1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Secure pages management: Migration of pages between normal and secure 4 * memory of KVM guests. 5 * 6 * Copyright 2018 Bharata B Rao, IBM Corp. <bharata@linux.ibm.com> 7 */ 8 9 /* 10 * A pseries guest can be run as secure guest on Ultravisor-enabled 11 * POWER platforms. On such platforms, this driver will be used to manage 12 * the movement of guest pages between the normal memory managed by 13 * hypervisor (HV) and secure memory managed by Ultravisor (UV). 14 * 15 * The page-in or page-out requests from UV will come to HV as hcalls and 16 * HV will call back into UV via ultracalls to satisfy these page requests. 17 * 18 * Private ZONE_DEVICE memory equal to the amount of secure memory 19 * available in the platform for running secure guests is hotplugged. 20 * Whenever a page belonging to the guest becomes secure, a page from this 21 * private device memory is used to represent and track that secure page 22 * on the HV side. Some pages (like virtio buffers, VPA pages etc) are 23 * shared between UV and HV. However such pages aren't represented by 24 * device private memory and mappings to shared memory exist in both 25 * UV and HV page tables. 26 */ 27 28 /* 29 * Notes on locking 30 * 31 * kvm->arch.uvmem_lock is a per-guest lock that prevents concurrent 32 * page-in and page-out requests for the same GPA. Concurrent accesses 33 * can either come via UV (guest vCPUs requesting for same page) 34 * or when HV and guest simultaneously access the same page. 35 * This mutex serializes the migration of page from HV(normal) to 36 * UV(secure) and vice versa. So the serialization points are around 37 * migrate_vma routines and page-in/out routines. 38 * 39 * Per-guest mutex comes with a cost though. Mainly it serializes the 40 * fault path as page-out can occur when HV faults on accessing secure 41 * guest pages. Currently UV issues page-in requests for all the guest 42 * PFNs one at a time during early boot (UV_ESM uvcall), so this is 43 * not a cause for concern. Also currently the number of page-outs caused 44 * by HV touching secure pages is very very low. If an when UV supports 45 * overcommitting, then we might see concurrent guest driven page-outs. 46 * 47 * Locking order 48 * 49 * 1. kvm->srcu - Protects KVM memslots 50 * 2. kvm->mm->mmap_lock - find_vma, migrate_vma_pages and helpers, ksm_madvise 51 * 3. kvm->arch.uvmem_lock - protects read/writes to uvmem slots thus acting 52 * as sync-points for page-in/out 53 */ 54 55 /* 56 * Notes on page size 57 * 58 * Currently UV uses 2MB mappings internally, but will issue H_SVM_PAGE_IN 59 * and H_SVM_PAGE_OUT hcalls in PAGE_SIZE(64K) granularity. HV tracks 60 * secure GPAs at 64K page size and maintains one device PFN for each 61 * 64K secure GPA. UV_PAGE_IN and UV_PAGE_OUT calls by HV are also issued 62 * for 64K page at a time. 63 * 64 * HV faulting on secure pages: When HV touches any secure page, it 65 * faults and issues a UV_PAGE_OUT request with 64K page size. Currently 66 * UV splits and remaps the 2MB page if necessary and copies out the 67 * required 64K page contents. 