1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Secure pages management: Migration of pages between normal and secure
4  * memory of KVM guests.
5  *
6  * Copyright 2018 Bharata B Rao, IBM Corp. <bharata@linux.ibm.com>
7  */
8 
9 /*
10  * A pseries guest can be run as secure guest on Ultravisor-enabled
11  * POWER platforms. On such platforms, this driver will be used to manage
12  * the movement of guest pages between the normal memory managed by
13  * hypervisor (HV) and secure memory managed by Ultravisor (UV).
14  *
15  * The page-in or page-out requests from UV will come to HV as hcalls and
16  * HV will call back into UV via ultracalls to satisfy these page requests.
17  *
18  * Private ZONE_DEVICE memory equal to the amount of secure memory
19  * available in the platform for running secure guests is hotplugged.
20  * Whenever a page belonging to the guest becomes secure, a page from this
21  * private device memory is used to represent and track that secure page
22  * on the HV side. Some pages (like virtio buffers, VPA pages etc) are
23  * shared between UV and HV. However such pages aren't represented by
24  * device private memory and mappings to shared memory exist in both
25  * UV and HV page tables.
26  */
27 
28 /*
29  * Notes on locking
30  *
31  * kvm->arch.uvmem_lock is a per-guest lock that prevents concurrent
32  * page-in and page-out requests for the same GPA. Concurrent accesses
33  * can either come via UV (guest vCPUs requesting for same page)
34  * or when HV and guest simultaneously access the same page.
35  * This mutex serializes the migration of page from HV(normal) to
36  * UV(secure) and vice versa. So the serialization points are around
37  * migrate_vma routines and page-in/out routines.
38  *
39  * Per-guest mutex comes with a cost though. Mainly it serializes the
40  * fault path as page-out can occur when HV faults on accessing secure
41  * guest pages. Currently UV issues page-in requests for all the guest
42  * PFNs one at a time during early boot (UV_ESM uvcall), so this is
43  * not a cause for concern. Also currently the number of page-outs caused
44  * by HV touching secure pages is very very low. If an when UV supports
45  * overcommitting, then we might see concurrent guest driven page-outs.
46  *
47  * Locking order
48  *
49  * 1. kvm->srcu - Protects KVM memslots
50  * 2. kvm->mm->mmap_lock - find_vma, migrate_vma_pages and helpers, ksm_madvise
51  * 3. kvm->arch.uvmem_lock - protects read/writes to uvmem slots thus acting
52  *			     as sync-points for page-in/out
53  */
54 
55 /*
56  * Notes on page size
57  *
58  * Currently UV uses 2MB mappings internally, but will issue H_SVM_PAGE_IN
59  * and H_SVM_PAGE_OUT hcalls in PAGE_SIZE(64K) granularity. HV tracks
60  * secure GPAs at 64K page size and maintains one device PFN for each
61  * 64K secure GPA. UV_PAGE_IN and UV_PAGE_OUT calls by HV are also issued
62  * for 64K page at a time.
63  *
64  * HV faulting on secure pages: When HV touches any secure page, it
65  * faults and issues a UV_PAGE_OUT request with 64K page size. Currently
66  * UV splits and remaps the 2MB page if necessary and copies out the
67  * required 64K page contents.
68  *
69  * Shared pages: Whenever guest shares a secure page, UV will split and
70  * remap the 2MB page if required and issue H_SVM_PAGE_IN with 64K page size.
71  *
72  * HV invalidating a page: When a regular page belonging to secure
73  * guest gets unmapped, HV informs UV with UV_PAGE_INVAL of 64K
74  * page size. Using 64K page size is correct here because any non-secure
75  * page will essentially be of 64K page size. Splitting by UV during sharing
76  * and page-out ensures this.
77  *
78  * Page fault handling: When HV handles page fault of a page belonging
79  * to secure guest, it sends that to UV with a 64K UV_PAGE_IN request.
80  * Using 64K size is correct here too as UV would have split the 2MB page
81  * into 64k mappings and would have done page-outs earlier.
82  *
83  * In summary, the current secure pages handling code in HV assumes
84  * 64K page size and in fact fails any page-in/page-out requests of
85  * non-64K size upfront. If and when UV starts supporting multiple
86  * page-sizes, we need to break this assumption.
87  */
88 
89 #include <linux/pagemap.h>
90 #include <linux/migrate.h>
91 #include <linux/kvm_host.h>
92 #include <linux/ksm.h>
93 #include <linux/of.h>
94 #include <asm/ultravisor.h>
95 #include <asm/mman.h>
96 #include <asm/kvm_ppc.h>
97 #include <asm/kvm_book3s_uvmem.h>
98 
99 static struct dev_pagemap kvmppc_uvmem_pgmap;
100 static unsigned long *kvmppc_uvmem_bitmap;
101 static DEFINE_SPINLOCK(kvmppc_uvmem_bitmap_lock);
102 
103 /*
104  * States of a GFN
105  * ---------------
106  * The GFN can be in one of the following states.
107  *
108  * (a) Secure - The GFN is secure. The GFN is associated with
109  *	a Secure VM, the contents of the GFN is not accessible
110  *	to the Hypervisor.  This GFN can be backed by a secure-PFN,
111  *	or can be backed by a normal-PFN with contents encrypted.
112  *	The former is true when the GFN is paged-in into the
113  *	ultravisor. The latter is true when the GFN is paged-out
114  *	of the ultravisor.
115  *
116  * (b) Shared - The GFN is shared. The GFN is associated with a
117  *	a secure VM. The contents of the GFN is accessible to
118  *	Hypervisor. This GFN is backed by a normal-PFN and its
119  *	content is un-encrypted.
120  *
121  * (c) Normal - The GFN is a normal. The GFN is associated with
122  *	a normal VM. The contents of the GFN is accesible to
123  *	the Hypervisor. Its content is never encrypted.
124  *
125  * States of a VM.
126  * ---------------
127  *
128  * Normal VM:  A VM whose contents are always accessible to
129  *	the hypervisor.  All its GFNs are normal-GFNs.
130  *
131  * Secure VM: A VM whose contents are not accessible to the
132  *	hypervisor without the VM's consent.  Its GFNs are
133  *	either Shared-GFN or Secure-GFNs.
