1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Secure pages management: Migration of pages between normal and secure
4  * memory of KVM guests.
5  *
6  * Copyright 2018 Bharata B Rao, IBM Corp. <bharata@linux.ibm.com>
7  */
8 
9 /*
10  * A pseries guest can be run as secure guest on Ultravisor-enabled
11  * POWER platforms. On such platforms, this driver will be used to manage
12  * the movement of guest pages between the normal memory managed by
13  * hypervisor (HV) and secure memory managed by Ultravisor (UV).
14  *
15  * The page-in or page-out requests from UV will come to HV as hcalls and
16  * HV will call back into UV via ultracalls to satisfy these page requests.
17  *
18  * Private ZONE_DEVICE memory equal to the amount of secure memory
19  * available in the platform for running secure guests is hotplugged.
20  * Whenever a page belonging to the guest becomes secure, a page from this
21  * private device memory is used to represent and track that secure page
22  * on the HV side. Some pages (like virtio buffers, VPA pages etc) are
23  * shared between UV and HV. However such pages aren't represented by
24  * device private memory and mappings to shared memory exist in both
25  * UV and HV page tables.
26  */
27 
28 /*
29  * Notes on locking
30  *
31  * kvm->arch.uvmem_lock is a per-guest lock that prevents concurrent
32  * page-in and page-out requests for the same GPA. Concurrent accesses
33  * can either come via UV (guest vCPUs requesting for same page)
34  * or when HV and guest simultaneously access the same page.
35  * This mutex serializes the migration of page from HV(normal) to
36  * UV(secure) and vice versa. So the serialization points are around
37  * migrate_vma routines and page-in/out routines.
38  *
39  * Per-guest mutex comes with a cost though. Mainly it serializes the
40  * fault path as page-out can occur when HV faults on accessing secure
41  * guest pages. Currently UV issues page-in requests for all the guest
42  * PFNs one at a time during early boot (UV_ESM uvcall), so this is
43  * not a cause for concern. Also currently the number of page-outs caused
44  * by HV touching secure pages is very very low. If an when UV supports
45  * overcommitting, then we might see concurrent guest driven page-outs.
46  *
47  * Locking order
48  *
49  * 1. kvm->srcu - Protects KVM memslots
50  * 2. kvm->mm->mmap_sem - find_vma, migrate_vma_pages and helpers, ksm_madvise
51  * 3. kvm->arch.uvmem_lock - protects read/writes to uvmem slots thus acting
52  *			     as sync-points for page-in/out
53  */
54 
55 /*
56  * Notes on page size
57  *
58  * Currently UV uses 2MB mappings internally, but will issue H_SVM_PAGE_IN
59  * and H_SVM_PAGE_OUT hcalls in PAGE_SIZE(64K) granularity. HV tracks
60  * secure GPAs at 64K page size and maintains one device PFN for each
61  * 64K secure GPA. UV_PAGE_IN and UV_PAGE_OUT calls by HV are also issued
62  * for 64K page at a time.
63  *
64  * HV faulting on secure pages: When HV touches any secure page, it
65  * faults and issues a UV_PAGE_OUT request with 64K page size. Currently
66  * UV splits and remaps the 2MB page if necessary and copies out the
67  * required 64K page contents.
68  *
69  * Shared pages: Whenever guest shares a secure page, UV will split and
70  * remap the 2MB page if required and issue H_SVM_PAGE_IN with 64K page size.
71  *
72  * HV invalidating a page: When a regular page belonging to secure
73  * guest gets unmapped, HV informs UV with UV_PAGE_INVAL of 64K
74  * page size. Using 64K page size is correct here because any non-secure
75  * page will essentially be of 64K page size. Splitting by UV during sharing
76  * and page-out ensures this.
77  *
78  * Page fault handling: When HV handles page fault of a page belonging
79  * to secure guest, it sends that to UV with a 64K UV_PAGE_IN request.
80  * Using 64K size is correct here too as UV would have split the 2MB page
81  * into 64k mappings and would have done page-outs earlier.
