1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Secure pages management: Migration of pages between normal and secure
4  * memory of KVM guests.
5  *
6  * Copyright 2018 Bharata B Rao, IBM Corp. <bharata@linux.ibm.com>
7  */
8 
9 /*
10  * A pseries guest can be run as secure guest on Ultravisor-enabled
11  * POWER platforms. On such platforms, this driver will be used to manage
12  * the movement of guest pages between the normal memory managed by
13  * hypervisor (HV) and secure memory managed by Ultravisor (UV).
14  *
15  * The page-in or page-out requests from UV will come to HV as hcalls and
16  * HV will call back into UV via ultracalls to satisfy these page requests.
17  *
18  * Private ZONE_DEVICE memory equal to the amount of secure memory
19  * available in the platform for running secure guests is hotplugged.
20  * Whenever a page belonging to the guest becomes secure, a page from this
21  * private device memory is used to represent and track that secure page
22  * on the HV side. Some pages (like virtio buffers, VPA pages etc) are
23  * shared between UV and HV. However such pages aren't represented by
24  * device private memory and mappings to shared memory exist in both
25  * UV and HV page tables.
26  */
27 
28 /*
29  * Notes on locking
30  *
31  * kvm->arch.uvmem_lock is a per-guest lock that prevents concurrent
32  * page-in and page-out requests for the same GPA. Concurrent accesses
33  * can either come via UV (guest vCPUs requesting for same page)
34  * or when HV and guest simultaneously access the same page.
35  * This mutex serializes the migration of page from HV(normal) to
36  * UV(secure) and vice versa. So the serialization points are around
37  * migrate_vma routines and page-in/out routines.
38  *
39  * Per-guest mutex comes with a cost though. Mainly it serializes the
40  * fault path as page-out can occur when HV faults on accessing secure
41  * guest pages. Currently UV issues page-in requests for all the guest
42  * PFNs one at a time during early boot (UV_ESM uvcall), so this is
43  * not a cause for concern. Also currently the number of page-outs caused
44  * by HV touching secure pages is very very low. If an when UV supports
45  * overcommitting, then we might see concurrent guest driven page-outs.
46  *
47  * Locking order
48  *
49  * 1. kvm->srcu - Protects KVM memslots
50  * 2. kvm->mm->mmap_lock - find_vma, migrate_vma_pages and helpers, ksm_madvise
51  * 3. kvm->arch.uvmem_lock - protects read/writes to uvmem slots thus acting
52  *			     as sync-points for page-in/out
53  */
54 
55 /*
56  * Notes on page size
57  *
58  * Currently UV uses 2MB mappings internally, but will issue H_SVM_PAGE_IN
59  * and H_SVM_PAGE_OUT hcalls in PAGE_SIZE(64K) granularity. HV tracks
60  * secure GPAs at 64K page size and maintains one device PFN for each
61  * 64K secure GPA. UV_PAGE_IN and UV_PAGE_OUT calls by HV are also issued
62  * for 64K page at a time.
63  *
64  * HV faulting on secure pages: When HV touches any secure page, it
65  * faults and issues a UV_PAGE_OUT request with 64K page size. Currently
66  * UV splits and remaps the 2MB page if necessary and copies out the
67  * required 64K page contents.
68  *
69  * Shared pages: Whenever guest shares a secure page, UV will split and
70  * remap the 2MB page if required and issue H_SVM_PAGE_IN with 64K page size.
71  *
72  * HV invalidating a page: When a regular page belonging to secure
73  * guest gets unmapped, HV informs UV with UV_PAGE_INVAL of 64K
74  * page size. Using 64K page size is correct here because any non-secure
75  * page will essentially be of 64K page size. Splitting by UV during sharing
76  * and page-out ensures this.
77  *
78  * Page fault handling: When HV handles page fault of a page belonging
79  * to secure guest, it sends that to UV with a 64K UV_PAGE_IN request.
80  * Using 64K size is correct here too as UV would have split the 2MB page
81  * into 64k mappings and would have done page-outs earlier.
82  *
83  * In summary, the current secure pages handling code in HV assumes
84  * 64K page size and in fact fails any page-in/page-out requests of
85  * non-64K size upfront. If and when UV starts supporting multiple
86  * page-sizes, we need to break this assumption.
