1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Secure pages management: Migration of pages between normal and secure 4 * memory of KVM guests. 5 * 6 * Copyright 2018 Bharata B Rao, IBM Corp. <bharata@linux.ibm.com> 7 */ 8 9 /* 10 * A pseries guest can be run as secure guest on Ultravisor-enabled 11 * POWER platforms. On such platforms, this driver will be used to manage 12 * the movement of guest pages between the normal memory managed by 13 * hypervisor (HV) and secure memory managed by Ultravisor (UV). 14 * 15 * The page-in or page-out requests from UV will come to HV as hcalls and 16 * HV will call back into UV via ultracalls to satisfy these page requests. 17 * 18 * Private ZONE_DEVICE memory equal to the amount of secure memory 19 * available in the platform for running secure guests is hotplugged. 20 * Whenever a page belonging to the guest becomes secure, a page from this 21 * private device memory is used to represent and track that secure page 22 * on the HV side. Some pages (like virtio buffers, VPA pages etc) are 23 * shared between UV and HV. However such pages aren't represented by 24 * device private memory and mappings to shared memory exist in both 25 * UV and HV page tables. 26 */ 27 28 /* 29 * Notes on locking 30 * 31 * kvm->arch.uvmem_lock is a per-guest lock that prevents concurrent 32 * page-in and page-out requests for the same GPA. Concurrent accesses 33 * can either come via UV (guest vCPUs requesting for same page) 34 * or when HV and guest simultaneously access the same page. 35 * This mutex serializes the migration of page from HV(normal) to 36 * UV(secure) and vice versa. So the serialization points are around 37 * migrate_vma routines and page-in/out routines. 38 * 39 * Per-guest mutex comes with a cost though. Mainly it serializes the 40 * fault path as page-out can occur when HV faults on accessing secure 41 * guest pages. Currently UV issues page-in requests for all the guest 42 * PFNs one at a time during early boot (UV_ESM uvcall), so this is 43 * not a cause for concern. Also currently the number of page-outs caused 44 * by HV touching secure pages is very very low. If an when UV supports 45 * overcommitting, then we might see concurrent guest driven page-outs. 46 * 47 * Locking order 48 * 49 * 1. kvm->srcu - Protects KVM memslots 50 * 2. kvm->mm->mmap_lock - find_vma, migrate_vma_pages and helpers, ksm_madvise 51 * 3. kvm->arch.uvmem_lock - protects read/writes to uvmem slots thus acting 52 * as sync-points for page-in/out 53 */ 54 55 /* 56 * Notes on page size 57 * 58 * Currently UV uses 2MB mappings internally, but will issue H_SVM_PAGE_IN 59 * and H_SVM_PAGE_OUT hcalls in PAGE_SIZE(64K) granularity. HV tracks 60 * secure GPAs at 64K page size and maintains one device PFN for each 61 * 64K secure GPA. UV_PAGE_IN and UV_PAGE_OUT calls by HV are also issued 62 * for 64K page at a time. 63 * 64 * HV faulting on secure pages: When HV touches any secure page, it 65 * faults and issues a UV_PAGE_OUT request with 64K page size. Currently 66 * UV splits and remaps the 2MB page if necessary and copies out the 67 * required 64K page contents. 68 * 69 * Shared pages: Whenever guest shares a secure page, UV will split and 70 * remap the 2MB page if required and issue H_SVM_PAGE_IN with 64K page size. 71 * 72 * HV invalidating a page: When a regular page belonging to secure 73 * guest gets unmapped, HV informs UV with UV_PAGE_INVAL of 64K 74 * page size. Using 64K page size is correct here because any non-secure 75 * page will essentially be of 64K page size. Splitting by UV during sharing 76 * and page-out ensures this. 77 * 78 * Page fault handling: When HV handles page fault of a page belonging 79 * to secure guest, it sends that to UV with a 64K UV_PAGE_IN request. 80 * Using 64K size is correct here too as UV would have split the 2MB page 81 * into 64k mappings and would have done page-outs earlier. 82 * 83 * In summary, the current secure pages handling code in HV assumes 84 * 64K page size and in fact fails any page-in/page-out requests of 85 * non-64K size upfront. If and when UV starts supporting multiple 86 * page-sizes, we need to break this assumption. 87 */ 88 89 #include <linux/pagemap.h> 90 #include <linux/migrate.h> 91 #include <linux/kvm_host.h> 92 #include <linux/ksm.h> 93 #include <linux/of.h> 94 #include <linux/memremap.h> 95 #include <asm/ultravisor.h> 96 #include <asm/mman.h> 97 #include <asm/kvm_ppc.h> 98 #include <asm/kvm_book3s_uvmem.h> 99 100 static struct dev_pagemap kvmppc_uvmem_pgmap; 101 static unsigned long *kvmppc_uvmem_bitmap; 102 static DEFINE_SPINLOCK(kvmppc_uvmem_bitmap_lock); 103 104 /* 105 * States of a GFN 106 * --------------- 107 * The GFN can be in one of the following states. 