359 break; 1360 } 1361 1362 r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr); 1363 break; 1364 } 1365 case BOOK3S_INTERRUPT_ALIGNMENT: 1366 { 1367 u32 last_inst; 1368 int emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); 1369 1370 if (emul == EMULATE_DONE) { 1371 u32 dsisr; 1372 u64 dar; 1373 1374 dsisr = kvmppc_alignment_dsisr(vcpu, last_inst); 1375 dar = kvmppc_alignment_dar(vcpu, last_inst); 1376 1377 kvmppc_set_dsisr(vcpu, dsisr); 1378 kvmppc_set_dar(vcpu, dar); 1379 1380 kvmppc_book3s_queue_irqprio(vcpu, exit_nr); 1381 } 1382 r = RESUME_GUEST; 1383 break; 1384 } 1385 #ifdef CONFIG_PPC_BOOK3S_64 1386 case BOOK3S_INTERRUPT_FAC_UNAVAIL: 1387 r = kvmppc_handle_fac(vcpu, vcpu->arch.shadow_fscr >> 56); 1388 break; 1389 #endif 1390 case BOOK3S_INTERRUPT_MACHINE_CHECK: 1391 kvmppc_book3s_queue_irqprio(vcpu, exit_nr); 1392 r = RESUME_GUEST; 1393 break; 1394 case BOOK3S_INTERRUPT_TRACE: 1395 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 1396 run->exit_reason = KVM_EXIT_DEBUG; 1397 r = RESUME_HOST; 1398 } else { 1399 kvmppc_book3s_queue_irqprio(vcpu, exit_nr); 1400 r = RESUME_GUEST; 1401 } 1402 break; 1403 default: 1404 { 1405 ulong shadow_srr1 = vcpu->arch.shadow_srr1; 1406 /* Ugh - bork here! What did we get? */ 1407 printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n", 1408 exit_nr, kvmppc_get_pc(vcpu), shadow_srr1); 1409 r = RESUME_HOST; 1410 BUG(); 1411 break; 1412 } 1413 } 1414 1415 if (!(r & RESUME_HOST)) { 1416 /* To avoid clobbering exit_reason, only check for signals if 1417 * we aren't already exiting to userspace for some other 1418 * reason. */ 1419 1420 /* 1421 * Interrupts could be timers for the guest which we have to 1422 * inject again, so let's postpone them until we're in the guest 1423 * and if we really did time things so badly, then we just exit 1424 * again due to a host external interrupt. 1425 */ 1426 s = kvmppc_prepare_to_enter(vcpu); 1427 if (s <= 0) 1428 r = s; 1429 else { 1430 /* interrupts now hard-disabled */ 1431 kvmppc_fix_ee_before_entry(); 1432 } 1433 1434 kvmppc_handle_lost_ext(vcpu); 1435 } 1436 1437 trace_kvm_book3s_reenter(r, vcpu); 1438 1439 return r; 1440 } 1441 1442 static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu, 1443 struct kvm_sregs *sregs) 1444 { 1445 struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu); 1446 int i; 1447 1448 sregs->pvr = vcpu->arch.pvr; 1449 1450 sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1; 1451 if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) { 1452 for (i = 0; i < 64; i++) { 1453 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i; 1454 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 1455 } 1456 } else { 1457 for (i = 0; i < 16; i++) 1458 sregs->u.s.ppc32.sr[i] = kvmppc_get_sr(vcpu, i); 1459 1460 for (i = 0; i < 8; i++) { 1461 sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw; 1462 sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw; 1463 } 1464 } 1465 1466 return 0; 1467 } 1468 1469 static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu, 1470 struct kvm_sregs *sregs) 1471 { 1472 struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu); 