87  */
88 
89 #include <linux/pagemap.h>
90 #include <linux/migrate.h>
91 #include <linux/kvm_host.h>
92 #include <linux/ksm.h>
93 #include <asm/ultravisor.h>
94 #include <asm/mman.h>
95 #include <asm/kvm_ppc.h>
96 
97 static struct dev_pagemap kvmppc_uvmem_pgmap;
98 static unsigned long *kvmppc_uvmem_bitmap;
99 static DEFINE_SPINLOCK(kvmppc_uvmem_bitmap_lock);
100 
101 #define KVMPPC_UVMEM_PFN	(1UL << 63)
102 
103 struct kvmppc_uvmem_slot {
104 	struct list_head list;
105 	unsigned long nr_pfns;
106 	unsigned long base_pfn;
107 	unsigned long *pfns;
108 };
109 
110 struct kvmppc_uvmem_page_pvt {
111 	struct kvm *kvm;
112 	unsigned long gpa;
113 	bool skip_page_out;
114 };
115 
116 bool kvmppc_uvmem_available(void)
117 {
118 	/*
119 	 * If kvmppc_uvmem_bitmap != NULL, then there is an ultravisor
120 	 * and our data structures have been initialized successfully.
121 	 */
122 	return !!kvmppc_uvmem_bitmap;
123 }
124 
125 int kvmppc_uvmem_slot_init(struct kvm *kvm, const struct kvm_memory_slot *slot)
126 {
127 	struct kvmppc_uvmem_slot *p;
128 
129 	p = kzalloc(sizeof(*p), GFP_KERNEL);
130 	if (!p)
131 		return -ENOMEM;
132 	p->pfns = vzalloc(array_size(slot->npages, sizeof(*p->pfns)));
133 	if (!p->pfns) {
134 		kfree(p);
135 		return -ENOMEM;
136 	}
137 	p->nr_pfns = slot->npages;
138 	p->base_pfn = slot->base_gfn;
139 
140 	mutex_lock(&kvm->arch.uvmem_lock);
141 	list_add(&p->list, &kvm->arch.uvmem_pfns);
142 	mutex_unlock(&kvm->arch.uvmem_lock);
143 
144 	return 0;
145 }
146 
147 /*
148  * All device PFNs are already released by the time we come here.
149  */
150 void kvmppc_uvmem_slot_free(struct kvm *kvm, const struct kvm_memory_slot *slot)
151 {
152 	struct kvmppc_uvmem_slot *p, *next;
153 
154 	mutex_lock(&kvm->arch.uvmem_lock);
155 	list_for_each_entry_safe(p, next, &kvm->arch.uvmem_pfns, list) {
156 		if (p->base_pfn == slot->base_gfn) {
157 			vfree(p->pfns);
158 			list_del(&p->list);
159 			kfree(p);
160 			break;
161 		}
162 	}
163 	mutex_unlock(&kvm->arch.uvmem_lock);
164 }
165 
166 static void kvmppc_uvmem_pfn_insert(unsigned long gfn, unsigned long uvmem_pfn,
167 				    struct kvm *kvm)
168 {
169 	struct kvmppc_uvmem_slot *p;
170 
171 	list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) {
172 		if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) {
173 			unsigned long index = gfn - p->base_pfn;
174 
175 			p->pfns[index] = uvmem_pfn | KVMPPC_UVMEM_PFN;
176 			return;
177 		}
178 	}
179 }
180 
181 static void kvmppc_uvmem_pfn_remove(unsigned long gfn, struct kvm *kvm)
182 {
183 	struct kvmppc_uvmem_slot *p;
184 
185 	list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) {
186 		if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) {
187 			p->pfns[gfn - p->base_pfn] = 0;
188 			return;
189 		}
190 	}
191 }
192 
193 static bool kvmppc_gfn_is_uvmem_pfn(unsigned long gfn, struct kvm *kvm,
194 				    unsigned long *uvmem_pfn)
195 {
196 	struct kvmppc_uvmem_slot *p;
197 
198 	list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) {
199 		if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) {
200 			unsigned long index = gfn - p->base_pfn;
201 
