1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Secure pages management: Migration of pages between normal and secure 4 * memory of KVM guests. 5 * 6 * Copyright 2018 Bharata B Rao, IBM Corp. <bharata@linux.ibm.com> 7 */ 8 9 /* 10 * A pseries guest can be run as secure guest on Ultravisor-enabled 11 * POWER platforms. On such platforms, this driver will be used to manage 12 * the movement of guest pages between the normal memory managed by 13 * hypervisor (HV) and secure memory managed by Ultravisor (UV). 14 * 15 * The page-in or page-out requests from UV will come to HV as hcalls and 16 * HV will call back into UV via ultracalls to satisfy these page requests. 17 * 18 * Private ZONE_DEVICE memory equal to the amount of secure memory 19 * available in the platform for running secure guests is hotplugged. 20 * Whenever a page belonging to the guest becomes secure, a page from this 21 * private device memory is used to represent and track that secure page 22 * on the HV side. Some pages (like virtio buffers, VPA pages etc) are 23 * shared between UV and HV. However such pages aren't represented by 24 * device private memory and mappings to shared memory exist in both 25 * UV and HV page tables. 26 */ 27 28 /* 29 * Notes on locking 30 * 31 * kvm->arch.uvmem_lock is a per-guest lock that prevents concurrent 32 * page-in and page-out requests for the same GPA. Concurrent accesses 33 * can either come via UV (guest vCPUs requesting for same page) 34 * or when HV and guest simultaneously access the same page. 35 * This mutex serializes the migration of page from HV(normal) to 36 * UV(secure) and vice versa. So the serialization points are around 37 * migrate_vma routines and page-in/out routines. 38 * 39 * Per-guest mutex comes with a cost though. Mainly it serializes the 40 * fault path as page-out can occur when HV faults on accessing secure 41 * guest pages. Currently UV issues page-in requests for all the guest 42 * PFNs one at a time during early boot (UV_ESM uvcall), so this is 43 * not a cause for concern. Also currently the number of page-outs caused 44 * by HV touching secure pages is very very low. If an when UV supports 45 * overcommitting, then we might see concurrent guest driven page-outs. 46 * 47 * Locking order 48 * 49 * 1. kvm->srcu - Protects KVM memslots 50 * 2. kvm->mm->mmap_lock - find_vma, migrate_vma_pages and helpers, ksm_madvise 51 * 3. kvm->arch.uvmem_lock - protects read/writes to uvmem slots thus acting 52 * as sync-points for page-in/out 53 */ 54 55 /* 56 * Notes on page size 57 * 58 * Currently UV uses 2MB mappings internally, but will issue H_SVM_PAGE_IN 59 * and H_SVM_PAGE_OUT hcalls in PAGE_SIZE(64K) granularity. HV tracks 60 * secure GPAs at 64K page size and maintains one device PFN for each 61 * 64K secure GPA. UV_PAGE_IN and UV_PAGE_OUT calls by HV are also issued 62 * for 64K page at a time. 63 * 64 * HV faulting on secure pages: When HV touches any secure page, it 65 * faults and issues a UV_PAGE_OUT request with 64K page size. Currently 66 * UV splits and remaps the 2MB page if necessary and copies out the 67 * required 64K page contents. 