1473 int i; 1474 1475 kvmppc_set_pvr_pr(vcpu, sregs->pvr); 1476 1477 vcpu3s->sdr1 = sregs->u.s.sdr1; 1478 #ifdef CONFIG_PPC_BOOK3S_64 1479 if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) { 1480 /* Flush all SLB entries */ 1481 vcpu->arch.mmu.slbmte(vcpu, 0, 0); 1482 vcpu->arch.mmu.slbia(vcpu); 1483 1484 for (i = 0; i < 64; i++) { 1485 u64 rb = sregs->u.s.ppc64.slb[i].slbe; 1486 u64 rs = sregs->u.s.ppc64.slb[i].slbv; 1487 1488 if (rb & SLB_ESID_V) 1489 vcpu->arch.mmu.slbmte(vcpu, rs, rb); 1490 } 1491 } else 1492 #endif 1493 { 1494 for (i = 0; i < 16; i++) { 1495 vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]); 1496 } 1497 for (i = 0; i < 8; i++) { 1498 kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false, 1499 (u32)sregs->u.s.ppc32.ibat[i]); 1500 kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true, 1501 (u32)(sregs->u.s.ppc32.ibat[i] >> 32)); 1502 kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false, 1503 (u32)sregs->u.s.ppc32.dbat[i]); 1504 kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true, 1505 (u32)(sregs->u.s.ppc32.dbat[i] >> 32)); 1506 } 1507 } 1508 1509 /* Flush the MMU after messing with the segments */ 1510 kvmppc_mmu_pte_flush(vcpu, 0, 0); 1511 1512 return 0; 1513 } 1514 1515 static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id, 1516 union kvmppc_one_reg *val) 1517 { 1518 int r = 0; 1519 1520 switch (id) { 1521 case KVM_REG_PPC_DEBUG_INST: 1522 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); 1523 break; 1524 case KVM_REG_PPC_HIOR: 1525 *val = get_reg_val(id, to_book3s(vcpu)->hior); 1526 break; 1527 case KVM_REG_PPC_VTB: 1528 *val = get_reg_val(id, to_book3s(vcpu)->vtb); 1529 break; 1530 case KVM_REG_PPC_LPCR: 1531 case KVM_REG_PPC_LPCR_64: 1532 /* 1533 * We are only interested in the LPCR_ILE bit 1534 */ 1535 if (vcpu->arch.intr_msr & MSR_LE) 1536 *val = get_reg_val(id, LPCR_ILE); 1537 else 1538 *val = get_reg_val(id, 0); 1539 break; 1540 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1541 case KVM_REG_PPC_TFHAR: 1542 *val = get_reg_val(id, vcpu->arch.tfhar); 1543 break; 1544 case KVM_REG_PPC_TFIAR: 1545 *val = get_reg_val(id, vcpu->arch.tfiar); 1546 break; 1547 case KVM_REG_PPC_TEXASR: 1548 *val = get_reg_val(id, vcpu->arch.texasr); 1549 break; 1550 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1551 *val = get_reg_val(id, 1552 vcpu->arch.gpr_tm[id-KVM_REG_PPC_TM_GPR0]); 1553 break; 1554 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1555 { 1556 int i, j; 1557 1558 i = id - KVM_REG_PPC_TM_VSR0; 1559 if (i < 32) 1560 for (j = 0; j < TS_FPRWIDTH; j++) 1561 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; 1562 else { 1563 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1564 val->vval = vcpu->arch.vr_tm.vr[i-32]; 1565 else 1566 r = -ENXIO; 1567 } 1568 break; 1569 } 1570 case KVM_REG_PPC_TM_CR: 1571 *val = get_reg_val(id, vcpu->arch.cr_tm); 1572 break; 1573 case KVM_REG_PPC_TM_XER: 1574 *val = get_reg_val(id, vcpu->arch.xer_tm); 1575 break; 1576 case KVM_REG_PPC_TM_LR: 1577 *val = get_reg_val(id, vcpu->arch.lr_tm); 1578 break; 1579 case KVM_REG_PPC_TM_CTR: 1580 *val = get_reg_val(id, vcpu->arch.ctr_tm); 