1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Secure pages management: Migration of pages between normal and secure 4 * memory of KVM guests. 5 * 6 * Copyright 2018 Bharata B Rao, IBM Corp. <bharata@linux.ibm.com> 7 */ 8 9 /* 10 * A pseries guest can be run as secure guest on Ultravisor-enabled 11 * POWER platforms. On such platforms, this driver will be used to manage 12 * the movement of guest pages between the normal memory managed by 13 * hypervisor (HV) and secure memory managed by Ultravisor (UV). 14 * 15 * The page-in or page-out requests from UV will come to HV as hcalls and 16 * HV will call back into UV via ultracalls to satisfy these page requests. 17 * 18 * Private ZONE_DEVICE memory equal to the amount of secure memory 19 * available in the platform for running secure guests is hotplugged. 20 * Whenever a page belonging to the guest becomes secure, a page from this 21 * private device memory is used to represent and track that secure page 22 * on the HV side. Some pages (like virtio buffers, VPA pages etc) are 23 * shared between UV and HV. However such pages aren't represented by 24 * device private memory and mappings to shared memory exist in both 25 * UV and HV page tables. 26 */ 27 28 /* 29 * Notes on locking 30 * 31 * kvm->arch.uvmem_lock is a per-guest lock that prevents concurrent 32 * page-in and page-out requests for the same GPA. Concurrent accesses 33 * can either come via UV (guest vCPUs requesting for same page) 34 * or when HV and guest simultaneously access the same page. 35 * This mutex serializes the migration of page from HV(normal) to 36 * UV(secure) and vice versa. So the serialization points are around 37 * migrate_vma routines and page-in/out routines. 38 * 39 * Per-guest mutex comes with a cost though. Mainly it serializes the 40 * fault path as page-out can occur when HV faults on accessing secure 41 * guest pages. Currently UV issues page-in requests for all the guest 42 * PFNs one at a time during early boot (UV_ESM uvcall), so this is 43 * not a cause for concern. Also currently the number of page-outs caused 44 * by HV touching secure pages is very very low. If an when UV supports 45 * overcommitting, then we might see concurrent guest driven page-outs. 46 * 47 * Locking order 48 * 49 * 1. kvm->srcu - Protects KVM memslots 50 * 2. kvm->mm->mmap_lock - find_vma, migrate_vma_pages and helpers, ksm_madvise 51 * 3. kvm->arch.uvmem_lock - protects read/writes to uvmem slots thus acting 52 * as sync-points for page-in/out 53 */ 54 55 /* 56 * Notes on page size 57 * 58 * Currently UV uses 2MB mappings internally, but will issue H_SVM_PAGE_IN 59 * and H_SVM_PAGE_OUT hcalls in PAGE_SIZE(64K) granularity. HV tracks 60 * secure GPAs at 64K page size and maintains one device PFN for each 61 * 64K secure GPA. UV_PAGE_IN and UV_PAGE_OUT calls by HV are also issued 62 * for 64K page at a time. 63 * 64 * HV faulting on secure pages: When HV touches any secure page, it 65 * faults and issues a UV_PAGE_OUT request with 64K page size. Currently 66 * UV splits and remaps the 2MB page if necessary and copies out the 67 * required 64K page contents. 68 * 69 * Shared pages: Whenever guest shares a secure page, UV will split and 70 * remap the 2MB page if required and issue H_SVM_PAGE_IN with 64K page size. 71 * 72 * HV invalidating a page: When a regular page belonging to secure 73 * guest gets unmapped, HV informs UV with UV_PAGE_INVAL of 64K 74 * page size. Using 64K page size is correct here because any non-secure 75 * page will essentially be of 64K page size. Splitting by UV during sharing 76 * and page-out ensures this. 77 * 78 * Page fault handling: When HV handles page fault of a page belonging 79 * to secure guest, it sends that to UV with a 64K UV_PAGE_IN request. 80 * Using 64K size is correct here too as UV would have split the 2MB page 81 * into 64k mappings and would have done page-outs earlier. 82 * 83 * In summary, the current secure pages handling code in HV assumes 84 * 64K page size and in fact fails any page-in/page-out requests of 85 * non-64K size upfront. If and when UV starts supporting multiple 86 * page-sizes, we need to break this assumption. 87 */ 88 89 #include <linux/pagemap.h> 90 #include <linux/migrate.h> 91 #include <linux/kvm_host.h> 92 #include <linux/ksm.h> 93 #include <asm/ultravisor.h> 94 #include <asm/mman.h> 95 #include <asm/kvm_ppc.h> 96 #include <asm/kvm_book3s_uvmem.h> 97 98 static struct dev_pagemap kvmppc_uvmem_pgmap; 99 static unsigned long *kvmppc_uvmem_bitmap; 100 static DEFINE_SPINLOCK(kvmppc_uvmem_bitmap_lock); 101 102 /* 103 * States of a GFN 104 * --------------- 105 * The GFN can be in one of the following states. 