134  *
135  * Transient VM: A Normal VM that is transitioning to secure VM.
136  *	The transition starts on successful return of
137  *	H_SVM_INIT_START, and ends on successful return
138  *	of H_SVM_INIT_DONE. This transient VM, can have GFNs
139  *	in any of the three states; i.e Secure-GFN, Shared-GFN,
140  *	and Normal-GFN.	The VM never executes in this state
141  *	in supervisor-mode.
142  *
143  * Memory slot State.
144  * -----------------------------
145  *	The state of a memory slot mirrors the state of the
146  *	VM the memory slot is associated with.
147  *
148  * VM State transition.
149  * --------------------
150  *
151  *  A VM always starts in Normal Mode.
152  *
153  *  H_SVM_INIT_START moves the VM into transient state. During this
154  *  time the Ultravisor may request some of its GFNs to be shared or
155  *  secured. So its GFNs can be in one of the three GFN states.
156  *
157  *  H_SVM_INIT_DONE moves the VM entirely from transient state to
158  *  secure-state. At this point any left-over normal-GFNs are
159  *  transitioned to Secure-GFN.
160  *
161  *  H_SVM_INIT_ABORT moves the transient VM back to normal VM.
162  *  All its GFNs are moved to Normal-GFNs.
163  *
164  *  UV_TERMINATE transitions the secure-VM back to normal-VM. All
165  *  the secure-GFN and shared-GFNs are tranistioned to normal-GFN
166  *  Note: The contents of the normal-GFN is undefined at this point.
167  *
168  * GFN state implementation:
169  * -------------------------
170  *
171  * Secure GFN is associated with a secure-PFN; also called uvmem_pfn,
172  * when the GFN is paged-in. Its pfn[] has KVMPPC_GFN_UVMEM_PFN flag
173  * set, and contains the value of the secure-PFN.
174  * It is associated with a normal-PFN; also called mem_pfn, when
175  * the GFN is pagedout. Its pfn[] has KVMPPC_GFN_MEM_PFN flag set.
176  * The value of the normal-PFN is not tracked.
177  *
178  * Shared GFN is associated with a normal-PFN. Its pfn[] has
179  * KVMPPC_UVMEM_SHARED_PFN flag set. The value of the normal-PFN
180  * is not tracked.
181  *
182  * Normal GFN is associated with normal-PFN. Its pfn[] has
183  * no flag set. The value of the normal-PFN is not tracked.
184  *
185  * Life cycle of a GFN
186  * --------------------
187  *
188  * --------------------------------------------------------------
189  * |        |     Share  |  Unshare | SVM       |H_SVM_INIT_DONE|
190  * |        |operation   |operation | abort/    |               |
191  * |        |            |          | terminate |               |
192  * -------------------------------------------------------------
193  * |        |            |          |           |               |
194  * | Secure |     Shared | Secure   |Normal     |Secure         |
195  * |        |            |          |           |               |
196  * | Shared |     Shared | Secure   |Normal     |Shared         |
197  * |        |            |          |           |               |
198  * | Normal |     Shared | Secure   |Normal     |Secure         |
199  * --------------------------------------------------------------
200  *
201  * Life cycle of a VM
202  * --------------------
203  *
204  * --------------------------------------------------------------------
205  * |         |  start    |  H_SVM_  |H_SVM_   |H_SVM_     |UV_SVM_    |
206  * |         |  VM       |INIT_START|INIT_DONE|INIT_ABORT |TERMINATE  |
207  * |         |           |          |         |           |           |
208  * --------- ----------------------------------------------------------
209  * |         |           |          |         |           |           |
210  * | Normal  | Normal    | Transient|Error    |Error      |Normal     |
211  * |         |           |          |         |           |           |
212  * | Secure  |   Error   | Error    |Error    |Error      |Normal     |
213  * |         |           |          |         |           |           |
214  * |Transient|   N/A     | Error    |Secure   |Normal     |Normal     |
215  * --------------------------------------------------------------------
216  */
217 
218 #define KVMPPC_GFN_UVMEM_PFN	(1UL << 63)
219 #define KVMPPC_GFN_MEM_PFN	(1UL << 62)
220 #define KVMPPC_GFN_SHARED	(1UL << 61)
221 #define KVMPPC_GFN_SECURE	(KVMPPC_GFN_UVMEM_PFN | KVMPPC_GFN_MEM_PFN)
222 #define KVMPPC_GFN_FLAG_MASK	(KVMPPC_GFN_SECURE | KVMPPC_GFN_SHARED)
223 #define KVMPPC_GFN_PFN_MASK	(~KVMPPC_GFN_FLAG_MASK)
224 
225 struct kvmppc_uvmem_slot {
226 	struct list_head list;
227 	unsigned long nr_pfns;
228 	unsigned long base_pfn;
229 	unsigned long *pfns;
230 };
231 struct kvmppc_uvmem_page_pvt {
232 	struct kvm *kvm;
233 	unsigned long gpa;
234 	bool skip_page_out;
235 	bool remove_gfn;
236 };
237 
238 bool kvmppc_uvmem_available(void)
239 {
240 	/*
241 	 * If kvmppc_uvmem_bitmap != NULL, then there is an ultravisor
242 	 * and our data structures have been initialized successfully.
243 	 */
244 	return !!kvmppc_uvmem_bitmap;
245 }
246 
247 int kvmppc_uvmem_slot_init(struct kvm *kvm, const struct kvm_memory_slot *slot)
248 {
249 	struct kvmppc_uvmem_slot *p;
250 
251 	p = kzalloc(sizeof(*p), GFP_KERNEL);
252 	if (!p)
253 		return -ENOMEM;
254 	p->pfns = vzalloc(array_size(slot->npages, sizeof(*p->pfns)));
255 	if (!p->pfns) {
256 		kfree(p);
257 		return -ENOMEM;
258 	}
259 	p->nr_pfns = slot->npages;
260 	p->base_pfn = slot->base_gfn;
261 
262 	mutex_lock(&kvm->arch.uvmem_lock);
263 	list_add(&p->list, &kvm->arch.uvmem_pfns);
264 	mutex_unlock(&kvm->arch.uvmem_lock);
265 
266 	return 0;
267 }
268 
269 /*
270  * All device PFNs are already released by the time we come here.