82  *
83  * In summary, the current secure pages handling code in HV assumes
84  * 64K page size and in fact fails any page-in/page-out requests of
85  * non-64K size upfront. If and when UV starts supporting multiple
86  * page-sizes, we need to break this assumption.
87  */
88 
89 #include <linux/pagemap.h>
90 #include <linux/migrate.h>
91 #include <linux/kvm_host.h>
92 #include <linux/ksm.h>
93 #include <asm/ultravisor.h>
94 #include <asm/mman.h>
95 #include <asm/kvm_ppc.h>
96 
97 static struct dev_pagemap kvmppc_uvmem_pgmap;
98 static unsigned long *kvmppc_uvmem_bitmap;
99 static DEFINE_SPINLOCK(kvmppc_uvmem_bitmap_lock);
100 
101 #define KVMPPC_UVMEM_PFN	(1UL << 63)
102 
103 struct kvmppc_uvmem_slot {
104 	struct list_head list;
105 	unsigned long nr_pfns;
106 	unsigned long base_pfn;
107 	unsigned long *pfns;
108 };
109 
110 struct kvmppc_uvmem_page_pvt {
111 	struct kvm *kvm;
112 	unsigned long gpa;
113 	bool skip_page_out;
114 };
115 
116 int kvmppc_uvmem_slot_init(struct kvm *kvm, const struct kvm_memory_slot *slot)
117 {
118 	struct kvmppc_uvmem_slot *p;
119 
120 	p = kzalloc(sizeof(*p), GFP_KERNEL);
121 	if (!p)
122 		return -ENOMEM;
123 	p->pfns = vzalloc(array_size(slot->npages, sizeof(*p->pfns)));
124 	if (!p->pfns) {
125 		kfree(p);
126 		return -ENOMEM;
127 	}
128 	p->nr_pfns = slot->npages;
129 	p->base_pfn = slot->base_gfn;
130 
131 	mutex_lock(&kvm->arch.uvmem_lock);
132 	list_add(&p->list, &kvm->arch.uvmem_pfns);
133 	mutex_unlock(&kvm->arch.uvmem_lock);
134 
135 	return 0;
136 }
137 
138 /*
139  * All device PFNs are already released by the time we come here.
140  */
141 void kvmppc_uvmem_slot_free(struct kvm *kvm, const struct kvm_memory_slot *slot)
142 {
143 	struct kvmppc_uvmem_slot *p, *next;
144 
145 	mutex_lock(&kvm->arch.uvmem_lock);
146 	list_for_each_entry_safe(p, next, &kvm->arch.uvmem_pfns, list) {
147 		if (p->base_pfn == slot->base_gfn) {
148 			vfree(p->pfns);
149 			list_del(&p->list);
150 			kfree(p);
151 			break;
152 		}
153 	}
154 	mutex_unlock(&kvm->arch.uvmem_lock);
155 }
156 
157 static void kvmppc_uvmem_pfn_insert(unsigned long gfn, unsigned long uvmem_pfn,
158 				    struct kvm *kvm)
159 {
160 	struct kvmppc_uvmem_slot *p;
161 
162 	list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) {
163 		if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) {
164 			unsigned long index = gfn - p->base_pfn;
165 
166 			p->pfns[index] = uvmem_pfn | KVMPPC_UVMEM_PFN;
167 			return;
168 		}
169 	}
170 }
171 
172 static void kvmppc_uvmem_pfn_remove(unsigned long gfn, struct kvm *kvm)
173 {
174 	struct kvmppc_uvmem_slot *p;
175 
176 	list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) {
177 		if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) {
178 			p->pfns[gfn - p->base_pfn] = 0;
179 			return;
180 		}
181 	}
182 }
183 
184 static bool kvmppc_gfn_is_uvmem_pfn(unsigned long gfn, struct kvm *kvm,
185 				    unsigned long *uvmem_pfn)
186 {
187 	struct kvmppc_uvmem_slot *p;
188 
189 	list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) {