68 * 69 * Shared pages: Whenever guest shares a secure page, UV will split and 70 * remap the 2MB page if required and issue H_SVM_PAGE_IN with 64K page size. 71 * 72 * HV invalidating a page: When a regular page belonging to secure 73 * guest gets unmapped, HV informs UV with UV_PAGE_INVAL of 64K 74 * page size. Using 64K page size is correct here because any non-secure 75 * page will essentially be of 64K page size. Splitting by UV during sharing 76 * and page-out ensures this. 77 * 78 * Page fault handling: When HV handles page fault of a page belonging 79 * to secure guest, it sends that to UV with a 64K UV_PAGE_IN request. 80 * Using 64K size is correct here too as UV would have split the 2MB page 81 * into 64k mappings and would have done page-outs earlier. 82 * 83 * In summary, the current secure pages handling code in HV assumes 84 * 64K page size and in fact fails any page-in/page-out requests of 85 * non-64K size upfront. If and when UV starts supporting multiple 86 * page-sizes, we need to break this assumption. 87 */ 88 89 #include <linux/pagemap.h> 90 #include <linux/migrate.h> 91 #include <linux/kvm_host.h> 92 #include <linux/ksm.h> 93 #include <asm/ultravisor.h> 94 #include <asm/mman.h> 95 #include <asm/kvm_ppc.h> 96 97 static struct dev_pagemap kvmppc_uvmem_pgmap; 98 static unsigned long *kvmppc_uvmem_bitmap; 99 static DEFINE_SPINLOCK(kvmppc_uvmem_bitmap_lock); 100 101 #define KVMPPC_UVMEM_PFN (1UL << 63) 102 103 struct kvmppc_uvmem_slot { 104 struct list_head list; 105 unsigned long nr_pfns; 106 unsigned long base_pfn; 107 unsigned long *pfns; 108 }; 109 110 struct kvmppc_uvmem_page_pvt { 111 struct kvm *kvm; 112 unsigned long gpa; 113 bool skip_page_out; 114 }; 115 116 bool kvmppc_uvmem_available(void) 117 { 118 /* 119 * If kvmppc_uvmem_bitmap != NULL, then there is an ultravisor 120 * and our data structures have been initialized successfully. 121 */ 122 return !!kvmppc_uvmem_bitmap; 123 } 124 125 int kvmppc_uvmem_slot_init(struct kvm *kvm, const struct kvm_memory_slot *slot) 126 { 127 struct kvmppc_uvmem_slot *p; 128 129 p = kzalloc(sizeof(*p), GFP_KERNEL); 130 if (!p) 131 return -ENOMEM; 132 p->pfns = vzalloc(array_size(slot->npages, sizeof(*p->pfns))); 133 if (!p->pfns) { 134 kfree(p); 135 return -ENOMEM; 136 } 137 p->nr_pfns = slot->npages; 138 p->base_pfn = slot->base_gfn; 139 140 mutex_lock(&kvm->arch.uvmem_lock); 141 list_add(&p->list, &kvm->arch.uvmem_pfns); 142 mutex_unlock(&kvm->arch.uvmem_lock); 143 144 return 0; 145 } 146 147 /* 148 * All device PFNs are already released by the time we come here. 149 */ 150 void kvmppc_uvmem_slot_free(struct kvm *kvm, const struct kvm_memory_slot *slot) 151 { 152 struct kvmppc_uvmem_slot *p, *next; 153 154 mutex_lock(&kvm->arch.uvmem_lock); 155 list_for_each_entry_safe(p, next, &kvm->arch.uvmem_pfns, list) { 156 if (p->base_pfn == slot->base_gfn) { 157 vfree(p->pfns); 158 list_del(&p->list); 159 kfree(p); 160 break; 161 } 162 } 163 mutex_unlock(&kvm->arch.uvmem_lock); 164 } 165 166 static void kvmppc_uvmem_pfn_insert(unsigned long gfn, unsigned long uvmem_pfn, 167 struct kvm *kvm) 168 { 169 struct