271  */
272 void kvmppc_uvmem_slot_free(struct kvm *kvm, const struct kvm_memory_slot *slot)
273 {
274 	struct kvmppc_uvmem_slot *p, *next;
275 
276 	mutex_lock(&kvm->arch.uvmem_lock);
277 	list_for_each_entry_safe(p, next, &kvm->arch.uvmem_pfns, list) {
278 		if (p->base_pfn == slot->base_gfn) {
279 			vfree(p->pfns);
280 			list_del(&p->list);
281 			kfree(p);
282 			break;
283 		}
284 	}
285 	mutex_unlock(&kvm->arch.uvmem_lock);
286 }
287 
288 static void kvmppc_mark_gfn(unsigned long gfn, struct kvm *kvm,
289 			unsigned long flag, unsigned long uvmem_pfn)
290 {
291 	struct kvmppc_uvmem_slot *p;
292 
293 	list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) {
294 		if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) {
295 			unsigned long index = gfn - p->base_pfn;
296 
297 			if (flag == KVMPPC_GFN_UVMEM_PFN)
298 				p->pfns[index] = uvmem_pfn | flag;
299 			else
300 				p->pfns[index] = flag;
301 			return;
302 		}
303 	}
304 }
305 
306 /* mark the GFN as secure-GFN associated with @uvmem pfn device-PFN. */
307 static void kvmppc_gfn_secure_uvmem_pfn(unsigned long gfn,
308 			unsigned long uvmem_pfn, struct kvm *kvm)
309 {
310 	kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_UVMEM_PFN, uvmem_pfn);
311 }
312 
313 /* mark the GFN as secure-GFN associated with a memory-PFN. */
314 static void kvmppc_gfn_secure_mem_pfn(unsigned long gfn, struct kvm *kvm)
315 {
316 	kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_MEM_PFN, 0);
317 }
318 
319 /* mark the GFN as a shared GFN. */
320 static void kvmppc_gfn_shared(unsigned long gfn, struct kvm *kvm)
321 {
322 	kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_SHARED, 0);
323 }
324 
325 /* mark the GFN as a non-existent GFN. */
326 static void kvmppc_gfn_remove(unsigned long gfn, struct kvm *kvm)
327 {
328 	kvmppc_mark_gfn(gfn, kvm, 0, 0);
329 }
330 
331 /* return true, if the GFN is a secure-GFN backed by a secure-PFN */
332 static bool kvmppc_gfn_is_uvmem_pfn(unsigned long gfn, struct kvm *kvm,
333 				    unsigned long *uvmem_pfn)
334 {
335 	struct kvmppc_uvmem_slot *p;
336 
337 	list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) {
338 		if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) {
339 			unsigned long index = gfn - p->base_pfn;
340 
341 			if (p->pfns[index] & KVMPPC_GFN_UVMEM_PFN) {
342 				if (uvmem_pfn)
343 					*uvmem_pfn = p->pfns[index] &
344 						     KVMPPC_GFN_PFN_MASK;
345 				return true;
346 			} else
347 				return false;
348 		}
349 	}
350 	return false;
351 }
352 
353 /*
354  * starting from *gfn search for the next available GFN that is not yet
355  * transitioned to a secure GFN.  return the value of that GFN in *gfn.  If a
356  * GFN is found, return true, else return false
357  *
358  * Must be called with kvm->arch.uvmem_lock  held.
359  */
360 static bool kvmppc_next_nontransitioned_gfn(const struct kvm_memory_slot *memslot,
361 		struct kvm *kvm, unsigned long *gfn)
362 {
363 	struct kvmppc_uvmem_slot *p;
364 	bool ret = false;
365 	unsigned long i;
366 
367 	list_for_each_entry(p, &kvm->arch.uvmem_pfns, list)
368 		if (*gfn >= p->base_pfn && *gfn < p->base_pfn + p->nr_pfns)
369 			break;
370 	if (!p)
371 		return ret;
372 	/*
373 	 * The code below assumes, one to one correspondence between
374 	 * kvmppc_uvmem_slot and memslot.
375 	 */
376 	for (i = *gfn; i < p->base_pfn + p->nr_pfns; i++) {
377 		unsigned long index = i - p->base_pfn;
378 
379 		if (!(p->pfns[index] & KVMPPC_GFN_FLAG_MASK)) {
380 			*gfn = i;
381 			ret = true;
382 			break;
383 		}
384 	}
385 	return ret;
386 }
387 
388 static int kvmppc_memslot_page_merge(struct kvm *kvm,
389 		const struct kvm_memory_slot *memslot, bool merge)
390 {
391 	unsigned long gfn = memslot->base_gfn;
392 	unsigned long end, start = gfn_to_hva(kvm, gfn);
393 	int ret = 0;
394 	struct vm_area_struct *vma;
395 	int merge_flag = (merge) ? MADV_MERGEABLE : MADV_UNMERGEABLE;
396 
397 	if (kvm_is_error_hva(start))
398 		return H_STATE;
399 
400 	end = start + (memslot->npages << PAGE_SHIFT);
401 
402 	mmap_write_lock(kvm->mm);
403 	do {
404 		vma = find_vma_intersection(kvm->mm, start, end);
405 		if (!vma) {
406 			ret = H_STATE;
407 			break;
408 		}
409 		ret = ksm_madvise(vma, vma->vm_start, vma->vm_end,
410 			  merge_flag, &vma->vm_flags);
411 		if (ret) {
412 			ret = H_STATE;
413 			break;
414 		}
415 		start = vma->vm_end;
416 	} while (end > vma->vm_end);
417 
418 	mmap_write_unlock(kvm->mm);
419 	return ret;
420 }
421 
422 static void __kvmppc_uvmem_memslot_delete(struct kvm *kvm,
423 		const struct kvm_memory_slot *memslot)
424 {
425 	uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
426 	kvmppc_uvmem_slot_free(kvm, memslot);
427 	kvmppc_memslot_page_merge(kvm, memslot, true);
