xref: /openbmc/linux/arch/powerpc/kvm/book3s_pr.c (revision 0c874100)
1 /*
2  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
3  *
4  * Authors:
5  *    Alexander Graf <agraf@suse.de>
6  *    Kevin Wolf <mail@kevin-wolf.de>
7  *    Paul Mackerras <paulus@samba.org>
8  *
9  * Description:
10  * Functions relating to running KVM on Book 3S processors where
11  * we don't have access to hypervisor mode, and we run the guest
12  * in problem state (user mode).
13  *
14  * This file is derived from arch/powerpc/kvm/44x.c,
15  * by Hollis Blanchard <hollisb@us.ibm.com>.
16  *
17  * This program is free software; you can redistribute it and/or modify
18  * it under the terms of the GNU General Public License, version 2, as
19  * published by the Free Software Foundation.
20  */
21 
22 #include <linux/kvm_host.h>
23 #include <linux/export.h>
24 #include <linux/err.h>
25 #include <linux/slab.h>
26 
27 #include <asm/reg.h>
28 #include <asm/cputable.h>
29 #include <asm/cacheflush.h>
30 #include <linux/uaccess.h>
31 #include <asm/io.h>
32 #include <asm/kvm_ppc.h>
33 #include <asm/kvm_book3s.h>
34 #include <asm/mmu_context.h>
35 #include <asm/switch_to.h>
36 #include <asm/firmware.h>
37 #include <asm/setup.h>
38 #include <linux/gfp.h>
39 #include <linux/sched.h>
40 #include <linux/vmalloc.h>
41 #include <linux/highmem.h>
42 #include <linux/module.h>
43 #include <linux/miscdevice.h>
44 #include <asm/asm-prototypes.h>
45 #include <asm/tm.h>
46 
47 #include "book3s.h"
48 
49 #define CREATE_TRACE_POINTS
50 #include "trace_pr.h"
51 
52 /* #define EXIT_DEBUG */
53 /* #define DEBUG_EXT */
54 
55 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
56 			     ulong msr);
57 #ifdef CONFIG_PPC_BOOK3S_64
58 static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac);
59 #endif
60 
61 /* Some compatibility defines */
62 #ifdef CONFIG_PPC_BOOK3S_32
63 #define MSR_USER32 MSR_USER
64 #define MSR_USER64 MSR_USER
65 #define HW_PAGE_SIZE PAGE_SIZE
66 #define HPTE_R_M   _PAGE_COHERENT
67 #endif
68 
69 static bool kvmppc_is_split_real(struct kvm_vcpu *vcpu)
70 {
71 	ulong msr = kvmppc_get_msr(vcpu);
72 	return (msr & (MSR_IR|MSR_DR)) == MSR_DR;
73 }
74 
75 static void kvmppc_fixup_split_real(struct kvm_vcpu *vcpu)
76 {
77 	ulong msr = kvmppc_get_msr(vcpu);
78 	ulong pc = kvmppc_get_pc(vcpu);
79 
80 	/* We are in DR only split real mode */
81 	if ((msr & (MSR_IR|MSR_DR)) != MSR_DR)
82 		return;
83 
84 	/* We have not fixed up the guest already */
85 	if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK)
86 		return;
87 
88 	/* The code is in fixupable address space */
89 	if (pc & SPLIT_HACK_MASK)
90 		return;
91 
92 	vcpu->arch.hflags |= BOOK3S_HFLAG_SPLIT_HACK;
93 	kvmppc_set_pc(vcpu, pc | SPLIT_HACK_OFFS);
94 }
95 
96 void kvmppc_unfixup_split_real(struct kvm_vcpu *vcpu);
97 
98 static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu)
99 {
100 #ifdef CONFIG_PPC_BOOK3S_64
101 	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
102 	memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb));
103 	svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max;
104 	svcpu->in_use = 0;
105 	svcpu_put(svcpu);
106 #endif
107 
108 	/* Disable AIL if supported */
109 	if (cpu_has_feature(CPU_FTR_HVMODE) &&
110 	    cpu_has_feature(CPU_FTR_ARCH_207S))
111 		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_AIL);
112 
113 	vcpu->cpu = smp_processor_id();
114 #ifdef CONFIG_PPC_BOOK3S_32
115 	current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu;
116 #endif
117 
118 	if (kvmppc_is_split_real(vcpu))
119 		kvmppc_fixup_split_real(vcpu);
120 
121 	kvmppc_restore_tm_pr(vcpu);
122 }
123 
124 static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu)
125 {
126 #ifdef CONFIG_PPC_BOOK3S_64
127 	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
128 	if (svcpu->in_use) {
129 		kvmppc_copy_from_svcpu(vcpu);
130 	}
131 	memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb));
132 	to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max;
133 	svcpu_put(svcpu);
134 #endif
135 
136 	if (kvmppc_is_split_real(vcpu))
137 		kvmppc_unfixup_split_real(vcpu);
138 
139 	kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
140 	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
141 	kvmppc_save_tm_pr(vcpu);
142 
143 	/* Enable AIL if supported */
144 	if (cpu_has_feature(CPU_FTR_HVMODE) &&
145 	    cpu_has_feature(CPU_FTR_ARCH_207S))
146 		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_AIL_3);
147 
148 	vcpu->cpu = -1;
149 }
150 
151 /* Copy data needed by real-mode code from vcpu to shadow vcpu */
152 void kvmppc_copy_to_svcpu(struct kvm_vcpu *vcpu)
153 {
154 	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
155 
156 	svcpu->gpr[0] = vcpu->arch.regs.gpr[0];
157 	svcpu->gpr[1] = vcpu->arch.regs.gpr[1];
158 	svcpu->gpr[2] = vcpu->arch.regs.gpr[2];
159 	svcpu->gpr[3] = vcpu->arch.regs.gpr[3];
160 	svcpu->gpr[4] = vcpu->arch.regs.gpr[4];
161 	svcpu->gpr[5] = vcpu->arch.regs.gpr[5];
162 	svcpu->gpr[6] = vcpu->arch.regs.gpr[6];
163 	svcpu->gpr[7] = vcpu->arch.regs.gpr[7];
164 	svcpu->gpr[8] = vcpu->arch.regs.gpr[8];
165 	svcpu->gpr[9] = vcpu->arch.regs.gpr[9];
166 	svcpu->gpr[10] = vcpu->arch.regs.gpr[10];
167 	svcpu->gpr[11] = vcpu->arch.regs.gpr[11];
168 	svcpu->gpr[12] = vcpu->arch.regs.gpr[12];
169 	svcpu->gpr[13] = vcpu->arch.regs.gpr[13];
170 	svcpu->cr  = vcpu->arch.regs.ccr;
171 	svcpu->xer = vcpu->arch.regs.xer;
172 	svcpu->ctr = vcpu->arch.regs.ctr;
173 	svcpu->lr  = vcpu->arch.regs.link;
174 	svcpu->pc  = vcpu->arch.regs.nip;
175 #ifdef CONFIG_PPC_BOOK3S_64
176 	svcpu->shadow_fscr = vcpu->arch.shadow_fscr;
177 #endif
178 	/*
179 	 * Now also save the current time base value. We use this
180 	 * to find the guest purr and spurr value.
181 	 */
182 	vcpu->arch.entry_tb = get_tb();
183 	vcpu->arch.entry_vtb = get_vtb();
184 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
185 		vcpu->arch.entry_ic = mfspr(SPRN_IC);
186 	svcpu->in_use = true;
187 
188 	svcpu_put(svcpu);
189 }
190 
191 static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
192 {
193 	ulong guest_msr = kvmppc_get_msr(vcpu);
194 	ulong smsr = guest_msr;
195 
196 	/* Guest MSR values */
197 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
198 	smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE |
199 		MSR_TM | MSR_TS_MASK;
200 #else
201 	smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE;
202 #endif
203 	/* Process MSR values */
204 	smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE;
205 	/* External providers the guest reserved */
206 	smsr |= (guest_msr & vcpu->arch.guest_owned_ext);
207 	/* 64-bit Process MSR values */
208 #ifdef CONFIG_PPC_BOOK3S_64
209 	smsr |= MSR_ISF | MSR_HV;
210 #endif
211 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
212 	/*
213 	 * in guest privileged state, we want to fail all TM transactions.
214 	 * So disable MSR TM bit so that all tbegin. will be able to be
215 	 * trapped into host.
216 	 */
217 	if (!(guest_msr & MSR_PR))
218 		smsr &= ~MSR_TM;
219 #endif
220 	vcpu->arch.shadow_msr = smsr;
221 }
222 
223 /* Copy data touched by real-mode code from shadow vcpu back to vcpu */
224 void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu)
225 {
226 	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
227 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
228 	ulong old_msr;
229 #endif
230 
231 	/*
232 	 * Maybe we were already preempted and synced the svcpu from
233 	 * our preempt notifiers. Don't bother touching this svcpu then.
234 	 */
235 	if (!svcpu->in_use)
236 		goto out;
237 
238 	vcpu->arch.regs.gpr[0] = svcpu->gpr[0];
239 	vcpu->arch.regs.gpr[1] = svcpu->gpr[1];
240 	vcpu->arch.regs.gpr[2] = svcpu->gpr[2];
241 	vcpu->arch.regs.gpr[3] = svcpu->gpr[3];
242 	vcpu->arch.regs.gpr[4] = svcpu->gpr[4];
243 	vcpu->arch.regs.gpr[5] = svcpu->gpr[5];
244 	vcpu->arch.regs.gpr[6] = svcpu->gpr[6];
245 	vcpu->arch.regs.gpr[7] = svcpu->gpr[7];
246 	vcpu->arch.regs.gpr[8] = svcpu->gpr[8];
247 	vcpu->arch.regs.gpr[9] = svcpu->gpr[9];
248 	vcpu->arch.regs.gpr[10] = svcpu->gpr[10];
249 	vcpu->arch.regs.gpr[11] = svcpu->gpr[11];
250 	vcpu->arch.regs.gpr[12] = svcpu->gpr[12];
251 	vcpu->arch.regs.gpr[13] = svcpu->gpr[13];
252 	vcpu->arch.regs.ccr  = svcpu->cr;
253 	vcpu->arch.regs.xer = svcpu->xer;
254 	vcpu->arch.regs.ctr = svcpu->ctr;
255 	vcpu->arch.regs.link  = svcpu->lr;
256 	vcpu->arch.regs.nip  = svcpu->pc;
257 	vcpu->arch.shadow_srr1 = svcpu->shadow_srr1;
258 	vcpu->arch.fault_dar   = svcpu->fault_dar;
259 	vcpu->arch.fault_dsisr = svcpu->fault_dsisr;
260 	vcpu->arch.last_inst   = svcpu->last_inst;
261 #ifdef CONFIG_PPC_BOOK3S_64
262 	vcpu->arch.shadow_fscr = svcpu->shadow_fscr;
263 #endif
264 	/*
265 	 * Update purr and spurr using time base on exit.