68 * 69 * Shared pages: Whenever guest shares a secure page, UV will split and 70 * remap the 2MB page if required and issue H_SVM_PAGE_IN with 64K page size. 71 * 72 * HV invalidating a page: When a regular page belonging to secure 73 * guest gets unmapped, HV informs UV with UV_PAGE_INVAL of 64K 74 * page size. Using 64K page size is correct here because any non-secure 75 * page will essentially be of 64K page size. Splitting by UV during sharing 76 * and page-out ensures this. 77 * 78 * Page fault handling: When HV handles page fault of a page belonging 79 * to secure guest, it sends that to UV with a 64K UV_PAGE_IN request. 80 * Using 64K size is correct here too as UV would have split the 2MB page 81 * into 64k mappings and would have done page-outs earlier. 82 * 83 * In summary, the current secure pages handling code in HV assumes 84 * 64K page size and in fact fails any page-in/page-out requests of 85 * non-64K size upfront. If and when UV starts supporting multiple 86 * page-sizes, we need to break this assumption. 87 */ 88 89 #include <linux/pagemap.h> 90 #include <linux/migrate.h> 91 #include <linux/kvm_host.h> 92 #include <linux/ksm.h> 93 #include <linux/of.h> 94 #include <linux/memremap.h> 95 #include <asm/ultravisor.h> 96 #include <asm/mman.h> 97 #include <asm/kvm_ppc.h> 98 #include <asm/kvm_book3s_uvmem.h> 99 100 static struct dev_pagemap kvmppc_uvmem_pgmap; 101 static unsigned long *kvmppc_uvmem_bitmap; 102 static DEFINE_SPINLOCK(kvmppc_uvmem_bitmap_lock); 103 104 /* 105 * States of a GFN 106 * --------------- 107 * The GFN can be in one of the following states. 108 * 109 * (a) Secure - The GFN is secure. The GFN is associated with 110 * a Secure VM, the contents of the GFN is not accessible 111 * to the Hypervisor. This GFN can be backed by a secure-PFN, 112 * or can be backed by a normal-PFN with contents encrypted. 113 * The former is true when the GFN is paged-in into the 114 * ultravisor. The latter is true when the GFN is paged-out 115 * of the ultravisor. 116 * 117 * (b) Shared - The GFN is shared. The GFN is associated with a 118 * a secure VM. The contents of the GFN is accessible to 119 * Hypervisor. This GFN is backed by a normal-PFN and its 120 * content is un-encrypted. 121 * 122 * (c) Normal - The GFN is a normal. The GFN is associated with 123 * a normal VM. The contents of the GFN is accessible to 124 * the Hypervisor. Its content is never encrypted. 125 * 126 * States of a VM. 127 * --------------- 128 * 129 * Normal VM: A VM whose contents are always accessible to 130 * the hypervisor. All its GFNs are normal-GFNs. 131 * 132 * Secure VM: A VM whose contents are not accessible to the 133 * hypervisor without the VM's consent. Its GFNs are 134 * either Shared-GFN or Secure-GFNs. 135 * 136 * Transient VM: A Normal VM that is transitioning to secure VM. 137 * The transition starts on successful return of 138 * H_SVM_INIT_START, and ends on successful return 139 * of H_SVM_INIT_DONE. This transient VM, can have GFNs 140 * in any of the three states; i.e Secure-GFN, Shared-GFN, 141 * and Normal-GFN. The VM never executes in this state 142 * in supervisor-mode. 143 * 144 * Memory slot State. 145 * ----------------------------- 146 * The state of a memory slot mirrors the state of the 147 * VM the memory slot is associated with. 148 * 149 * VM State transition. 150 * -------------------- 151 * 152 * A VM always starts in Normal Mode. 153 * 154 * H_SVM_INIT_START moves the VM into transient state. During this 155 * time the Ultravisor may request some of its GFNs to be shared or 156 * secured. So its GFNs can be in one of the three GFN states. 