202 			if (p->pfns[index] & KVMPPC_UVMEM_PFN) {
203 				if (uvmem_pfn)
204 					*uvmem_pfn = p->pfns[index] &
205 						     ~KVMPPC_UVMEM_PFN;
206 				return true;
207 			} else
208 				return false;
209 		}
210 	}
211 	return false;
212 }
213 
214 unsigned long kvmppc_h_svm_init_start(struct kvm *kvm)
215 {
216 	struct kvm_memslots *slots;
217 	struct kvm_memory_slot *memslot;
218 	int ret = H_SUCCESS;
219 	int srcu_idx;
220 
221 	kvm->arch.secure_guest = KVMPPC_SECURE_INIT_START;
222 
223 	if (!kvmppc_uvmem_bitmap)
224 		return H_UNSUPPORTED;
225 
226 	/* Only radix guests can be secure guests */
227 	if (!kvm_is_radix(kvm))
228 		return H_UNSUPPORTED;
229 
230 	/* NAK the transition to secure if not enabled */
231 	if (!kvm->arch.svm_enabled)
232 		return H_AUTHORITY;
233 
234 	srcu_idx = srcu_read_lock(&kvm->srcu);
235 	slots = kvm_memslots(kvm);
236 	kvm_for_each_memslot(memslot, slots) {
237 		if (kvmppc_uvmem_slot_init(kvm, memslot)) {
238 			ret = H_PARAMETER;
239 			goto out;
240 		}
241 		ret = uv_register_mem_slot(kvm->arch.lpid,
242 					   memslot->base_gfn << PAGE_SHIFT,
243 					   memslot->npages * PAGE_SIZE,
244 					   0, memslot->id);
245 		if (ret < 0) {
246 			kvmppc_uvmem_slot_free(kvm, memslot);
247 			ret = H_PARAMETER;
248 			goto out;
249 		}
250 	}
251 out:
252 	srcu_read_unlock(&kvm->srcu, srcu_idx);
253 	return ret;
254 }
255 
256 unsigned long kvmppc_h_svm_init_done(struct kvm *kvm)
257 {
258 	if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
259 		return H_UNSUPPORTED;
260 
261 	kvm->arch.secure_guest |= KVMPPC_SECURE_INIT_DONE;
262 	pr_info("LPID %d went secure\n", kvm->arch.lpid);
263 	return H_SUCCESS;
264 }
265 
266 /*
267  * Drop device pages that we maintain for the secure guest
268  *
269  * We first mark the pages to be skipped from UV_PAGE_OUT when there
270  * is HV side fault on these pages. Next we *get* these pages, forcing
271  * fault on them, do fault time migration to replace the device PTEs in
272  * QEMU page table with normal PTEs from newly allocated pages.
273  */
274 void kvmppc_uvmem_drop_pages(const struct kvm_memory_slot *free,
275 			     struct kvm *kvm, bool skip_page_out)
276 {
277 	int i;
278 	struct kvmppc_uvmem_page_pvt *pvt;
279 	unsigned long pfn, uvmem_pfn;
280 	unsigned long gfn = free->base_gfn;
281 
282 	for (i = free->npages; i; --i, ++gfn) {
283 		struct page *uvmem_page;
284 
285 		mutex_lock(&kvm->arch.uvmem_lock);
286 		if (!kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
287 			mutex_unlock(&kvm->arch.uvmem_lock);
288 			continue;
289 		}
290 
291 		uvmem_page = pfn_to_page(uvmem_pfn);
292 		pvt = uvmem_page->zone_device_data;
293 		pvt->skip_page_out = skip_page_out;
294 		mutex_unlock(&kvm->arch.uvmem_lock);
295 
296 		pfn = gfn_to_pfn(kvm, gfn);
297 		if (is_error_noslot_pfn(pfn))
298 			continue;
299 		kvm_release_pfn_clean(pfn);
300 	}
301 }
302 
303 unsigned long kvmppc_h_svm_init_abort(struct kvm *kvm)
304 {
305 	int srcu_idx;
306 	struct kvm_memory_slot *memslot;
307 
308 	/*
309 	 * Expect to be called only after INIT_START and before INIT_DONE.
310 	 * If INIT_DONE was completed, use normal VM termination sequence.