kvmppc_uvmem_slot *p; 170 171 list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) { 172 if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) { 173 unsigned long index = gfn - p->base_pfn; 174 175 p->pfns[index] = uvmem_pfn | KVMPPC_UVMEM_PFN; 176 return; 177 } 178 } 179 } 180 181 static void kvmppc_uvmem_pfn_remove(unsigned long gfn, struct kvm *kvm) 182 { 183 struct kvmppc_uvmem_slot *p; 184 185 list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) { 186 if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) { 187 p->pfns[gfn - p->base_pfn] = 0; 188 return; 189 } 190 } 191 } 192 193 static bool kvmppc_gfn_is_uvmem_pfn(unsigned long gfn, struct kvm *kvm, 194 unsigned long *uvmem_pfn) 195 { 196 struct kvmppc_uvmem_slot *p; 197 198 list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) { 199 if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) { 200 unsigned long index = gfn - p->base_pfn; 201 202 if (p->pfns[index] & KVMPPC_UVMEM_PFN) { 203 if (uvmem_pfn) 204 *uvmem_pfn = p->pfns[index] & 205 ~KVMPPC_UVMEM_PFN; 206 return true; 207 } else 208 return false; 209 } 210 } 211 return false; 212 } 213 214 unsigned long kvmppc_h_svm_init_start(struct kvm *kvm) 215 { 216 struct kvm_memslots *slots; 217 struct kvm_memory_slot *memslot; 218 int ret = H_SUCCESS; 219 int srcu_idx; 220 221 kvm->arch.secure_guest = KVMPPC_SECURE_INIT_START; 222 223 if (!kvmppc_uvmem_bitmap) 224 return H_UNSUPPORTED; 225 226 /* Only radix guests can be secure guests */ 227 if (!kvm_is_radix(kvm)) 228 return H_UNSUPPORTED; 229 230 /* NAK the transition to secure if not enabled */ 231 if (!kvm->arch.svm_enabled) 232 return H_AUTHORITY; 233 234 srcu_idx = srcu_read_lock(&kvm->srcu); 235 slots = kvm_memslots(kvm); 236 kvm_for_each_memslot(memslot, slots) { 237 if (kvmppc_uvmem_slot_init(kvm, memslot)) { 238 ret = H_PARAMETER; 239 goto out; 240 } 241 ret = uv_register_mem_slot(kvm->arch.lpid, 242 memslot->base_gfn << PAGE_SHIFT, 243 memslot->npages * PAGE_SIZE, 244 0, memslot->id); 245 if (ret < 0) { 246 kvmppc_uvmem_slot_free(kvm, memslot); 247 ret = H_PARAMETER; 248 goto out; 249 } 250 } 251 out: 252 srcu_read_unlock(&kvm->srcu, srcu_idx); 253 return ret; 254 } 255 256 unsigned long kvmppc_h_svm_init_done(struct kvm *kvm) 257 { 258 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) 259 return H_UNSUPPORTED; 260 261 kvm->arch.secure_guest |= KVMPPC_SECURE_INIT_DONE; 262 pr_info("LPID %d went secure\n", kvm->arch.lpid); 263 return H_SUCCESS; 264 } 265 266 /* 267 * Drop device pages that we maintain for the secure guest 268 * 269 * We first mark the pages to be skipped from UV_PAGE_OUT when there 270 * is HV side fault on these pages. Next we *get* these pages, forcing 271 * fault on them, do fault time migration to replace the device PTEs in 272 * QEMU page table with normal PTEs from newly allocated pages. 