157 * 158 * H_SVM_INIT_DONE moves the VM entirely from transient state to 159 * secure-state. At this point any left-over normal-GFNs are 160 * transitioned to Secure-GFN. 161 * 162 * H_SVM_INIT_ABORT moves the transient VM back to normal VM. 163 * All its GFNs are moved to Normal-GFNs. 164 * 165 * UV_TERMINATE transitions the secure-VM back to normal-VM. All 166 * the secure-GFN and shared-GFNs are tranistioned to normal-GFN 167 * Note: The contents of the normal-GFN is undefined at this point. 168 * 169 * GFN state implementation: 170 * ------------------------- 171 * 172 * Secure GFN is associated with a secure-PFN; also called uvmem_pfn, 173 * when the GFN is paged-in. Its pfn[] has KVMPPC_GFN_UVMEM_PFN flag 174 * set, and contains the value of the secure-PFN. 175 * It is associated with a normal-PFN; also called mem_pfn, when 176 * the GFN is pagedout. Its pfn[] has KVMPPC_GFN_MEM_PFN flag set. 177 * The value of the normal-PFN is not tracked. 178 * 179 * Shared GFN is associated with a normal-PFN. Its pfn[] has 180 * KVMPPC_UVMEM_SHARED_PFN flag set. The value of the normal-PFN 181 * is not tracked. 182 * 183 * Normal GFN is associated with normal-PFN. Its pfn[] has 184 * no flag set. The value of the normal-PFN is not tracked. 185 * 186 * Life cycle of a GFN 187 * -------------------- 188 * 189 * -------------------------------------------------------------- 190 * | | Share | Unshare | SVM |H_SVM_INIT_DONE| 191 * | |operation |operation | abort/ | | 192 * | | | | terminate | | 193 * ------------------------------------------------------------- 194 * | | | | | | 195 * | Secure | Shared | Secure |Normal |Secure | 196 * | | | | | | 197 * | Shared | Shared | Secure |Normal |Shared | 198 * | | | | | | 199 * | Normal | Shared | Secure |Normal |Secure | 200 * -------------------------------------------------------------- 201 * 202 * Life cycle of a VM 203 * -------------------- 204 * 205 * -------------------------------------------------------------------- 206 * | | start | H_SVM_ |H_SVM_ |H_SVM_ |UV_SVM_ | 207 * | | VM |INIT_START|INIT_DONE|INIT_ABORT |TERMINATE | 208 * | | | | | | | 209 * --------- ---------------------------------------------------------- 210 * | | | | | | | 211 * | Normal | Normal | Transient|Error |Error |Normal | 212 * | | | | | | | 213 * | Secure | Error | Error |Error |Error |Normal | 214 * | | | | | | | 215 * |Transient| N/A | Error |Secure |Normal |Normal | 216 * -------------------------------------------------------------------- 217 */ 218 219 #define KVMPPC_GFN_UVMEM_PFN (1UL << 63) 220 #define KVMPPC_GFN_MEM_PFN (1UL << 62) 221 #define KVMPPC_GFN_SHARED (1UL << 61) 222 #define KVMPPC_GFN_SECURE (KVMPPC_GFN_UVMEM_PFN | KVMPPC_GFN_MEM_PFN) 223 #define KVMPPC_GFN_FLAG_MASK (KVMPPC_GFN_SECURE | KVMPPC_GFN_SHARED) 224 #define KVMPPC_GFN_PFN_MASK (~KVMPPC_GFN_FLAG_MASK) 225 226 struct kvmppc_uvmem_slot { 227 struct list_head list; 228 unsigned long nr_pfns; 229 unsigned long base_pfn; 230 unsigned long *pfns; 231 }; 232 struct kvmppc_uvmem_page_pvt { 233 struct kvm *kvm; 234 unsigned long gpa; 235 bool skip_page_out; 236 bool remove_gfn; 237 }; 238 239 bool kvmppc_uvmem_available(void) 240 { 241 /* 242 * If kvmppc_uvmem_bitmap != NULL, then there is an ultravisor 243 * and our data structures have been initialized successfully. 