106 * 107 * (a) Secure - The GFN is secure. The GFN is associated with 108 * a Secure VM, the contents of the GFN is not accessible 109 * to the Hypervisor. This GFN can be backed by a secure-PFN, 110 * or can be backed by a normal-PFN with contents encrypted. 111 * The former is true when the GFN is paged-in into the 112 * ultravisor. The latter is true when the GFN is paged-out 113 * of the ultravisor. 114 * 115 * (b) Shared - The GFN is shared. The GFN is associated with a 116 * a secure VM. The contents of the GFN is accessible to 117 * Hypervisor. This GFN is backed by a normal-PFN and its 118 * content is un-encrypted. 119 * 120 * (c) Normal - The GFN is a normal. The GFN is associated with 121 * a normal VM. The contents of the GFN is accesible to 122 * the Hypervisor. Its content is never encrypted. 123 * 124 * States of a VM. 125 * --------------- 126 * 127 * Normal VM: A VM whose contents are always accessible to 128 * the hypervisor. All its GFNs are normal-GFNs. 129 * 130 * Secure VM: A VM whose contents are not accessible to the 131 * hypervisor without the VM's consent. Its GFNs are 132 * either Shared-GFN or Secure-GFNs. 133 * 134 * Transient VM: A Normal VM that is transitioning to secure VM. 135 * The transition starts on successful return of 136 * H_SVM_INIT_START, and ends on successful return 137 * of H_SVM_INIT_DONE. This transient VM, can have GFNs 138 * in any of the three states; i.e Secure-GFN, Shared-GFN, 139 * and Normal-GFN. The VM never executes in this state 140 * in supervisor-mode. 141 * 142 * Memory slot State. 143 * ----------------------------- 144 * The state of a memory slot mirrors the state of the 145 * VM the memory slot is associated with. 146 * 147 * VM State transition. 148 * -------------------- 149 * 150 * A VM always starts in Normal Mode. 151 * 152 * H_SVM_INIT_START moves the VM into transient state. During this 153 * time the Ultravisor may request some of its GFNs to be shared or 154 * secured. So its GFNs can be in one of the three GFN states. 155 * 156 * H_SVM_INIT_DONE moves the VM entirely from transient state to 157 * secure-state. At this point any left-over normal-GFNs are 158 * transitioned to Secure-GFN. 159 * 160 * H_SVM_INIT_ABORT moves the transient VM back to normal VM. 161 * All its GFNs are moved to Normal-GFNs. 162 * 163 * UV_TERMINATE transitions the secure-VM back to normal-VM. All 164 * the secure-GFN and shared-GFNs are tranistioned to normal-GFN 165 * Note: The contents of the normal-GFN is undefined at this point. 166 * 167 * GFN state implementation: 168 * ------------------------- 169 * 170 * Secure GFN is associated with a secure-PFN; also called uvmem_pfn, 171 * when the GFN is paged-in. Its pfn[] has KVMPPC_GFN_UVMEM_PFN flag 172 * set, and contains the value of the secure-PFN. 173 * It is associated with a normal-PFN; also called mem_pfn, when 174 * the GFN is pagedout. Its pfn[] has KVMPPC_GFN_MEM_PFN flag set. 175 * The value of the normal-PFN is not tracked. 176 * 177 * Shared GFN is associated with a normal-PFN. Its pfn[] has 178 * KVMPPC_UVMEM_SHARED_PFN flag set. The value of the normal-PFN 179 * is not tracked. 180 * 181 * Normal GFN is associated with normal-PFN. Its pfn[] has 182 * no flag set. The value of the normal-PFN is not tracked. 183 * 184 * Life cycle of a GFN 185 * -------------------- 186 * 187 * -------------------------------------------------------------- 188 * | | Share | Unshare | SVM |H_SVM_INIT_DONE| 189 * | |operation |operation | abort/ | | 190 * | | | | terminate | | 191 * ------------------------------------------------------------- 192 * | | | | | | 193 * | Secure | Shared | Secure |Normal |Secure | 194 * | | | | | | 195 * | Shared | Shared | Secure |Normal |Shared | 196 * | | | | | | 197 * | Normal | Shared | Secure |Normal |Secure | 198 * -------------------------------------------------------------- 199 * 200 * Life cycle of a VM 201 * -------------------- 202 * 203 * -------------------------------------------------------------------- 204 * | | start | H_SVM_ |H_SVM_ |H_SVM_ |UV_SVM_ | 205 * | | VM |INIT_START|INIT_DONE|INIT_ABORT |TERMINATE | 206 * | | | | | | | 207 * --------- ---------------------------------------------------------- 208 * | | | | | | | 209 * | Normal | Normal | Transient|Error |Error |Normal | 210 * | | | | | | | 211 * | Secure | Error | Error |Error |Error |Normal | 212 * | | | | | | | 213 * |Transient| N/A | Error |Secure |Normal |Normal | 214 * -------------------------------------------------------------------- 215 */ 