266 	 */
267 	vcpu->arch.purr += get_tb() - vcpu->arch.entry_tb;
268 	vcpu->arch.spurr += get_tb() - vcpu->arch.entry_tb;
269 	to_book3s(vcpu)->vtb += get_vtb() - vcpu->arch.entry_vtb;
270 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
271 		vcpu->arch.ic += mfspr(SPRN_IC) - vcpu->arch.entry_ic;
272 
273 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
274 	/*
275 	 * Unlike other MSR bits, MSR[TS]bits can be changed at guest without
276 	 * notifying host:
277 	 *  modified by unprivileged instructions like "tbegin"/"tend"/
278 	 * "tresume"/"tsuspend" in PR KVM guest.
279 	 *
280 	 * It is necessary to sync here to calculate a correct shadow_msr.
281 	 *
282 	 * privileged guest's tbegin will be failed at present. So we
283 	 * only take care of problem state guest.
284 	 */
285 	old_msr = kvmppc_get_msr(vcpu);
286 	if (unlikely((old_msr & MSR_PR) &&
287 		(vcpu->arch.shadow_srr1 & (MSR_TS_MASK)) !=
288 				(old_msr & (MSR_TS_MASK)))) {
289 		old_msr &= ~(MSR_TS_MASK);
290 		old_msr |= (vcpu->arch.shadow_srr1 & (MSR_TS_MASK));
291 		kvmppc_set_msr_fast(vcpu, old_msr);
292 		kvmppc_recalc_shadow_msr(vcpu);
293 	}
294 #endif
295 
296 	svcpu->in_use = false;
297 
298 out:
299 	svcpu_put(svcpu);
300 }
301 
302 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
303 void kvmppc_save_tm_sprs(struct kvm_vcpu *vcpu)
304 {
305 	tm_enable();
306 	vcpu->arch.tfhar = mfspr(SPRN_TFHAR);
307 	vcpu->arch.texasr = mfspr(SPRN_TEXASR);
308 	vcpu->arch.tfiar = mfspr(SPRN_TFIAR);
309 	tm_disable();
310 }
311 
312 void kvmppc_restore_tm_sprs(struct kvm_vcpu *vcpu)
313 {
314 	tm_enable();
315 	mtspr(SPRN_TFHAR, vcpu->arch.tfhar);
316 	mtspr(SPRN_TEXASR, vcpu->arch.texasr);
317 	mtspr(SPRN_TFIAR, vcpu->arch.tfiar);
318 	tm_disable();
319 }
320 
321 /* loadup math bits which is enabled at kvmppc_get_msr() but not enabled at
322  * hardware.
323  */
324 static void kvmppc_handle_lost_math_exts(struct kvm_vcpu *vcpu)
325 {
326 	ulong exit_nr;
327 	ulong ext_diff = (kvmppc_get_msr(vcpu) & ~vcpu->arch.guest_owned_ext) &
328 		(MSR_FP | MSR_VEC | MSR_VSX);
329 
330 	if (!ext_diff)
331 		return;
332 
333 	if (ext_diff == MSR_FP)
334 		exit_nr = BOOK3S_INTERRUPT_FP_UNAVAIL;
335 	else if (ext_diff == MSR_VEC)
336 		exit_nr = BOOK3S_INTERRUPT_ALTIVEC;
337 	else
338 		exit_nr = BOOK3S_INTERRUPT_VSX;
339 
340 	kvmppc_handle_ext(vcpu, exit_nr, ext_diff);
341 }
342 
343 void kvmppc_save_tm_pr(struct kvm_vcpu *vcpu)
344 {
345 	if (!(MSR_TM_ACTIVE(kvmppc_get_msr(vcpu)))) {
346 		kvmppc_save_tm_sprs(vcpu);
347 		return;
348 	}
349 
350 	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
351 	kvmppc_giveup_ext(vcpu, MSR_VSX);
352 
353 	preempt_disable();
354 	_kvmppc_save_tm_pr(vcpu, mfmsr());
355 	preempt_enable();
356 }
357 
358 void kvmppc_restore_tm_pr(struct kvm_vcpu *vcpu)
359 {
360 	if (!MSR_TM_ACTIVE(kvmppc_get_msr(vcpu))) {
361 		kvmppc_restore_tm_sprs(vcpu);
362 		if (kvmppc_get_msr(vcpu) & MSR_TM) {
363 			kvmppc_handle_lost_math_exts(vcpu);
364 			if (vcpu->arch.fscr & FSCR_TAR)
365 				kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
366 		}
367 		return;
368 	}
369 
370 	preempt_disable();
371 	_kvmppc_restore_tm_pr(vcpu, kvmppc_get_msr(vcpu));
372 	preempt_enable();
373 
374 	if (kvmppc_get_msr(vcpu) & MSR_TM) {
375 		kvmppc_handle_lost_math_exts(vcpu);
376 		if (vcpu->arch.fscr & FSCR_TAR)
377 			kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
378 	}
379 }
380 #endif
381 
382 static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu)
383 {
384 	int r = 1; /* Indicate we want to get back into the guest */
385 
386 	/* We misuse TLB_FLUSH to indicate that we want to clear
387 	   all shadow cache entries */
388 	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
389 		kvmppc_mmu_pte_flush(vcpu, 0, 0);
390 
391 	return r;
392 }
393 
394 /************* MMU Notifiers *************/
395 static void do_kvm_unmap_hva(struct kvm *kvm, unsigned long start,
396 			     unsigned long end)
397 {
398 	long i;
399 	struct kvm_vcpu *vcpu;
400 	struct kvm_memslots *slots;
401 	struct kvm_memory_slot *memslot;
402 
403 	slots = kvm_memslots(kvm);
404 	kvm_for_each_memslot(memslot, slots) {
405 		unsigned long hva_start, hva_end;
406 		gfn_t gfn, gfn_end;
407 
408 		hva_start = max(start, memslot->userspace_addr);
409 		hva_end = min(end, memslot->userspace_addr +
410 					(memslot->npages << PAGE_SHIFT));
411 		if (hva_start >= hva_end)
412 			continue;
413 		/*
414 		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
415 		 * {gfn, gfn+1, ..., gfn_end-1}.
416 		 */
417 		gfn = hva_to_gfn_memslot(hva_start, memslot);
418 		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
419 		kvm_for_each_vcpu(i, vcpu, kvm)
420 			kvmppc_mmu_pte_pflush(vcpu, gfn << PAGE_SHIFT,
421 					      gfn_end << PAGE_SHIFT);
422 	}
423 }
424 
425 static int kvm_unmap_hva_range_pr(struct kvm *kvm, unsigned long start,
426 				  unsigned long end)
427 {
428 	do_kvm_unmap_hva(kvm, start, end);
429 
430 	return 0;
431 }
432 
433 static int kvm_age_hva_pr(struct kvm *kvm, unsigned long start,
434 			  unsigned long end)
435 {
436 	/* XXX could be more clever ;) */
437 	return 0;
438 }
439 
440 static int kvm_test_age_hva_pr(struct kvm *kvm, unsigned long hva)
441 {
442 	/* XXX could be more clever ;) */
443 	return 0;
444 }
445 
446 static void kvm_set_spte_hva_pr(struct kvm *kvm, unsigned long hva, pte_t pte)
447 {
448 	/* The page will get remapped properly on its next fault */
449 	do_kvm_unmap_hva(kvm, hva, hva + PAGE_SIZE);
450 }
451 
452 /*****************************************/
453 
454 static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr)
455 {
456 	ulong old_msr;
457 
458 	/* For PAPR guest, make sure MSR reflects guest mode */
459 	if (vcpu->arch.papr_enabled)
460 		msr = (msr & ~MSR_HV) | MSR_ME;
461 
462 #ifdef EXIT_DEBUG
463 	printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
464 #endif
465 
466 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
467 	/* We should never target guest MSR to TS=10 && PR=0,
468 	 * since we always fail transaction for guest privilege
469 	 * state.
470 	 */
471 	if (!(msr & MSR_PR) && MSR_TM_TRANSACTIONAL(msr))
472 		kvmppc_emulate_tabort(vcpu,
473 			TM_CAUSE_KVM_FAC_UNAV | TM_CAUSE_PERSISTENT);
474 #endif
475 
476 	old_msr = kvmppc_get_msr(vcpu);
477 	msr &= to_book3s(vcpu)->msr_mask;
478 	kvmppc_set_msr_fast(vcpu, msr);
479 	kvmppc_recalc_shadow_msr(vcpu);
480 
481 	if (msr & MSR_POW) {
482 		if (!vcpu->arch.pending_exceptions) {
483 			kvm_vcpu_block(vcpu);
484 			kvm_clear_request(KVM_REQ_UNHALT, vcpu);
485 			vcpu->stat.halt_wakeup++;
486 
487 			/* Unset POW bit after we woke up */
488 			msr &= ~MSR_POW;
489 			kvmppc_set_msr_fast(vcpu, msr);
490 		}
491 	}
492 
493 	if (kvmppc_is_split_real(vcpu))
494 		kvmppc_fixup_split_real(vcpu);
495 	else
496 		kvmppc_unfixup_split_real(vcpu);
497 
498 	if ((kvmppc_get_msr(vcpu) & (MSR_PR|MSR_IR|MSR_DR)) !=
499 		   (old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
500 		kvmppc_mmu_flush_segments(vcpu);
501 		kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
502 
503 		/* Preload magic page segment when in kernel mode */
504 		if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) {
505 			struct kvm_vcpu_arch *a = &vcpu->arch;
506 
507 			if (msr & MSR_DR)
508 				kvmppc_mmu_map_segment(vcpu, a->magic_page_ea);
509 			else
510 				kvmppc_mmu_map_segment(vcpu, a->magic_page_pa);
511 		}
512 	}
513 
514 	/*
515 	 * When switching from 32 to 64-bit, we may have a stale 32-bit
516 	 * magic page around, we need to flush it. Typically 32-bit magic
517 	 * page will be instantiated when calling into RTAS. Note: We
518 	 * assume that such transition only happens while in kernel mode,
519 	 * ie, we never transition from user 32-bit to kernel 64-bit with
520 	 * a 32-bit magic page around.