190 		if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) {
191 			unsigned long index = gfn - p->base_pfn;
192 
193 			if (p->pfns[index] & KVMPPC_UVMEM_PFN) {
194 				if (uvmem_pfn)
195 					*uvmem_pfn = p->pfns[index] &
196 						     ~KVMPPC_UVMEM_PFN;
197 				return true;
198 			} else
199 				return false;
200 		}
201 	}
202 	return false;
203 }
204 
205 unsigned long kvmppc_h_svm_init_start(struct kvm *kvm)
206 {
207 	struct kvm_memslots *slots;
208 	struct kvm_memory_slot *memslot;
209 	int ret = H_SUCCESS;
210 	int srcu_idx;
211 
212 	if (!kvmppc_uvmem_bitmap)
213 		return H_UNSUPPORTED;
214 
215 	/* Only radix guests can be secure guests */
216 	if (!kvm_is_radix(kvm))
217 		return H_UNSUPPORTED;
218 
219 	srcu_idx = srcu_read_lock(&kvm->srcu);
220 	slots = kvm_memslots(kvm);
221 	kvm_for_each_memslot(memslot, slots) {
222 		if (kvmppc_uvmem_slot_init(kvm, memslot)) {
223 			ret = H_PARAMETER;
224 			goto out;
225 		}
226 		ret = uv_register_mem_slot(kvm->arch.lpid,
227 					   memslot->base_gfn << PAGE_SHIFT,
228 					   memslot->npages * PAGE_SIZE,
229 					   0, memslot->id);
230 		if (ret < 0) {
231 			kvmppc_uvmem_slot_free(kvm, memslot);
232 			ret = H_PARAMETER;
233 			goto out;
234 		}
235 	}
236 	kvm->arch.secure_guest |= KVMPPC_SECURE_INIT_START;
237 out:
238 	srcu_read_unlock(&kvm->srcu, srcu_idx);
239 	return ret;
240 }
241 
242 unsigned long kvmppc_h_svm_init_done(struct kvm *kvm)
243 {
244 	if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
245 		return H_UNSUPPORTED;
246 
247 	kvm->arch.secure_guest |= KVMPPC_SECURE_INIT_DONE;
248 	pr_info("LPID %d went secure\n", kvm->arch.lpid);
249 	return H_SUCCESS;
250 }
251 
252 /*
253  * Drop device pages that we maintain for the secure guest
254  *
255  * We first mark the pages to be skipped from UV_PAGE_OUT when there
256  * is HV side fault on these pages. Next we *get* these pages, forcing
257  * fault on them, do fault time migration to replace the device PTEs in
258  * QEMU page table with normal PTEs from newly allocated pages.
259  */
260 void kvmppc_uvmem_drop_pages(const struct kvm_memory_slot *free,
261 			     struct kvm *kvm)
262 {
263 	int i;
264 	struct kvmppc_uvmem_page_pvt *pvt;
265 	unsigned long pfn, uvmem_pfn;
266 	unsigned long gfn = free->base_gfn;
267 
268 	for (i = free->npages; i; --i, ++gfn) {
269 		struct page *uvmem_page;
270 
271 		mutex_lock(&kvm->arch.uvmem_lock);
272 		if (!kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
273 			mutex_unlock(&kvm->arch.uvmem_lock);
274 			continue;
275 		}
276 
277 		uvmem_page = pfn_to_page(uvmem_pfn);
278 		pvt = uvmem_page->zone_device_data;
279 		pvt->skip_page_out = true;
280 		mutex_unlock(&kvm->arch.uvmem_lock);
281 
282 		pfn = gfn_to_pfn(kvm, gfn);
283 		if (is_error_noslot_pfn(pfn))
284 			continue;
285 		kvm_release_pfn_clean(pfn);
286 	}
287 }
288 
289 /*
290  * Get a free device PFN from the pool
291  *
292  * Called when a normal page is moved to secure memory (UV_PAGE_IN). Device
293  * PFN will be used to keep track of the secure page on HV side.