216 217 #define KVMPPC_GFN_UVMEM_PFN (1UL << 63) 218 #define KVMPPC_GFN_MEM_PFN (1UL << 62) 219 #define KVMPPC_GFN_SHARED (1UL << 61) 220 #define KVMPPC_GFN_SECURE (KVMPPC_GFN_UVMEM_PFN | KVMPPC_GFN_MEM_PFN) 221 #define KVMPPC_GFN_FLAG_MASK (KVMPPC_GFN_SECURE | KVMPPC_GFN_SHARED) 222 #define KVMPPC_GFN_PFN_MASK (~KVMPPC_GFN_FLAG_MASK) 223 224 struct kvmppc_uvmem_slot { 225 struct list_head list; 226 unsigned long nr_pfns; 227 unsigned long base_pfn; 228 unsigned long *pfns; 229 }; 230 struct kvmppc_uvmem_page_pvt { 231 struct kvm *kvm; 232 unsigned long gpa; 233 bool skip_page_out; 234 bool remove_gfn; 235 }; 236 237 bool kvmppc_uvmem_available(void) 238 { 239 /* 240 * If kvmppc_uvmem_bitmap != NULL, then there is an ultravisor 241 * and our data structures have been initialized successfully. 242 */ 243 return !!kvmppc_uvmem_bitmap; 244 } 245 246 int kvmppc_uvmem_slot_init(struct kvm *kvm, const struct kvm_memory_slot *slot) 247 { 248 struct kvmppc_uvmem_slot *p; 249 250 p = kzalloc(sizeof(*p), GFP_KERNEL); 251 if (!p) 252 return -ENOMEM; 253 p->pfns = vzalloc(array_size(slot->npages, sizeof(*p->pfns))); 254 if (!p->pfns) { 255 kfree(p); 256 return -ENOMEM; 257 } 258 p->nr_pfns = slot->npages; 259 p->base_pfn = slot->base_gfn; 260 261 mutex_lock(&kvm->arch.uvmem_lock); 262 list_add(&p->list, &kvm->arch.uvmem_pfns); 263 mutex_unlock(&kvm->arch.uvmem_lock); 264 265 return 0; 266 } 267 268 /* 269 * All device PFNs are already released by the time we come here. 270 */ 271 void kvmppc_uvmem_slot_free(struct kvm *kvm, const struct kvm_memory_slot *slot) 272 { 273 struct kvmppc_uvmem_slot *p, *next; 274 275 mutex_lock(&kvm->arch.uvmem_lock); 276 list_for_each_entry_safe(p, next, &kvm->arch.uvmem_pfns, list) { 277 if (p->base_pfn == slot->base_gfn) { 278 vfree(p->pfns); 279 list_del(&p->list); 280 kfree(p); 281 break; 282 } 283 } 284 mutex_unlock(&kvm->arch.uvmem_lock); 285 } 286 287 static void kvmppc_mark_gfn(unsigned long gfn, struct kvm *kvm, 288 unsigned long flag, unsigned long uvmem_pfn) 289 { 290 struct kvmppc_uvmem_slot *p; 291 292 list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) { 293 if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) { 294 unsigned long index = gfn - p->base_pfn; 295 296 if (flag == KVMPPC_GFN_UVMEM_PFN) 297 p->pfns[index] = uvmem_pfn | flag; 298 else 299 p->pfns[index] = flag; 300 return; 301 } 302 } 303 } 304 305 /* mark the GFN as secure-GFN associated with @uvmem pfn device-PFN. */ 306 static void kvmppc_gfn_secure_uvmem_pfn(unsigned long gfn, 307 unsigned long uvmem_pfn, struct kvm *kvm) 308 { 309 kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_UVMEM_PFN, uvmem_pfn); 310 } 311 312 /* mark the GFN as secure-GFN associated with a memory-PFN. */ 313 static void kvmppc_gfn_secure_mem_pfn(unsigned long gfn, struct kvm *kvm) 314 { 315 kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_MEM_PFN, 0); 316 } 317 318 /* mark the GFN as a shared GFN. */ 319 static void kvmppc_gfn_shared(unsigned long gfn, struct kvm *kvm) 320 { 321 kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_SHARED, 0); 322 } 323 324 /* mark the GFN as a non-existent GFN. */ 325 static void kvmppc_gfn_remove(unsigned long gfn, struct kvm *kvm) 326 { 327 kvmppc_mark_gfn(gfn, kvm, 0, 0); 328 } 329 330 /* return true, if the GFN is a secure-GFN backed by a secure-PFN */ 331 static bool kvmppc_gfn_is_uvmem_pfn(unsigned long gfn, struct kvm *kvm, 332 unsigned long *uvmem_pfn) 333 { 334 struct kvmppc_uvmem_slot *p; 335 336 list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) { 337 if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) { 338 unsigned long index = gfn - p->base_pfn; 339 340 if (p->pfns[index] & KVMPPC_GFN_UVMEM_PFN) { 341 if (uvmem_pfn) 342 *uvmem_pfn = p->pfns[index] & 343 KVMPPC_GFN_PFN_MASK; 344 return true; 345 } else 346 return false; 347 } 348 } 349 return false; 350 } 351 352 /* 353 * starting from *gfn search for the next available GFN that is not yet 354 * transitioned to a secure GFN. return the value of that GFN in *gfn. If a 355 * GFN is found, return true, else return false 356 * 357 * Must be called with kvm->arch.uvmem_lock held. 358 */ 359 static bool kvmppc_next_nontransitioned_gfn(const struct kvm_memory_slot *memslot, 360 struct kvm *kvm, unsigned long *gfn) 361 { 362 struct kvmppc_uvmem_slot *p; 363 bool ret = false; 364 unsigned long i; 365 366 list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) 367 if (*gfn >= p->base_pfn && *gfn < p->base_pfn + p->nr_pfns) 368 break; 369 if (!p) 370 return ret; 371 /* 372 * The code below assumes, one to one correspondence between 373 * kvmppc_uvmem_slot and memslot. 