108 * 109 * (a) Secure - The GFN is secure. The GFN is associated with 110 * a Secure VM, the contents of the GFN is not accessible 111 * to the Hypervisor. This GFN can be backed by a secure-PFN, 112 * or can be backed by a normal-PFN with contents encrypted. 113 * The former is true when the GFN is paged-in into the 114 * ultravisor. The latter is true when the GFN is paged-out 115 * of the ultravisor. 116 * 117 * (b) Shared - The GFN is shared. The GFN is associated with a 118 * a secure VM. The contents of the GFN is accessible to 119 * Hypervisor. This GFN is backed by a normal-PFN and its 120 * content is un-encrypted. 121 * 122 * (c) Normal - The GFN is a normal. The GFN is associated with 123 * a normal VM. The contents of the GFN is accessible to 124 * the Hypervisor. Its content is never encrypted. 125 * 126 * States of a VM. 127 * --------------- 128 * 129 * Normal VM: A VM whose contents are always accessible to 130 * the hypervisor. All its GFNs are normal-GFNs. 131 * 132 * Secure VM: A VM whose contents are not accessible to the 133 * hypervisor without the VM's consent. Its GFNs are 134 * either Shared-GFN or Secure-GFNs. 135 * 136 * Transient VM: A Normal VM that is transitioning to secure VM. 137 * The transition starts on successful return of 138 * H_SVM_INIT_START, and ends on successful return 139 * of H_SVM_INIT_DONE. This transient VM, can have GFNs 140 * in any of the three states; i.e Secure-GFN, Shared-GFN, 141 * and Normal-GFN. The VM never executes in this state 142 * in supervisor-mode. 143 * 144 * Memory slot State. 145 * ----------------------------- 146 * The state of a memory slot mirrors the state of the 147 * VM the memory slot is associated with. 148 * 149 * VM State transition. 150 * -------------------- 151 * 152 * A VM always starts in Normal Mode. 153 * 154 * H_SVM_INIT_START moves the VM into transient state. During this 155 * time the Ultravisor may request some of its GFNs to be shared or 156 * secured. So its GFNs can be in one of the three GFN states. 157 * 158 * H_SVM_INIT_DONE moves the VM entirely from transient state to 159 * secure-state. At this point any left-over normal-GFNs are 160 * transitioned to Secure-GFN. 161 * 162 * H_SVM_INIT_ABORT moves the transient VM back to normal VM. 163 * All its GFNs are moved to Normal-GFNs. 164 * 165 * UV_TERMINATE transitions the secure-VM back to normal-VM. All 166 * the secure-GFN and shared-GFNs are tranistioned to normal-GFN 167 * Note: The contents of the normal-GFN is undefined at this point. 168 * 169 * GFN state implementation: 170 * ------------------------- 171 * 172 * Secure GFN is associated with a secure-PFN; also called uvmem_pfn, 173 * when the GFN is paged-in. Its pfn[] has KVMPPC_GFN_UVMEM_PFN flag 174 * set, and contains the value of the secure-PFN. 175 * It is associated with a normal-PFN; also called mem_pfn, when 176 * the GFN is pagedout. Its pfn[] has KVMPPC_GFN_MEM_PFN flag set. 177 * The value of the normal-PFN is not tracked. 178 * 179 * Shared GFN is associated with a normal-PFN. Its pfn[] has 180 * KVMPPC_UVMEM_SHARED_PFN flag set. The value of the normal-PFN 181 * is not tracked. 182 * 183 * Normal GFN is associated with normal-PFN. Its pfn[] has 184 * no flag set. The value of the normal-PFN is not tracked. 185 * 186 * Life cycle of a GFN 187 * -------------------- 188 * 189 * -------------------------------------------------------------- 190 * | | Share | Unshare | SVM |H_SVM_INIT_DONE| 191 * | |operation |operation | abort/ | | 192 * | | | | terminate | | 193 * ------------------------------------------------------------- 194 * | | | | | | 195 * | Secure | Shared | Secure |Normal |Secure | 196 * | | | | | | 197 * | Shared | Shared | Secure |Normal |Shared | 198 * | | | | | | 199 * | Normal | Shared | Secure |Normal |Secure | 200 * -------------------------------------------------------------- 201 * 202 * Life cycle of a VM 203 * -------------------- 204 * 205 * -------------------------------------------------------------------- 206 * | | start | H_SVM_ |H_SVM_ |H_SVM_ |UV_SVM_ | 207 * | | VM |INIT_START|INIT_DONE|INIT_ABORT |TERMINATE | 208 * | | | | | | | 209 * --------- ---------------------------------------------------------- 210 * | | | | | | | 211 * | Normal | Normal | Transient|Error |Error |Normal | 212 * | | | | | | | 213 * | Secure | Error | Error |Error |Error |Normal | 214 * | | | | | | | 215 * |Transient| N/A | Error |Secure |Normal |Normal | 216 * -------------------------------------------------------------------- 217 */ 218 219 #define KVMPPC_GFN_UVMEM_PFN (1UL << 63) 220 #define KVMPPC_GFN_MEM_PFN (1UL << 62) 221 #define KVMPPC_GFN_SHARED (1UL << 61) 222 #define KVMPPC_GFN_SECURE (KVMPPC_GFN_UVMEM_PFN | KVMPPC_GFN_MEM_PFN) 223 #define KVMPPC_GFN_FLAG_MASK (KVMPPC_GFN_SECURE | KVMPPC_GFN_SHARED) 224 #define KVMPPC_GFN_PFN_MASK (~KVMPPC_GFN_FLAG_MASK) 225 226 struct kvmppc_uvmem_slot { 227 struct list_head list; 228 unsigned long nr_pfns; 229 unsigned long base_pfn; 230 unsigned long *pfns; 231 }; 232 struct kvmppc_uvmem_page_pvt { 233 struct kvm *kvm; 234 unsigned long gpa; 235 bool skip_page_out; 236 bool remove_gfn; 237 }; 238 239 bool kvmppc_uvmem_available(void) 240 { 241 /* 242 * If kvmppc_uvmem_bitmap != NULL, then there is an ultravisor 243 * and our data structures have been initialized successfully. 244 */ 245 return !!kvmppc_uvmem_bitmap; 246 } 247 248 int kvmppc_uvmem_slot_init(struct kvm *kvm, const struct kvm_memory_slot *slot) 249 { 250 struct kvmppc_uvmem_slot *p; 251 252 p = kzalloc(sizeof(*p), GFP_KERNEL); 253 if (!p) 254 return -ENOMEM; 255 p->pfns = vcalloc(slot->npages, sizeof(*p->pfns)); 256 if (!p->pfns) { 257 kfree(p); 258 return -ENOMEM; 259 } 260 p->nr_pfns = slot->npages; 261 p->base_pfn = slot->base_gfn; 262 263 mutex_lock(&kvm->arch.uvmem_lock); 264 list_add(&p->list, &kvm->arch.uvmem_pfns); 265 mutex_unlock(&kvm->arch.uvmem_lock); 266 267 return 0; 268 } 269 270 /* 271 * All device PFNs are already released by the time we come here. 272 */ 273 void kvmppc_uvmem_slot_free(struct kvm *kvm, const struct kvm_memory_slot *slot) 274 { 275 struct kvmppc_uvmem_slot *p, *next; 276 277 mutex_lock(&kvm->arch.uvmem_lock); 278 list_for_each_entry_safe(p, next, &kvm->arch.uvmem_pfns, list) { 279 if (p->base_pfn == slot->base_gfn) { 280 vfree(p->pfns); 281 list_del(&p->list); 282 kfree(p); 283 break; 284 } 285 } 286 mutex_unlock(&kvm->arch.uvmem_lock); 287 } 288 289 static void kvmppc_mark_gfn(unsigned long gfn, struct kvm *kvm, 290 unsigned long flag, unsigned long uvmem_pfn) 291 { 292 struct kvmppc_uvmem_slot *p; 293 294 list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) { 295 if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) { 296 unsigned long index = gfn - p->base_pfn; 297 298 if (flag == KVMPPC_GFN_UVMEM_PFN) 299 p->pfns[index] = uvmem_pfn | flag; 300 else 301 p->pfns[index] = flag; 302 return; 303 } 304 } 305 } 306 307 /* mark the GFN as secure-GFN associated with @uvmem pfn device-PFN. */ 308 static void kvmppc_gfn_secure_uvmem_pfn(unsigned long gfn, 309 unsigned long uvmem_pfn, struct kvm *kvm) 310 { 311 kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_UVMEM_PFN, uvmem_pfn); 312 } 313 314 /* mark the GFN as secure-GFN associated with a memory-PFN. */ 315 static void kvmppc_gfn_secure_mem_pfn(unsigned long gfn, struct kvm *kvm) 316 { 317 kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_MEM_PFN, 0); 318 } 319 320 /* mark the GFN as a shared GFN. */ 321 static void kvmppc_gfn_shared(unsigned long gfn, struct kvm *kvm) 322 { 323 kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_SHARED, 0); 324 } 325 326 /* mark the GFN as a non-existent GFN. */ 327 static void kvmppc_gfn_remove(unsigned long gfn, struct kvm *kvm) 328 { 329 kvmppc_mark_gfn(gfn, kvm, 0, 0); 330 } 331 332 /* return true, if the GFN is a secure-GFN backed by a secure-PFN */ 333 static bool kvmppc_gfn_is_uvmem_pfn(unsigned long gfn, struct kvm *kvm, 334 unsigned long *uvmem_pfn) 335 { 336 struct kvmppc_uvmem_slot *p; 337 338 list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) { 339 if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) { 340 unsigned long index = gfn - p->base_pfn; 341 342 if (p->pfns[index] & KVMPPC_GFN_UVMEM_PFN) { 343 if (uvmem_pfn) 344 *uvmem_pfn = p->pfns[index] & 345 KVMPPC_GFN_PFN_MASK; 346 return true; 347 } else 348 return false; 349 } 350 } 351 return false; 352 } 353 354 /* 355 * starting from *gfn search for the next available GFN that is not yet 356 * transitioned to a secure GFN. return the value of that GFN in *gfn. If a 357 * GFN is found, return true, else return false 358 * 359 * Must be called with kvm->arch.uvmem_lock held. 360 */ 361 static bool kvmppc_next_nontransitioned_gfn(const struct kvm_memory_slot *memslot, 362 struct kvm *kvm, unsigned long *gfn) 363 { 364 struct kvmppc_uvmem_slot *p = NULL, *iter; 365 bool ret = false; 366 unsigned long i; 367 368 list_for_each_entry(iter, &kvm->arch.uvmem_pfns, list) 369 if (*gfn >= iter->base_pfn && *gfn < iter->base_pfn + iter->nr_pfns) { 370 p = iter; 371 break; 372 } 373 if (!p) 374 return ret; 375 /* 376 * The code below assumes, one to one correspondence between 377 * kvmppc_uvmem_slot and memslot. 