311 	 */
312 	if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
313 		return H_UNSUPPORTED;
314 
315 	if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE)
316 		return H_STATE;
317 
318 	srcu_idx = srcu_read_lock(&kvm->srcu);
319 
320 	kvm_for_each_memslot(memslot, kvm_memslots(kvm))
321 		kvmppc_uvmem_drop_pages(memslot, kvm, false);
322 
323 	srcu_read_unlock(&kvm->srcu, srcu_idx);
324 
325 	kvm->arch.secure_guest = 0;
326 	uv_svm_terminate(kvm->arch.lpid);
327 
328 	return H_PARAMETER;
329 }
330 
331 /*
332  * Get a free device PFN from the pool
333  *
334  * Called when a normal page is moved to secure memory (UV_PAGE_IN). Device
335  * PFN will be used to keep track of the secure page on HV side.
336  *
337  * Called with kvm->arch.uvmem_lock held
338  */
339 static struct page *kvmppc_uvmem_get_page(unsigned long gpa, struct kvm *kvm)
340 {
341 	struct page *dpage = NULL;
342 	unsigned long bit, uvmem_pfn;
343 	struct kvmppc_uvmem_page_pvt *pvt;
344 	unsigned long pfn_last, pfn_first;
345 
346 	pfn_first = kvmppc_uvmem_pgmap.res.start >> PAGE_SHIFT;
347 	pfn_last = pfn_first +
348 		   (resource_size(&kvmppc_uvmem_pgmap.res) >> PAGE_SHIFT);
349 
350 	spin_lock(&kvmppc_uvmem_bitmap_lock);
351 	bit = find_first_zero_bit(kvmppc_uvmem_bitmap,
352 				  pfn_last - pfn_first);
353 	if (bit >= (pfn_last - pfn_first))
354 		goto out;
355 	bitmap_set(kvmppc_uvmem_bitmap, bit, 1);
356 	spin_unlock(&kvmppc_uvmem_bitmap_lock);
357 
358 	pvt = kzalloc(sizeof(*pvt), GFP_KERNEL);
359 	if (!pvt)
360 		goto out_clear;
361 
362 	uvmem_pfn = bit + pfn_first;
363 	kvmppc_uvmem_pfn_insert(gpa >> PAGE_SHIFT, uvmem_pfn, kvm);
364 
365 	pvt->gpa = gpa;
366 	pvt->kvm = kvm;
367 
368 	dpage = pfn_to_page(uvmem_pfn);
369 	dpage->zone_device_data = pvt;
370 	get_page(dpage);
371 	lock_page(dpage);
372 	return dpage;
373 out_clear:
374 	spin_lock(&kvmppc_uvmem_bitmap_lock);
375 	bitmap_clear(kvmppc_uvmem_bitmap, bit, 1);
376 out:
377 	spin_unlock(&kvmppc_uvmem_bitmap_lock);
378 	return NULL;
379 }
380 
381 /*
382  * Alloc a PFN from private device memory pool and copy page from normal
383  * memory to secure memory using UV_PAGE_IN uvcall.
384  */
385 static int
386 kvmppc_svm_page_in(struct vm_area_struct *vma, unsigned long start,
387 		   unsigned long end, unsigned long gpa, struct kvm *kvm,
388 		   unsigned long page_shift, bool *downgrade)
389 {
390 	unsigned long src_pfn, dst_pfn = 0;
391 	struct migrate_vma mig;
392 	struct page *spage;
393 	unsigned long pfn;
394 	struct page *dpage;
395 	int ret = 0;
396 
397 	memset(&mig, 0, sizeof(mig));
398 	mig.vma = vma;
399 	mig.start = start;
400 	mig.end = end;
401 	mig.src = &src_pfn;
402 	mig.dst = &dst_pfn;
403 
404 	/*
405 	 * We come here with mmap_lock write lock held just for
406 	 * ksm_madvise(), otherwise we only need read mmap_lock.
407 	 * Hence downgrade to read lock once ksm_madvise() is done.