374 */ 375 for (i = *gfn; i < p->base_pfn + p->nr_pfns; i++) { 376 unsigned long index = i - p->base_pfn; 377 378 if (!(p->pfns[index] & KVMPPC_GFN_FLAG_MASK)) { 379 *gfn = i; 380 ret = true; 381 break; 382 } 383 } 384 return ret; 385 } 386 387 static int kvmppc_memslot_page_merge(struct kvm *kvm, 388 const struct kvm_memory_slot *memslot, bool merge) 389 { 390 unsigned long gfn = memslot->base_gfn; 391 unsigned long end, start = gfn_to_hva(kvm, gfn); 392 int ret = 0; 393 struct vm_area_struct *vma; 394 int merge_flag = (merge) ? MADV_MERGEABLE : MADV_UNMERGEABLE; 395 396 if (kvm_is_error_hva(start)) 397 return H_STATE; 398 399 end = start + (memslot->npages << PAGE_SHIFT); 400 401 mmap_write_lock(kvm->mm); 402 do { 403 vma = find_vma_intersection(kvm->mm, start, end); 404 if (!vma) { 405 ret = H_STATE; 406 break; 407 } 408 ret = ksm_madvise(vma, vma->vm_start, vma->vm_end, 409 merge_flag, &vma->vm_flags); 410 if (ret) { 411 ret = H_STATE; 412 break; 413 } 414 start = vma->vm_end; 415 } while (end > vma->vm_end); 416 417 mmap_write_unlock(kvm->mm); 418 return ret; 419 } 420 421 static void __kvmppc_uvmem_memslot_delete(struct kvm *kvm, 422 const struct kvm_memory_slot *memslot) 423 { 424 uv_unregister_mem_slot(kvm->arch.lpid, memslot->id); 425 kvmppc_uvmem_slot_free(kvm, memslot); 426 kvmppc_memslot_page_merge(kvm, memslot, true); 427 } 428 429 static int __kvmppc_uvmem_memslot_create(struct kvm *kvm, 430 const struct kvm_memory_slot *memslot) 431 { 432 int ret = H_PARAMETER; 433 434 if (kvmppc_memslot_page_merge(kvm, memslot, false)) 435 return ret; 436 437 if (kvmppc_uvmem_slot_init(kvm, memslot)) 438 goto out1; 439 440 ret = uv_register_mem_slot(kvm->arch.lpid, 441 memslot->base_gfn << PAGE_SHIFT, 442 memslot->npages * PAGE_SIZE, 443 0, memslot->id); 444 if (ret < 0) { 445 ret = H_PARAMETER; 446 goto out; 447 } 448 return 0; 449 out: 450 kvmppc_uvmem_slot_free(kvm, memslot); 451 out1: 452 kvmppc_memslot_page_merge(kvm, memslot, true); 453 return ret; 454 } 455 456 unsigned long kvmppc_h_svm_init_start(struct kvm *kvm) 457 { 458 struct kvm_memslots *slots; 459 struct kvm_memory_slot *memslot, *m; 460 int ret = H_SUCCESS; 461 int srcu_idx; 462 463 kvm->arch.secure_guest = KVMPPC_SECURE_INIT_START; 464 465 if (!kvmppc_uvmem_bitmap) 466 return H_UNSUPPORTED; 467 468 /* Only radix guests can be secure guests */ 469 if (!kvm_is_radix(kvm)) 470 return H_UNSUPPORTED; 471 472 /* NAK the transition to secure if not enabled */ 473 if (!kvm->arch.svm_enabled) 474 return H_AUTHORITY; 475 476 srcu_idx = srcu_read_lock(&kvm->srcu); 477 478 /* register the memslot */ 479 slots = kvm_memslots(kvm); 480 kvm_for_each_memslot(memslot, slots) { 481 ret = __kvmppc_uvmem_memslot_create(kvm, memslot); 482 if (ret) 483 break; 484 } 485 486 if (ret) { 487 slots = kvm_memslots(kvm); 488 kvm_for_each_memslot(m, slots) { 489 if (m == memslot) 490 break; 491 __kvmppc_uvmem_memslot_delete(kvm, memslot); 492 } 493 } 494 495 srcu_read_unlock(&kvm->srcu, srcu_idx); 496 return ret; 497 } 498 499 /* 500 * Provision a new page on HV side and copy over the contents 501 * from secure memory using UV_PAGE_OUT uvcall. 502 * Caller must held kvm->arch.uvmem_lock. 503 */ 504 static int __kvmppc_svm_page_out(struct vm_area_struct *vma, 505 unsigned long start, 506 unsigned long end, unsigned long page_shift, 507 struct kvm *kvm, unsigned long gpa) 508 { 509 unsigned long src_pfn, dst_pfn = 0; 510 struct migrate_vma mig; 511 struct page *dpage, *spage; 512 struct kvmppc_uvmem_page_pvt *pvt; 513 unsigned long pfn; 514 int ret = U_SUCCESS; 515 516 memset(&mig, 0, sizeof(mig)); 517 mig.vma = vma; 518 mig.start = start; 519 mig.end = end; 520 mig.src = &src_pfn; 521 mig.dst = &dst_pfn; 522 mig.pgmap_owner = &kvmppc_uvmem_pgmap; 523 mig.flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE; 524 525 /* The requested page is already paged-out, nothing to do */ 526 if (!kvmppc_gfn_is_uvmem_pfn(gpa >> page_shift, kvm, NULL)) 527 return ret; 528 529 ret = migrate_vma_setup(&mig); 530 if (ret) 531 return -1; 532 533 spage = migrate_pfn_to_page(*mig.src); 534 if (!spage || !