521 	 */
522 	if (vcpu->arch.magic_page_pa &&
523 	    !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) {
524 		/* going from RTAS to normal kernel code */
525 		kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa,
526 				     ~0xFFFUL);
527 	}
528 
529 	/* Preload FPU if it's enabled */
530 	if (kvmppc_get_msr(vcpu) & MSR_FP)
531 		kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
532 
533 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
534 	if (kvmppc_get_msr(vcpu) & MSR_TM)
535 		kvmppc_handle_lost_math_exts(vcpu);
536 #endif
537 }
538 
539 void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr)
540 {
541 	u32 host_pvr;
542 
543 	vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
544 	vcpu->arch.pvr = pvr;
545 #ifdef CONFIG_PPC_BOOK3S_64
546 	if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
547 		kvmppc_mmu_book3s_64_init(vcpu);
548 		if (!to_book3s(vcpu)->hior_explicit)
549 			to_book3s(vcpu)->hior = 0xfff00000;
550 		to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
551 		vcpu->arch.cpu_type = KVM_CPU_3S_64;
552 	} else
553 #endif
554 	{
555 		kvmppc_mmu_book3s_32_init(vcpu);
556 		if (!to_book3s(vcpu)->hior_explicit)
557 			to_book3s(vcpu)->hior = 0;
558 		to_book3s(vcpu)->msr_mask = 0xffffffffULL;
559 		vcpu->arch.cpu_type = KVM_CPU_3S_32;
560 	}
561 
562 	kvmppc_sanity_check(vcpu);
563 
564 	/* If we are in hypervisor level on 970, we can tell the CPU to
565 	 * treat DCBZ as 32 bytes store */
566 	vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
567 	if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
568 	    !strcmp(cur_cpu_spec->platform, "ppc970"))
569 		vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
570 
571 	/* Cell performs badly if MSR_FEx are set. So let's hope nobody
572 	   really needs them in a VM on Cell and force disable them. */
573 	if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
574 		to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);
575 
576 	/*
577 	 * If they're asking for POWER6 or later, set the flag
578 	 * indicating that we can do multiple large page sizes
579 	 * and 1TB segments.
580 	 * Also set the flag that indicates that tlbie has the large
581 	 * page bit in the RB operand instead of the instruction.
582 	 */
583 	switch (PVR_VER(pvr)) {
584 	case PVR_POWER6:
585 	case PVR_POWER7:
586 	case PVR_POWER7p:
587 	case PVR_POWER8:
588 	case PVR_POWER8E:
589 	case PVR_POWER8NVL:
590 		vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE |
591 			BOOK3S_HFLAG_NEW_TLBIE;
592 		break;
593 	}
594 
595 #ifdef CONFIG_PPC_BOOK3S_32
596 	/* 32 bit Book3S always has 32 byte dcbz */
597 	vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
598 #endif
599 
600 	/* On some CPUs we can execute paired single operations natively */
601 	asm ( "mfpvr %0" : "=r"(host_pvr));
602 	switch (host_pvr) {
603 	case 0x00080200:	/* lonestar 2.0 */
604 	case 0x00088202:	/* lonestar 2.2 */
605 	case 0x70000100:	/* gekko 1.0 */
606 	case 0x00080100:	/* gekko 2.0 */
607 	case 0x00083203:	/* gekko 2.3a */
608 	case 0x00083213:	/* gekko 2.3b */
609 	case 0x00083204:	/* gekko 2.4 */
610 	case 0x00083214:	/* gekko 2.4e (8SE) - retail HW2 */
611 	case 0x00087200:	/* broadway */
612 		vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
613 		/* Enable HID2.PSE - in case we need it later */
614 		mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
615 	}
616 }
617 
618 /* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
619  * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
620  * emulate 32 bytes dcbz length.
621  *
622  * The Book3s_64 inventors also realized this case and implemented a special bit
623  * in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
624  *
625  * My approach here is to patch the dcbz instruction on executing pages.
626  */
627 static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
628 {
629 	struct page *hpage;
630 	u64 hpage_offset;
631 	u32 *page;
632 	int i;
633 
634 	hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
635 	if (is_error_page(hpage))
636 		return;
637 
638 	hpage_offset = pte->raddr & ~PAGE_MASK;
639 	hpage_offset &= ~0xFFFULL;
640 	hpage_offset /= 4;
641 
642 	get_page(hpage);
643 	page = kmap_atomic(hpage);
644 
645 	/* patch dcbz into reserved instruction, so we trap */
646 	for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
647 		if ((be32_to_cpu(page[i]) & 0xff0007ff) == INS_DCBZ)
648 			page[i] &= cpu_to_be32(0xfffffff7);
649 
650 	kunmap_atomic(page);
651 	put_page(hpage);
652 }
653 
654 static bool kvmppc_visible_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
655 {
656 	ulong mp_pa = vcpu->arch.magic_page_pa;
657 
658 	if (!(kvmppc_get_msr(vcpu) & MSR_SF))
659 		mp_pa = (uint32_t)mp_pa;
660 
661 	gpa &= ~0xFFFULL;
662 	if (unlikely(mp_pa) && unlikely((mp_pa & KVM_PAM) == (gpa & KVM_PAM))) {
663 		return true;
664 	}
665 
666 	return kvm_is_visible_gfn(vcpu->kvm, gpa >> PAGE_SHIFT);
667 }
668 
669 int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu,
670 			    ulong eaddr, int vec)
671 {
672 	bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
673 	bool iswrite = false;
674 	int r = RESUME_GUEST;
675 	int relocated;
676 	int page_found = 0;
677 	struct kvmppc_pte pte = { 0 };
678 	bool dr = (kvmppc_get_msr(vcpu) & MSR_DR) ? true : false;
679 	bool ir = (kvmppc_get_msr(vcpu) & MSR_IR) ? true : false;
680 	u64 vsid;
681 
682 	relocated = data ? dr : ir;
683 	if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE))
684 		iswrite = true;
685 
686 	/* Resolve real address if translation turned on */
687 	if (relocated) {
688 		page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite);
689 	} else {
690 		pte.may_execute = true;
691 		pte.may_read = true;
692 		pte.may_write = true;
693 		pte.raddr = eaddr & KVM_PAM;
694 		pte.eaddr = eaddr;
695 		pte.vpage = eaddr >> 12;
696 		pte.page_size = MMU_PAGE_64K;
697 		pte.wimg = HPTE_R_M;
698 	}
699 
700 	switch (kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) {
701 	case 0:
702 		pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
703 		break;
704 	case MSR_DR:
705 		if (!data &&
706 		    (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) &&
707 		    ((pte.raddr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS))
708 			pte.raddr &= ~SPLIT_HACK_MASK;
709 		/* fall through */
710 	case MSR_IR:
711 		vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);
712 
713 		if ((kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) == MSR_DR)
714 			pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
715 		else
716 			pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
717 		pte.vpage |= vsid;
718 
719 		if (vsid == -1)
720 			page_found = -EINVAL;
721 		break;
722 	}
723 
724 	if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
725 	   (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
726 		/*
727 		 * If we do the dcbz hack, we have to NX on every execution,
728 		 * so we can patch the executing code. This renders our guest
729 		 * NX-less.
730 		 */
731 		pte.may_execute = !data;
732 	}
733 
734 	if (page_found == -ENOENT || page_found == -EPERM) {
735 		/* Page not found in guest PTE entries, or protection fault */
736 		u64 flags;
737 
738 		if (page_found == -EPERM)
739 			flags = DSISR_PROTFAULT;
740 		else
741 			flags = DSISR_NOHPTE;
742 		if (data) {
743 			flags |= vcpu->arch.fault_dsisr & DSISR_ISSTORE;
744 			kvmppc_core_queue_data_storage(vcpu, eaddr, flags);
745 		} else {
746 			kvmppc_core_queue_inst_storage(vcpu, flags);
747 		}
748 	} else if (page_found == -EINVAL) {
749 		/* Page not found in guest SLB */
750 		kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
751 		kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
752 	} else if (kvmppc_visible_gpa(vcpu, pte.raddr)) {
753 		if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) {
754 			/*
755 			 * There is already a host HPTE there, presumably
756 			 * a read-only one for a page the guest thinks
757 			 * is writable, so get rid of it first.
758 			 */
759 			kvmppc_mmu_unmap_page(vcpu, &pte);
760 		}
761 		/* The guest's PTE is not mapped yet. Map on the host */
762 		if (kvmppc_mmu_map_page(vcpu, &pte, iswrite) == -EIO) {
763 			/* Exit KVM if mapping failed */
764 			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
765 			return RESUME_HOST;
766 		}
767 		if (data)
768 			vcpu->stat.sp_storage++;
769 		else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
770 			 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
771 			kvmppc_patch_dcbz(vcpu, &pte);
772 	} else {
773 		/* MMIO */
774 		vcpu->stat.mmio_exits++;
775 		vcpu->arch.paddr_accessed = pte.raddr;
776 		vcpu->arch.vaddr_accessed = pte.eaddr;
777 		r = kvmppc_emulate_mmio(run, vcpu);
778 		if ( r == RESUME_HOST_NV )
779 			r = RESUME_HOST;
780 	}
781 
782 	return r;
783 }
784 
785 /* Give up external provider (FPU, Altivec, VSX) */
786 void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
787 {
788 	struct thread_struct *t = &current->thread;
789 
790 	/*
791 	 * VSX instructions can access FP and vector registers, so if
792 	 * we are giving up VSX, make sure we give up FP and VMX as well.