408 	 */
409 	ret = ksm_madvise(vma, vma->vm_start, vma->vm_end,
410 			  MADV_UNMERGEABLE, &vma->vm_flags);
411 	mmap_write_downgrade(kvm->mm);
412 	*downgrade = true;
413 	if (ret)
414 		return ret;
415 
416 	ret = migrate_vma_setup(&mig);
417 	if (ret)
418 		return ret;
419 
420 	if (!(*mig.src & MIGRATE_PFN_MIGRATE)) {
421 		ret = -1;
422 		goto out_finalize;
423 	}
424 
425 	dpage = kvmppc_uvmem_get_page(gpa, kvm);
426 	if (!dpage) {
427 		ret = -1;
428 		goto out_finalize;
429 	}
430 
431 	pfn = *mig.src >> MIGRATE_PFN_SHIFT;
432 	spage = migrate_pfn_to_page(*mig.src);
433 	if (spage)
434 		uv_page_in(kvm->arch.lpid, pfn << page_shift, gpa, 0,
435 			   page_shift);
436 
437 	*mig.dst = migrate_pfn(page_to_pfn(dpage)) | MIGRATE_PFN_LOCKED;
438 	migrate_vma_pages(&mig);
439 out_finalize:
440 	migrate_vma_finalize(&mig);
441 	return ret;
442 }
443 
444 /*
445  * Shares the page with HV, thus making it a normal page.
446  *
447  * - If the page is already secure, then provision a new page and share
448  * - If the page is a normal page, share the existing page
449  *
450  * In the former case, uses dev_pagemap_ops.migrate_to_ram handler
451  * to unmap the device page from QEMU's page tables.
452  */
453 static unsigned long
454 kvmppc_share_page(struct kvm *kvm, unsigned long gpa, unsigned long page_shift)
455 {
456 
457 	int ret = H_PARAMETER;
458 	struct page *uvmem_page;
459 	struct kvmppc_uvmem_page_pvt *pvt;
460 	unsigned long pfn;
461 	unsigned long gfn = gpa >> page_shift;
462 	int srcu_idx;
463 	unsigned long uvmem_pfn;
464 
465 	srcu_idx = srcu_read_lock(&kvm->srcu);
466 	mutex_lock(&kvm->arch.uvmem_lock);
467 	if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
468 		uvmem_page = pfn_to_page(uvmem_pfn);
469 		pvt = uvmem_page->zone_device_data;
470 		pvt->skip_page_out = true;
471 	}
472 
473 retry:
474 	mutex_unlock(&kvm->arch.uvmem_lock);
475 	pfn = gfn_to_pfn(kvm, gfn);
476 	if (is_error_noslot_pfn(pfn))
477 		goto out;
478 
479 	mutex_lock(&kvm->arch.uvmem_lock);
480 	if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
481 		uvmem_page = pfn_to_page(uvmem_pfn);
482 		pvt = uvmem_page->zone_device_data;
483 		pvt->skip_page_out = true;
484 		kvm_release_pfn_clean(pfn);
485 		goto retry;
486 	}
487 
488 	if (!uv_page_in(kvm->arch.lpid, pfn << page_shift, gpa, 0, page_shift))
489 		ret = H_SUCCESS;
490 	kvm_release_pfn_clean(pfn);
491 	mutex_unlock(&kvm->arch.uvmem_lock);
492 out:
493 	srcu_read_unlock(&kvm->srcu, srcu_idx);
494 	return ret;
495 }
496 
497 /*
498  * H_SVM_PAGE_IN: Move page from normal memory to secure memory.
499  *
500  * H_PAGE_IN_SHARED flag makes the page shared which means that the same
501  * memory in is visible from both UV and HV.