294  *
295  * Called with kvm->arch.uvmem_lock held
296  */
297 static struct page *kvmppc_uvmem_get_page(unsigned long gpa, struct kvm *kvm)
298 {
299 	struct page *dpage = NULL;
300 	unsigned long bit, uvmem_pfn;
301 	struct kvmppc_uvmem_page_pvt *pvt;
302 	unsigned long pfn_last, pfn_first;
303 
304 	pfn_first = kvmppc_uvmem_pgmap.res.start >> PAGE_SHIFT;
305 	pfn_last = pfn_first +
306 		   (resource_size(&kvmppc_uvmem_pgmap.res) >> PAGE_SHIFT);
307 
308 	spin_lock(&kvmppc_uvmem_bitmap_lock);
309 	bit = find_first_zero_bit(kvmppc_uvmem_bitmap,
310 				  pfn_last - pfn_first);
311 	if (bit >= (pfn_last - pfn_first))
312 		goto out;
313 	bitmap_set(kvmppc_uvmem_bitmap, bit, 1);
314 	spin_unlock(&kvmppc_uvmem_bitmap_lock);
315 
316 	pvt = kzalloc(sizeof(*pvt), GFP_KERNEL);
317 	if (!pvt)
318 		goto out_clear;
319 
320 	uvmem_pfn = bit + pfn_first;
321 	kvmppc_uvmem_pfn_insert(gpa >> PAGE_SHIFT, uvmem_pfn, kvm);
322 
323 	pvt->gpa = gpa;
324 	pvt->kvm = kvm;
325 
326 	dpage = pfn_to_page(uvmem_pfn);
327 	dpage->zone_device_data = pvt;
328 	get_page(dpage);
329 	lock_page(dpage);
330 	return dpage;
331 out_clear:
332 	spin_lock(&kvmppc_uvmem_bitmap_lock);
333 	bitmap_clear(kvmppc_uvmem_bitmap, bit, 1);
334 out:
335 	spin_unlock(&kvmppc_uvmem_bitmap_lock);
336 	return NULL;
337 }
338 
339 /*
340  * Alloc a PFN from private device memory pool and copy page from normal
341  * memory to secure memory using UV_PAGE_IN uvcall.
342  */
343 static int
344 kvmppc_svm_page_in(struct vm_area_struct *vma, unsigned long start,
345 		   unsigned long end, unsigned long gpa, struct kvm *kvm,
346 		   unsigned long page_shift, bool *downgrade)
347 {
348 	unsigned long src_pfn, dst_pfn = 0;
349 	struct migrate_vma mig;
350 	struct page *spage;
351 	unsigned long pfn;
352 	struct page *dpage;
353 	int ret = 0;
354 
355 	memset(&mig, 0, sizeof(mig));
356 	mig.vma = vma;
357 	mig.start = start;
358 	mig.end = end;
359 	mig.src = &src_pfn;
360 	mig.dst = &dst_pfn;
361 
362 	/*
363 	 * We come here with mmap_sem write lock held just for
364 	 * ksm_madvise(), otherwise we only need read mmap_sem.
365 	 * Hence downgrade to read lock once ksm_madvise() is done.