273 */ 274 void kvmppc_uvmem_drop_pages(const struct kvm_memory_slot *free, 275 struct kvm *kvm, bool skip_page_out) 276 { 277 int i; 278 struct kvmppc_uvmem_page_pvt *pvt; 279 unsigned long pfn, uvmem_pfn; 280 unsigned long gfn = free->base_gfn; 281 282 for (i = free->npages; i; --i, ++gfn) { 283 struct page *uvmem_page; 284 285 mutex_lock(&kvm->arch.uvmem_lock); 286 if (!kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) { 287 mutex_unlock(&kvm->arch.uvmem_lock); 288 continue; 289 } 290 291 uvmem_page = pfn_to_page(uvmem_pfn); 292 pvt = uvmem_page->zone_device_data; 293 pvt->skip_page_out = skip_page_out; 294 mutex_unlock(&kvm->arch.uvmem_lock); 295 296 pfn = gfn_to_pfn(kvm, gfn); 297 if (is_error_noslot_pfn(pfn)) 298 continue; 299 kvm_release_pfn_clean(pfn); 300 } 301 } 302 303 unsigned long kvmppc_h_svm_init_abort(struct kvm *kvm) 304 { 305 int srcu_idx; 306 struct kvm_memory_slot *memslot; 307 308 /* 309 * Expect to be called only after INIT_START and before INIT_DONE. 310 * If INIT_DONE was completed, use normal VM termination sequence. 311 */ 312 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) 313 return H_UNSUPPORTED; 314 315 if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE) 316 return H_STATE; 317 318 srcu_idx = srcu_read_lock(&kvm->srcu); 319 320 kvm_for_each_memslot(memslot, kvm_memslots(kvm)) 321 kvmppc_uvmem_drop_pages(memslot, kvm, false); 322 323 srcu_read_unlock(&kvm->srcu, srcu_idx); 324 325 kvm->arch.secure_guest = 0; 326 uv_svm_terminate(kvm->arch.lpid); 327 328 return H_PARAMETER; 329 } 330 331 /* 332 * Get a free device PFN from the pool 333 * 334 * Called when a normal page is moved to secure memory (UV_PAGE_IN). Device 335 * PFN will be used to keep track of the secure page on HV side. 336 * 337 * Called with kvm->arch.uvmem_lock held 338 */ 339 static struct page *kvmppc_uvmem_get_page(unsigned long gpa, struct kvm *kvm) 340 { 341 struct page *dpage = NULL; 342 unsigned long bit, uvmem_pfn; 343 struct kvmppc_uvmem_page_pvt *pvt; 344 unsigned long pfn_last, pfn_first; 345 346 pfn_first = kvmppc_uvmem_pgmap.res.start >> PAGE_SHIFT; 347 pfn_last = pfn_first + 348 (resource_size(&kvmppc_uvmem_pgmap.res) >> PAGE_SHIFT); 349 350 spin_lock(&kvmppc_uvmem_bitmap_lock); 351 bit = find_first_zero_bit(kvmppc_uvmem_bitmap, 352 pfn_last - pfn_first); 353 if (bit >= (pfn_last - pfn_first)) 354 goto out; 355 bitmap_set(kvmppc_uvmem_bitmap, bit, 1); 356 spin_unlock(&kvmppc_uvmem_bitmap_lock); 357 358 pvt = kzalloc(sizeof(*pvt), GFP_KERNEL); 359 if (!pvt) 360 goto out_clear; 361 362 uvmem_pfn = bit + pfn_first; 363 kvmppc_uvmem_pfn_insert(gpa >> PAGE_SHIFT, uvmem_pfn, kvm); 364 365 pvt->gpa = gpa; 366 pvt->kvm = kvm; 367 368 dpage = pfn_to_page(uvmem_pfn); 369 dpage->zone_device_data = pvt; 370 get_page(dpage); 371 lock_page(dpage); 372 return dpage; 373 out_clear: 374 spin_lock(&kvmppc_uvmem_bitmap_lock); 375 bitmap_clear(kvmppc_uvmem_bitmap, bit, 1); 376 out: 377 spin_unlock(&kvmppc_uvmem_bitmap_lock); 378 return NULL; 379 } 380 381 /* 382 * Alloc a PFN from private device memory pool and copy page from normal 383 * memory to secure memory using UV_PAGE_IN uvcall. 