502  */
503 unsigned long
504 kvmppc_h_svm_page_in(struct kvm *kvm, unsigned long gpa,
505 		     unsigned long flags, unsigned long page_shift)
506 {
507 	bool downgrade = false;
508 	unsigned long start, end;
509 	struct vm_area_struct *vma;
510 	int srcu_idx;
511 	unsigned long gfn = gpa >> page_shift;
512 	int ret;
513 
514 	if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
515 		return H_UNSUPPORTED;
516 
517 	if (page_shift != PAGE_SHIFT)
518 		return H_P3;
519 
520 	if (flags & ~H_PAGE_IN_SHARED)
521 		return H_P2;
522 
523 	if (flags & H_PAGE_IN_SHARED)
524 		return kvmppc_share_page(kvm, gpa, page_shift);
525 
526 	ret = H_PARAMETER;
527 	srcu_idx = srcu_read_lock(&kvm->srcu);
528 	mmap_write_lock(kvm->mm);
529 
530 	start = gfn_to_hva(kvm, gfn);
531 	if (kvm_is_error_hva(start))
532 		goto out;
533 
534 	mutex_lock(&kvm->arch.uvmem_lock);
535 	/* Fail the page-in request of an already paged-in page */
536 	if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, NULL))
537 		goto out_unlock;
538 
539 	end = start + (1UL << page_shift);
540 	vma = find_vma_intersection(kvm->mm, start, end);
541 	if (!vma || vma->vm_start > start || vma->vm_end < end)
542 		goto out_unlock;
543 
544 	if (!kvmppc_svm_page_in(vma, start, end, gpa, kvm, page_shift,
545 				&downgrade))
546 		ret = H_SUCCESS;
547 out_unlock:
548 	mutex_unlock(&kvm->arch.uvmem_lock);
549 out:
550 	if (downgrade)
551 		mmap_read_unlock(kvm->mm);
552 	else
553 		mmap_write_unlock(kvm->mm);
554 	srcu_read_unlock(&kvm->srcu, srcu_idx);
555 	return ret;
556 }
557 
558 /*
559  * Provision a new page on HV side and copy over the contents
560  * from secure memory using UV_PAGE_OUT uvcall.
561  */
562 static int
563 kvmppc_svm_page_out(struct vm_area_struct *vma, unsigned long start,
564 		    unsigned long end, unsigned long page_shift,
565 		    struct kvm *kvm, unsigned long gpa)
566 {
567 	unsigned long src_pfn, dst_pfn = 0;
568 	struct migrate_vma mig;
569 	struct page *dpage, *spage;
570 	struct kvmppc_uvmem_page_pvt *pvt;
571 	unsigned long pfn;
572 	int ret = U_SUCCESS;
573 
574 	memset(&mig, 0, sizeof(mig));
575 	mig.vma = vma;
576 	mig.start = start;
577 	mig.end = end;
578 	mig.src = &src_pfn;
579 	mig.dst = &dst_pfn;
580 	mig.src_owner = &kvmppc_uvmem_pgmap;
581 
582 	mutex_lock(&kvm->arch.uvmem_lock);
583 	/* The requested page is already paged-out, nothing to do */
584 	if (!kvmppc_gfn_is_uvmem_pfn(gpa >> page_shift, kvm, NULL))
585 		goto out;
586 
587 	ret = migrate_vma_setup(&mig);
588 	if (ret)
589 		goto out;
590 
591 	spage = migrate_pfn_to_page(*mig.src);
592 	if (!spage || !(*mig.src & MIGRATE_PFN_MIGRATE))
593 		goto out_finalize;
594 
595 	if (!is_zone_device_page(spage))
596 		goto out_finalize;
597 
598 	dpage = alloc_page_vma(GFP_HIGHUSER, vma, start);
599 	if (!dpage) {
600 		ret = -1;
601 		goto out_finalize;
602 	}
603 
604 	lock_page(dpage);
605 	pvt = spage->zone_device_data;
606 	pfn = page_to_pfn(dpage);
607 
608 	/*
609 	 * This function is used in two cases:
610 	 * - When HV touches a secure page, for which we do UV_PAGE_OUT
611 	 * - When a secure page is converted to shared page, we *get*
612 	 *   the page to essentially unmap the device page. In this
613 	 *   case we skip page-out.
614 	 */
615 	if (!pvt->skip_page_out)
616 		ret = uv_page_out(kvm->arch.lpid, pfn << page_shift,
617 				  gpa, 0, page_shift);
618 
619 	if (ret == U_SUCCESS)
620 		*mig.dst = migrate_pfn(pfn) | MIGRATE_PFN_LOCKED;
621 	else {
622 		unlock_page(dpage);
623 		__free_page(dpage);
624 		goto out_finalize;
625 	}
626 
627 	migrate_vma_pages(&mig);
628 out_finalize:
629 	migrate_vma_finalize(&mig);
630 out:
631 	mutex_unlock(&kvm->arch.uvmem_lock);
632 	return ret;
633 }
634 
635 /*
636  * Fault handler callback that gets called when HV touches any page that
637  * has been moved to secure memory, we ask UV to give back the page by
638  * issuing UV_PAGE_OUT uvcall.