793 	 */
794 	if (msr & MSR_VSX)
795 		msr |= MSR_FP | MSR_VEC;
796 
797 	msr &= vcpu->arch.guest_owned_ext;
798 	if (!msr)
799 		return;
800 
801 #ifdef DEBUG_EXT
802 	printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
803 #endif
804 
805 	if (msr & MSR_FP) {
806 		/*
807 		 * Note that on CPUs with VSX, giveup_fpu stores
808 		 * both the traditional FP registers and the added VSX
809 		 * registers into thread.fp_state.fpr[].
810 		 */
811 		if (t->regs->msr & MSR_FP)
812 			giveup_fpu(current);
813 		t->fp_save_area = NULL;
814 	}
815 
816 #ifdef CONFIG_ALTIVEC
817 	if (msr & MSR_VEC) {
818 		if (current->thread.regs->msr & MSR_VEC)
819 			giveup_altivec(current);
820 		t->vr_save_area = NULL;
821 	}
822 #endif
823 
824 	vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX);
825 	kvmppc_recalc_shadow_msr(vcpu);
826 }
827 
828 /* Give up facility (TAR / EBB / DSCR) */
829 void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac)
830 {
831 #ifdef CONFIG_PPC_BOOK3S_64
832 	if (!(vcpu->arch.shadow_fscr & (1ULL << fac))) {
833 		/* Facility not available to the guest, ignore giveup request*/
834 		return;
835 	}
836 
837 	switch (fac) {
838 	case FSCR_TAR_LG:
839 		vcpu->arch.tar = mfspr(SPRN_TAR);
840 		mtspr(SPRN_TAR, current->thread.tar);
841 		vcpu->arch.shadow_fscr &= ~FSCR_TAR;
842 		break;
843 	}
844 #endif
845 }
846 
847 /* Handle external providers (FPU, Altivec, VSX) */
848 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
849 			     ulong msr)
850 {
851 	struct thread_struct *t = &current->thread;
852 
853 	/* When we have paired singles, we emulate in software */
854 	if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
855 		return RESUME_GUEST;
856 
857 	if (!(kvmppc_get_msr(vcpu) & msr)) {
858 		kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
859 		return RESUME_GUEST;
860 	}
861 
862 	if (msr == MSR_VSX) {
863 		/* No VSX?  Give an illegal instruction interrupt */
864 #ifdef CONFIG_VSX
865 		if (!cpu_has_feature(CPU_FTR_VSX))
866 #endif
867 		{
868 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
869 			return RESUME_GUEST;
870 		}
871 
872 		/*
873 		 * We have to load up all the FP and VMX registers before
874 		 * we can let the guest use VSX instructions.
875 		 */
876 		msr = MSR_FP | MSR_VEC | MSR_VSX;
877 	}
878 
879 	/* See if we already own all the ext(s) needed */
880 	msr &= ~vcpu->arch.guest_owned_ext;
881 	if (!msr)
882 		return RESUME_GUEST;
883 
884 #ifdef DEBUG_EXT
885 	printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
886 #endif
887 
888 	if (msr & MSR_FP) {
889 		preempt_disable();
890 		enable_kernel_fp();
891 		load_fp_state(&vcpu->arch.fp);
892 		disable_kernel_fp();
893 		t->fp_save_area = &vcpu->arch.fp;
894 		preempt_enable();
895 	}
896 
897 	if (msr & MSR_VEC) {
898 #ifdef CONFIG_ALTIVEC
899 		preempt_disable();
900 		enable_kernel_altivec();
901 		load_vr_state(&vcpu->arch.vr);
902 		disable_kernel_altivec();
903 		t->vr_save_area = &vcpu->arch.vr;
904 		preempt_enable();
905 #endif
906 	}
907 
908 	t->regs->msr |= msr;
909 	vcpu->arch.guest_owned_ext |= msr;
910 	kvmppc_recalc_shadow_msr(vcpu);
911 
912 	return RESUME_GUEST;
913 }
914 
915 /*
916  * Kernel code using FP or VMX could have flushed guest state to
917  * the thread_struct; if so, get it back now.
918  */
919 static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu)
920 {
921 	unsigned long lost_ext;
922 
923 	lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr;
924 	if (!lost_ext)
925 		return;
926 
927 	if (lost_ext & MSR_FP) {
928 		preempt_disable();
929 		enable_kernel_fp();
930 		load_fp_state(&vcpu->arch.fp);
931 		disable_kernel_fp();
932 		preempt_enable();
933 	}
934 #ifdef CONFIG_ALTIVEC
935 	if (lost_ext & MSR_VEC) {
936 		preempt_disable();
937 		enable_kernel_altivec();
938 		load_vr_state(&vcpu->arch.vr);
939 		disable_kernel_altivec();
940 		preempt_enable();
941 	}
942 #endif
943 	current->thread.regs->msr |= lost_ext;
944 }
945 
946 #ifdef CONFIG_PPC_BOOK3S_64
947 
948 void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac)
949 {
950 	/* Inject the Interrupt Cause field and trigger a guest interrupt */
951 	vcpu->arch.fscr &= ~(0xffULL << 56);
952 	vcpu->arch.fscr |= (fac << 56);
953 	kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL);
954 }
955 
956 static void kvmppc_emulate_fac(struct kvm_vcpu *vcpu, ulong fac)
957 {
958 	enum emulation_result er = EMULATE_FAIL;
959 
960 	if (!(kvmppc_get_msr(vcpu) & MSR_PR))
961 		er = kvmppc_emulate_instruction(vcpu->run, vcpu);
962 
963 	if ((er != EMULATE_DONE) && (er != EMULATE_AGAIN)) {
964 		/* Couldn't emulate, trigger interrupt in guest */
965 		kvmppc_trigger_fac_interrupt(vcpu, fac);
966 	}
967 }
968 
969 /* Enable facilities (TAR, EBB, DSCR) for the guest */
970 static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac)
971 {
972 	bool guest_fac_enabled;
973 	BUG_ON(!cpu_has_feature(CPU_FTR_ARCH_207S));
974 
975 	/*
976 	 * Not every facility is enabled by FSCR bits, check whether the
977 	 * guest has this facility enabled at all.
978 	 */
979 	switch (fac) {
980 	case FSCR_TAR_LG:
981 	case FSCR_EBB_LG:
982 		guest_fac_enabled = (vcpu->arch.fscr & (1ULL << fac));
983 		break;
984 	case FSCR_TM_LG:
985 		guest_fac_enabled = kvmppc_get_msr(vcpu) & MSR_TM;
986 		break;
987 	default:
988 		guest_fac_enabled = false;
989 		break;
990 	}
991 
992 	if (!guest_fac_enabled) {
993 		/* Facility not enabled by the guest */
994 		kvmppc_trigger_fac_interrupt(vcpu, fac);
995 		return RESUME_GUEST;
996 	}
997 
998 	switch (fac) {
999 	case FSCR_TAR_LG:
1000 		/* TAR switching isn't lazy in Linux yet */
1001 		current->thread.tar = mfspr(SPRN_TAR);
1002 		mtspr(SPRN_TAR, vcpu->arch.tar);
1003 		vcpu->arch.shadow_fscr |= FSCR_TAR;
1004 		break;
1005 	default:
1006 		kvmppc_emulate_fac(vcpu, fac);
1007 		break;
1008 	}
1009 
1010 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1011 	/* Since we disabled MSR_TM at privilege state, the mfspr instruction
1012 	 * for TM spr can trigger TM fac unavailable. In this case, the
1013 	 * emulation is handled by kvmppc_emulate_fac(), which invokes
1014 	 * kvmppc_emulate_mfspr() finally. But note the mfspr can include
1015 	 * RT for NV registers. So it need to restore those NV reg to reflect
1016 	 * the update.
1017 	 */
1018 	if ((fac == FSCR_TM_LG) && !(kvmppc_get_msr(vcpu) & MSR_PR))
1019 		return RESUME_GUEST_NV;
1020 #endif
1021 
1022 	return RESUME_GUEST;
1023 }
1024 
1025 void kvmppc_set_fscr(struct kvm_vcpu *vcpu, u64 fscr)
1026 {
1027 	if ((vcpu->arch.fscr & FSCR_TAR) && !(fscr & FSCR_TAR)) {
1028 		/* TAR got dropped, drop it in shadow too */
1029 		kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
1030 	} else if (!(vcpu->arch.fscr & FSCR_TAR) && (fscr & FSCR_TAR)) {
1031 		vcpu->arch.fscr = fscr;
1032 		kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
1033 		return;
1034 	}
1035 
1036 	vcpu->arch.fscr = fscr;
1037 }
1038 #endif
1039 
1040 static void kvmppc_setup_debug(struct kvm_vcpu *vcpu)
1041 {
1042 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1043 		u64 msr = kvmppc_get_msr(vcpu);
1044 
1045 		kvmppc_set_msr(vcpu, msr | MSR_SE);
1046 	}
1047 }
1048 
1049 static void kvmppc_clear_debug(struct kvm_vcpu *vcpu)
1050 {
1051 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1052 		u64 msr = kvmppc_get_msr(vcpu);
1053 
1054 		kvmppc_set_msr(vcpu, msr & ~MSR_SE);
1055 	}
1056 }
1057 
1058 static int kvmppc_exit_pr_progint(struct kvm_run *run, struct kvm_vcpu *vcpu,
1059 				  unsigned int exit_nr)
1060 {
1061 	enum emulation_result er;
1062 	ulong flags;
1063 	u32 last_inst;
1064 	int emul, r;
1065 
1066 	/*
1067 	 * shadow_srr1 only contains valid flags if we came here via a program
1068 	 * exception. The other exceptions (emulation assist, FP unavailable,
1069 	 * etc.) do not provide flags in SRR1, so use an illegal-instruction
1070 	 * exception when injecting a program interrupt into the guest.