428 }
429 
430 static int __kvmppc_uvmem_memslot_create(struct kvm *kvm,
431 		const struct kvm_memory_slot *memslot)
432 {
433 	int ret = H_PARAMETER;
434 
435 	if (kvmppc_memslot_page_merge(kvm, memslot, false))
436 		return ret;
437 
438 	if (kvmppc_uvmem_slot_init(kvm, memslot))
439 		goto out1;
440 
441 	ret = uv_register_mem_slot(kvm->arch.lpid,
442 				   memslot->base_gfn << PAGE_SHIFT,
443 				   memslot->npages * PAGE_SIZE,
444 				   0, memslot->id);
445 	if (ret < 0) {
446 		ret = H_PARAMETER;
447 		goto out;
448 	}
449 	return 0;
450 out:
451 	kvmppc_uvmem_slot_free(kvm, memslot);
452 out1:
453 	kvmppc_memslot_page_merge(kvm, memslot, true);
454 	return ret;
455 }
456 
457 unsigned long kvmppc_h_svm_init_start(struct kvm *kvm)
458 {
459 	struct kvm_memslots *slots;
460 	struct kvm_memory_slot *memslot, *m;
461 	int ret = H_SUCCESS;
462 	int srcu_idx, bkt;
463 
464 	kvm->arch.secure_guest = KVMPPC_SECURE_INIT_START;
465 
466 	if (!kvmppc_uvmem_bitmap)
467 		return H_UNSUPPORTED;
468 
469 	/* Only radix guests can be secure guests */
470 	if (!kvm_is_radix(kvm))
471 		return H_UNSUPPORTED;
472 
473 	/* NAK the transition to secure if not enabled */
474 	if (!kvm->arch.svm_enabled)
475 		return H_AUTHORITY;
476 
477 	srcu_idx = srcu_read_lock(&kvm->srcu);
478 
479 	/* register the memslot */
480 	slots = kvm_memslots(kvm);
481 	kvm_for_each_memslot(memslot, bkt, slots) {
482 		ret = __kvmppc_uvmem_memslot_create(kvm, memslot);
483 		if (ret)
484 			break;
485 	}
486 
487 	if (ret) {
488 		slots = kvm_memslots(kvm);
489 		kvm_for_each_memslot(m, bkt, slots) {
490 			if (m == memslot)
491 				break;
492 			__kvmppc_uvmem_memslot_delete(kvm, memslot);
493 		}
494 	}
495 
496 	srcu_read_unlock(&kvm->srcu, srcu_idx);
497 	return ret;
498 }
499 
500 /*
501  * Provision a new page on HV side and copy over the contents
502  * from secure memory using UV_PAGE_OUT uvcall.
503  * Caller must held kvm->arch.uvmem_lock.
504  */
505 static int __kvmppc_svm_page_out(struct vm_area_struct *vma,
506 		unsigned long start,
507 		unsigned long end, unsigned long page_shift,
508 		struct kvm *kvm, unsigned long gpa)
509 {
510 	unsigned long src_pfn, dst_pfn = 0;
511 	struct migrate_vma mig;
512 	struct page *dpage, *spage;
513 	struct kvmppc_uvmem_page_pvt *pvt;
514 	unsigned long pfn;
515 	int ret = U_SUCCESS;
516 
517 	memset(&mig, 0, sizeof(mig));
518 	mig.vma = vma;
519 	mig.start = start;
520 	mig.end = end;
521 	mig.src = &src_pfn;
522 	mig.dst = &dst_pfn;
523 	mig.pgmap_owner = &kvmppc_uvmem_pgmap;
524 	mig.flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE;
525 
526 	/* The requested page is already paged-out, nothing to do */
527 	if (!kvmppc_gfn_is_uvmem_pfn(gpa >> page_shift, kvm, NULL))
528 		return ret;
529 
530 	ret = migrate_vma_setup(&mig);
531 	if (ret)
532 		return -1;
533 
534 	spage = migrate_pfn_to_page(*mig.src);
535 	if (!spage || !(*mig.src & MIGRATE_PFN_MIGRATE))
536 		goto out_finalize;
537 
538 	if (!is_zone_device_page(spage))
539 		goto out_finalize;
540 
541 	dpage = alloc_page_vma(GFP_HIGHUSER, vma, start);
542 	if (!dpage) {
543 		ret = -1;
544 		goto out_finalize;
545 	}
546 
547 	lock_page(dpage);
548 	pvt = spage->zone_device_data;
549 	pfn = page_to_pfn(dpage);
550 
551 	/*
552 	 * This function is used in two cases:
553 	 * - When HV touches a secure page, for which we do UV_PAGE_OUT
554 	 * - When a secure page is converted to shared page, we *get*
555 	 *   the page to essentially unmap the device page. In this
556 	 *   case we skip page-out.
557 	 */
558 	if (!pvt->skip_page_out)
559 		ret = uv_page_out(kvm->arch.lpid, pfn << page_shift,
560 				  gpa, 0, page_shift);
561 
562 	if (ret == U_SUCCESS)
563 		*mig.dst = migrate_pfn(pfn);
564 	else {
565 		unlock_page(dpage);
566 		__free_page(dpage);
567 		goto out_finalize;
568 	}
569 
570 	migrate_vma_pages(&mig);
571 
572 out_finalize:
573 	migrate_vma_finalize(&mig);
574 	return ret;
575 }
576 
577 static inline int kvmppc_svm_page_out(struct vm_area_struct *vma,
578 				      unsigned long start, unsigned long end,
579 				      unsigned long page_shift,
580 				      struct kvm *kvm, unsigned long gpa)
581 {
582 	int ret;
583 
584 	mutex_lock(&kvm->arch.uvmem_lock);
585 	ret = __kvmppc_svm_page_out(vma, start, end, page_shift, kvm, gpa);
586 	mutex_unlock(&kvm->arch.uvmem_lock);
587 
588 	return ret;
589 }
590 
591 /*
592  * Drop device pages that we maintain for the secure guest
593  *
594  * We first mark the pages to be skipped from UV_PAGE_OUT when there
595  * is HV side fault on these pages. Next we *get* these pages, forcing
596  * fault on them, do fault time migration to replace the device PTEs in
597  * QEMU page table with normal PTEs from newly allocated pages.