639  *
640  * This eventually results in dropping of device PFN and the newly
641  * provisioned page/PFN gets populated in QEMU page tables.
642  */
643 static vm_fault_t kvmppc_uvmem_migrate_to_ram(struct vm_fault *vmf)
644 {
645 	struct kvmppc_uvmem_page_pvt *pvt = vmf->page->zone_device_data;
646 
647 	if (kvmppc_svm_page_out(vmf->vma, vmf->address,
648 				vmf->address + PAGE_SIZE, PAGE_SHIFT,
649 				pvt->kvm, pvt->gpa))
650 		return VM_FAULT_SIGBUS;
651 	else
652 		return 0;
653 }
654 
655 /*
656  * Release the device PFN back to the pool
657  *
658  * Gets called when secure page becomes a normal page during H_SVM_PAGE_OUT.
659  * Gets called with kvm->arch.uvmem_lock held.
660  */
661 static void kvmppc_uvmem_page_free(struct page *page)
662 {
663 	unsigned long pfn = page_to_pfn(page) -
664 			(kvmppc_uvmem_pgmap.res.start >> PAGE_SHIFT);
665 	struct kvmppc_uvmem_page_pvt *pvt;
666 
667 	spin_lock(&kvmppc_uvmem_bitmap_lock);
668 	bitmap_clear(kvmppc_uvmem_bitmap, pfn, 1);
669 	spin_unlock(&kvmppc_uvmem_bitmap_lock);
670 
671 	pvt = page->zone_device_data;
672 	page->zone_device_data = NULL;
673 	kvmppc_uvmem_pfn_remove(pvt->gpa >> PAGE_SHIFT, pvt->kvm);
674 	kfree(pvt);
675 }
676 
677 static const struct dev_pagemap_ops kvmppc_uvmem_ops = {
678 	.page_free = kvmppc_uvmem_page_free,
679 	.migrate_to_ram	= kvmppc_uvmem_migrate_to_ram,
680 };
681 
682 /*
683  * H_SVM_PAGE_OUT: Move page from secure memory to normal memory.
684  */
685 unsigned long
686 kvmppc_h_svm_page_out(struct kvm *kvm, unsigned long gpa,
687 		      unsigned long flags, unsigned long page_shift)
688 {
689 	unsigned long gfn = gpa >> page_shift;
690 	unsigned long start, end;
691 	struct vm_area_struct *vma;
692 	int srcu_idx;
693 	int ret;
694 
695 	if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
696 		return H_UNSUPPORTED;
697 
698 	if (page_shift != PAGE_SHIFT)
699 		return H_P3;
700 
701 	if (flags)
702 		return H_P2;
703 
704 	ret = H_PARAMETER;
705 	srcu_idx = srcu_read_lock(&kvm->srcu);
706 	mmap_read_lock(kvm->mm);
707 	start = gfn_to_hva(kvm, gfn);
708 	if (kvm_is_error_hva(start))
709 		goto out;
710 
711 	end = start + (1UL << page_shift);
712 	vma = find_vma_intersection(kvm->mm, start, end);
713 	if (!vma || vma->vm_start > start || vma->vm_end < end)
714 		goto out;
715 
716 	if (!kvmppc_svm_page_out(vma, start, end, page_shift, kvm, gpa))
717 		ret = H_SUCCESS;
718 out:
719 	mmap_read_unlock(kvm->mm);
720 	srcu_read_unlock(&kvm->srcu, srcu_idx);
721 	return ret;
722 }
723 
724 int kvmppc_send_page_to_uv(struct kvm *kvm, unsigned long gfn)
725 {
726 	unsigned long pfn;
727 	int ret = U_SUCCESS;
728 
729 	pfn = gfn_to_pfn(kvm, gfn);
730 	if (is_error_noslot_pfn(pfn))
731 		return -EFAULT;
732 
733 	mutex_lock(&kvm->arch.uvmem_lock);
734 	if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, NULL))
735 		goto out;
736 
737 	ret = uv_page_in(kvm->arch.lpid, pfn << PAGE_SHIFT, gfn << PAGE_SHIFT,
738 			 0, PAGE_SHIFT);
739 out:
740 	kvm_release_pfn_clean(pfn);
741 	mutex_unlock(&kvm->arch.uvmem_lock);
742 	return (ret == U_SUCCESS) ? RESUME_GUEST : -EFAULT;
743 }
744 
745 static u64 kvmppc_get_secmem_size(void)
746 {
747 	struct device_node *np;
748 	int i, len;
749 	const __be32 *prop;
750 	u64 size = 0;
751 
752 	/*
753 	 * First try the new ibm,secure-memory nodes which supersede the
754 	 * secure-memory-ranges property.