384 */ 385 static int 386 kvmppc_svm_page_in(struct vm_area_struct *vma, unsigned long start, 387 unsigned long end, unsigned long gpa, struct kvm *kvm, 388 unsigned long page_shift, bool *downgrade) 389 { 390 unsigned long src_pfn, dst_pfn = 0; 391 struct migrate_vma mig; 392 struct page *spage; 393 unsigned long pfn; 394 struct page *dpage; 395 int ret = 0; 396 397 memset(&mig, 0, sizeof(mig)); 398 mig.vma = vma; 399 mig.start = start; 400 mig.end = end; 401 mig.src = &src_pfn; 402 mig.dst = &dst_pfn; 403 404 /* 405 * We come here with mmap_lock write lock held just for 406 * ksm_madvise(), otherwise we only need read mmap_lock. 407 * Hence downgrade to read lock once ksm_madvise() is done. 408 */ 409 ret = ksm_madvise(vma, vma->vm_start, vma->vm_end, 410 MADV_UNMERGEABLE, &vma->vm_flags); 411 mmap_write_downgrade(kvm->mm); 412 *downgrade = true; 413 if (ret) 414 return ret; 415 416 ret = migrate_vma_setup(&mig); 417 if (ret) 418 return ret; 419 420 if (!(*mig.src & MIGRATE_PFN_MIGRATE)) { 421 ret = -1; 422 goto out_finalize; 423 } 424 425 dpage = kvmppc_uvmem_get_page(gpa, kvm); 426 if (!dpage) { 427 ret = -1; 428 goto out_finalize; 429 } 430 431 pfn = *mig.src >> MIGRATE_PFN_SHIFT; 432 spage = migrate_pfn_to_page(*mig.src); 433 if (spage) 434 uv_page_in(kvm->arch.lpid, pfn << page_shift, gpa, 0, 435 page_shift); 436 437 *mig.dst = migrate_pfn(page_to_pfn(dpage)) | MIGRATE_PFN_LOCKED; 438 migrate_vma_pages(&mig); 439 out_finalize: 440 migrate_vma_finalize(&mig); 441 return ret; 442 } 443 444 /* 445 * Shares the page with HV, thus making it a normal page. 446 * 447 * - If the page is already secure, then provision a new page and share 448 * - If the page is a normal page, share the existing page 449 * 450 * In the former case, uses dev_pagemap_ops.migrate_to_ram handler 451 * to unmap the device page from QEMU's page tables. 452 */ 453 static unsigned long 454 kvmppc_share_page(struct kvm *kvm, unsigned long gpa, unsigned long page_shift) 455 { 456 457 int ret = H_PARAMETER; 458 struct page *uvmem_page; 459 struct kvmppc_uvmem_page_pvt *pvt; 460 unsigned long pfn; 461 unsigned long gfn = gpa >> page_shift; 462 int srcu_idx; 463 unsigned long uvmem_pfn; 464 465 srcu_idx = srcu_read_lock(&kvm->srcu); 466 mutex_lock(&kvm->arch.uvmem_lock); 467 if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) { 468 uvmem_page = pfn_to_page(uvmem_pfn); 469 pvt = uvmem_page->zone_device_data; 470 pvt->skip_page_out = true; 471 } 472 473 retry: 474 mutex_unlock(&kvm->arch.uvmem_lock); 475 pfn = gfn_to_pfn(kvm, gfn); 476 if (is_error_noslot_pfn(pfn)) 477 goto out; 478 479 mutex_lock(&kvm->arch.uvmem_lock); 480 if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) { 481 uvmem_page = pfn_to_page(uvmem_pfn); 482 pvt = uvmem_page->zone_device_data; 483 pvt->skip_page_out = true; 484 kvm_release_pfn_clean(pfn); 485 goto retry; 486 } 487 488 if (!uv_page_in(kvm->arch.lpid, pfn << page_shift, gpa, 0, page_shift)) 489 ret = H_SUCCESS; 490 kvm_release_pfn_clean(pfn); 491 mutex_unlock(&kvm->arch.uvmem_lock); 492 out: 493 srcu_read_unlock(&kvm->srcu, srcu_idx); 494 return ret; 495 } 496 497 /* 498 * H_SVM_PAGE_IN: Move page from normal memory to secure memory. 