378 */ 379 for (i = *gfn; i < p->base_pfn + p->nr_pfns; i++) { 380 unsigned long index = i - p->base_pfn; 381 382 if (!(p->pfns[index] & KVMPPC_GFN_FLAG_MASK)) { 383 *gfn = i; 384 ret = true; 385 break; 386 } 387 } 388 return ret; 389 } 390 391 static int kvmppc_memslot_page_merge(struct kvm *kvm, 392 const struct kvm_memory_slot *memslot, bool merge) 393 { 394 unsigned long gfn = memslot->base_gfn; 395 unsigned long end, start = gfn_to_hva(kvm, gfn); 396 unsigned long vm_flags; 397 int ret = 0; 398 struct vm_area_struct *vma; 399 int merge_flag = (merge) ? MADV_MERGEABLE : MADV_UNMERGEABLE; 400 401 if (kvm_is_error_hva(start)) 402 return H_STATE; 403 404 end = start + (memslot->npages << PAGE_SHIFT); 405 406 mmap_write_lock(kvm->mm); 407 do { 408 vma = find_vma_intersection(kvm->mm, start, end); 409 if (!vma) { 410 ret = H_STATE; 411 break; 412 } 413 vma_start_write(vma); 414 /* Copy vm_flags to avoid partial modifications in ksm_madvise */ 415 vm_flags = vma->vm_flags; 416 ret = ksm_madvise(vma, vma->vm_start, vma->vm_end, 417 merge_flag, &vm_flags); 418 if (ret) { 419 ret = H_STATE; 420 break; 421 } 422 vm_flags_reset(vma, vm_flags); 423 start = vma->vm_end; 424 } while (end > vma->vm_end); 425 426 mmap_write_unlock(kvm->mm); 427 return ret; 428 } 429 430 static void __kvmppc_uvmem_memslot_delete(struct kvm *kvm, 431 const struct kvm_memory_slot *memslot) 432 { 433 uv_unregister_mem_slot(kvm->arch.lpid, memslot->id); 434 kvmppc_uvmem_slot_free(kvm, memslot); 435 kvmppc_memslot_page_merge(kvm, memslot, true); 436 } 437 438 static int __kvmppc_uvmem_memslot_create(struct kvm *kvm, 439 const struct kvm_memory_slot *memslot) 440 { 441 int ret = H_PARAMETER; 442 443 if (kvmppc_memslot_page_merge(kvm, memslot, false)) 444 return ret; 445 446 if (kvmppc_uvmem_slot_init(kvm, memslot)) 447 goto out1; 448 449 ret = uv_register_mem_slot(kvm->arch.lpid, 450 memslot->base_gfn << PAGE_SHIFT, 451 memslot->npages * PAGE_SIZE, 452 0, memslot->id); 453 if (ret < 0) { 454 ret = H_PARAMETER; 455 goto out; 456 } 457 return 0; 458 out: 459 kvmppc_uvmem_slot_free(kvm, memslot); 460 out1: 461 kvmppc_memslot_page_merge(kvm, memslot, true); 462 return ret; 463 } 464 465 unsigned long kvmppc_h_svm_init_start(struct kvm *kvm) 466 { 467 struct kvm_memslots *slots; 468 struct kvm_memory_slot *memslot, *m; 469 int ret = H_SUCCESS; 470 int srcu_idx, bkt; 471 472 kvm->arch.secure_guest = KVMPPC_SECURE_INIT_START; 473 474 if (!kvmppc_uvmem_bitmap) 475 return H_UNSUPPORTED; 476 477 /* Only radix guests can be secure guests */ 478 if (!kvm_is_radix(kvm)) 479 return H_UNSUPPORTED; 480 481 /* NAK the transition to secure if not enabled */ 482 if (!kvm->arch.svm_enabled) 483 return H_AUTHORITY; 484 485 srcu_idx = srcu_read_lock(&kvm->srcu); 486 487 /* register the memslot */ 488 slots = kvm_memslots(kvm); 489 kvm_for_each_memslot(memslot, bkt, slots) { 490 ret = __kvmppc_uvmem_memslot_create(kvm, memslot); 491 if (ret) 492 break; 493 } 494 495 if (ret) { 496 slots = kvm_memslots(kvm); 497 kvm_for_each_memslot(m, bkt, slots) { 498 if (m == memslot) 499 break; 500 __kvmppc_uvmem_memslot_delete(kvm, memslot); 501 } 502 } 503 504 srcu_read_unlock(&kvm->srcu, srcu_idx); 505 return ret; 506 } 507 508 /* 509 * Provision a new page on HV side and copy over the contents 510 * from secure memory using UV_PAGE_OUT uvcall. 511 * Caller must held kvm->arch.uvmem_lock. 512 */ 513 static int __kvmppc_svm_page_out(struct vm_area_struct *vma, 514 unsigned long start, 515 unsigned long end, unsigned long page_shift, 516 struct kvm *kvm, unsigned long gpa, struct page *fault_page) 517 { 518 unsigned long src_pfn, dst_pfn = 0; 519 struct migrate_vma mig = { 0 }; 520 struct page *dpage, *spage; 521 struct kvmppc_uvmem_page_pvt *pvt; 522 unsigned long pfn; 523 int ret = U_SUCCESS; 524 525 memset(&mig, 0, sizeof(mig)); 526 mig.vma = vma; 527 mig.start = start; 528 mig.end = end; 529 mig.src = &src_pfn; 530 mig.dst = &dst_pfn; 531 mig.pgmap_owner = &kvmppc_uvmem_pgmap; 532 mig.flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE; 533 mig.fault_page = fault_page; 534 535 /* The requested page is already paged-out, nothing to do */ 536 if (!kvmppc_gfn_is_uvmem_pfn(gpa >> page_shift, kvm, NULL)) 537 return ret; 538 539 ret = migrate_vma_setup(&mig); 540 if (ret) 541 return -1; 542 543 spage = migrate_pfn_to_page(*mig.src); 544 if (!spage || !