1071 	 */
1072 	if (exit_nr == BOOK3S_INTERRUPT_PROGRAM)
1073 		flags = vcpu->arch.shadow_srr1 & 0x1f0000ull;
1074 	else
1075 		flags = SRR1_PROGILL;
1076 
1077 	emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1078 	if (emul != EMULATE_DONE)
1079 		return RESUME_GUEST;
1080 
1081 	if (kvmppc_get_msr(vcpu) & MSR_PR) {
1082 #ifdef EXIT_DEBUG
1083 		pr_info("Userspace triggered 0x700 exception at\n 0x%lx (0x%x)\n",
1084 			kvmppc_get_pc(vcpu), last_inst);
1085 #endif
1086 		if ((last_inst & 0xff0007ff) != (INS_DCBZ & 0xfffffff7)) {
1087 			kvmppc_core_queue_program(vcpu, flags);
1088 			return RESUME_GUEST;
1089 		}
1090 	}
1091 
1092 	vcpu->stat.emulated_inst_exits++;
1093 	er = kvmppc_emulate_instruction(run, vcpu);
1094 	switch (er) {
1095 	case EMULATE_DONE:
1096 		r = RESUME_GUEST_NV;
1097 		break;
1098 	case EMULATE_AGAIN:
1099 		r = RESUME_GUEST;
1100 		break;
1101 	case EMULATE_FAIL:
1102 		pr_crit("%s: emulation at %lx failed (%08x)\n",
1103 			__func__, kvmppc_get_pc(vcpu), last_inst);
1104 		kvmppc_core_queue_program(vcpu, flags);
1105 		r = RESUME_GUEST;
1106 		break;
1107 	case EMULATE_DO_MMIO:
1108 		run->exit_reason = KVM_EXIT_MMIO;
1109 		r = RESUME_HOST_NV;
1110 		break;
1111 	case EMULATE_EXIT_USER:
1112 		r = RESUME_HOST_NV;
1113 		break;
1114 	default:
1115 		BUG();
1116 	}
1117 
1118 	return r;
1119 }
1120 
1121 int kvmppc_handle_exit_pr(struct kvm_run *run, struct kvm_vcpu *vcpu,
1122 			  unsigned int exit_nr)
1123 {
1124 	int r = RESUME_HOST;
1125 	int s;
1126 
1127 	vcpu->stat.sum_exits++;
1128 
1129 	run->exit_reason = KVM_EXIT_UNKNOWN;
1130 	run->ready_for_interrupt_injection = 1;
1131 
1132 	/* We get here with MSR.EE=1 */
1133 
1134 	trace_kvm_exit(exit_nr, vcpu);
1135 	guest_exit();
1136 
1137 	switch (exit_nr) {
1138 	case BOOK3S_INTERRUPT_INST_STORAGE:
1139 	{
1140 		ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1141 		vcpu->stat.pf_instruc++;
1142 
1143 		if (kvmppc_is_split_real(vcpu))
1144 			kvmppc_fixup_split_real(vcpu);
1145 
1146 #ifdef CONFIG_PPC_BOOK3S_32
1147 		/* We set segments as unused segments when invalidating them. So
1148 		 * treat the respective fault as segment fault. */
1149 		{
1150 			struct kvmppc_book3s_shadow_vcpu *svcpu;
1151 			u32 sr;
1152 
1153 			svcpu = svcpu_get(vcpu);
1154 			sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT];
1155 			svcpu_put(svcpu);
1156 			if (sr == SR_INVALID) {
1157 				kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
1158 				r = RESUME_GUEST;
1159 				break;
1160 			}
1161 		}
1162 #endif
1163 
1164 		/* only care about PTEG not found errors, but leave NX alone */
1165 		if (shadow_srr1 & 0x40000000) {
1166 			int idx = srcu_read_lock(&vcpu->kvm->srcu);
1167 			r = kvmppc_handle_pagefault(run, vcpu, kvmppc_get_pc(vcpu), exit_nr);
1168 			srcu_read_unlock(&vcpu->kvm->srcu, idx);
1169 			vcpu->stat.sp_instruc++;
1170 		} else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
1171 			  (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
1172 			/*
1173 			 * XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
1174 			 *     so we can't use the NX bit inside the guest. Let's cross our fingers,
1175 			 *     that no guest that needs the dcbz hack does NX.
1176 			 */
1177 			kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
1178 			r = RESUME_GUEST;
1179 		} else {
1180 			kvmppc_core_queue_inst_storage(vcpu,
1181 						shadow_srr1 & 0x58000000);
1182 			r = RESUME_GUEST;
1183 		}
1184 		break;
1185 	}
1186 	case BOOK3S_INTERRUPT_DATA_STORAGE:
1187 	{
1188 		ulong dar = kvmppc_get_fault_dar(vcpu);
1189 		u32 fault_dsisr = vcpu->arch.fault_dsisr;
1190 		vcpu->stat.pf_storage++;
1191 
1192 #ifdef CONFIG_PPC_BOOK3S_32
1193 		/* We set segments as unused segments when invalidating them. So
1194 		 * treat the respective fault as segment fault. */
1195 		{
1196 			struct kvmppc_book3s_shadow_vcpu *svcpu;
1197 			u32 sr;
1198 
1199 			svcpu = svcpu_get(vcpu);
1200 			sr = svcpu->sr[dar >> SID_SHIFT];
1201 			svcpu_put(svcpu);
1202 			if (sr == SR_INVALID) {
1203 				kvmppc_mmu_map_segment(vcpu, dar);
1204 				r = RESUME_GUEST;
1205 				break;
1206 			}
1207 		}
1208 #endif
1209 
1210 		/*
1211 		 * We need to handle missing shadow PTEs, and
1212 		 * protection faults due to us mapping a page read-only
1213 		 * when the guest thinks it is writable.
1214 		 */
1215 		if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) {
1216 			int idx = srcu_read_lock(&vcpu->kvm->srcu);
1217 			r = kvmppc_handle_pagefault(run, vcpu, dar, exit_nr);
1218 			srcu_read_unlock(&vcpu->kvm->srcu, idx);
1219 		} else {
1220 			kvmppc_core_queue_data_storage(vcpu, dar, fault_dsisr);
1221 			r = RESUME_GUEST;
1222 		}
1223 		break;
1224 	}
1225 	case BOOK3S_INTERRUPT_DATA_SEGMENT:
1226 		if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
1227 			kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
1228 			kvmppc_book3s_queue_irqprio(vcpu,
1229 				BOOK3S_INTERRUPT_DATA_SEGMENT);
1230 		}
1231 		r = RESUME_GUEST;
1232 		break;
1233 	case BOOK3S_INTERRUPT_INST_SEGMENT:
1234 		if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
1235 			kvmppc_book3s_queue_irqprio(vcpu,
1236 				BOOK3S_INTERRUPT_INST_SEGMENT);
1237 		}
1238 		r = RESUME_GUEST;
1239 		break;
1240 	/* We're good on these - the host merely wanted to get our attention */
1241 	case BOOK3S_INTERRUPT_DECREMENTER:
1242 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1243 	case BOOK3S_INTERRUPT_DOORBELL:
1244 	case BOOK3S_INTERRUPT_H_DOORBELL:
1245 		vcpu->stat.dec_exits++;
1246 		r = RESUME_GUEST;
1247 		break;
1248 	case BOOK3S_INTERRUPT_EXTERNAL:
1249 	case BOOK3S_INTERRUPT_EXTERNAL_HV:
1250 	case BOOK3S_INTERRUPT_H_VIRT:
1251 		vcpu->stat.ext_intr_exits++;
1252 		r = RESUME_GUEST;
1253 		break;
1254 	case BOOK3S_INTERRUPT_HMI:
1255 	case BOOK3S_INTERRUPT_PERFMON:
1256 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1257 		r = RESUME_GUEST;
1258 		break;
1259 	case BOOK3S_INTERRUPT_PROGRAM:
1260 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1261 		r = kvmppc_exit_pr_progint(run, vcpu, exit_nr);
1262 		break;
1263 	case BOOK3S_INTERRUPT_SYSCALL:
1264 	{
1265 		u32 last_sc;
1266 		int emul;
1267 
1268 		/* Get last sc for papr */
1269 		if (vcpu->arch.papr_enabled) {
1270 			/* The sc instuction points SRR0 to the next inst */
1271 			emul = kvmppc_get_last_inst(vcpu, INST_SC, &last_sc);
1272 			if (emul != EMULATE_DONE) {
1273 				kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) - 4);
1274 				r = RESUME_GUEST;
1275 				break;
1276 			}
1277 		}
1278 
1279 		if (vcpu->arch.papr_enabled &&
1280 		    (last_sc == 0x44000022) &&
1281 		    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
1282 			/* SC 1 papr hypercalls */
1283 			ulong cmd = kvmppc_get_gpr(vcpu, 3);
1284 			int i;
1285 
1286 #ifdef CONFIG_PPC_BOOK3S_64
1287 			if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) {
1288 				r = RESUME_GUEST;
1289 				break;
1290 			}
1291 #endif
1292 
1293 			run->papr_hcall.nr = cmd;
1294 			for (i = 0; i < 9; ++i) {
1295 				ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
1296 				run->papr_hcall.args[i] = gpr;
1297 			}
1298 			run->exit_reason = KVM_EXIT_PAPR_HCALL;
1299 			vcpu->arch.hcall_needed = 1;
1300 			r = RESUME_HOST;
1301 		} else if (vcpu->arch.osi_enabled &&
1302 		    (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
1303 		    (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
1304 			/* MOL hypercalls */
1305 			u64 *gprs = run->osi.gprs;
1306 			int i;
1307 
1308 			run->exit_reason = KVM_EXIT_OSI;
1309 			for (i = 0; i < 32; i++)
1310 				gprs[i] = kvmppc_get_gpr(vcpu, i);
1311 			vcpu->arch.osi_needed = 1;
1312 			r = RESUME_HOST_NV;
1313 		} else if (!(kvmppc_get_msr(vcpu) & MSR_PR) &&
1314 		    (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
1315 			/* KVM PV hypercalls */
1316 			kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
1317 			r = RESUME_GUEST;
1318 		} else {
1319 			/* Guest syscalls */