1581 break; 1582 case KVM_REG_PPC_TM_FPSCR: 1583 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); 1584 break; 1585 case KVM_REG_PPC_TM_AMR: 1586 *val = get_reg_val(id, vcpu->arch.amr_tm); 1587 break; 1588 case KVM_REG_PPC_TM_PPR: 1589 *val = get_reg_val(id, vcpu->arch.ppr_tm); 1590 break; 1591 case KVM_REG_PPC_TM_VRSAVE: 1592 *val = get_reg_val(id, vcpu->arch.vrsave_tm); 1593 break; 1594 case KVM_REG_PPC_TM_VSCR: 1595 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1596 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); 1597 else 1598 r = -ENXIO; 1599 break; 1600 case KVM_REG_PPC_TM_DSCR: 1601 *val = get_reg_val(id, vcpu->arch.dscr_tm); 1602 break; 1603 case KVM_REG_PPC_TM_TAR: 1604 *val = get_reg_val(id, vcpu->arch.tar_tm); 1605 break; 1606 #endif 1607 default: 1608 r = -EINVAL; 1609 break; 1610 } 1611 1612 return r; 1613 } 1614 1615 static void kvmppc_set_lpcr_pr(struct kvm_vcpu *vcpu, u64 new_lpcr) 1616 { 1617 if (new_lpcr & LPCR_ILE) 1618 vcpu->arch.intr_msr |= MSR_LE; 1619 else 1620 vcpu->arch.intr_msr &= ~MSR_LE; 1621 } 1622 1623 static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id, 1624 union kvmppc_one_reg *val) 1625 { 1626 int r = 0; 1627 1628 switch (id) { 1629 case KVM_REG_PPC_HIOR: 1630 to_book3s(vcpu)->hior = set_reg_val(id, *val); 1631 to_book3s(vcpu)->hior_explicit = true; 1632 break; 1633 case KVM_REG_PPC_VTB: 1634 to_book3s(vcpu)->vtb = set_reg_val(id, *val); 1635 break; 1636 case KVM_REG_PPC_LPCR: 1637 case KVM_REG_PPC_LPCR_64: 1638 kvmppc_set_lpcr_pr(vcpu, set_reg_val(id, *val)); 1639 break; 1640 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1641 case KVM_REG_PPC_TFHAR: 1642 vcpu->arch.tfhar = set_reg_val(id, *val); 1643 break; 1644 case KVM_REG_PPC_TFIAR: 1645 vcpu->arch.tfiar = set_reg_val(id, *val); 1646 break; 1647 case KVM_REG_PPC_TEXASR: 1648 vcpu->arch.texasr = set_reg_val(id, *val); 1649 break; 1650 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1651 vcpu->arch.gpr_tm[id - KVM_REG_PPC_TM_GPR0] = 1652 set_reg_val(id, *val); 1653 break; 1654 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1655 { 1656 int i, j; 1657 1658 i = id - KVM_REG_PPC_TM_VSR0; 1659 if (i < 32) 1660 for (j = 0; j < TS_FPRWIDTH; j++) 1661 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; 1662 else 1663 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1664 vcpu->arch.vr_tm.vr[i-32] = val->vval; 1665 else 1666 r = -ENXIO; 1667 break; 1668 } 1669 case KVM_REG_PPC_TM_CR: 1670 vcpu->arch.cr_tm = set_reg_val(id, *val); 1671 break; 1672 case KVM_REG_PPC_TM_XER: 1673 vcpu->arch.xer_tm = set_reg_val(id, *val); 1674 break; 1675 case KVM_REG_PPC_TM_LR: 1676 vcpu->arch.lr_tm = set_reg_val(id, *val); 1677 break; 1678 case KVM_REG_PPC_TM_CTR: 1679 vcpu->arch.ctr_tm = set_reg_val(id, *val); 1680 break; 1681 case KVM_REG_PPC_TM_FPSCR: 1682 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); 1683 break; 1684 case KVM_REG_PPC_TM_AMR: 1685 vcpu->arch.amr_tm = set_reg_val(id, *val); 1686 break; 1687 case KVM_REG_PPC_TM_PPR: 1688 vcpu->arch.ppr_tm = set_reg_val(id, *val); 1689 break; 1690 case KVM_REG_PPC_TM_VRSAVE: 1691 vcpu->arch.vrsave_tm = set_reg_val(id, *val); 