(*mig.src & MIGRATE_PFN_MIGRATE)) 545 goto out_finalize; 546 547 if (!is_zone_device_page(spage)) 548 goto out_finalize; 549 550 dpage = alloc_page_vma(GFP_HIGHUSER, vma, start); 551 if (!dpage) { 552 ret = -1; 553 goto out_finalize; 554 } 555 556 lock_page(dpage); 557 pvt = spage->zone_device_data; 558 pfn = page_to_pfn(dpage); 559 560 /* 561 * This function is used in two cases: 562 * - When HV touches a secure page, for which we do UV_PAGE_OUT 563 * - When a secure page is converted to shared page, we *get* 564 * the page to essentially unmap the device page. In this 565 * case we skip page-out. 566 */ 567 if (!pvt->skip_page_out) 568 ret = uv_page_out(kvm->arch.lpid, pfn << page_shift, 569 gpa, 0, page_shift); 570 571 if (ret == U_SUCCESS) 572 *mig.dst = migrate_pfn(pfn); 573 else { 574 unlock_page(dpage); 575 __free_page(dpage); 576 goto out_finalize; 577 } 578 579 migrate_vma_pages(&mig); 580 581 out_finalize: 582 migrate_vma_finalize(&mig); 583 return ret; 584 } 585 586 static inline int kvmppc_svm_page_out(struct vm_area_struct *vma, 587 unsigned long start, unsigned long end, 588 unsigned long page_shift, 589 struct kvm *kvm, unsigned long gpa, 590 struct page *fault_page) 591 { 592 int ret; 593 594 mutex_lock(&kvm->arch.uvmem_lock); 595 ret = __kvmppc_svm_page_out(vma, start, end, page_shift, kvm, gpa, 596 fault_page); 597 mutex_unlock(&kvm->arch.uvmem_lock); 598 599 return ret; 600 } 601 602 /* 603 * Drop device pages that we maintain for the secure guest 604 * 605 * We first mark the pages to be skipped from UV_PAGE_OUT when there 606 * is HV side fault on these pages. Next we *get* these pages, forcing 607 * fault on them, do fault time migration to replace the device PTEs in 608 * QEMU page table with normal PTEs from newly allocated pages. 609 */ 610 void kvmppc_uvmem_drop_pages(const struct kvm_memory_slot *slot, 611 struct kvm *kvm, bool skip_page_out) 612 { 613 int i; 614 struct kvmppc_uvmem_page_pvt *pvt; 615 struct page *uvmem_page; 616 struct vm_area_struct *vma = NULL; 617 unsigned long uvmem_pfn, gfn; 618 unsigned long addr; 619 620 mmap_read_lock(kvm->mm); 621 622 addr = slot->userspace_addr; 623 624 gfn = slot->base_gfn; 625 for (i = slot->npages; i; --i, ++gfn, addr += PAGE_SIZE) { 626 627 /* Fetch the VMA if addr is not in the latest fetched one */ 628 if (!vma || addr >= vma->vm_end) { 629 vma = vma_lookup(kvm->mm, addr); 630 if (!vma) { 631 pr_err("Can't find VMA for gfn:0x%lx\n", gfn); 632 break; 633 } 634 } 635 636 mutex_lock(&kvm->arch.uvmem_lock); 637 638 if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) { 639 uvmem_page = pfn_to_page(uvmem_pfn); 640 pvt = uvmem_page->zone_device_data; 641 pvt->skip_page_out = skip_page_out; 642 pvt->remove_gfn = true; 643 644 if (__kvmppc_svm_page_out(vma, addr, addr + PAGE_SIZE, 645 PAGE_SHIFT, kvm, pvt->gpa, NULL)) 646 pr_err("Can't page out gpa:0x%lx addr:0x%lx\n", 647 pvt->gpa, addr); 648 } else { 649 /* Remove the shared flag if any */ 650 kvmppc_gfn_remove(gfn, kvm); 651 } 652 653 mutex_unlock(&kvm->arch.uvmem_lock); 654 } 655 656 mmap_read_unlock(kvm->mm); 657 } 658 659 unsigned long kvmppc_h_svm_init_abort(struct kvm *kvm) 660 { 661 int srcu_idx, bkt; 662 struct kvm_memory_slot *memslot; 663 664 /* 665 * Expect to be called only after INIT_START and before INIT_DONE. 666 * If INIT_DONE was completed, use normal VM termination sequence. 667 */ 668 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) 669 return H_UNSUPPORTED; 670 671 if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE) 672 return H_STATE; 673 674 srcu_idx = srcu_read_lock(&kvm->srcu); 675 676 kvm_for_each_memslot(memslot, bkt, kvm_memslots(kvm)) 677 kvmppc_uvmem_drop_pages(memslot, kvm, false); 678 679 srcu_read_unlock(&kvm->srcu, srcu_idx); 680 681 kvm->arch.secure_guest = 0; 682 uv_svm_terminate(kvm->arch.lpid); 683 684 return H_PARAMETER; 685 } 686 687 /* 688 * Get a free device PFN from the pool 689 * 690 * Called when a normal page is moved to secure memory (UV_PAGE_IN). Device 691 * PFN will be used to keep track of the secure page on HV side. 692 * 693 * Called with kvm->arch.uvmem_lock held 694 */ 695 static struct page *kvmppc_uvmem_get_page(unsigned long gpa, struct kvm *kvm) 696 { 697 struct page *dpage = NULL; 698 unsigned long bit, uvmem_pfn; 699 struct kvmppc_uvmem_page_pvt *pvt; 700 unsigned long pfn_last, pfn_first; 701 702 pfn_first = kvmppc_uvmem_pgmap.range.start >> PAGE_SHIFT; 703 pfn_last = pfn_first + 704 (range_len(&kvmppc_uvmem_pgmap.range) >> PAGE_SHIFT); 705 706 spin_lock(&kvmppc_uvmem_bitmap_lock); 707 bit = find_first_zero_bit(kvmppc_uvmem_bitmap, 708 pfn_last - pfn_first); 709 if (bit >= (pfn_last - pfn_first)) 710 goto out; 711 bitmap_set(kvmppc_uvmem_bitmap, bit, 1); 712 spin_unlock(&kvmppc_uvmem_bitmap_lock); 713 714 pvt = kzalloc(sizeof(*pvt), GFP_KERNEL); 715 if (!pvt) 716 goto out_clear; 717 718 uvmem_pfn = bit + pfn_first; 719 kvmppc_gfn_secure_uvmem_pfn(gpa >> PAGE_SHIFT, uvmem_pfn, kvm); 720 721 pvt->gpa = gpa; 722 pvt->kvm = kvm; 723 724 dpage = pfn_to_page(uvmem_pfn); 725 dpage->zone_device_data = pvt; 726 zone_device_page_init(dpage); 727 return dpage; 728 out_clear: 729 spin_lock(&kvmppc_uvmem_bitmap_lock); 730 bitmap_clear(kvmppc_uvmem_bitmap, bit, 1); 731 out: 732 spin_unlock(&kvmppc_uvmem_bitmap_lock); 733 return NULL; 734 } 735 736 /* 737 * Alloc a PFN from private device memory pool. If @pagein is true, 738 * copy page from normal memory to secure memory using UV_PAGE_IN uvcall. 