598  */
599 void kvmppc_uvmem_drop_pages(const struct kvm_memory_slot *slot,
600 			     struct kvm *kvm, bool skip_page_out)
601 {
602 	int i;
603 	struct kvmppc_uvmem_page_pvt *pvt;
604 	struct page *uvmem_page;
605 	struct vm_area_struct *vma = NULL;
606 	unsigned long uvmem_pfn, gfn;
607 	unsigned long addr;
608 
609 	mmap_read_lock(kvm->mm);
610 
611 	addr = slot->userspace_addr;
612 
613 	gfn = slot->base_gfn;
614 	for (i = slot->npages; i; --i, ++gfn, addr += PAGE_SIZE) {
615 
616 		/* Fetch the VMA if addr is not in the latest fetched one */
617 		if (!vma || addr >= vma->vm_end) {
618 			vma = vma_lookup(kvm->mm, addr);
619 			if (!vma) {
620 				pr_err("Can't find VMA for gfn:0x%lx\n", gfn);
621 				break;
622 			}
623 		}
624 
625 		mutex_lock(&kvm->arch.uvmem_lock);
626 
627 		if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
628 			uvmem_page = pfn_to_page(uvmem_pfn);
629 			pvt = uvmem_page->zone_device_data;
630 			pvt->skip_page_out = skip_page_out;
631 			pvt->remove_gfn = true;
632 
633 			if (__kvmppc_svm_page_out(vma, addr, addr + PAGE_SIZE,
634 						  PAGE_SHIFT, kvm, pvt->gpa))
635 				pr_err("Can't page out gpa:0x%lx addr:0x%lx\n",
636 				       pvt->gpa, addr);
637 		} else {
638 			/* Remove the shared flag if any */
639 			kvmppc_gfn_remove(gfn, kvm);
640 		}
641 
642 		mutex_unlock(&kvm->arch.uvmem_lock);
643 	}
644 
645 	mmap_read_unlock(kvm->mm);
646 }
647 
648 unsigned long kvmppc_h_svm_init_abort(struct kvm *kvm)
649 {
650 	int srcu_idx, bkt;
651 	struct kvm_memory_slot *memslot;
652 
653 	/*
654 	 * Expect to be called only after INIT_START and before INIT_DONE.
655 	 * If INIT_DONE was completed, use normal VM termination sequence.
656 	 */
657 	if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
658 		return H_UNSUPPORTED;
659 
660 	if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE)
661 		return H_STATE;
662 
663 	srcu_idx = srcu_read_lock(&kvm->srcu);
664 
665 	kvm_for_each_memslot(memslot, bkt, kvm_memslots(kvm))
666 		kvmppc_uvmem_drop_pages(memslot, kvm, false);
667 
668 	srcu_read_unlock(&kvm->srcu, srcu_idx);
669 
670 	kvm->arch.secure_guest = 0;
671 	uv_svm_terminate(kvm->arch.lpid);
672 
673 	return H_PARAMETER;
674 }
675 
676 /*
677  * Get a free device PFN from the pool
678  *
679  * Called when a normal page is moved to secure memory (UV_PAGE_IN). Device
680  * PFN will be used to keep track of the secure page on HV side.
681  *
682  * Called with kvm->arch.uvmem_lock held
683  */
684 static struct page *kvmppc_uvmem_get_page(unsigned long gpa, struct kvm *kvm)
685 {
686 	struct page *dpage = NULL;
687 	unsigned long bit, uvmem_pfn;
688 	struct kvmppc_uvmem_page_pvt *pvt;
689 	unsigned long pfn_last, pfn_first;
690 
691 	pfn_first = kvmppc_uvmem_pgmap.range.start >> PAGE_SHIFT;
692 	pfn_last = pfn_first +
693 		   (range_len(&kvmppc_uvmem_pgmap.range) >> PAGE_SHIFT);
694 
695 	spin_lock(&kvmppc_uvmem_bitmap_lock);
696 	bit = find_first_zero_bit(kvmppc_uvmem_bitmap,
697 				  pfn_last - pfn_first);
698 	if (bit >= (pfn_last - pfn_first))
699 		goto out;
700 	bitmap_set(kvmppc_uvmem_bitmap, bit, 1);
701 	spin_unlock(&kvmppc_uvmem_bitmap_lock);
702 
703 	pvt = kzalloc(sizeof(*pvt), GFP_KERNEL);
704 	if (!pvt)
705 		goto out_clear;
706 
707 	uvmem_pfn = bit + pfn_first;
708 	kvmppc_gfn_secure_uvmem_pfn(gpa >> PAGE_SHIFT, uvmem_pfn, kvm);
709 
710 	pvt->gpa = gpa;
711 	pvt->kvm = kvm;
712 
713 	dpage = pfn_to_page(uvmem_pfn);
714 	dpage->zone_device_data = pvt;
715 	get_page(dpage);
716 	lock_page(dpage);
717 	return dpage;
718 out_clear:
719 	spin_lock(&kvmppc_uvmem_bitmap_lock);
720 	bitmap_clear(kvmppc_uvmem_bitmap, bit, 1);
721 out:
722 	spin_unlock(&kvmppc_uvmem_bitmap_lock);
723 	return NULL;
724 }
725 
726 /*
727  * Alloc a PFN from private device memory pool. If @pagein is true,
728  * copy page from normal memory to secure memory using UV_PAGE_IN uvcall.