1692 break; 1693 case KVM_REG_PPC_TM_VSCR: 1694 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1695 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); 1696 else 1697 r = -ENXIO; 1698 break; 1699 case KVM_REG_PPC_TM_DSCR: 1700 vcpu->arch.dscr_tm = set_reg_val(id, *val); 1701 break; 1702 case KVM_REG_PPC_TM_TAR: 1703 vcpu->arch.tar_tm = set_reg_val(id, *val); 1704 break; 1705 #endif 1706 default: 1707 r = -EINVAL; 1708 break; 1709 } 1710 1711 return r; 1712 } 1713 1714 static struct kvm_vcpu *kvmppc_core_vcpu_create_pr(struct kvm *kvm, 1715 unsigned int id) 1716 { 1717 struct kvmppc_vcpu_book3s *vcpu_book3s; 1718 struct kvm_vcpu *vcpu; 1719 int err = -ENOMEM; 1720 unsigned long p; 1721 1722 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 1723 if (!vcpu) 1724 goto out; 1725 1726 vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s)); 1727 if (!vcpu_book3s) 1728 goto free_vcpu; 1729 vcpu->arch.book3s = vcpu_book3s; 1730 1731 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER 1732 vcpu->arch.shadow_vcpu = 1733 kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL); 1734 if (!vcpu->arch.shadow_vcpu) 1735 goto free_vcpu3s; 1736 #endif 1737 1738 err = kvm_vcpu_init(vcpu, kvm, id); 1739 if (err) 1740 goto free_shadow_vcpu; 1741 1742 err = -ENOMEM; 1743 p = __get_free_page(GFP_KERNEL|__GFP_ZERO); 1744 if (!p) 1745 goto uninit_vcpu; 1746 vcpu->arch.shared = (void *)p; 1747 #ifdef CONFIG_PPC_BOOK3S_64 1748 /* Always start the shared struct in native endian mode */ 1749 #ifdef __BIG_ENDIAN__ 1750 vcpu->arch.shared_big_endian = true; 1751 #else 1752 vcpu->arch.shared_big_endian = false; 1753 #endif 1754 1755 /* 1756 * Default to the same as the host if we're on sufficiently 1757 * recent machine that we have 1TB segments; 1758 * otherwise default to PPC970FX. 1759 */ 1760 vcpu->arch.pvr = 0x3C0301; 1761 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1762 vcpu->arch.pvr = mfspr(SPRN_PVR); 1763 vcpu->arch.intr_msr = MSR_SF; 1764 #else 1765 /* default to book3s_32 (750) */ 1766 vcpu->arch.pvr = 0x84202; 1767 #endif 1768 kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr); 1769 vcpu->arch.slb_nr = 64; 1770 1771 vcpu->arch.shadow_msr = MSR_USER64 & ~MSR_LE; 1772 1773 err = kvmppc_mmu_init(vcpu); 1774 if (err < 0) 1775 goto uninit_vcpu; 1776 1777 return vcpu; 1778 1779 uninit_vcpu: 1780 kvm_vcpu_uninit(vcpu); 1781 free_shadow_vcpu: 1782 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER 1783 kfree(vcpu->arch.shadow_vcpu); 1784 free_vcpu3s: 1785 #endif 1786 vfree(vcpu_book3s); 1787 free_vcpu: 1788 kmem_cache_free(kvm_vcpu_cache, vcpu); 1789 out: 1790 return ERR_PTR(err); 1791 } 1792 1793 static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu) 1794 { 1795 struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu); 1796 1797 free_page((unsigned long)vcpu->arch.shared & PAGE_MASK); 1798 kvm_vcpu_uninit(vcpu); 1799 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER 1800 kfree(vcpu->arch.shadow_vcpu); 1801 #endif 1802 vfree(vcpu_book3s); 1803 kmem_cache_free(kvm_vcpu_cache, vcpu); 1804 } 1805 1806 static int kvmppc_vcpu_run_pr(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) 