739 */ 740 static int kvmppc_svm_page_in(struct vm_area_struct *vma, 741 unsigned long start, 742 unsigned long end, unsigned long gpa, struct kvm *kvm, 743 unsigned long page_shift, 744 bool pagein) 745 { 746 unsigned long src_pfn, dst_pfn = 0; 747 struct migrate_vma mig = { 0 }; 748 struct page *spage; 749 unsigned long pfn; 750 struct page *dpage; 751 int ret = 0; 752 753 memset(&mig, 0, sizeof(mig)); 754 mig.vma = vma; 755 mig.start = start; 756 mig.end = end; 757 mig.src = &src_pfn; 758 mig.dst = &dst_pfn; 759 mig.flags = MIGRATE_VMA_SELECT_SYSTEM; 760 761 ret = migrate_vma_setup(&mig); 762 if (ret) 763 return ret; 764 765 if (!(*mig.src & MIGRATE_PFN_MIGRATE)) { 766 ret = -1; 767 goto out_finalize; 768 } 769 770 dpage = kvmppc_uvmem_get_page(gpa, kvm); 771 if (!dpage) { 772 ret = -1; 773 goto out_finalize; 774 } 775 776 if (pagein) { 777 pfn = *mig.src >> MIGRATE_PFN_SHIFT; 778 spage = migrate_pfn_to_page(*mig.src); 779 if (spage) { 780 ret = uv_page_in(kvm->arch.lpid, pfn << page_shift, 781 gpa, 0, page_shift); 782 if (ret) 783 goto out_finalize; 784 } 785 } 786 787 *mig.dst = migrate_pfn(page_to_pfn(dpage)); 788 migrate_vma_pages(&mig); 789 out_finalize: 790 migrate_vma_finalize(&mig); 791 return ret; 792 } 793 794 static int kvmppc_uv_migrate_mem_slot(struct kvm *kvm, 795 const struct kvm_memory_slot *memslot) 796 { 797 unsigned long gfn = memslot->base_gfn; 798 struct vm_area_struct *vma; 799 unsigned long start, end; 800 int ret = 0; 801 802 mmap_read_lock(kvm->mm); 803 mutex_lock(&kvm->arch.uvmem_lock); 804 while (kvmppc_next_nontransitioned_gfn(memslot, kvm, &gfn)) { 805 ret = H_STATE; 806 start = gfn_to_hva(kvm, gfn); 807 if (kvm_is_error_hva(start)) 808 break; 809 810 end = start + (1UL << PAGE_SHIFT); 811 vma = find_vma_intersection(kvm->mm, start, end); 812 if (!vma || vma->vm_start > start || vma->vm_end < end) 813 break; 814 815 ret = kvmppc_svm_page_in(vma, start, end, 816 (gfn << PAGE_SHIFT), kvm, PAGE_SHIFT, false); 817 if (ret) { 818 ret = H_STATE; 819 break; 820 } 821 822 /* relinquish the cpu if needed */ 823 cond_resched(); 824 } 825 mutex_unlock(&kvm->arch.uvmem_lock); 826 mmap_read_unlock(kvm->mm); 827 return ret; 828 } 829 830 unsigned long kvmppc_h_svm_init_done(struct kvm *kvm) 831 { 832 struct kvm_memslots *slots; 833 struct kvm_memory_slot *memslot; 834 int srcu_idx, bkt; 835 long ret = H_SUCCESS; 836 837 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) 838 return H_UNSUPPORTED; 839 840 /* migrate any unmoved normal pfn to device pfns*/ 841 srcu_idx = srcu_read_lock(&kvm->srcu); 842 slots = kvm_memslots(kvm); 843 kvm_for_each_memslot(memslot, bkt, slots) { 844 ret = kvmppc_uv_migrate_mem_slot(kvm, memslot); 845 if (ret) { 846 /* 847 * The pages will remain transitioned. 848 * Its the callers responsibility to 849 * terminate the VM, which will undo 850 * all state of the VM. Till then 851 * this VM is in a erroneous state. 852 * Its KVMPPC_SECURE_INIT_DONE will 853 * remain unset. 854 */ 855 ret = H_STATE; 856 goto out; 857 } 858 } 859 860 kvm->arch.secure_guest |= KVMPPC_SECURE_INIT_DONE; 861 pr_info("LPID %d went secure\n", kvm->arch.lpid); 862 863 out: 864 srcu_read_unlock(&kvm->srcu, srcu_idx); 865 return ret; 866 } 867 868 /* 869 * Shares the page with HV, thus making it a normal page. 870 * 871 * - If the page is already secure, then provision a new page and share 872 * - If the page is a normal page, share the existing page 873 * 874 * In the former case, uses dev_pagemap_ops.migrate_to_ram handler 875 * to unmap the device page from QEMU's page tables. 