(*mig.src & MIGRATE_PFN_MIGRATE)) 535 goto out_finalize; 536 537 if (!is_zone_device_page(spage)) 538 goto out_finalize; 539 540 dpage = alloc_page_vma(GFP_HIGHUSER, vma, start); 541 if (!dpage) { 542 ret = -1; 543 goto out_finalize; 544 } 545 546 lock_page(dpage); 547 pvt = spage->zone_device_data; 548 pfn = page_to_pfn(dpage); 549 550 /* 551 * This function is used in two cases: 552 * - When HV touches a secure page, for which we do UV_PAGE_OUT 553 * - When a secure page is converted to shared page, we *get* 554 * the page to essentially unmap the device page. In this 555 * case we skip page-out. 556 */ 557 if (!pvt->skip_page_out) 558 ret = uv_page_out(kvm->arch.lpid, pfn << page_shift, 559 gpa, 0, page_shift); 560 561 if (ret == U_SUCCESS) 562 *mig.dst = migrate_pfn(pfn) | MIGRATE_PFN_LOCKED; 563 else { 564 unlock_page(dpage); 565 __free_page(dpage); 566 goto out_finalize; 567 } 568 569 migrate_vma_pages(&mig); 570 571 out_finalize: 572 migrate_vma_finalize(&mig); 573 return ret; 574 } 575 576 static inline int kvmppc_svm_page_out(struct vm_area_struct *vma, 577 unsigned long start, unsigned long end, 578 unsigned long page_shift, 579 struct kvm *kvm, unsigned long gpa) 580 { 581 int ret; 582 583 mutex_lock(&kvm->arch.uvmem_lock); 584 ret = __kvmppc_svm_page_out(vma, start, end, page_shift, kvm, gpa); 585 mutex_unlock(&kvm->arch.uvmem_lock); 586 587 return ret; 588 } 589 590 /* 591 * Drop device pages that we maintain for the secure guest 592 * 593 * We first mark the pages to be skipped from UV_PAGE_OUT when there 594 * is HV side fault on these pages. Next we *get* these pages, forcing 595 * fault on them, do fault time migration to replace the device PTEs in 596 * QEMU page table with normal PTEs from newly allocated pages. 597 */ 598 void kvmppc_uvmem_drop_pages(const struct kvm_memory_slot *slot, 599 struct kvm *kvm, bool skip_page_out) 600 { 601 int i; 602 struct kvmppc_uvmem_page_pvt *pvt; 603 struct page *uvmem_page; 604 struct vm_area_struct *vma = NULL; 605 unsigned long uvmem_pfn, gfn; 606 unsigned long addr; 607 608 mmap_read_lock(kvm->mm); 609 610 addr = slot->userspace_addr; 611 612 gfn = slot->base_gfn; 613 for (i = slot->npages; i; --i, ++gfn, addr += PAGE_SIZE) { 614 615 /* Fetch the VMA if addr is not in the latest fetched one */ 616 if (!vma || addr >= vma->vm_end) { 617 vma = find_vma_intersection(kvm->mm, addr, addr+1); 618 if (!vma) { 619 pr_err("Can't find VMA for gfn:0x%lx\n", gfn); 620 break; 621 } 622 } 623 624 mutex_lock(&kvm->arch.uvmem_lock); 625 626 if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) { 627 uvmem_page = pfn_to_page(uvmem_pfn); 628 pvt = uvmem_page->zone_device_data; 629 pvt->skip_page_out = skip_page_out; 630 pvt->remove_gfn = true; 631 632 if (__kvmppc_svm_page_out(vma, addr, addr + PAGE_SIZE, 633 PAGE_SHIFT, kvm, pvt->gpa)) 634 pr_err("Can't page out gpa:0x%lx addr:0x%lx\n", 635 pvt->gpa, addr); 636 } else { 637 /* Remove the shared flag if any */ 638 kvmppc_gfn_remove(gfn, kvm); 639 } 640 641 mutex_unlock(&kvm->arch.uvmem_lock); 642 } 643 644 mmap_read_unlock(kvm->mm); 645 } 646 647 unsigned long kvmppc_h_svm_init_abort(struct kvm *kvm) 648 { 649 int srcu_idx; 650 struct kvm_memory_slot *memslot; 651 652 /* 653 * Expect to be called only after INIT_START and before INIT_DONE. 654 * If INIT_DONE was completed, use normal VM termination sequence. 655 */ 656 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) 657 return H_UNSUPPORTED; 658 659 if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE) 660 return H_STATE; 661 662 srcu_idx = srcu_read_lock(&kvm->srcu); 663 664 kvm_for_each_memslot(memslot, kvm_memslots(kvm)) 665 kvmppc_uvmem_drop_pages(memslot, kvm, false); 666 667 srcu_read_unlock(&kvm->srcu, srcu_idx); 668 669 kvm->arch.secure_guest = 0; 670 uv_svm_terminate(kvm->arch.lpid); 671 672 return H_PARAMETER; 673 } 674 675 /* 676 * Get a free device PFN from the pool 677 * 678 * Called when a normal page is moved to secure memory (UV_PAGE_IN). Device 679 * PFN will be used to keep track of the secure page on HV side. 680 * 681 * Called with kvm->arch.uvmem_lock held 682 */ 683 static struct page *kvmppc_uvmem_get_page(unsigned long gpa, struct kvm *kvm) 684 { 685 struct page *dpage = NULL; 686 unsigned long bit, uvmem_pfn; 687 struct kvmppc_uvmem_page_pvt *pvt; 688 unsigned long pfn_last, pfn_first; 689 690 pfn_first = kvmppc_uvmem_pgmap.range.start >> PAGE_SHIFT; 691 pfn_last = pfn_first + 692 (range_len(&kvmppc_uvmem_pgmap.range) >> PAGE_SHIFT); 693 694 spin_lock(&kvmppc_uvmem_bitmap_lock); 695 bit = find_first_zero_bit(kvmppc_uvmem_bitmap, 696 pfn_last - pfn_first); 697 if (bit >= (pfn_last - pfn_first)) 698 goto out; 699 bitmap_set(kvmppc_uvmem_bitmap, bit, 1); 700 spin_unlock(&kvmppc_uvmem_bitmap_lock); 701 702 pvt = kzalloc(sizeof(*pvt), GFP_KERNEL); 703 if (!pvt) 704 goto out_clear; 705 706 uvmem_pfn = bit + pfn_first; 707 kvmppc_gfn_secure_uvmem_pfn(gpa >> PAGE_SHIFT, uvmem_pfn, kvm); 708 709 pvt->gpa = gpa; 710 pvt->kvm = kvm; 711 712 dpage = pfn_to_page(uvmem_pfn); 713 dpage->zone_device_data = pvt; 714 get_page(dpage); 715 lock_page(dpage); 716 return dpage; 717 out_clear: 718 spin_lock(&kvmppc_uvmem_bitmap_lock); 719 bitmap_clear(kvmppc_uvmem_bitmap, bit, 1); 720 out: 721 spin_unlock(&kvmppc_uvmem_bitmap_lock); 722 return NULL; 723 } 724 725 /* 726 * Alloc a PFN from private device memory pool. If @pagein is true, 727 * copy page from normal memory to secure memory using UV_PAGE_IN uvcall. 