366 	 */
367 	ret = ksm_madvise(vma, vma->vm_start, vma->vm_end,
368 			  MADV_UNMERGEABLE, &vma->vm_flags);
369 	downgrade_write(&kvm->mm->mmap_sem);
370 	*downgrade = true;
371 	if (ret)
372 		return ret;
373 
374 	ret = migrate_vma_setup(&mig);
375 	if (ret)
376 		return ret;
377 
378 	if (!(*mig.src & MIGRATE_PFN_MIGRATE)) {
379 		ret = -1;
380 		goto out_finalize;
381 	}
382 
383 	dpage = kvmppc_uvmem_get_page(gpa, kvm);
384 	if (!dpage) {
385 		ret = -1;
386 		goto out_finalize;
387 	}
388 
389 	pfn = *mig.src >> MIGRATE_PFN_SHIFT;
390 	spage = migrate_pfn_to_page(*mig.src);
391 	if (spage)
392 		uv_page_in(kvm->arch.lpid, pfn << page_shift, gpa, 0,
393 			   page_shift);
394 
395 	*mig.dst = migrate_pfn(page_to_pfn(dpage)) | MIGRATE_PFN_LOCKED;
396 	migrate_vma_pages(&mig);
397 out_finalize:
398 	migrate_vma_finalize(&mig);
399 	return ret;
400 }
401 
402 /*
403  * Shares the page with HV, thus making it a normal page.
404  *
405  * - If the page is already secure, then provision a new page and share
406  * - If the page is a normal page, share the existing page
407  *
408  * In the former case, uses dev_pagemap_ops.migrate_to_ram handler
409  * to unmap the device page from QEMU's page tables.
410  */
411 static unsigned long
412 kvmppc_share_page(struct kvm *kvm, unsigned long gpa, unsigned long page_shift)
413 {
414 
415 	int ret = H_PARAMETER;
416 	struct page *uvmem_page;
417 	struct kvmppc_uvmem_page_pvt *pvt;
418 	unsigned long pfn;
419 	unsigned long gfn = gpa >> page_shift;
420 	int srcu_idx;
421 	unsigned long uvmem_pfn;
422 
423 	srcu_idx = srcu_read_lock(&kvm->srcu);
424 	mutex_lock(&kvm->arch.uvmem_lock);
425 	if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
426 		uvmem_page = pfn_to_page(uvmem_pfn);
427 		pvt = uvmem_page->zone_device_data;
428 		pvt->skip_page_out = true;
429 	}
430 
431 retry:
432 	mutex_unlock(&kvm->arch.uvmem_lock);
433 	pfn = gfn_to_pfn(kvm, gfn);
434 	if (is_error_noslot_pfn(pfn))
435 		goto out;
436 
437 	mutex_lock(&kvm->arch.uvmem_lock);
438 	if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
439 		uvmem_page = pfn_to_page(uvmem_pfn);
440 		pvt = uvmem_page->zone_device_data;
441 		pvt->skip_page_out = true;
442 		kvm_release_pfn_clean(pfn);
443 		goto retry;
444 	}
445 
446 	if (!uv_page_in(kvm->arch.lpid, pfn << page_shift, gpa, 0, page_shift))
447 		ret = H_SUCCESS;
448 	kvm_release_pfn_clean(pfn);
449 	mutex_unlock(&kvm->arch.uvmem_lock);
450 out:
451 	srcu_read_unlock(&kvm->srcu, srcu_idx);
452 	return ret;
453 }
454 
455 /*
456  * H_SVM_PAGE_IN: Move page from normal memory to secure memory.
457  *
458  * H_PAGE_IN_SHARED flag makes the page shared which means that the same
459  * memory in is visible from both UV and HV.