499 * 500 * H_PAGE_IN_SHARED flag makes the page shared which means that the same 501 * memory in is visible from both UV and HV. 502 */ 503 unsigned long 504 kvmppc_h_svm_page_in(struct kvm *kvm, unsigned long gpa, 505 unsigned long flags, unsigned long page_shift) 506 { 507 bool downgrade = false; 508 unsigned long start, end; 509 struct vm_area_struct *vma; 510 int srcu_idx; 511 unsigned long gfn = gpa >> page_shift; 512 int ret; 513 514 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) 515 return H_UNSUPPORTED; 516 517 if (page_shift != PAGE_SHIFT) 518 return H_P3; 519 520 if (flags & ~H_PAGE_IN_SHARED) 521 return H_P2; 522 523 if (flags & H_PAGE_IN_SHARED) 524 return kvmppc_share_page(kvm, gpa, page_shift); 525 526 ret = H_PARAMETER; 527 srcu_idx = srcu_read_lock(&kvm->srcu); 528 mmap_write_lock(kvm->mm); 529 530 start = gfn_to_hva(kvm, gfn); 531 if (kvm_is_error_hva(start)) 532 goto out; 533 534 mutex_lock(&kvm->arch.uvmem_lock); 535 /* Fail the page-in request of an already paged-in page */ 536 if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, NULL)) 537 goto out_unlock; 538 539 end = start + (1UL << page_shift); 540 vma = find_vma_intersection(kvm->mm, start, end); 541 if (!vma || vma->vm_start > start || vma->vm_end < end) 542 goto out_unlock; 543 544 if (!kvmppc_svm_page_in(vma, start, end, gpa, kvm, page_shift, 545 &downgrade)) 546 ret = H_SUCCESS; 547 out_unlock: 548 mutex_unlock(&kvm->arch.uvmem_lock); 549 out: 550 if (downgrade) 551 mmap_read_unlock(kvm->mm); 552 else 553 mmap_write_unlock(kvm->mm); 554 srcu_read_unlock(&kvm->srcu, srcu_idx); 555 return ret; 556 } 557 558 /* 559 * Provision a new page on HV side and copy over the contents 560 * from secure memory using UV_PAGE_OUT uvcall. 561 */ 562 static int 563 kvmppc_svm_page_out(struct vm_area_struct *vma, unsigned long start, 564 unsigned long end, unsigned long page_shift, 565 struct kvm *kvm, unsigned long gpa) 566 { 567 unsigned long src_pfn, dst_pfn = 0; 568 struct migrate_vma mig; 569 struct page *dpage, *spage; 570 struct kvmppc_uvmem_page_pvt *pvt; 571 unsigned long pfn; 572 int ret = U_SUCCESS; 573 574 memset(&mig, 0, sizeof(mig)); 575 mig.vma = vma; 576 mig.start = start; 577 mig.end = end; 578 mig.src = &src_pfn; 579 mig.dst = &dst_pfn; 580 mig.src_owner = &kvmppc_uvmem_pgmap; 581 582 mutex_lock(&kvm->arch.uvmem_lock); 583 /* The requested page is already paged-out, nothing to do */ 584 if (!kvmppc_gfn_is_uvmem_pfn(gpa >> page_shift, kvm, NULL)) 585 goto out; 586 587 ret = migrate_vma_setup(&mig); 588 if (ret) 589 goto out; 590 591 spage = migrate_pfn_to_page(*mig.src); 592 if (!spage || !(*mig.src & MIGRATE_PFN_MIGRATE)) 593 goto out_finalize; 594 595 if (!is_zone_device_page(spage)) 596 goto out_finalize; 597 598 dpage = alloc_page_vma(GFP_HIGHUSER, vma, start); 599 if (!dpage) { 600 ret = -1; 601 goto out_finalize; 602 } 603 604 lock_page(dpage); 605 pvt = spage->zone_device_data; 606 pfn = page_to_pfn(dpage); 607 608 /* 609 * This function is used in two cases: 610 * - When HV touches a secure page, for which we do UV_PAGE_OUT 611 * - When a secure page is converted to shared page, we *get* 612 * the page to essentially unmap the device page. In this 613 * case we skip page-out. 614 */ 615 if (!pvt->skip_page_out) 616 ret = uv_page_out(kvm->arch.lpid, pfn << page_shift, 617 