1320 			vcpu->stat.syscall_exits++;
1321 			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1322 			r = RESUME_GUEST;
1323 		}
1324 		break;
1325 	}
1326 	case BOOK3S_INTERRUPT_FP_UNAVAIL:
1327 	case BOOK3S_INTERRUPT_ALTIVEC:
1328 	case BOOK3S_INTERRUPT_VSX:
1329 	{
1330 		int ext_msr = 0;
1331 		int emul;
1332 		u32 last_inst;
1333 
1334 		if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) {
1335 			/* Do paired single instruction emulation */
1336 			emul = kvmppc_get_last_inst(vcpu, INST_GENERIC,
1337 						    &last_inst);
1338 			if (emul == EMULATE_DONE)
1339 				r = kvmppc_exit_pr_progint(run, vcpu, exit_nr);
1340 			else
1341 				r = RESUME_GUEST;
1342 
1343 			break;
1344 		}
1345 
1346 		/* Enable external provider */
1347 		switch (exit_nr) {
1348 		case BOOK3S_INTERRUPT_FP_UNAVAIL:
1349 			ext_msr = MSR_FP;
1350 			break;
1351 
1352 		case BOOK3S_INTERRUPT_ALTIVEC:
1353 			ext_msr = MSR_VEC;
1354 			break;
1355 
1356 		case BOOK3S_INTERRUPT_VSX:
1357 			ext_msr = MSR_VSX;
1358 			break;
1359 		}
1360 
1361 		r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
1362 		break;
1363 	}
1364 	case BOOK3S_INTERRUPT_ALIGNMENT:
1365 	{
1366 		u32 last_inst;
1367 		int emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1368 
1369 		if (emul == EMULATE_DONE) {
1370 			u32 dsisr;
1371 			u64 dar;
1372 
1373 			dsisr = kvmppc_alignment_dsisr(vcpu, last_inst);
1374 			dar = kvmppc_alignment_dar(vcpu, last_inst);
1375 
1376 			kvmppc_set_dsisr(vcpu, dsisr);
1377 			kvmppc_set_dar(vcpu, dar);
1378 
1379 			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1380 		}
1381 		r = RESUME_GUEST;
1382 		break;
1383 	}
1384 #ifdef CONFIG_PPC_BOOK3S_64
1385 	case BOOK3S_INTERRUPT_FAC_UNAVAIL:
1386 		r = kvmppc_handle_fac(vcpu, vcpu->arch.shadow_fscr >> 56);
1387 		break;
1388 #endif
1389 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1390 		kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1391 		r = RESUME_GUEST;
1392 		break;
1393 	case BOOK3S_INTERRUPT_TRACE:
1394 		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1395 			run->exit_reason = KVM_EXIT_DEBUG;
1396 			r = RESUME_HOST;
1397 		} else {
1398 			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1399 			r = RESUME_GUEST;
1400 		}
1401 		break;
1402 	default:
1403 	{
1404 		ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1405 		/* Ugh - bork here! What did we get? */
1406 		printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
1407 			exit_nr, kvmppc_get_pc(vcpu), shadow_srr1);
1408 		r = RESUME_HOST;
1409 		BUG();
1410 		break;
1411 	}
1412 	}
1413 
1414 	if (!(r & RESUME_HOST)) {
1415 		/* To avoid clobbering exit_reason, only check for signals if
1416 		 * we aren't already exiting to userspace for some other
1417 		 * reason. */
1418 
1419 		/*
1420 		 * Interrupts could be timers for the guest which we have to
1421 		 * inject again, so let's postpone them until we're in the guest
1422 		 * and if we really did time things so badly, then we just exit
1423 		 * again due to a host external interrupt.
1424 		 */
1425 		s = kvmppc_prepare_to_enter(vcpu);
1426 		if (s <= 0)
1427 			r = s;
1428 		else {
1429 			/* interrupts now hard-disabled */
1430 			kvmppc_fix_ee_before_entry();
1431 		}
1432 
1433 		kvmppc_handle_lost_ext(vcpu);
1434 	}
1435 
1436 	trace_kvm_book3s_reenter(r, vcpu);
1437 
1438 	return r;
1439 }
1440 
1441 static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu,
1442 					    struct kvm_sregs *sregs)
1443 {
1444 	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
1445 	int i;
1446 
1447 	sregs->pvr = vcpu->arch.pvr;
1448 
1449 	sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
1450 	if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1451 		for (i = 0; i < 64; i++) {
1452 			sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i;
1453 			sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1454 		}
1455 	} else {
1456 		for (i = 0; i < 16; i++)
1457 			sregs->u.s.ppc32.sr[i] = kvmppc_get_sr(vcpu, i);
1458 
1459 		for (i = 0; i < 8; i++) {
1460 			sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
1461 			sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
1462 		}
1463 	}
1464 
1465 	return 0;
1466 }
1467 
1468 static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu,
1469 					    struct kvm_sregs *sregs)
1470 {
1471 	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
1472 	int i;
1473 
1474 	kvmppc_set_pvr_pr(vcpu, sregs->pvr);
1475 
1476 	vcpu3s->sdr1 = sregs->u.s.sdr1;
1477 #ifdef CONFIG_PPC_BOOK3S_64
1478 	if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1479 		/* Flush all SLB entries */
1480 		vcpu->arch.mmu.slbmte(vcpu, 0, 0);
1481 		vcpu->arch.mmu.slbia(vcpu);
1482 
1483 		for (i = 0; i < 64; i++) {
1484 			u64 rb = sregs->u.s.ppc64.slb[i].slbe;
1485 			u64 rs = sregs->u.s.ppc64.slb[i].slbv;
1486 
1487 			if (rb & SLB_ESID_V)
1488 				vcpu->arch.mmu.slbmte(vcpu, rs, rb);
1489 		}
1490 	} else
1491 #endif
1492 	{
1493 		for (i = 0; i < 16; i++) {
1494 			vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
1495 		}
1496 		for (i = 0; i < 8; i++) {
1497 			kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
1498 				       (u32)sregs->u.s.ppc32.ibat[i]);
1499 			kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
1500 				       (u32)(sregs->u.s.ppc32.ibat[i] >> 32));
1501 			kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
1502 				       (u32)sregs->u.s.ppc32.dbat[i]);
1503 			kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
1504 				       (u32)(sregs->u.s.ppc32.dbat[i] >> 32));
1505 		}
1506 	}
1507 
1508 	/* Flush the MMU after messing with the segments */
1509 	kvmppc_mmu_pte_flush(vcpu, 0, 0);
1510 
1511 	return 0;
1512 }
1513 
1514 static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
1515 				 union kvmppc_one_reg *val)
1516 {
1517 	int r = 0;
1518 
1519 	switch (id) {
1520 	case KVM_REG_PPC_DEBUG_INST:
1521 		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1522 		break;
1523 	case KVM_REG_PPC_HIOR:
1524 		*val = get_reg_val(id, to_book3s(vcpu)->hior);
1525 		break;
1526 	case KVM_REG_PPC_VTB:
1527 		*val = get_reg_val(id, to_book3s(vcpu)->vtb);
1528 		break;
1529 	case KVM_REG_PPC_LPCR:
1530 	case KVM_REG_PPC_LPCR_64:
1531 		/*
1532 		 * We are only interested in the LPCR_ILE bit
1533 		 */
1534 		if (vcpu->arch.intr_msr & MSR_LE)
1535 			*val = get_reg_val(id, LPCR_ILE);
1536 		else
1537 			*val = get_reg_val(id, 0);
1538 		break;
1539 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1540 	case KVM_REG_PPC_TFHAR:
1541 		*val = get_reg_val(id, vcpu->arch.tfhar);
1542 		break;
1543 	case KVM_REG_PPC_TFIAR:
1544 		*val = get_reg_val(id, vcpu->arch.tfiar);
1545 		break;
1546 	case KVM_REG_PPC_TEXASR:
1547 		*val = get_reg_val(id, vcpu->arch.texasr);
1548 		break;
1549 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1550 		*val = get_reg_val(id,
1551 				vcpu->arch.gpr_tm[id-KVM_REG_PPC_TM_GPR0]);
1552 		break;
1553 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1554 	{
1555 		int i, j;
1556 
1557 		i = id - KVM_REG_PPC_TM_VSR0;
1558 		if (i < 32)
1559 			for (j = 0; j < TS_FPRWIDTH; j++)
1560 				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1561 		else {
1562 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1563 				val->vval = vcpu->arch.vr_tm.vr[i-32];
1564 			else
1565 				r = -ENXIO;
1566 		}
1567 		break;
1568 	}
1569 	case KVM_REG_PPC_TM_CR:
1570 		*val = get_reg_val(id, vcpu->arch.cr_tm);
1571 		break;
1572 	case KVM_REG_PPC_TM_XER:
1573 		*val = get_reg_val(id, vcpu->arch.xer_tm);
1574 		break;
1575 	case KVM_REG_PPC_TM_LR:
1576 		*val = get_reg_val(id, vcpu->arch.lr_tm);
1577 		break;
1578 	case KVM_REG_PPC_TM_CTR:
1579 		*val = get_reg_val(id, vcpu->arch.ctr_tm);
1580 		break;
1581 	case KVM_REG_PPC_TM_FPSCR:
1582 		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1583 		break;
1584 	case KVM_REG_PPC_TM_AMR:
1585 		*val = get_reg_val(id, vcpu->arch.amr_tm);
1586 		break;
1587 	case KVM_REG_PPC_TM_PPR:
1588 		*val = get_reg_val(id, vcpu->arch.ppr_tm);
1589 		break;
1590 	case KVM_REG_PPC_TM_VRSAVE:
1591 		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
1592 		break;
1593 	case KVM_REG_PPC_TM_VSCR:
1594 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1595 			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1596 		else
1597 			r = -ENXIO;
1598 		break;
1599 	case KVM_REG_PPC_TM_DSCR:
1600 		*val = get_reg_val(id, vcpu->arch.dscr_tm);
1601 		break;
1602 	case KVM_REG_PPC_TM_TAR:
1603 		*val = get_reg_val(id, vcpu->arch.tar_tm);
1604 		break;
1605 #endif
1606 	default:
1607 		r = -EINVAL;
1608 		break;
1609 	}
1610 
1611 	return r;
1612 }
1613 
1614 static void kvmppc_set_lpcr_pr(struct kvm_vcpu *vcpu, u64 new_lpcr)
1615 {
1616 	if (new_lpcr & LPCR_ILE)
1617 		vcpu->arch.intr_msr |= MSR_LE;
1618 	else
1619 		vcpu->arch.intr_msr &= ~MSR_LE;
1620 }
1621 
1622 static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
1623 				 union kvmppc_one_reg *val)
1624 {
1625 	int r = 0;
1626 
1627 	switch (id) {
1628 	case KVM_REG_PPC_HIOR:
1629 		to_book3s(vcpu)->hior = set_reg_val(id, *val);
1630 		to_book3s(vcpu)->hior_explicit = true;
1631 		break;
1632 	case KVM_REG_PPC_VTB:
1633 		to_book3s(vcpu)->vtb = set_reg_val(id, *val);
1634 		break;
1635 	case KVM_REG_PPC_LPCR:
1636 	case KVM_REG_PPC_LPCR_64:
1637 		kvmppc_set_lpcr_pr(vcpu, set_reg_val(id, *val));
1638 		break;
1639 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1640 	case KVM_REG_PPC_TFHAR:
1641 		vcpu->arch.tfhar = set_reg_val(id, *val);
1642 		break;
1643 	case KVM_REG_PPC_TFIAR:
1644 		vcpu->arch.tfiar = set_reg_val(id, *val);
1645 		break;
1646 	case KVM_REG_PPC_TEXASR:
1647 		vcpu->arch.texasr = set_reg_val(id, *val);
1648 		break;
1649 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1650 		vcpu->arch.gpr_tm[id - KVM_REG_PPC_TM_GPR0] =
1651 			set_reg_val(id, *val);
1652 		break;
1653 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1654 	{
1655 		int i, j;
1656 
1657 		i = id - KVM_REG_PPC_TM_VSR0;
1658 		if (i < 32)
1659 			for (j = 0; j < TS_FPRWIDTH; j++)
1660 				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1661 		else
1662 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1663 				vcpu->arch.vr_tm.vr[i-32] = val->vval;
1664 			else
1665 				r = -ENXIO;
1666 		break;
1667 	}
1668 	case KVM_REG_PPC_TM_CR:
1669 		vcpu->arch.cr_tm = set_reg_val(id, *val);
1670 		break;
1671 	case KVM_REG_PPC_TM_XER:
1672 		vcpu->arch.xer_tm = set_reg_val(id, *val);
1673 		break;
1674 	case KVM_REG_PPC_TM_LR:
1675 		vcpu->arch.lr_tm = set_reg_val(id, *val);
1676 		break;
1677 	case KVM_REG_PPC_TM_CTR:
1678 		vcpu->arch.ctr_tm = set_reg_val(id, *val);
1679 		break;
1680 	case KVM_REG_PPC_TM_FPSCR:
1681 		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1682 		break;
1683 	case KVM_REG_PPC_TM_AMR:
1684 		vcpu->arch.amr_tm = set_reg_val(id, *val);
1685 		break;
1686 	case KVM_REG_PPC_TM_PPR:
1687 		vcpu->arch.ppr_tm = set_reg_val(id, *val);
1688 		break;
1689 	case KVM_REG_PPC_TM_VRSAVE:
1690 		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1691 		break;
1692 	case KVM_REG_PPC_TM_VSCR:
1693 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1694 			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1695 		else
1696 			r = -ENXIO;
1697 		break;
1698 	case KVM_REG_PPC_TM_DSCR:
1699 		vcpu->arch.dscr_tm = set_reg_val(id, *val);
1700 		break;
1701 	case KVM_REG_PPC_TM_TAR:
1702 		vcpu->arch.tar_tm = set_reg_val(id, *val);
1703 		break;
1704 #endif
1705 	default:
1706 		r = -EINVAL;
1707 		break;
1708 	}
1709 
1710 	return r;
1711 }
1712 
1713 static struct kvm_vcpu *kvmppc_core_vcpu_create_pr(struct kvm *kvm,
1714 						   unsigned int id)
1715 {
1716 	struct kvmppc_vcpu_book3s *vcpu_book3s;
1717 	struct kvm_vcpu *vcpu;
1718 	int err = -ENOMEM;
1719 	unsigned long p;
1720 
1721 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1722 	if (!vcpu)
1723 		goto out;
1724 
1725 	vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s));
1726 	if (!vcpu_book3s)
1727 		goto free_vcpu;
1728 	vcpu->arch.book3s = vcpu_book3s;
1729 
1730 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1731 	vcpu->arch.shadow_vcpu =
1732 		kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL);
1733 	if (!vcpu->arch.shadow_vcpu)
1734 		goto free_vcpu3s;
1735 #endif
1736 
1737 	err = kvm_vcpu_init(vcpu, kvm, id);
1738 	if (err)
1739 		goto free_shadow_vcpu;
1740 
1741 	err = -ENOMEM;
1742 	p = __get_free_page(GFP_KERNEL|__GFP_ZERO);
1743 	if (!p)
1744 		goto uninit_vcpu;
1745 	vcpu->arch.shared = (void *)p;
1746 #ifdef CONFIG_PPC_BOOK3S_64
1747 	/* Always start the shared struct in native endian mode */
1748 #ifdef __BIG_ENDIAN__
1749         vcpu->arch.shared_big_endian = true;
1750 #else
1751         vcpu->arch.shared_big_endian = false;
1752 #endif
1753 
1754 	/*
1755 	 * Default to the same as the host if we're on sufficiently
1756 	 * recent machine that we have 1TB segments;
1757 	 * otherwise default to PPC970FX.
1758 	 */
1759 	vcpu->arch.pvr = 0x3C0301;
1760 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1761 		vcpu->arch.pvr = mfspr(SPRN_PVR);
1762 	vcpu->arch.intr_msr = MSR_SF;
1763 #else
1764 	/* default to book3s_32 (750) */
1765 	vcpu->arch.pvr = 0x84202;
1766 #endif
1767 	kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr);
1768 	vcpu->arch.slb_nr = 64;
1769 
1770 	vcpu->arch.shadow_msr = MSR_USER64 & ~MSR_LE;
1771 
1772 	err = kvmppc_mmu_init(vcpu);
1773 	if (err < 0)
1774 		goto uninit_vcpu;
1775 
1776 	return vcpu;
1777 
1778 uninit_vcpu:
1779 	kvm_vcpu_uninit(vcpu);
1780 free_shadow_vcpu:
1781 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1782 	kfree(vcpu->arch.shadow_vcpu);
1783 free_vcpu3s:
1784 #endif
1785 	vfree(vcpu_book3s);
1786 free_vcpu:
1787 	kmem_cache_free(kvm_vcpu_cache, vcpu);
1788 out:
1789 	return ERR_PTR(err);
1790 }
1791 
1792 static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu)
1793 {
1794 	struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
1795 
1796 	free_page((unsigned long)vcpu->arch.shared & PAGE_MASK);
1797 	kvm_vcpu_uninit(vcpu);
1798 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1799 	kfree(vcpu->arch.shadow_vcpu);
1800 #endif
1801 	vfree(vcpu_book3s);
1802 	kmem_cache_free(kvm_vcpu_cache, vcpu);
1803 }
1804 
1805 static int kvmppc_vcpu_run_pr(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1806 {
1807 	int ret;
1808 #ifdef CONFIG_ALTIVEC
1809 	unsigned long uninitialized_var(vrsave);
1810 #endif
1811 
1812 	/* Check if we can run the vcpu at all */
1813 	if (!vcpu->arch.sane) {
1814 		kvm_run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1815 		ret = -EINVAL;
1816 		goto out;
1817 	}
1818 
1819 	kvmppc_setup_debug(vcpu);
1820 
1821 	/*
1822 	 * Interrupts could be timers for the guest which we have to inject
1823 	 * again, so let's postpone them until we're in the guest and if we
1824 	 * really did time things so badly, then we just exit again due to
1825 	 * a host external interrupt.
1826 	 */
1827 	ret = kvmppc_prepare_to_enter(vcpu);
1828 	if (ret <= 0)
1829 		goto out;
1830 	/* interrupts now hard-disabled */
1831 
1832 	/* Save FPU, Altivec and VSX state */
1833 	giveup_all(current);
1834 
1835 	/* Preload FPU if it's enabled */
1836 	if (kvmppc_get_msr(vcpu) & MSR_FP)
1837 		kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
1838 
1839 	kvmppc_fix_ee_before_entry();
1840 
1841 	ret = __kvmppc_vcpu_run(kvm_run, vcpu);
1842 
1843 	kvmppc_clear_debug(vcpu);
1844 
1845 	/* No need for guest_exit. It's done in handle_exit.
1846 	   We also get here with interrupts enabled. */
1847 
1848 	/* Make sure we save the guest FPU/Altivec/VSX state */
1849 	kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
1850 
1851 	/* Make sure we save the guest TAR/EBB/DSCR state */
1852 	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
1853 
1854 out:
1855 	vcpu->mode = OUTSIDE_GUEST_MODE;
1856 	return ret;
1857 }
1858 
1859 /*
1860  * Get (and clear) the dirty memory log for a memory slot.