460  */
461 unsigned long
462 kvmppc_h_svm_page_in(struct kvm *kvm, unsigned long gpa,
463 		     unsigned long flags, unsigned long page_shift)
464 {
465 	bool downgrade = false;
466 	unsigned long start, end;
467 	struct vm_area_struct *vma;
468 	int srcu_idx;
469 	unsigned long gfn = gpa >> page_shift;
470 	int ret;
471 
472 	if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
473 		return H_UNSUPPORTED;
474 
475 	if (page_shift != PAGE_SHIFT)
476 		return H_P3;
477 
478 	if (flags & ~H_PAGE_IN_SHARED)
479 		return H_P2;
480 
481 	if (flags & H_PAGE_IN_SHARED)
482 		return kvmppc_share_page(kvm, gpa, page_shift);
483 
484 	ret = H_PARAMETER;
485 	srcu_idx = srcu_read_lock(&kvm->srcu);
486 	down_write(&kvm->mm->mmap_sem);
487 
488 	start = gfn_to_hva(kvm, gfn);
489 	if (kvm_is_error_hva(start))
490 		goto out;
491 
492 	mutex_lock(&kvm->arch.uvmem_lock);
493 	/* Fail the page-in request of an already paged-in page */
494 	if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, NULL))
495 		goto out_unlock;
496 
497 	end = start + (1UL << page_shift);
498 	vma = find_vma_intersection(kvm->mm, start, end);
499 	if (!vma || vma->vm_start > start || vma->vm_end < end)
500 		goto out_unlock;
501 
502 	if (!kvmppc_svm_page_in(vma, start, end, gpa, kvm, page_shift,
503 				&downgrade))
504 		ret = H_SUCCESS;
505 out_unlock:
506 	mutex_unlock(&kvm->arch.uvmem_lock);
507 out:
508 	if (downgrade)
509 		up_read(&kvm->mm->mmap_sem);
510 	else
511 		up_write(&kvm->mm->mmap_sem);
512 	srcu_read_unlock(&kvm->srcu, srcu_idx);
513 	return ret;
514 }
515 
516 /*
517  * Provision a new page on HV side and copy over the contents
518  * from secure memory using UV_PAGE_OUT uvcall.
519  */
520 static int
521 kvmppc_svm_page_out(struct vm_area_struct *vma, unsigned long start,
522 		    unsigned long end, unsigned long page_shift,
523 		    struct kvm *kvm, unsigned long gpa)
524 {
525 	unsigned long src_pfn, dst_pfn = 0;
526 	struct migrate_vma mig;
527 	struct page *dpage, *spage;
528 	struct kvmppc_uvmem_page_pvt *pvt;
529 	unsigned long pfn;
530 	int ret = U_SUCCESS;
531 
532 	memset(&mig, 0, sizeof(mig));
533 	mig.vma = vma;
534 	mig.start = start;
535 	mig.end = end;
536 	mig.src = &src_pfn;
537 	mig.dst = &dst_pfn;
538 
539 	mutex_lock(&kvm->arch.uvmem_lock);
540 	/* The requested page is already paged-out, nothing to do */
541 	if (!kvmppc_gfn_is_uvmem_pfn(gpa >> page_shift, kvm, NULL))
542 		goto out;
543 
544 	ret = migrate_vma_setup(&mig);
545 	if (ret)
546 		return ret;
547 
548 	spage = migrate_pfn_to_page(*mig.src);
549 	if (!spage || !(*mig.src & MIGRATE_PFN_MIGRATE))
550 		goto out_finalize;
551 
552 	if (!is_zone_device_page(spage))
553 		goto out_finalize;
554 
555 	dpage = alloc_page_vma(GFP_HIGHUSER, vma, start);
556 	if (!dpage) {
557 		ret = -1;
558 		goto out_finalize;
559 	}
560 
561 	lock_page(dpage);
562 	pvt = spage->zone_device_data;
563 	pfn = page_to_pfn(dpage);
564 
565 	/*
566 	 * This function is used in two cases:
567 	 * - When HV touches a secure page, for which we do UV_PAGE_OUT
568 	 * - When a secure page is converted to shared page, we *get*
569 	 *   the page to essentially unmap the device page. In this
570 	 *   case we skip page-out.
571 	 */
572 	if (!pvt->skip_page_out)
573 		ret = uv_page_out(kvm->arch.lpid, pfn << page_shift,
574 				  gpa, 0, page_shift);
575 
576 	if (ret == U_SUCCESS)
577 		*mig.dst = migrate_pfn(pfn) | MIGRATE_PFN_LOCKED;
578 	else {
579 		unlock_page(dpage);
580 		__free_page(dpage);
581 		goto out_finalize;
582 	}
583 
584 	migrate_vma_pages(&mig);
585 out_finalize:
586 	migrate_vma_finalize(&mig);
587 out:
588 	mutex_unlock(&kvm->arch.uvmem_lock);
589 	return ret;
590 }
591 
592 /*
593  * Fault handler callback that gets called when HV touches any page that
594  * has been moved to secure memory, we ask UV to give back the page by
595  * issuing UV_PAGE_OUT uvcall.