1807 { 1808 int ret; 1809 #ifdef CONFIG_ALTIVEC 1810 unsigned long uninitialized_var(vrsave); 1811 #endif 1812 1813 /* Check if we can run the vcpu at all */ 1814 if (!vcpu->arch.sane) { 1815 kvm_run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1816 ret = -EINVAL; 1817 goto out; 1818 } 1819 1820 kvmppc_setup_debug(vcpu); 1821 1822 /* 1823 * Interrupts could be timers for the guest which we have to inject 1824 * again, so let's postpone them until we're in the guest and if we 1825 * really did time things so badly, then we just exit again due to 1826 * a host external interrupt. 1827 */ 1828 ret = kvmppc_prepare_to_enter(vcpu); 1829 if (ret <= 0) 1830 goto out; 1831 /* interrupts now hard-disabled */ 1832 1833 /* Save FPU, Altivec and VSX state */ 1834 giveup_all(current); 1835 1836 /* Preload FPU if it's enabled */ 1837 if (kvmppc_get_msr(vcpu) & MSR_FP) 1838 kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP); 1839 1840 kvmppc_fix_ee_before_entry(); 1841 1842 ret = __kvmppc_vcpu_run(kvm_run, vcpu); 1843 1844 kvmppc_clear_debug(vcpu); 1845 1846 /* No need for guest_exit. It's done in handle_exit. 1847 We also get here with interrupts enabled. */ 1848 1849 /* Make sure we save the guest FPU/Altivec/VSX state */ 1850 kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX); 1851 1852 /* Make sure we save the guest TAR/EBB/DSCR state */ 1853 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG); 1854 1855 out: 1856 vcpu->mode = OUTSIDE_GUEST_MODE; 1857 return ret; 1858 } 1859 1860 /* 1861 * Get (and clear) the dirty memory log for a memory slot. 1862 */ 1863 static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm, 1864 struct kvm_dirty_log *log) 1865 { 1866 struct kvm_memslots *slots; 1867 struct kvm_memory_slot *memslot; 1868 struct kvm_vcpu *vcpu; 1869 ulong ga, ga_end; 1870 int is_dirty = 0; 1871 int r; 1872 unsigned long n; 1873 1874 mutex_lock(&kvm->slots_lock); 1875 1876 r = kvm_get_dirty_log(kvm, log, &is_dirty); 1877 if (r) 1878 goto out; 1879 1880 /* If nothing is dirty, don't bother messing with page tables. */ 1881 if (is_dirty) { 1882 slots = kvm_memslots(kvm); 1883 memslot = id_to_memslot(slots, log->slot); 1884 1885 ga = memslot->base_gfn << PAGE_SHIFT; 1886 ga_end = ga + (memslot->npages << PAGE_SHIFT); 1887 1888 kvm_for_each_vcpu(n, vcpu, kvm) 1889 kvmppc_mmu_pte_pflush(vcpu, ga, ga_end); 1890 1891 n = kvm_dirty_bitmap_bytes(memslot); 1892 memset(memslot->dirty_bitmap, 0, n); 1893 } 1894 1895 r = 0; 1896 out: 1897 mutex_unlock(&kvm->slots_lock); 1898 return r; 1899 } 1900 1901 static void kvmppc_core_flush_memslot_pr(struct kvm *kvm, 1902 struct kvm_memory_slot *memslot) 1903 { 1904 return; 1905 } 1906 1907 static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm, 1908 struct kvm_memory_slot *memslot, 1909 const struct kvm_userspace_memory_region *mem) 1910 { 1911 return 0; 1912 } 1913 1914 static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm, 1915 const struct kvm_userspace_memory_region *mem, 1916 const struct kvm_memory_slot *old, 1917 const struct kvm_memory_slot *new) 1918 { 1919 return; 1920 } 1921 1922 