gpa, 0, page_shift); 618 619 if (ret == U_SUCCESS) 620 *mig.dst = migrate_pfn(pfn) | MIGRATE_PFN_LOCKED; 621 else { 622 unlock_page(dpage); 623 __free_page(dpage); 624 goto out_finalize; 625 } 626 627 migrate_vma_pages(&mig); 628 out_finalize: 629 migrate_vma_finalize(&mig); 630 out: 631 mutex_unlock(&kvm->arch.uvmem_lock); 632 return ret; 633 } 634 635 /* 636 * Fault handler callback that gets called when HV touches any page that 637 * has been moved to secure memory, we ask UV to give back the page by 638 * issuing UV_PAGE_OUT uvcall. 639 * 640 * This eventually results in dropping of device PFN and the newly 641 * provisioned page/PFN gets populated in QEMU page tables. 642 */ 643 static vm_fault_t kvmppc_uvmem_migrate_to_ram(struct vm_fault *vmf) 644 { 645 struct kvmppc_uvmem_page_pvt *pvt = vmf->page->zone_device_data; 646 647 if (kvmppc_svm_page_out(vmf->vma, vmf->address, 648 vmf->address + PAGE_SIZE, PAGE_SHIFT, 649 pvt->kvm, pvt->gpa)) 650 return VM_FAULT_SIGBUS; 651 else 652 return 0; 653 } 654 655 /* 656 * Release the device PFN back to the pool 657 * 658 * Gets called when secure page becomes a normal page during H_SVM_PAGE_OUT. 659 * Gets called with kvm->arch.uvmem_lock held. 660 */ 661 static void kvmppc_uvmem_page_free(struct page *page) 662 { 663 unsigned long pfn = page_to_pfn(page) - 664 (kvmppc_uvmem_pgmap.res.start >> PAGE_SHIFT); 665 struct kvmppc_uvmem_page_pvt *pvt; 666 667 spin_lock(&kvmppc_uvmem_bitmap_lock); 668 bitmap_clear(kvmppc_uvmem_bitmap, pfn, 1); 669 spin_unlock(&kvmppc_uvmem_bitmap_lock); 670 671 pvt = page->zone_device_data; 672 page->zone_device_data = NULL; 673 kvmppc_uvmem_pfn_remove(pvt->gpa >> PAGE_SHIFT, pvt->kvm); 674 kfree(pvt); 675 } 676 677 static const struct dev_pagemap_ops kvmppc_uvmem_ops = { 678 .page_free = kvmppc_uvmem_page_free, 679 .migrate_to_ram = kvmppc_uvmem_migrate_to_ram, 680 }; 681 682 /* 683 * H_SVM_PAGE_OUT: Move page from secure memory to normal memory. 684 */ 685 unsigned long 686 kvmppc_h_svm_page_out(struct kvm *kvm, unsigned long gpa, 687 unsigned long flags, unsigned long page_shift) 688 { 689 unsigned long gfn = gpa >> page_shift; 690 unsigned long start, end; 691 struct vm_area_struct *vma; 692 int srcu_idx; 693 int ret; 694 695 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) 696 return H_UNSUPPORTED; 697 698 if (page_shift != PAGE_SHIFT) 699 return H_P3; 700 701 if (flags) 702 return H_P2; 703 704 ret = H_PARAMETER; 705 srcu_idx = srcu_read_lock(&kvm->srcu); 706 mmap_read_lock(kvm->mm); 707 start = gfn_to_hva(kvm, gfn); 708 if (kvm_is_error_hva(start)) 709 goto out; 710 711 end = start + (1UL << page_shift); 712 vma = find_vma_intersection(kvm->mm, start, end); 713 if (!vma || vma->vm_start > start || vma->vm_end < end) 714 goto out; 715 716 if (!kvmppc_svm_page_out(vma, start, end, page_shift, kvm, gpa)) 717 ret = H_SUCCESS; 718 out: 719 mmap_read_unlock(kvm->mm); 720 srcu_read_unlock(&kvm->srcu, srcu_idx); 721 return ret; 722 } 723 724 int kvmppc_send_page_to_uv(struct kvm *kvm, unsigned long gfn) 725 { 726 unsigned long pfn; 727 int ret = U_SUCCESS; 728 729 pfn = gfn_to_pfn(kvm, gfn); 730 