729  */
730 static int kvmppc_svm_page_in(struct vm_area_struct *vma,
731 		unsigned long start,
732 		unsigned long end, unsigned long gpa, struct kvm *kvm,
733 		unsigned long page_shift,
734 		bool pagein)
735 {
736 	unsigned long src_pfn, dst_pfn = 0;
737 	struct migrate_vma mig;
738 	struct page *spage;
739 	unsigned long pfn;
740 	struct page *dpage;
741 	int ret = 0;
742 
743 	memset(&mig, 0, sizeof(mig));
744 	mig.vma = vma;
745 	mig.start = start;
746 	mig.end = end;
747 	mig.src = &src_pfn;
748 	mig.dst = &dst_pfn;
749 	mig.flags = MIGRATE_VMA_SELECT_SYSTEM;
750 
751 	ret = migrate_vma_setup(&mig);
752 	if (ret)
753 		return ret;
754 
755 	if (!(*mig.src & MIGRATE_PFN_MIGRATE)) {
756 		ret = -1;
757 		goto out_finalize;
758 	}
759 
760 	dpage = kvmppc_uvmem_get_page(gpa, kvm);
761 	if (!dpage) {
762 		ret = -1;
763 		goto out_finalize;
764 	}
765 
766 	if (pagein) {
767 		pfn = *mig.src >> MIGRATE_PFN_SHIFT;
768 		spage = migrate_pfn_to_page(*mig.src);
769 		if (spage) {
770 			ret = uv_page_in(kvm->arch.lpid, pfn << page_shift,
771 					gpa, 0, page_shift);
772 			if (ret)
773 				goto out_finalize;
774 		}
775 	}
776 
777 	*mig.dst = migrate_pfn(page_to_pfn(dpage));
778 	migrate_vma_pages(&mig);
779 out_finalize:
780 	migrate_vma_finalize(&mig);
781 	return ret;
782 }
783 
784 static int kvmppc_uv_migrate_mem_slot(struct kvm *kvm,
785 		const struct kvm_memory_slot *memslot)
786 {
787 	unsigned long gfn = memslot->base_gfn;
788 	struct vm_area_struct *vma;
789 	unsigned long start, end;
790 	int ret = 0;
791 
792 	mmap_read_lock(kvm->mm);
793 	mutex_lock(&kvm->arch.uvmem_lock);
794 	while (kvmppc_next_nontransitioned_gfn(memslot, kvm, &gfn)) {
795 		ret = H_STATE;
796 		start = gfn_to_hva(kvm, gfn);
797 		if (kvm_is_error_hva(start))
798 			break;
799 
800 		end = start + (1UL << PAGE_SHIFT);
801 		vma = find_vma_intersection(kvm->mm, start, end);
802 		if (!vma || vma->vm_start > start || vma->vm_end < end)
803 			break;
804 
805 		ret = kvmppc_svm_page_in(vma, start, end,
806 				(gfn << PAGE_SHIFT), kvm, PAGE_SHIFT, false);
807 		if (ret) {
808 			ret = H_STATE;
809 			break;
810 		}
811 
812 		/* relinquish the cpu if needed */
813 		cond_resched();
814 	}
815 	mutex_unlock(&kvm->arch.uvmem_lock);
816 	mmap_read_unlock(kvm->mm);
817 	return ret;
818 }
819 
820 unsigned long kvmppc_h_svm_init_done(struct kvm *kvm)
821 {
822 	struct kvm_memslots *slots;
823 	struct kvm_memory_slot *memslot;
824 	int srcu_idx, bkt;
825 	long ret = H_SUCCESS;
826 
827 	if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
828 		return H_UNSUPPORTED;
829 
830 	/* migrate any unmoved normal pfn to device pfns*/
831 	srcu_idx = srcu_read_lock(&kvm->srcu);
832 	slots = kvm_memslots(kvm);
833 	kvm_for_each_memslot(memslot, bkt, slots) {
834 		ret = kvmppc_uv_migrate_mem_slot(kvm, memslot);
835 		if (ret) {
836 			/*
837 			 * The pages will remain transitioned.
838 			 * Its the callers responsibility to
839 			 * terminate the VM, which will undo
840 			 * all state of the VM. Till then
841 			 * this VM is in a erroneous state.
842 			 * Its KVMPPC_SECURE_INIT_DONE will
843 			 * remain unset.
844 			 */
845 			ret = H_STATE;
846 			goto out;
847 		}
848 	}
849 
850 	kvm->arch.secure_guest |= KVMPPC_SECURE_INIT_DONE;
851 	pr_info("LPID %d went secure\n", kvm->arch.lpid);
852 
853 out:
854 	srcu_read_unlock(&kvm->srcu, srcu_idx);
855 	return ret;
856 }
857 
858 /*
859  * Shares the page with HV, thus making it a normal page.
860  *
861  * - If the page is already secure, then provision a new page and share
862  * - If the page is a normal page, share the existing page
863  *
864  * In the former case, uses dev_pagemap_ops.migrate_to_ram handler
865  * to unmap the device page from QEMU's page tables.
866  */
867 static unsigned long kvmppc_share_page(struct kvm *kvm, unsigned long gpa,
868 		unsigned long page_shift)
869 {
870 
871 	int ret = H_PARAMETER;
872 	struct page *uvmem_page;
873 	struct kvmppc_uvmem_page_pvt *pvt;
874 	unsigned long pfn;
875 	unsigned long gfn = gpa >> page_shift;
876 	int srcu_idx;
877 	unsigned long uvmem_pfn;
878 
879 	srcu_idx = srcu_read_lock(&kvm->srcu);
880 	mutex_lock(&kvm->arch.uvmem_lock);
881 	if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
882 		uvmem_page = pfn_to_page(uvmem_pfn);
883 		pvt = uvmem_page->zone_device_data;
884 		pvt->skip_page_out = true;
885 		/*
886 		 * do not drop the GFN. It is a valid GFN
887 		 * that is transitioned to a shared GFN.
888 		 */
889 		pvt->remove_gfn = false;
890 	}
891 
892 retry:
893 	mutex_unlock(&kvm->arch.uvmem_lock);
894 	pfn = gfn_to_pfn(kvm, gfn);
895 	if (is_error_noslot_pfn(pfn))
896 		goto out;
897 
898 	mutex_lock(&kvm->arch.uvmem_lock);
899 	if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
900 		uvmem_page = pfn_to_page(uvmem_pfn);
901 		pvt = uvmem_page->zone_device_data;
902 		pvt->skip_page_out = true;
903 		pvt->remove_gfn = false; /* it continues to be a valid GFN */
904 		kvm_release_pfn_clean(pfn);
905 		goto retry;
906 	}
907 
908 	if (!uv_page_in(kvm->arch.lpid, pfn << page_shift, gpa, 0,
909 				page_shift)) {
910 		kvmppc_gfn_shared(gfn, kvm);
911 		ret = H_SUCCESS;
912 	}
913 	kvm_release_pfn_clean(pfn);
914 	mutex_unlock(&kvm->arch.uvmem_lock);
915 out:
916 	srcu_read_unlock(&kvm->srcu, srcu_idx);
917 	return ret;
918 }
919 
920 /*
921  * H_SVM_PAGE_IN: Move page from normal memory to secure memory.