static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *free, 1923 struct kvm_memory_slot *dont) 1924 { 1925 return; 1926 } 1927 1928 static int kvmppc_core_create_memslot_pr(struct kvm_memory_slot *slot, 1929 unsigned long npages) 1930 { 1931 return 0; 1932 } 1933 1934 1935 #ifdef CONFIG_PPC64 1936 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm, 1937 struct kvm_ppc_smmu_info *info) 1938 { 1939 long int i; 1940 struct kvm_vcpu *vcpu; 1941 1942 info->flags = 0; 1943 1944 /* SLB is always 64 entries */ 1945 info->slb_size = 64; 1946 1947 /* Standard 4k base page size segment */ 1948 info->sps[0].page_shift = 12; 1949 info->sps[0].slb_enc = 0; 1950 info->sps[0].enc[0].page_shift = 12; 1951 info->sps[0].enc[0].pte_enc = 0; 1952 1953 /* 1954 * 64k large page size. 1955 * We only want to put this in if the CPUs we're emulating 1956 * support it, but unfortunately we don't have a vcpu easily 1957 * to hand here to test. Just pick the first vcpu, and if 1958 * that doesn't exist yet, report the minimum capability, 1959 * i.e., no 64k pages. 1960 * 1T segment support goes along with 64k pages. 1961 */ 1962 i = 1; 1963 vcpu = kvm_get_vcpu(kvm, 0); 1964 if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) { 1965 info->flags = KVM_PPC_1T_SEGMENTS; 1966 info->sps[i].page_shift = 16; 1967 info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01; 1968 info->sps[i].enc[0].page_shift = 16; 1969 info->sps[i].enc[0].pte_enc = 1; 1970 ++i; 1971 } 1972 1973 /* Standard 16M large page size segment */ 1974 info->sps[i].page_shift = 24; 1975 info->sps[i].slb_enc = SLB_VSID_L; 1976 info->sps[i].enc[0].page_shift = 24; 1977 info->sps[i].enc[0].pte_enc = 0; 1978 1979 return 0; 1980 } 1981 1982 static int kvm_configure_mmu_pr(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg) 1983 { 1984 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1985 return -ENODEV; 1986 /* Require flags and process table base and size to all be zero. */ 1987 if (cfg->flags || cfg->process_table) 1988 return -EINVAL; 1989 return 0; 1990 } 1991 1992 #else 1993 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm, 1994 struct kvm_ppc_smmu_info *info) 1995 { 1996 /* We should not get called */ 1997 BUG(); 1998 } 1999 #endif /* CONFIG_PPC64 */ 2000 2001 static unsigned int kvm_global_user_count = 0; 2002 static DEFINE_SPINLOCK(kvm_global_user_count_lock); 2003 2004 static int kvmppc_core_init_vm_pr(struct kvm *kvm) 2005 { 2006 mutex_init(&kvm->arch.hpt_mutex); 2007 2008 #ifdef CONFIG_PPC_BOOK3S_64 2009 /* Start out with the default set of hcalls enabled */ 2010 kvmppc_pr_init_default_hcalls(kvm); 2011 #endif 2012 2013 if (firmware_has_feature(FW_FEATURE_SET_MODE)) { 2014 spin_lock(&kvm_global_user_count_lock); 2015 if (++kvm_global_user_count == 1) 2016 pseries_disable_reloc_on_exc(); 2017 spin_unlock(&kvm_global_user_count_lock); 2018 } 2019 return 0; 2020 } 2021 2022 static void kvmppc_core_destroy_vm_pr(struct kvm *kvm) 2023 { 2024 #ifdef CONFIG_PPC64 2025 WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables)); 2026 #endif 2027 2028 if (firmware_has_feature(FW_FEATURE_SET_MODE)) { 2029 spin_lock(&kvm_global_user_count_lock); 