728 */ 729 static int kvmppc_svm_page_in(struct vm_area_struct *vma, 730 unsigned long start, 731 unsigned long end, unsigned long gpa, struct kvm *kvm, 732 unsigned long page_shift, 733 bool pagein) 734 { 735 unsigned long src_pfn, dst_pfn = 0; 736 struct migrate_vma mig; 737 struct page *spage; 738 unsigned long pfn; 739 struct page *dpage; 740 int ret = 0; 741 742 memset(&mig, 0, sizeof(mig)); 743 mig.vma = vma; 744 mig.start = start; 745 mig.end = end; 746 mig.src = &src_pfn; 747 mig.dst = &dst_pfn; 748 mig.flags = MIGRATE_VMA_SELECT_SYSTEM; 749 750 ret = migrate_vma_setup(&mig); 751 if (ret) 752 return ret; 753 754 if (!(*mig.src & MIGRATE_PFN_MIGRATE)) { 755 ret = -1; 756 goto out_finalize; 757 } 758 759 dpage = kvmppc_uvmem_get_page(gpa, kvm); 760 if (!dpage) { 761 ret = -1; 762 goto out_finalize; 763 } 764 765 if (pagein) { 766 pfn = *mig.src >> MIGRATE_PFN_SHIFT; 767 spage = migrate_pfn_to_page(*mig.src); 768 if (spage) { 769 ret = uv_page_in(kvm->arch.lpid, pfn << page_shift, 770 gpa, 0, page_shift); 771 if (ret) 772 goto out_finalize; 773 } 774 } 775 776 *mig.dst = migrate_pfn(page_to_pfn(dpage)) | MIGRATE_PFN_LOCKED; 777 migrate_vma_pages(&mig); 778 out_finalize: 779 migrate_vma_finalize(&mig); 780 return ret; 781 } 782 783 static int kvmppc_uv_migrate_mem_slot(struct kvm *kvm, 784 const struct kvm_memory_slot *memslot) 785 { 786 unsigned long gfn = memslot->base_gfn; 787 struct vm_area_struct *vma; 788 unsigned long start, end; 789 int ret = 0; 790 791 mmap_read_lock(kvm->mm); 792 mutex_lock(&kvm->arch.uvmem_lock); 793 while (kvmppc_next_nontransitioned_gfn(memslot, kvm, &gfn)) { 794 ret = H_STATE; 795 start = gfn_to_hva(kvm, gfn); 796 if (kvm_is_error_hva(start)) 797 break; 798 799 end = start + (1UL << PAGE_SHIFT); 800 vma = find_vma_intersection(kvm->mm, start, end); 801 if (!vma || vma->vm_start > start || vma->vm_end < end) 802 break; 803 804 ret = kvmppc_svm_page_in(vma, start, end, 805 (gfn << PAGE_SHIFT), kvm, PAGE_SHIFT, false); 806 if (ret) { 807 ret = H_STATE; 808 break; 809 } 810 811 /* relinquish the cpu if needed */ 812 cond_resched(); 813 } 814 mutex_unlock(&kvm->arch.uvmem_lock); 815 mmap_read_unlock(kvm->mm); 816 return ret; 817 } 818 819 unsigned long kvmppc_h_svm_init_done(struct kvm *kvm) 820 { 821 struct kvm_memslots *slots; 822 struct kvm_memory_slot *memslot; 823 int srcu_idx; 824 long ret = H_SUCCESS; 825 826 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) 827 return H_UNSUPPORTED; 828 829 /* migrate any unmoved normal pfn to device pfns*/ 830 srcu_idx = srcu_read_lock(&kvm->srcu); 831 slots = kvm_memslots(kvm); 832 kvm_for_each_memslot(memslot, slots) { 833 ret = kvmppc_uv_migrate_mem_slot(kvm, memslot); 834 if (ret) { 835 /* 836 * The pages will remain transitioned. 837 * Its the callers responsibility to 838 * terminate the VM, which will undo 839 * all state of the VM. Till then 840 * this VM is in a erroneous state. 841 * Its KVMPPC_SECURE_INIT_DONE will 842 * remain unset. 843 */ 844 ret = H_STATE; 845 goto out; 846 } 847 } 848 849 kvm->arch.secure_guest |= KVMPPC_SECURE_INIT_DONE; 850 pr_info("LPID %d went secure\n", kvm->arch.lpid); 851 852 out: 853 srcu_read_unlock(&kvm->srcu, srcu_idx); 854 return ret; 855 } 856 857 /* 858 * Shares the page with HV, thus making it a normal page. 859 * 860 * - If the page is already secure, then provision a new page and share 861 * - If the page is a normal page, share the existing page 862 * 863 * In the former case, uses dev_pagemap_ops.migrate_to_ram handler 864 * to unmap the device page from QEMU's page tables. 