876 */ 877 static unsigned long kvmppc_share_page(struct kvm *kvm, unsigned long gpa, 878 unsigned long page_shift) 879 { 880 881 int ret = H_PARAMETER; 882 struct page *uvmem_page; 883 struct kvmppc_uvmem_page_pvt *pvt; 884 unsigned long pfn; 885 unsigned long gfn = gpa >> page_shift; 886 int srcu_idx; 887 unsigned long uvmem_pfn; 888 889 srcu_idx = srcu_read_lock(&kvm->srcu); 890 mutex_lock(&kvm->arch.uvmem_lock); 891 if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) { 892 uvmem_page = pfn_to_page(uvmem_pfn); 893 pvt = uvmem_page->zone_device_data; 894 pvt->skip_page_out = true; 895 /* 896 * do not drop the GFN. It is a valid GFN 897 * that is transitioned to a shared GFN. 898 */ 899 pvt->remove_gfn = false; 900 } 901 902 retry: 903 mutex_unlock(&kvm->arch.uvmem_lock); 904 pfn = gfn_to_pfn(kvm, gfn); 905 if (is_error_noslot_pfn(pfn)) 906 goto out; 907 908 mutex_lock(&kvm->arch.uvmem_lock); 909 if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) { 910 uvmem_page = pfn_to_page(uvmem_pfn); 911 pvt = uvmem_page->zone_device_data; 912 pvt->skip_page_out = true; 913 pvt->remove_gfn = false; /* it continues to be a valid GFN */ 914 kvm_release_pfn_clean(pfn); 915 goto retry; 916 } 917 918 if (!uv_page_in(kvm->arch.lpid, pfn << page_shift, gpa, 0, 919 page_shift)) { 920 kvmppc_gfn_shared(gfn, kvm); 921 ret = H_SUCCESS; 922 } 923 kvm_release_pfn_clean(pfn); 924 mutex_unlock(&kvm->arch.uvmem_lock); 925 out: 926 srcu_read_unlock(&kvm->srcu, srcu_idx); 927 return ret; 928 } 929 930 /* 931 * H_SVM_PAGE_IN: Move page from normal memory to secure memory. 932 * 933 * H_PAGE_IN_SHARED flag makes the page shared which means that the same 934 * memory in is visible from both UV and HV. 935 */ 936 unsigned long kvmppc_h_svm_page_in(struct kvm *kvm, unsigned long gpa, 937 unsigned long flags, 938 unsigned long page_shift) 939 { 940 unsigned long start, end; 941 struct vm_area_struct *vma; 942 int srcu_idx; 943 unsigned long gfn = gpa >> page_shift; 944 int ret; 945 946 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) 947 return H_UNSUPPORTED; 948 949 if (page_shift != PAGE_SHIFT) 950 return H_P3; 951 952 if (flags & ~H_PAGE_IN_SHARED) 953 return H_P2; 954 955 if (flags & H_PAGE_IN_SHARED) 956 return kvmppc_share_page(kvm, gpa, page_shift); 957 958 ret = H_PARAMETER; 959 srcu_idx = srcu_read_lock(&kvm->srcu); 960 mmap_read_lock(kvm->mm); 961 962 start = gfn_to_hva(kvm, gfn); 963 if (kvm_is_error_hva(start)) 964 goto out; 965 966 mutex_lock(&kvm->arch.uvmem_lock); 967 /* Fail the page-in request of an already paged-in page */ 968 if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, NULL)) 969 goto out_unlock; 970 971 end = start + (1UL << page_shift); 972 vma = find_vma_intersection(kvm->mm, start, end); 973 if (!vma || vma->vm_start > start || vma->vm_end < end) 974 goto out_unlock; 975 976 if (kvmppc_svm_page_in(vma, start, end, gpa, kvm, page_shift, 977 true)) 978 goto out_unlock; 979 980 ret = H_SUCCESS; 981 982 out_unlock: 983 mutex_unlock(&kvm->arch.uvmem_lock); 984 out: 985 mmap_read_unlock(kvm->mm); 986 srcu_read_unlock(&kvm->srcu, srcu_idx); 987 return ret; 988 } 989 990 991 /* 992 * Fault handler callback that gets called when HV touches any page that 993 * has been moved to secure memory, we ask UV to give back the page by 994 * issuing UV_PAGE_OUT uvcall. 995 * 996 * This eventually results in dropping of device PFN and the newly 997 * provisioned page/PFN gets populated in QEMU page tables. 998 */ 999 static vm_fault_t kvmppc_uvmem_migrate_to_ram(struct vm_fault *vmf) 1000 { 1001 struct kvmppc_uvmem_page_pvt *pvt = vmf->page->zone_device_data; 1002 1003 if (kvmppc_svm_page_out(vmf->vma, vmf->address, 1004 vmf->address + PAGE_SIZE, PAGE_SHIFT, 1005 pvt->kvm, pvt->gpa, vmf->page)) 1006 return VM_FAULT_SIGBUS; 1007 else 1008 return 0; 1009 } 1010 1011 /* 1012 * Release the device PFN back to the pool 1013 * 1014 * Gets called when secure GFN tranistions from a secure-PFN 1015 * to a normal PFN during H_SVM_PAGE_OUT. 1016 * Gets called with kvm->arch.uvmem_lock held. 1017 */ 1018 static void kvmppc_uvmem_page_free(struct page *page) 1019 { 1020 unsigned long pfn = page_to_pfn(page) - 1021 (kvmppc_uvmem_pgmap.range.start >> PAGE_SHIFT); 1022 struct kvmppc_uvmem_page_pvt *pvt; 1023 1024 spin_lock(&kvmppc_uvmem_bitmap_lock); 1025 bitmap_clear(kvmppc_uvmem_bitmap, pfn, 1); 1026 spin_unlock(&kvmppc_uvmem_bitmap_lock); 1027 1028 pvt = page->zone_device_data; 1029 page->zone_device_data = NULL; 1030 if (pvt->remove_gfn) 1031 kvmppc_gfn_remove(pvt->gpa >> PAGE_SHIFT, pvt->kvm); 1032 else 1033 kvmppc_gfn_secure_mem_pfn(pvt->gpa >> PAGE_SHIFT, pvt->kvm); 1034 kfree(pvt); 1035 } 1036 1037 static const struct dev_pagemap_ops kvmppc_uvmem_ops = { 1038 .page_free = kvmppc_uvmem_page_free, 1039 .migrate_to_ram = kvmppc_uvmem_migrate_to_ram, 1040 }; 1041 1042 /* 1043 * H_SVM_PAGE_OUT: Move page from secure memory to normal memory. 