755 	 * If we found some, no need to read the deprecated ones.
756 	 */
757 	for_each_compatible_node(np, NULL, "ibm,secure-memory") {
758 		prop = of_get_property(np, "reg", &len);
759 		if (!prop)
760 			continue;
761 		size += of_read_number(prop + 2, 2);
762 	}
763 	if (size)
764 		return size;
765 
766 	np = of_find_compatible_node(NULL, NULL, "ibm,uv-firmware");
767 	if (!np)
768 		goto out;
769 
770 	prop = of_get_property(np, "secure-memory-ranges", &len);
771 	if (!prop)
772 		goto out_put;
773 
774 	for (i = 0; i < len / (sizeof(*prop) * 4); i++)
775 		size += of_read_number(prop + (i * 4) + 2, 2);
776 
777 out_put:
778 	of_node_put(np);
779 out:
780 	return size;
781 }
782 
783 int kvmppc_uvmem_init(void)
784 {
785 	int ret = 0;
786 	unsigned long size;
787 	struct resource *res;
788 	void *addr;
789 	unsigned long pfn_last, pfn_first;
790 
791 	size = kvmppc_get_secmem_size();
792 	if (!size) {
793 		/*
794 		 * Don't fail the initialization of kvm-hv module if
795 		 * the platform doesn't export ibm,uv-firmware node.
796 		 * Let normal guests run on such PEF-disabled platform.
797 		 */
798 		pr_info("KVMPPC-UVMEM: No support for secure guests\n");
799 		goto out;
800 	}
801 
802 	res = request_free_mem_region(&iomem_resource, size, "kvmppc_uvmem");
803 	if (IS_ERR(res)) {
804 		ret = PTR_ERR(res);
805 		goto out;
806 	}
807 
808 	kvmppc_uvmem_pgmap.type = MEMORY_DEVICE_PRIVATE;
809 	kvmppc_uvmem_pgmap.res = *res;
810 	kvmppc_uvmem_pgmap.ops = &kvmppc_uvmem_ops;
811 	/* just one global instance: */
812 	kvmppc_uvmem_pgmap.owner = &kvmppc_uvmem_pgmap;
813 	addr = memremap_pages(&kvmppc_uvmem_pgmap, NUMA_NO_NODE);
814 	if (IS_ERR(addr)) {
815 		ret = PTR_ERR(addr);
816 		goto out_free_region;
817 	}
818 
819 	pfn_first = res->start >> PAGE_SHIFT;
820 	pfn_last = pfn_first + (resource_size(res) >> PAGE_SHIFT);
821 	kvmppc_uvmem_bitmap = kcalloc(BITS_TO_LONGS(pfn_last - pfn_first),
822 				      sizeof(unsigned long), GFP_KERNEL);
823 	if (!kvmppc_uvmem_bitmap) {
824 		ret = -ENOMEM;
825 		goto out_unmap;
826 	}
827 
828 	pr_info("KVMPPC-UVMEM: Secure Memory size 0x%lx\n", size);
829 	return ret;
830 out_unmap:
831 	memunmap_pages(&kvmppc_uvmem_pgmap);
832 out_free_region:
833 	release_mem_region(res->start, size);
834 out:
835 	return ret;
836 }
837 
838 void kvmppc_uvmem_free(void)
839 {
840 	if (!kvmppc_uvmem_bitmap)
841 		return;
842 
843 	memunmap_pages(&kvmppc_uvmem_pgmap);
844 	release_mem_region(kvmppc_uvmem_pgmap.res.start,
845 			   resource_size(&kvmppc_uvmem_pgmap.res));
846 	kfree(kvmppc_uvmem_bitmap);
847 }
848