2030 BUG_ON(kvm_global_user_count == 0); 2031 if (--kvm_global_user_count == 0) 2032 pseries_enable_reloc_on_exc(); 2033 spin_unlock(&kvm_global_user_count_lock); 2034 } 2035 } 2036 2037 static int kvmppc_core_check_processor_compat_pr(void) 2038 { 2039 /* 2040 * PR KVM can work on POWER9 inside a guest partition 2041 * running in HPT mode. It can't work if we are using 2042 * radix translation (because radix provides no way for 2043 * a process to have unique translations in quadrant 3). 2044 */ 2045 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled()) 2046 return -EIO; 2047 return 0; 2048 } 2049 2050 static long kvm_arch_vm_ioctl_pr(struct file *filp, 2051 unsigned int ioctl, unsigned long arg) 2052 { 2053 return -ENOTTY; 2054 } 2055 2056 static struct kvmppc_ops kvm_ops_pr = { 2057 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr, 2058 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr, 2059 .get_one_reg = kvmppc_get_one_reg_pr, 2060 .set_one_reg = kvmppc_set_one_reg_pr, 2061 .vcpu_load = kvmppc_core_vcpu_load_pr, 2062 .vcpu_put = kvmppc_core_vcpu_put_pr, 2063 .set_msr = kvmppc_set_msr_pr, 2064 .vcpu_run = kvmppc_vcpu_run_pr, 2065 .vcpu_create = kvmppc_core_vcpu_create_pr, 2066 .vcpu_free = kvmppc_core_vcpu_free_pr, 2067 .check_requests = kvmppc_core_check_requests_pr, 2068 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr, 2069 .flush_memslot = kvmppc_core_flush_memslot_pr, 2070 .prepare_memory_region = kvmppc_core_prepare_memory_region_pr, 2071 .commit_memory_region = kvmppc_core_commit_memory_region_pr, 2072 .unmap_hva_range = kvm_unmap_hva_range_pr, 2073 .age_hva = kvm_age_hva_pr, 2074 .test_age_hva = kvm_test_age_hva_pr, 2075 .set_spte_hva = kvm_set_spte_hva_pr, 2076 .mmu_destroy = kvmppc_mmu_destroy_pr, 2077 .free_memslot = kvmppc_core_free_memslot_pr, 2078 .create_memslot = kvmppc_core_create_memslot_pr, 2079 .init_vm = kvmppc_core_init_vm_pr, 2080 .destroy_vm = kvmppc_core_destroy_vm_pr, 2081 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr, 2082 .emulate_op = kvmppc_core_emulate_op_pr, 2083 .emulate_mtspr = kvmppc_core_emulate_mtspr_pr, 2084 .emulate_mfspr = kvmppc_core_emulate_mfspr_pr, 2085 .fast_vcpu_kick = kvm_vcpu_kick, 2086 .arch_vm_ioctl = kvm_arch_vm_ioctl_pr, 2087 #ifdef CONFIG_PPC_BOOK3S_64 2088 .hcall_implemented = kvmppc_hcall_impl_pr, 2089 .configure_mmu = kvm_configure_mmu_pr, 2090 #endif 2091 .giveup_ext = kvmppc_giveup_ext, 2092 }; 2093 2094 2095 int kvmppc_book3s_init_pr(void) 2096 { 2097 int r; 2098 2099 r = kvmppc_core_check_processor_compat_pr(); 2100 if (r < 0) 2101 return r; 2102 2103 kvm_ops_pr.owner = THIS_MODULE; 2104 kvmppc_pr_ops = &kvm_ops_pr; 2105 2106 r = kvmppc_mmu_hpte_sysinit(); 2107 return r; 2108 } 2109 2110 void kvmppc_book3s_exit_pr(void) 2111 { 2112 kvmppc_pr_ops = NULL; 2113 kvmppc_mmu_hpte_sysexit(); 2114 } 2115 2116 /* 2117 * We only support separate modules for book3s 64 2118 */ 2119 #ifdef CONFIG_PPC_BOOK3S_64 2120 2121 module_init(kvmppc_book3s_init_pr); 2122 module_exit(kvmppc_book3s_exit_pr); 2123 2124 MODULE_LICENSE("GPL"); 2125 MODULE_ALIAS_MISCDEV(KVM_MINOR); 2126 MODULE_ALIAS("devname:kvm"); 2127 #endif 2128