922  *
923  * H_PAGE_IN_SHARED flag makes the page shared which means that the same
924  * memory in is visible from both UV and HV.
925  */
926 unsigned long kvmppc_h_svm_page_in(struct kvm *kvm, unsigned long gpa,
927 		unsigned long flags,
928 		unsigned long page_shift)
929 {
930 	unsigned long start, end;
931 	struct vm_area_struct *vma;
932 	int srcu_idx;
933 	unsigned long gfn = gpa >> page_shift;
934 	int ret;
935 
936 	if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
937 		return H_UNSUPPORTED;
938 
939 	if (page_shift != PAGE_SHIFT)
940 		return H_P3;
941 
942 	if (flags & ~H_PAGE_IN_SHARED)
943 		return H_P2;
944 
945 	if (flags & H_PAGE_IN_SHARED)
946 		return kvmppc_share_page(kvm, gpa, page_shift);
947 
948 	ret = H_PARAMETER;
949 	srcu_idx = srcu_read_lock(&kvm->srcu);
950 	mmap_read_lock(kvm->mm);
951 
952 	start = gfn_to_hva(kvm, gfn);
953 	if (kvm_is_error_hva(start))
954 		goto out;
955 
956 	mutex_lock(&kvm->arch.uvmem_lock);
957 	/* Fail the page-in request of an already paged-in page */
958 	if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, NULL))
959 		goto out_unlock;
960 
961 	end = start + (1UL << page_shift);
962 	vma = find_vma_intersection(kvm->mm, start, end);
963 	if (!vma || vma->vm_start > start || vma->vm_end < end)
964 		goto out_unlock;
965 
966 	if (kvmppc_svm_page_in(vma, start, end, gpa, kvm, page_shift,
967 				true))
968 		goto out_unlock;
969 
970 	ret = H_SUCCESS;
971 
972 out_unlock:
973 	mutex_unlock(&kvm->arch.uvmem_lock);
974 out:
975 	mmap_read_unlock(kvm->mm);
976 	srcu_read_unlock(&kvm->srcu, srcu_idx);
977 	return ret;
978 }
979 
980 
981 /*
982  * Fault handler callback that gets called when HV touches any page that
983  * has been moved to secure memory, we ask UV to give back the page by
984  * issuing UV_PAGE_OUT uvcall.
985  *
986  * This eventually results in dropping of device PFN and the newly
987  * provisioned page/PFN gets populated in QEMU page tables.
988  */
989 static vm_fault_t kvmppc_uvmem_migrate_to_ram(struct vm_fault *vmf)
990 {
991 	struct kvmppc_uvmem_page_pvt *pvt = vmf->page->zone_device_data;
992 
993 	if (kvmppc_svm_page_out(vmf->vma, vmf->address,
994 				vmf->address + PAGE_SIZE, PAGE_SHIFT,
995 				pvt->kvm, pvt->gpa))
996 		return VM_FAULT_SIGBUS;
997 	else
998 		return 0;
999 }
1000 
1001 /*
1002  * Release the device PFN back to the pool
1003  *
1004  * Gets called when secure GFN tranistions from a secure-PFN
1005  * to a normal PFN during H_SVM_PAGE_OUT.
1006  * Gets called with kvm->arch.uvmem_lock held.
1007  */
1008 static void kvmppc_uvmem_page_free(struct page *page)
1009 {
1010 	unsigned long pfn = page_to_pfn(page) -
1011 			(kvmppc_uvmem_pgmap.range.start >> PAGE_SHIFT);
1012 	struct kvmppc_uvmem_page_pvt *pvt;
1013 
1014 	spin_lock(&kvmppc_uvmem_bitmap_lock);
1015 	bitmap_clear(kvmppc_uvmem_bitmap, pfn, 1);
1016 	spin_unlock(&kvmppc_uvmem_bitmap_lock);
1017 
1018 	pvt = page->zone_device_data;
1019 	page->zone_device_data = NULL;
1020 	if (pvt->remove_gfn)
1021 		kvmppc_gfn_remove(pvt->gpa >> PAGE_SHIFT, pvt->kvm);
1022 	else
1023 		kvmppc_gfn_secure_mem_pfn(pvt->gpa >> PAGE_SHIFT, pvt->kvm);
1024 	kfree(pvt);
1025 }
1026 
1027 static const struct dev_pagemap_ops kvmppc_uvmem_ops = {
1028 	.page_free = kvmppc_uvmem_page_free,
1029 	.migrate_to_ram	= kvmppc_uvmem_migrate_to_ram,
1030 };
1031 
1032 /*
1033  * H_SVM_PAGE_OUT: Move page from secure memory to normal memory.