if (is_error_noslot_pfn(pfn)) 731 return -EFAULT; 732 733 mutex_lock(&kvm->arch.uvmem_lock); 734 if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, NULL)) 735 goto out; 736 737 ret = uv_page_in(kvm->arch.lpid, pfn << PAGE_SHIFT, gfn << PAGE_SHIFT, 738 0, PAGE_SHIFT); 739 out: 740 kvm_release_pfn_clean(pfn); 741 mutex_unlock(&kvm->arch.uvmem_lock); 742 return (ret == U_SUCCESS) ? RESUME_GUEST : -EFAULT; 743 } 744 745 static u64 kvmppc_get_secmem_size(void) 746 { 747 struct device_node *np; 748 int i, len; 749 const __be32 *prop; 750 u64 size = 0; 751 752 /* 753 * First try the new ibm,secure-memory nodes which supersede the 754 * secure-memory-ranges property. 755 * If we found some, no need to read the deprecated ones. 756 */ 757 for_each_compatible_node(np, NULL, "ibm,secure-memory") { 758 prop = of_get_property(np, "reg", &len); 759 if (!prop) 760 continue; 761 size += of_read_number(prop + 2, 2); 762 } 763 if (size) 764 return size; 765 766 np = of_find_compatible_node(NULL, NULL, "ibm,uv-firmware"); 767 if (!np) 768 goto out; 769 770 prop = of_get_property(np, "secure-memory-ranges", &len); 771 if (!prop) 772 goto out_put; 773 774 for (i = 0; i < len / (sizeof(*prop) * 4); i++) 775 size += of_read_number(prop + (i * 4) + 2, 2); 776 777 out_put: 778 of_node_put(np); 779 out: 780 return size; 781 } 782 783 int kvmppc_uvmem_init(void) 784 { 785 int ret = 0; 786 unsigned long size; 787 struct resource *res; 788 void *addr; 789 unsigned long pfn_last, pfn_first; 790 791 size = kvmppc_get_secmem_size(); 792 if (!size) { 793 /* 794 * Don't fail the initialization of kvm-hv module if 795 * the platform doesn't export ibm,uv-firmware node. 796 * Let normal guests run on such PEF-disabled platform. 797 */ 798 pr_info("KVMPPC-UVMEM: No support for secure guests\n"); 799 goto out; 800 } 801 802 res = request_free_mem_region(&iomem_resource, size, "kvmppc_uvmem"); 803 if (IS_ERR(res)) { 804 ret = PTR_ERR(res); 805 goto out; 806 } 807 808 kvmppc_uvmem_pgmap.type = MEMORY_DEVICE_PRIVATE; 809 kvmppc_uvmem_pgmap.res = *res; 810 kvmppc_uvmem_pgmap.ops = &kvmppc_uvmem_ops; 811 /* just one global instance: */ 812 kvmppc_uvmem_pgmap.owner = &kvmppc_uvmem_pgmap; 813 addr = memremap_pages(&kvmppc_uvmem_pgmap, NUMA_NO_NODE); 814 if (IS_ERR(addr)) { 815 ret = PTR_ERR(addr); 816 goto out_free_region; 817 } 818 819 pfn_first = res->start >> PAGE_SHIFT; 820 pfn_last = pfn_first + (resource_size(res) >> PAGE_SHIFT); 821 kvmppc_uvmem_bitmap = kcalloc(BITS_TO_LONGS(pfn_last - pfn_first), 822 sizeof(unsigned long), GFP_KERNEL); 823 if (!kvmppc_uvmem_bitmap) { 824 ret = -ENOMEM; 825 goto out_unmap; 826 } 827 828 pr_info("KVMPPC-UVMEM: Secure Memory size 0x%lx\n", size); 829 return ret; 830 out_unmap: 831 memunmap_pages(&kvmppc_uvmem_pgmap); 832 out_free_region: 833 release_mem_region(res->start, size); 834 out: 835 return ret; 836 } 837 838 void kvmppc_uvmem_free(void) 839 { 840 if (!kvmppc_uvmem_bitmap) 841 return; 842 843 memunmap_pages(&kvmppc_uvmem_pgmap); 844 release_mem_region(kvmppc_uvmem_pgmap.res.start, 845 resource_size(&kvmppc_uvmem_pgmap.res)); 846 kfree(kvmppc_uvmem_bitmap); 847 } 848