596  *
597  * This eventually results in dropping of device PFN and the newly
598  * provisioned page/PFN gets populated in QEMU page tables.
599  */
600 static vm_fault_t kvmppc_uvmem_migrate_to_ram(struct vm_fault *vmf)
601 {
602 	struct kvmppc_uvmem_page_pvt *pvt = vmf->page->zone_device_data;
603 
604 	if (kvmppc_svm_page_out(vmf->vma, vmf->address,
605 				vmf->address + PAGE_SIZE, PAGE_SHIFT,
606 				pvt->kvm, pvt->gpa))
607 		return VM_FAULT_SIGBUS;
608 	else
609 		return 0;
610 }
611 
612 /*
613  * Release the device PFN back to the pool
614  *
615  * Gets called when secure page becomes a normal page during H_SVM_PAGE_OUT.
616  * Gets called with kvm->arch.uvmem_lock held.
617  */
618 static void kvmppc_uvmem_page_free(struct page *page)
619 {
620 	unsigned long pfn = page_to_pfn(page) -
621 			(kvmppc_uvmem_pgmap.res.start >> PAGE_SHIFT);
622 	struct kvmppc_uvmem_page_pvt *pvt;
623 
624 	spin_lock(&kvmppc_uvmem_bitmap_lock);
625 	bitmap_clear(kvmppc_uvmem_bitmap, pfn, 1);
626 	spin_unlock(&kvmppc_uvmem_bitmap_lock);
627 
628 	pvt = page->zone_device_data;
629 	page->zone_device_data = NULL;
630 	kvmppc_uvmem_pfn_remove(pvt->gpa >> PAGE_SHIFT, pvt->kvm);
631 	kfree(pvt);
632 }
633 
634 static const struct dev_pagemap_ops kvmppc_uvmem_ops = {
635 	.page_free = kvmppc_uvmem_page_free,
636 	.migrate_to_ram	= kvmppc_uvmem_migrate_to_ram,
637 };
638 
639 /*
640  * H_SVM_PAGE_OUT: Move page from secure memory to normal memory.
641  */
642 unsigned long
643 kvmppc_h_svm_page_out(struct kvm *kvm, unsigned long gpa,
644 		      unsigned long flags, unsigned long page_shift)
645 {
646 	unsigned long gfn = gpa >> page_shift;
647 	unsigned long start, end;
648 	struct vm_area_struct *vma;
649 	int srcu_idx;
650 	int ret;
651 
652 	if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
653 		return H_UNSUPPORTED;
654 
655 	if (page_shift != PAGE_SHIFT)
656 		return H_P3;
657 
658 	if (flags)
659 		return H_P2;
660 
661 	ret = H_PARAMETER;
662 	srcu_idx = srcu_read_lock(&kvm->srcu);
663 	down_read(&kvm->mm->mmap_sem);
664 	start = gfn_to_hva(kvm, gfn);
665 	if (kvm_is_error_hva(start))
666 		goto out;
667 
668 	end = start + (1UL << page_shift);
669 	vma = find_vma_intersection(kvm->mm, start, end);
670 	if (!vma || vma->vm_start > start || vma->vm_end < end)
671 		goto out;
672 
673 	if (!kvmppc_svm_page_out(vma, start, end, page_shift, kvm, gpa))
674 		ret = H_SUCCESS;
675 out:
676 	up_read(&kvm->mm->mmap_sem);
677 	srcu_read_unlock(&kvm->srcu, srcu_idx);
678 	return ret;
679 }
680 
681 int kvmppc_send_page_to_uv(struct kvm *kvm, unsigned long gfn)
682 {
683 	unsigned long pfn;
684 	int ret = U_SUCCESS;
685 
686 	pfn = gfn_to_pfn(kvm, gfn);
687 	if (is_error_noslot_pfn(pfn))