865 */ 866 static unsigned long kvmppc_share_page(struct kvm *kvm, unsigned long gpa, 867 unsigned long page_shift) 868 { 869 870 int ret = H_PARAMETER; 871 struct page *uvmem_page; 872 struct kvmppc_uvmem_page_pvt *pvt; 873 unsigned long pfn; 874 unsigned long gfn = gpa >> page_shift; 875 int srcu_idx; 876 unsigned long uvmem_pfn; 877 878 srcu_idx = srcu_read_lock(&kvm->srcu); 879 mutex_lock(&kvm->arch.uvmem_lock); 880 if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) { 881 uvmem_page = pfn_to_page(uvmem_pfn); 882 pvt = uvmem_page->zone_device_data; 883 pvt->skip_page_out = true; 884 /* 885 * do not drop the GFN. It is a valid GFN 886 * that is transitioned to a shared GFN. 887 */ 888 pvt->remove_gfn = false; 889 } 890 891 retry: 892 mutex_unlock(&kvm->arch.uvmem_lock); 893 pfn = gfn_to_pfn(kvm, gfn); 894 if (is_error_noslot_pfn(pfn)) 895 goto out; 896 897 mutex_lock(&kvm->arch.uvmem_lock); 898 if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) { 899 uvmem_page = pfn_to_page(uvmem_pfn); 900 pvt = uvmem_page->zone_device_data; 901 pvt->skip_page_out = true; 902 pvt->remove_gfn = false; /* it continues to be a valid GFN */ 903 kvm_release_pfn_clean(pfn); 904 goto retry; 905 } 906 907 if (!uv_page_in(kvm->arch.lpid, pfn << page_shift, gpa, 0, 908 page_shift)) { 909 kvmppc_gfn_shared(gfn, kvm); 910 ret = H_SUCCESS; 911 } 912 kvm_release_pfn_clean(pfn); 913 mutex_unlock(&kvm->arch.uvmem_lock); 914 out: 915 srcu_read_unlock(&kvm->srcu, srcu_idx); 916 return ret; 917 } 918 919 /* 920 * H_SVM_PAGE_IN: Move page from normal memory to secure memory. 921 * 922 * H_PAGE_IN_SHARED flag makes the page shared which means that the same 923 * memory in is visible from both UV and HV. 924 */ 925 unsigned long kvmppc_h_svm_page_in(struct kvm *kvm, unsigned long gpa, 926 unsigned long flags, 927 unsigned long page_shift) 928 { 929 unsigned long start, end; 930 struct vm_area_struct *vma; 931 int srcu_idx; 932 unsigned long gfn = gpa >> page_shift; 933 int ret; 934 935 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) 936 return H_UNSUPPORTED; 937 938 if (page_shift != PAGE_SHIFT) 939 return H_P3; 940 941 if (flags & ~H_PAGE_IN_SHARED) 942 return H_P2; 943 944 if (flags & H_PAGE_IN_SHARED) 945 return kvmppc_share_page(kvm, gpa, page_shift); 946 947 ret = H_PARAMETER; 948 srcu_idx = srcu_read_lock(&kvm->srcu); 949 mmap_read_lock(kvm->mm); 950 951 start = gfn_to_hva(kvm, gfn); 952 if (kvm_is_error_hva(start)) 953 goto out; 954 955 mutex_lock(&kvm->arch.uvmem_lock); 956 /* Fail the page-in request of an already paged-in page */ 957 if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, NULL)) 958 goto out_unlock; 959 960 end = start + (1UL << page_shift); 961 vma = find_vma_intersection(kvm->mm, start, end); 962 if (!vma || vma->vm_start > start || vma->vm_end < end) 963 goto out_unlock; 964 965 if (kvmppc_svm_page_in(vma, start, end, gpa, kvm, page_shift, 966 true)) 967 goto out_unlock; 968 969 ret = H_SUCCESS; 970 971 out_unlock: 972 mutex_unlock(&kvm->arch.uvmem_lock); 973 out: 974 mmap_read_unlock(kvm->mm); 975 srcu_read_unlock(&kvm->srcu, srcu_idx); 976 return ret; 977 } 978 979 980 /* 981 * Fault handler callback that gets called when HV touches any page that 982 * has been moved to secure memory, we ask UV to give back the page by 983 * issuing UV_PAGE_OUT uvcall. 984 * 985 * This eventually results in dropping of device PFN and the newly 986 * provisioned page/PFN gets populated in QEMU page tables. 987 */ 988 static vm_fault_t kvmppc_uvmem_migrate_to_ram(struct vm_fault *vmf) 989 { 990 struct kvmppc_uvmem_page_pvt *pvt = vmf->page->zone_device_data; 991 992 if (kvmppc_svm_page_out(vmf->vma, vmf->address, 993 vmf->address + PAGE_SIZE, PAGE_SHIFT, 994 pvt->kvm, pvt->gpa)) 995 return VM_FAULT_SIGBUS; 996 else 997 return 0; 998 } 999 1000 /* 1001 * Release the device PFN back to the pool 1002 * 1003 * Gets called when secure GFN tranistions from a secure-PFN 1004 * to a normal PFN during H_SVM_PAGE_OUT. 1005 * Gets called with kvm->arch.uvmem_lock held. 1006 */ 1007 static void kvmppc_uvmem_page_free(struct page *page) 1008 { 1009 unsigned long pfn = page_to_pfn(page) - 1010 (kvmppc_uvmem_pgmap.range.start >> PAGE_SHIFT); 1011 struct kvmppc_uvmem_page_pvt *pvt; 1012 1013 spin_lock(&kvmppc_uvmem_bitmap_lock); 1014 bitmap_clear(kvmppc_uvmem_bitmap, pfn, 1); 1015 spin_unlock(&kvmppc_uvmem_bitmap_lock); 1016 1017 pvt = page->zone_device_data; 1018 page->zone_device_data = NULL; 1019 if (pvt->remove_gfn) 1020 kvmppc_gfn_remove(pvt->gpa >> PAGE_SHIFT, pvt->kvm); 1021 else 1022 kvmppc_gfn_secure_mem_pfn(pvt->gpa >> PAGE_SHIFT, pvt->kvm); 1023 kfree(pvt); 1024 } 1025 1026 static const struct dev_pagemap_ops kvmppc_uvmem_ops = { 1027 .page_free = kvmppc_uvmem_page_free, 1028 .migrate_to_ram = kvmppc_uvmem_migrate_to_ram, 1029 }; 1030 1031 /* 1032 * H_SVM_PAGE_OUT: Move page from secure memory to normal memory. 