1044 */ 1045 unsigned long 1046 kvmppc_h_svm_page_out(struct kvm *kvm, unsigned long gpa, 1047 unsigned long flags, unsigned long page_shift) 1048 { 1049 unsigned long gfn = gpa >> page_shift; 1050 unsigned long start, end; 1051 struct vm_area_struct *vma; 1052 int srcu_idx; 1053 int ret; 1054 1055 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) 1056 return H_UNSUPPORTED; 1057 1058 if (page_shift != PAGE_SHIFT) 1059 return H_P3; 1060 1061 if (flags) 1062 return H_P2; 1063 1064 ret = H_PARAMETER; 1065 srcu_idx = srcu_read_lock(&kvm->srcu); 1066 mmap_read_lock(kvm->mm); 1067 start = gfn_to_hva(kvm, gfn); 1068 if (kvm_is_error_hva(start)) 1069 goto out; 1070 1071 end = start + (1UL << page_shift); 1072 vma = find_vma_intersection(kvm->mm, start, end); 1073 if (!vma || vma->vm_start > start || vma->vm_end < end) 1074 goto out; 1075 1076 if (!kvmppc_svm_page_out(vma, start, end, page_shift, kvm, gpa, NULL)) 1077 ret = H_SUCCESS; 1078 out: 1079 mmap_read_unlock(kvm->mm); 1080 srcu_read_unlock(&kvm->srcu, srcu_idx); 1081 return ret; 1082 } 1083 1084 int kvmppc_send_page_to_uv(struct kvm *kvm, unsigned long gfn) 1085 { 1086 unsigned long pfn; 1087 int ret = U_SUCCESS; 1088 1089 pfn = gfn_to_pfn(kvm, gfn); 1090 if (is_error_noslot_pfn(pfn)) 1091 return -EFAULT; 1092 1093 mutex_lock(&kvm->arch.uvmem_lock); 1094 if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, NULL)) 1095 goto out; 1096 1097 ret = uv_page_in(kvm->arch.lpid, pfn << PAGE_SHIFT, gfn << PAGE_SHIFT, 1098 0, PAGE_SHIFT); 1099 out: 1100 kvm_release_pfn_clean(pfn); 1101 mutex_unlock(&kvm->arch.uvmem_lock); 1102 return (ret == U_SUCCESS) ? RESUME_GUEST : -EFAULT; 1103 } 1104 1105 int kvmppc_uvmem_memslot_create(struct kvm *kvm, const struct kvm_memory_slot *new) 1106 { 1107 int ret = __kvmppc_uvmem_memslot_create(kvm, new); 1108 1109 if (!ret) 1110 ret = kvmppc_uv_migrate_mem_slot(kvm, new); 1111 1112 return ret; 1113 } 1114 1115 void kvmppc_uvmem_memslot_delete(struct kvm *kvm, const struct kvm_memory_slot *old) 1116 { 1117 __kvmppc_uvmem_memslot_delete(kvm, old); 1118 } 1119 1120 static u64 kvmppc_get_secmem_size(void) 1121 { 1122 struct device_node *np; 1123 int i, len; 1124 const __be32 *prop; 1125 u64 size = 0; 1126 1127 /* 1128 * First try the new ibm,secure-memory nodes which supersede the 1129 * secure-memory-ranges property. 1130 * If we found some, no need to read the deprecated ones. 1131 */ 1132 for_each_compatible_node(np, NULL, "ibm,secure-memory") { 1133 prop = of_get_property(np, "reg", &len); 1134 if (!prop) 1135 continue; 1136 size += of_read_number(prop + 2, 2); 1137 } 1138 if (size) 1139 return size; 1140 1141 np = of_find_compatible_node(NULL, NULL, "ibm,uv-firmware"); 1142 if (!np) 1143 goto out; 1144 1145 prop = of_get_property(np, "secure-memory-ranges", &len); 1146 if (!prop) 1147 goto out_put; 1148 1149 for (i = 0; i < len / (sizeof(*prop) * 4); i++) 1150 size += of_read_number(prop + (i * 4) + 2, 2); 1151 1152 out_put: 1153 of_node_put(np); 1154 out: 1155 return size; 1156 } 1157 1158 int kvmppc_uvmem_init(void) 1159 { 1160 int ret = 0; 1161 unsigned long size; 1162 struct resource *res; 1163 void *addr; 1164 unsigned long pfn_last, pfn_first; 1165 1166 size = kvmppc_get_secmem_size(); 1167 if (!size) { 1168 /* 1169 * Don't fail the initialization of kvm-hv module if 1170 * the platform doesn't export ibm,uv-firmware node. 1171 * Let normal guests run on such PEF-disabled platform. 1172 */ 1173 pr_info("KVMPPC-UVMEM: No support for secure guests\n"); 1174 goto out; 1175 } 1176 1177 res = request_free_mem_region(&iomem_resource, size, "kvmppc_uvmem"); 1178 if (IS_ERR(res)) { 1179 ret = PTR_ERR(res); 1180 goto out; 1181 } 1182 1183 kvmppc_uvmem_pgmap.type = MEMORY_DEVICE_PRIVATE; 1184 kvmppc_uvmem_pgmap.range.start = res->start; 1185 kvmppc_uvmem_pgmap.range.end = res->end; 1186 kvmppc_uvmem_pgmap.nr_range = 1; 1187 kvmppc_uvmem_pgmap.ops = &kvmppc_uvmem_ops; 1188 /* just one global instance: */ 1189 kvmppc_uvmem_pgmap.owner = &kvmppc_uvmem_pgmap; 1190 addr = memremap_pages(&kvmppc_uvmem_pgmap, NUMA_NO_NODE); 1191 if (IS_ERR(addr)) { 1192 ret = PTR_ERR(addr); 1193 goto out_free_region; 1194 } 1195 1196 pfn_first = res->start >> PAGE_SHIFT; 1197 pfn_last = pfn_first + (resource_size(res) >> PAGE_SHIFT); 1198 kvmppc_uvmem_bitmap = bitmap_zalloc(pfn_last - pfn_first, GFP_KERNEL); 1199 if (!kvmppc_uvmem_bitmap) { 1200 ret = -ENOMEM; 1201 goto out_unmap; 1202 } 1203 1204 pr_info("KVMPPC-UVMEM: Secure Memory size 0x%lx\n", size); 1205 return ret; 1206 out_unmap: 1207 memunmap_pages(&kvmppc_uvmem_pgmap); 1208 out_free_region: 1209 release_mem_region(res->start, size); 1210 out: 1211 return ret; 1212 } 1213 1214 void kvmppc_uvmem_free(void) 1215 { 1216 if (!kvmppc_uvmem_bitmap) 1217 return; 1218 1219 memunmap_pages(&kvmppc_uvmem_pgmap); 1220 release_mem_region(kvmppc_uvmem_pgmap.range.start, 1221 range_len(&kvmppc_uvmem_pgmap.range)); 1222 bitmap_free(kvmppc_uvmem_bitmap); 1223 } 1224