688 		return -EFAULT;
689 
690 	mutex_lock(&kvm->arch.uvmem_lock);
691 	if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, NULL))
692 		goto out;
693 
694 	ret = uv_page_in(kvm->arch.lpid, pfn << PAGE_SHIFT, gfn << PAGE_SHIFT,
695 			 0, PAGE_SHIFT);
696 out:
697 	kvm_release_pfn_clean(pfn);
698 	mutex_unlock(&kvm->arch.uvmem_lock);
699 	return (ret == U_SUCCESS) ? RESUME_GUEST : -EFAULT;
700 }
701 
702 static u64 kvmppc_get_secmem_size(void)
703 {
704 	struct device_node *np;
705 	int i, len;
706 	const __be32 *prop;
707 	u64 size = 0;
708 
709 	np = of_find_compatible_node(NULL, NULL, "ibm,uv-firmware");
710 	if (!np)
711 		goto out;
712 
713 	prop = of_get_property(np, "secure-memory-ranges", &len);
714 	if (!prop)
715 		goto out_put;
716 
717 	for (i = 0; i < len / (sizeof(*prop) * 4); i++)
718 		size += of_read_number(prop + (i * 4) + 2, 2);
719 
720 out_put:
721 	of_node_put(np);
722 out:
723 	return size;
724 }
725 
726 int kvmppc_uvmem_init(void)
727 {
728 	int ret = 0;
729 	unsigned long size;
730 	struct resource *res;
731 	void *addr;
732 	unsigned long pfn_last, pfn_first;
733 
734 	size = kvmppc_get_secmem_size();
735 	if (!size) {
736 		/*
737 		 * Don't fail the initialization of kvm-hv module if
738 		 * the platform doesn't export ibm,uv-firmware node.
739 		 * Let normal guests run on such PEF-disabled platform.
740 		 */
741 		pr_info("KVMPPC-UVMEM: No support for secure guests\n");
742 		goto out;
743 	}
744 
745 	res = request_free_mem_region(&iomem_resource, size, "kvmppc_uvmem");
746 	if (IS_ERR(res)) {
747 		ret = PTR_ERR(res);
748 		goto out;
749 	}
750 
751 	kvmppc_uvmem_pgmap.type = MEMORY_DEVICE_PRIVATE;
752 	kvmppc_uvmem_pgmap.res = *res;
753 	kvmppc_uvmem_pgmap.ops = &kvmppc_uvmem_ops;
754 	addr = memremap_pages(&kvmppc_uvmem_pgmap, NUMA_NO_NODE);
755 	if (IS_ERR(addr)) {
756 		ret = PTR_ERR(addr);
757 		goto out_free_region;
758 	}
759 
760 	pfn_first = res->start >> PAGE_SHIFT;
761 	pfn_last = pfn_first + (resource_size(res) >> PAGE_SHIFT);
762 	kvmppc_uvmem_bitmap = kcalloc(BITS_TO_LONGS(pfn_last - pfn_first),
763 				      sizeof(unsigned long), GFP_KERNEL);
764 	if (!kvmppc_uvmem_bitmap) {
765 		ret = -ENOMEM;
766 		goto out_unmap;
767 	}
768 
769 	pr_info("KVMPPC-UVMEM: Secure Memory size 0x%lx\n", size);
770 	return ret;
771 out_unmap:
772 	memunmap_pages(&kvmppc_uvmem_pgmap);
773 out_free_region:
774 	release_mem_region(res->start, size);
775 out:
776 	return ret;
777 }
778 
779 void kvmppc_uvmem_free(void)
780 {
781 	memunmap_pages(&kvmppc_uvmem_pgmap);
782 	release_mem_region(kvmppc_uvmem_pgmap.res.start,
783 			   resource_size(&kvmppc_uvmem_pgmap.res));
784 	kfree(kvmppc_uvmem_bitmap);
785 }
786