1033 */ 1034 unsigned long 1035 kvmppc_h_svm_page_out(struct kvm *kvm, unsigned long gpa, 1036 unsigned long flags, unsigned long page_shift) 1037 { 1038 unsigned long gfn = gpa >> page_shift; 1039 unsigned long start, end; 1040 struct vm_area_struct *vma; 1041 int srcu_idx; 1042 int ret; 1043 1044 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) 1045 return H_UNSUPPORTED; 1046 1047 if (page_shift != PAGE_SHIFT) 1048 return H_P3; 1049 1050 if (flags) 1051 return H_P2; 1052 1053 ret = H_PARAMETER; 1054 srcu_idx = srcu_read_lock(&kvm->srcu); 1055 mmap_read_lock(kvm->mm); 1056 start = gfn_to_hva(kvm, gfn); 1057 if (kvm_is_error_hva(start)) 1058 goto out; 1059 1060 end = start + (1UL << page_shift); 1061 vma = find_vma_intersection(kvm->mm, start, end); 1062 if (!vma || vma->vm_start > start || vma->vm_end < end) 1063 goto out; 1064 1065 if (!kvmppc_svm_page_out(vma, start, end, page_shift, kvm, gpa)) 1066 ret = H_SUCCESS; 1067 out: 1068 mmap_read_unlock(kvm->mm); 1069 srcu_read_unlock(&kvm->srcu, srcu_idx); 1070 return ret; 1071 } 1072 1073 int kvmppc_send_page_to_uv(struct kvm *kvm, unsigned long gfn) 1074 { 1075 unsigned long pfn; 1076 int ret = U_SUCCESS; 1077 1078 pfn = gfn_to_pfn(kvm, gfn); 1079 if (is_error_noslot_pfn(pfn)) 1080 return -EFAULT; 1081 1082 mutex_lock(&kvm->arch.uvmem_lock); 1083 if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, NULL)) 1084 goto out; 1085 1086 ret = uv_page_in(kvm->arch.lpid, pfn << PAGE_SHIFT, gfn << PAGE_SHIFT, 1087 0, PAGE_SHIFT); 1088 out: 1089 kvm_release_pfn_clean(pfn); 1090 mutex_unlock(&kvm->arch.uvmem_lock); 1091 return (ret == U_SUCCESS) ? RESUME_GUEST : -EFAULT; 1092 } 1093 1094 int kvmppc_uvmem_memslot_create(struct kvm *kvm, const struct kvm_memory_slot *new) 1095 { 1096 int ret = __kvmppc_uvmem_memslot_create(kvm, new); 1097 1098 if (!ret) 1099 ret = kvmppc_uv_migrate_mem_slot(kvm, new); 1100 1101 return ret; 1102 } 1103 1104 void kvmppc_uvmem_memslot_delete(struct kvm *kvm, const struct kvm_memory_slot *old) 1105 { 1106 __kvmppc_uvmem_memslot_delete(kvm, old); 1107 } 1108 1109 static u64 kvmppc_get_secmem_size(void) 1110 { 1111 struct device_node *np; 1112 int i, len; 1113 const __be32 *prop; 1114 u64 size = 0; 1115 1116 /* 1117 * First try the new ibm,secure-memory nodes which supersede the 1118 * secure-memory-ranges property. 1119 * If we found some, no need to read the deprecated ones. 1120 */ 1121 for_each_compatible_node(np, NULL, "ibm,secure-memory") { 1122 prop = of_get_property(np, "reg", &len); 1123 if (!prop) 1124 continue; 1125 size += of_read_number(prop + 2, 2); 1126 } 1127 if (size) 1128 return size; 1129 1130 np = of_find_compatible_node(NULL, NULL, "ibm,uv-firmware"); 1131 if (!np) 1132 goto out; 1133 1134 prop = of_get_property(np, "secure-memory-ranges", &len); 1135 if (!prop) 1136 goto out_put; 1137 1138 for (i = 0; i < len / (sizeof(*prop) * 4); i++) 1139 size += of_read_number(prop + (i * 4) + 2, 2); 1140 1141 out_put: 1142 of_node_put(np); 1143 out: 1144 return size; 1145 } 1146 1147 int kvmppc_uvmem_init(void) 1148 { 1149 int ret = 0; 1150 unsigned long size; 1151 struct resource *res; 1152 void *addr; 1153 unsigned long pfn_last, pfn_first; 1154 1155 size = kvmppc_get_secmem_size(); 1156 if (!size) { 1157 /* 1158 * Don't fail the initialization of kvm-hv module if 1159 * the platform doesn't export ibm,uv-firmware node. 1160 * Let normal guests run on such PEF-disabled platform. 1161 */ 1162 pr_info("KVMPPC-UVMEM: No support for secure guests\n"); 1163 goto out; 1164 } 1165 1166 res = request_free_mem_region(&iomem_resource, size, "kvmppc_uvmem"); 1167 if (IS_ERR(res)) { 1168 ret = PTR_ERR(res); 1169 goto out; 1170 } 1171 1172 kvmppc_uvmem_pgmap.type = MEMORY_DEVICE_PRIVATE; 1173 kvmppc_uvmem_pgmap.range.start = res->start; 1174 kvmppc_uvmem_pgmap.range.end = res->end; 1175 kvmppc_uvmem_pgmap.nr_range = 1; 1176 kvmppc_uvmem_pgmap.ops = &kvmppc_uvmem_ops; 1177 /* just one global instance: */ 1178 kvmppc_uvmem_pgmap.owner = &kvmppc_uvmem_pgmap; 1179 addr = memremap_pages(&kvmppc_uvmem_pgmap, NUMA_NO_NODE); 1180 if (IS_ERR(addr)) { 1181 ret = PTR_ERR(addr); 1182 goto out_free_region; 1183 } 1184 1185 pfn_first = res->start >> PAGE_SHIFT; 1186 pfn_last = pfn_first + (resource_size(res) >> PAGE_SHIFT); 1187 kvmppc_uvmem_bitmap = kcalloc(BITS_TO_LONGS(pfn_last - pfn_first), 1188 sizeof(unsigned long), GFP_KERNEL); 1189 if (!kvmppc_uvmem_bitmap) { 1190 ret = -ENOMEM; 1191 goto out_unmap; 1192 } 1193 1194 pr_info("KVMPPC-UVMEM: Secure Memory size 0x%lx\n", size); 1195 return ret; 1196 out_unmap: 1197 memunmap_pages(&kvmppc_uvmem_pgmap); 1198 out_free_region: 1199 release_mem_region(res->start, size); 1200 out: 1201 return ret; 1202 } 1203 1204 void kvmppc_uvmem_free(void) 1205 { 1206 if (!kvmppc_uvmem_bitmap) 1207 return; 1208 1209 memunmap_pages(&kvmppc_uvmem_pgmap); 1210 release_mem_region(kvmppc_uvmem_pgmap.range.start, 1211 range_len(&kvmppc_uvmem_pgmap.range)); 1212 kfree(kvmppc_uvmem_bitmap); 1213 } 1214