1861  */
1862 static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm,
1863 					 struct kvm_dirty_log *log)
1864 {
1865 	struct kvm_memslots *slots;
1866 	struct kvm_memory_slot *memslot;
1867 	struct kvm_vcpu *vcpu;
1868 	ulong ga, ga_end;
1869 	int is_dirty = 0;
1870 	int r;
1871 	unsigned long n;
1872 
1873 	mutex_lock(&kvm->slots_lock);
1874 
1875 	r = kvm_get_dirty_log(kvm, log, &is_dirty);
1876 	if (r)
1877 		goto out;
1878 
1879 	/* If nothing is dirty, don't bother messing with page tables. */
1880 	if (is_dirty) {
1881 		slots = kvm_memslots(kvm);
1882 		memslot = id_to_memslot(slots, log->slot);
1883 
1884 		ga = memslot->base_gfn << PAGE_SHIFT;
1885 		ga_end = ga + (memslot->npages << PAGE_SHIFT);
1886 
1887 		kvm_for_each_vcpu(n, vcpu, kvm)
1888 			kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);
1889 
1890 		n = kvm_dirty_bitmap_bytes(memslot);
1891 		memset(memslot->dirty_bitmap, 0, n);
1892 	}
1893 
1894 	r = 0;
1895 out:
1896 	mutex_unlock(&kvm->slots_lock);
1897 	return r;
1898 }
1899 
1900 static void kvmppc_core_flush_memslot_pr(struct kvm *kvm,
1901 					 struct kvm_memory_slot *memslot)
1902 {
1903 	return;
1904 }
1905 
1906 static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm,
1907 					struct kvm_memory_slot *memslot,
1908 					const struct kvm_userspace_memory_region *mem)
1909 {
1910 	return 0;
1911 }
1912 
1913 static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm,
1914 				const struct kvm_userspace_memory_region *mem,
1915 				const struct kvm_memory_slot *old,
1916 				const struct kvm_memory_slot *new)
1917 {
1918 	return;
1919 }
1920 
1921 static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *free,
1922 					struct kvm_memory_slot *dont)
1923 {
1924 	return;
1925 }
1926 
1927 static int kvmppc_core_create_memslot_pr(struct kvm_memory_slot *slot,
1928 					 unsigned long npages)
1929 {
1930 	return 0;
1931 }
1932 
1933 
1934 #ifdef CONFIG_PPC64
1935 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
1936 					 struct kvm_ppc_smmu_info *info)
1937 {
1938 	long int i;
1939 	struct kvm_vcpu *vcpu;
1940 
1941 	info->flags = 0;
1942 
1943 	/* SLB is always 64 entries */
1944 	info->slb_size = 64;
1945 
1946 	/* Standard 4k base page size segment */
1947 	info->sps[0].page_shift = 12;
1948 	info->sps[0].slb_enc = 0;
1949 	info->sps[0].enc[0].page_shift = 12;
1950 	info->sps[0].enc[0].pte_enc = 0;
1951 
1952 	/*
1953 	 * 64k large page size.
1954 	 * We only want to put this in if the CPUs we're emulating
1955 	 * support it, but unfortunately we don't have a vcpu easily
1956 	 * to hand here to test.  Just pick the first vcpu, and if
1957 	 * that doesn't exist yet, report the minimum capability,
1958 	 * i.e., no 64k pages.
1959 	 * 1T segment support goes along with 64k pages.
1960 	 */
1961 	i = 1;
1962 	vcpu = kvm_get_vcpu(kvm, 0);
1963 	if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) {
1964 		info->flags = KVM_PPC_1T_SEGMENTS;
1965 		info->sps[i].page_shift = 16;
1966 		info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01;
1967 		info->sps[i].enc[0].page_shift = 16;
1968 		info->sps[i].enc[0].pte_enc = 1;
1969 		++i;
1970 	}
1971 
1972 	/* Standard 16M large page size segment */
1973 	info->sps[i].page_shift = 24;
1974 	info->sps[i].slb_enc = SLB_VSID_L;
1975 	info->sps[i].enc[0].page_shift = 24;
1976 	info->sps[i].enc[0].pte_enc = 0;
1977 
1978 	return 0;
1979 }
1980 
1981 static int kvm_configure_mmu_pr(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
1982 {
1983 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
1984 		return -ENODEV;
1985 	/* Require flags and process table base and size to all be zero. */
1986 	if (cfg->flags || cfg->process_table)
1987 		return -EINVAL;
1988 	return 0;
1989 }
1990 
1991 #else
1992 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
1993 					 struct kvm_ppc_smmu_info *info)
1994 {
1995 	/* We should not get called */
1996 	BUG();
1997 }
1998 #endif /* CONFIG_PPC64 */
1999 
2000 static unsigned int kvm_global_user_count = 0;
2001 static DEFINE_SPINLOCK(kvm_global_user_count_lock);
2002 
2003 static int kvmppc_core_init_vm_pr(struct kvm *kvm)
2004 {
2005 	mutex_init(&kvm->arch.hpt_mutex);
2006 
2007 #ifdef CONFIG_PPC_BOOK3S_64
2008 	/* Start out with the default set of hcalls enabled */
2009 	kvmppc_pr_init_default_hcalls(kvm);
2010 #endif
2011 
2012 	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
2013 		spin_lock(&kvm_global_user_count_lock);
2014 		if (++kvm_global_user_count == 1)
2015 			pseries_disable_reloc_on_exc();
2016 		spin_unlock(&kvm_global_user_count_lock);
2017 	}
2018 	return 0;
2019 }
2020 
2021 static void kvmppc_core_destroy_vm_pr(struct kvm *kvm)
2022 {
2023 #ifdef CONFIG_PPC64
2024 	WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
2025 #endif
2026 
2027 	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
2028 		spin_lock(&kvm_global_user_count_lock);
2029 		BUG_ON(kvm_global_user_count == 0);
2030 		if (--kvm_global_user_count == 0)
2031 			pseries_enable_reloc_on_exc();
2032 		spin_unlock(&kvm_global_user_count_lock);
2033 	}
2034 }
2035 
2036 static int kvmppc_core_check_processor_compat_pr(void)
2037 {
2038 	/*
2039 	 * PR KVM can work on POWER9 inside a guest partition
2040 	 * running in HPT mode.  It can't work if we are using
2041 	 * radix translation (because radix provides no way for
2042 	 * a process to have unique translations in quadrant 3).
2043 	 */
2044 	if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
2045 		return -EIO;
2046 	return 0;
2047 }
2048 
2049 static long kvm_arch_vm_ioctl_pr(struct file *filp,
2050 				 unsigned int ioctl, unsigned long arg)
2051 {
2052 	return -ENOTTY;
2053 }
2054 
2055 static struct kvmppc_ops kvm_ops_pr = {
2056 	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr,
2057 	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr,
2058 	.get_one_reg = kvmppc_get_one_reg_pr,
2059 	.set_one_reg = kvmppc_set_one_reg_pr,
2060 	.vcpu_load   = kvmppc_core_vcpu_load_pr,
2061 	.vcpu_put    = kvmppc_core_vcpu_put_pr,
2062 	.set_msr     = kvmppc_set_msr_pr,
2063 	.vcpu_run    = kvmppc_vcpu_run_pr,
2064 	.vcpu_create = kvmppc_core_vcpu_create_pr,
2065 	.vcpu_free   = kvmppc_core_vcpu_free_pr,
2066 	.check_requests = kvmppc_core_check_requests_pr,
2067 	.get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr,
2068 	.flush_memslot = kvmppc_core_flush_memslot_pr,
2069 	.prepare_memory_region = kvmppc_core_prepare_memory_region_pr,
2070 	.commit_memory_region = kvmppc_core_commit_memory_region_pr,
2071 	.unmap_hva_range = kvm_unmap_hva_range_pr,
2072 	.age_hva  = kvm_age_hva_pr,
2073 	.test_age_hva = kvm_test_age_hva_pr,
2074 	.set_spte_hva = kvm_set_spte_hva_pr,
2075 	.mmu_destroy  = kvmppc_mmu_destroy_pr,
2076 	.free_memslot = kvmppc_core_free_memslot_pr,
2077 	.create_memslot = kvmppc_core_create_memslot_pr,
2078 	.init_vm = kvmppc_core_init_vm_pr,
2079 	.destroy_vm = kvmppc_core_destroy_vm_pr,
2080 	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr,
2081 	.emulate_op = kvmppc_core_emulate_op_pr,
2082 	.emulate_mtspr = kvmppc_core_emulate_mtspr_pr,
2083 	.emulate_mfspr = kvmppc_core_emulate_mfspr_pr,
2084 	.fast_vcpu_kick = kvm_vcpu_kick,
2085 	.arch_vm_ioctl  = kvm_arch_vm_ioctl_pr,
2086 #ifdef CONFIG_PPC_BOOK3S_64
2087 	.hcall_implemented = kvmppc_hcall_impl_pr,
2088 	.configure_mmu = kvm_configure_mmu_pr,
2089 #endif
2090 	.giveup_ext = kvmppc_giveup_ext,
2091 };
2092 
2093 
2094 int kvmppc_book3s_init_pr(void)
2095 {
2096 	int r;
2097 
2098 	r = kvmppc_core_check_processor_compat_pr();
2099 	if (r < 0)
2100 		return r;
2101 
2102 	kvm_ops_pr.owner = THIS_MODULE;
2103 	kvmppc_pr_ops = &kvm_ops_pr;
2104 
2105 	r = kvmppc_mmu_hpte_sysinit();
2106 	return r;
2107 }
2108 
2109 void kvmppc_book3s_exit_pr(void)
2110 {
2111 	kvmppc_pr_ops = NULL;
2112 	kvmppc_mmu_hpte_sysexit();
2113 }
2114 
2115 /*
2116  * We only support separate modules for book3s 64
2117  */
2118 #ifdef CONFIG_PPC_BOOK3S_64
2119 
2120 module_init(kvmppc_book3s_init_pr);
2121 module_exit(kvmppc_book3s_exit_pr);
2122 
2123 MODULE_LICENSE("GPL");
2124 MODULE_ALIAS_MISCDEV(KVM_MINOR);
2125 MODULE_ALIAS("devname:kvm");
2126 #endif
2127