1034  */
1035 unsigned long
1036 kvmppc_h_svm_page_out(struct kvm *kvm, unsigned long gpa,
1037 		      unsigned long flags, unsigned long page_shift)
1038 {
1039 	unsigned long gfn = gpa >> page_shift;
1040 	unsigned long start, end;
1041 	struct vm_area_struct *vma;
1042 	int srcu_idx;
1043 	int ret;
1044 
1045 	if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
1046 		return H_UNSUPPORTED;
1047 
1048 	if (page_shift != PAGE_SHIFT)
1049 		return H_P3;
1050 
1051 	if (flags)
1052 		return H_P2;
1053 
1054 	ret = H_PARAMETER;
1055 	srcu_idx = srcu_read_lock(&kvm->srcu);
1056 	mmap_read_lock(kvm->mm);
1057 	start = gfn_to_hva(kvm, gfn);
1058 	if (kvm_is_error_hva(start))
1059 		goto out;
1060 
1061 	end = start + (1UL << page_shift);
1062 	vma = find_vma_intersection(kvm->mm, start, end);
1063 	if (!vma || vma->vm_start > start || vma->vm_end < end)
1064 		goto out;
1065 
1066 	if (!kvmppc_svm_page_out(vma, start, end, page_shift, kvm, gpa))
1067 		ret = H_SUCCESS;
1068 out:
1069 	mmap_read_unlock(kvm->mm);
1070 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1071 	return ret;
1072 }
1073 
1074 int kvmppc_send_page_to_uv(struct kvm *kvm, unsigned long gfn)
1075 {
1076 	unsigned long pfn;
1077 	int ret = U_SUCCESS;
1078 
1079 	pfn = gfn_to_pfn(kvm, gfn);
1080 	if (is_error_noslot_pfn(pfn))
1081 		return -EFAULT;
1082 
1083 	mutex_lock(&kvm->arch.uvmem_lock);
1084 	if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, NULL))
1085 		goto out;
1086 
1087 	ret = uv_page_in(kvm->arch.lpid, pfn << PAGE_SHIFT, gfn << PAGE_SHIFT,
1088 			 0, PAGE_SHIFT);
1089 out:
1090 	kvm_release_pfn_clean(pfn);
1091 	mutex_unlock(&kvm->arch.uvmem_lock);
1092 	return (ret == U_SUCCESS) ? RESUME_GUEST : -EFAULT;
1093 }
1094 
1095 int kvmppc_uvmem_memslot_create(struct kvm *kvm, const struct kvm_memory_slot *new)
1096 {
1097 	int ret = __kvmppc_uvmem_memslot_create(kvm, new);
1098 
1099 	if (!ret)
1100 		ret = kvmppc_uv_migrate_mem_slot(kvm, new);
1101 
1102 	return ret;
1103 }
1104 
1105 void kvmppc_uvmem_memslot_delete(struct kvm *kvm, const struct kvm_memory_slot *old)
1106 {
1107 	__kvmppc_uvmem_memslot_delete(kvm, old);
1108 }
1109 
1110 static u64 kvmppc_get_secmem_size(void)
1111 {
1112 	struct device_node *np;
1113 	int i, len;
1114 	const __be32 *prop;
1115 	u64 size = 0;
1116 
1117 	/*
1118 	 * First try the new ibm,secure-memory nodes which supersede the
1119 	 * secure-memory-ranges property.
1120 	 * If we found some, no need to read the deprecated ones.
1121 	 */
1122 	for_each_compatible_node(np, NULL, "ibm,secure-memory") {
1123 		prop = of_get_property(np, "reg", &len);
1124 		if (!prop)
1125 			continue;
1126 		size += of_read_number(prop + 2, 2);
1127 	}
1128 	if (size)
1129 		return size;
1130 
1131 	np = of_find_compatible_node(NULL, NULL, "ibm,uv-firmware");
1132 	if (!np)
1133 		goto out;
1134 
1135 	prop = of_get_property(np, "secure-memory-ranges", &len);
1136 	if (!prop)
1137 		goto out_put;
1138 
1139 	for (i = 0; i < len / (sizeof(*prop) * 4); i++)
1140 		size += of_read_number(prop + (i * 4) + 2, 2);
1141 
1142 out_put:
1143 	of_node_put(np);
1144 out:
1145 	return size;
1146 }
1147 
1148 int kvmppc_uvmem_init(void)
1149 {
1150 	int ret = 0;
1151 	unsigned long size;
1152 	struct resource *res;
1153 	void *addr;
1154 	unsigned long pfn_last, pfn_first;
1155 
1156 	size = kvmppc_get_secmem_size();
1157 	if (!size) {
1158 		/*
1159 		 * Don't fail the initialization of kvm-hv module if
1160 		 * the platform doesn't export ibm,uv-firmware node.
1161 		 * Let normal guests run on such PEF-disabled platform.
1162 		 */
1163 		pr_info("KVMPPC-UVMEM: No support for secure guests\n");
1164 		goto out;
1165 	}
1166 
1167 	res = request_free_mem_region(&iomem_resource, size, "kvmppc_uvmem");
1168 	if (IS_ERR(res)) {
1169 		ret = PTR_ERR(res);
1170 		goto out;
1171 	}
1172 
1173 	kvmppc_uvmem_pgmap.type = MEMORY_DEVICE_PRIVATE;
1174 	kvmppc_uvmem_pgmap.range.start = res->start;
1175 	kvmppc_uvmem_pgmap.range.end = res->end;
1176 	kvmppc_uvmem_pgmap.nr_range = 1;
1177 	kvmppc_uvmem_pgmap.ops = &kvmppc_uvmem_ops;
1178 	/* just one global instance: */
1179 	kvmppc_uvmem_pgmap.owner = &kvmppc_uvmem_pgmap;
1180 	addr = memremap_pages(&kvmppc_uvmem_pgmap, NUMA_NO_NODE);
1181 	if (IS_ERR(addr)) {
1182 		ret = PTR_ERR(addr);
1183 		goto out_free_region;
1184 	}
1185 
1186 	pfn_first = res->start >> PAGE_SHIFT;
1187 	pfn_last = pfn_first + (resource_size(res) >> PAGE_SHIFT);
1188 	kvmppc_uvmem_bitmap = kcalloc(BITS_TO_LONGS(pfn_last - pfn_first),
1189 				      sizeof(unsigned long), GFP_KERNEL);
1190 	if (!kvmppc_uvmem_bitmap) {
1191 		ret = -ENOMEM;
1192 		goto out_unmap;
1193 	}
1194 
1195 	pr_info("KVMPPC-UVMEM: Secure Memory size 0x%lx\n", size);
1196 	return ret;
1197 out_unmap:
1198 	memunmap_pages(&kvmppc_uvmem_pgmap);
1199 out_free_region:
1200 	release_mem_region(res->start, size);
1201 out:
1202 	return ret;
1203 }
1204 
1205 void kvmppc_uvmem_free(void)
1206 {
1207 	if (!kvmppc_uvmem_bitmap)
1208 		return;
1209 
1210 	memunmap_pages(&kvmppc_uvmem_pgmap);
1211 	release_mem_region(kvmppc_uvmem_pgmap.range.start,
1212 			   range_len(&kvmppc_uvmem_pgmap.range));
1213 	kfree(kvmppc_uvmem_bitmap);
1214 }
1215