244 */ 245 return !!kvmppc_uvmem_bitmap; 246 } 247 248 int kvmppc_uvmem_slot_init(struct kvm *kvm, const struct kvm_memory_slot *slot) 249 { 250 struct kvmppc_uvmem_slot *p; 251 252 p = kzalloc(sizeof(*p), GFP_KERNEL); 253 if (!p) 254 return -ENOMEM; 255 p->pfns = vcalloc(slot->npages, sizeof(*p->pfns)); 256 if (!p->pfns) { 257 kfree(p); 258 return -ENOMEM; 259 } 260 p->nr_pfns = slot->npages; 261 p->base_pfn = slot->base_gfn; 262 263 mutex_lock(&kvm->arch.uvmem_lock); 264 list_add(&p->list, &kvm->arch.uvmem_pfns); 265 mutex_unlock(&kvm->arch.uvmem_lock); 266 267 return 0; 268 } 269 270 /* 271 * All device PFNs are already released by the time we come here. 272 */ 273 void kvmppc_uvmem_slot_free(struct kvm *kvm, const struct kvm_memory_slot *slot) 274 { 275 struct kvmppc_uvmem_slot *p, *next; 276 277 mutex_lock(&kvm->arch.uvmem_lock); 278 list_for_each_entry_safe(p, next, &kvm->arch.uvmem_pfns, list) { 279 if (p->base_pfn == slot->base_gfn) { 280 vfree(p->pfns); 281 list_del(&p->list); 282 kfree(p); 283 break; 284 } 285 } 286 mutex_unlock(&kvm->arch.uvmem_lock); 287 } 288 289 static void kvmppc_mark_gfn(unsigned long gfn, struct kvm *kvm, 290 unsigned long flag, unsigned long uvmem_pfn) 291 { 292 struct kvmppc_uvmem_slot *p; 293 294 list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) { 295 if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) { 296 unsigned long index = gfn - p->base_pfn; 297 298 if (flag == KVMPPC_GFN_UVMEM_PFN) 299 p->pfns[index] = uvmem_pfn | flag; 300 else 301 p->pfns[index] = flag; 302 return; 303 } 304 } 305 } 306 307 /* mark the GFN as secure-GFN associated with @uvmem pfn device-PFN. */ 308 static void kvmppc_gfn_secure_uvmem_pfn(unsigned long gfn, 309 unsigned long uvmem_pfn, struct kvm *kvm) 310 { 311 kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_UVMEM_PFN, uvmem_pfn); 312 } 313 314 /* mark the GFN as secure-GFN associated with a memory-PFN. */ 315 static void kvmppc_gfn_secure_mem_pfn(unsigned long gfn, struct kvm *kvm) 316 { 317 kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_MEM_PFN, 0); 318 } 319 320 /* mark the GFN as a shared GFN. */ 321 static void kvmppc_gfn_shared(unsigned long gfn, struct kvm *kvm) 322 { 323 kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_SHARED, 0); 324 } 325 326 /* mark the GFN as a non-existent GFN. */ 327 static void kvmppc_gfn_remove(unsigned long gfn, struct kvm *kvm) 328 { 329 kvmppc_mark_gfn(gfn, kvm, 0, 0); 330 } 331 332 /* return true, if the GFN is a secure-GFN backed by a secure-PFN */ 333 static bool kvmppc_gfn_is_uvmem_pfn(unsigned long gfn, struct kvm *kvm, 334 unsigned long *uvmem_pfn) 335 { 336 struct kvmppc_uvmem_slot *p; 337 338 list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) { 339 if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) { 340 unsigned long index = gfn - p->base_pfn; 341 342 if (p->pfns[index] & KVMPPC_GFN_UVMEM_PFN) { 343 if (uvmem_pfn) 344 *uvmem_pfn = p->pfns[index] & 345 KVMPPC_GFN_PFN_MASK; 346 return true; 347 } else 348 return false; 349 } 350 } 351 return false; 352 } 353 354 /* 355 * starting from *gfn search for the next available GFN that is not yet 356 * transitioned to a secure GFN. return the value of that GFN in *gfn. If a 357 * GFN is found, return true, else return false 358 * 359 * Must be called with kvm->arch.uvmem_lock held. 360 */ 361 static bool kvmppc_next_nontransitioned_gfn(const struct kvm_memory_slot *memslot, 362 struct kvm *kvm, unsigned long *gfn) 363 { 364 struct kvmppc_uvmem_slot *p = NULL, *iter; 365 bool ret = false; 366 unsigned long i; 367 368 list_for_each_entry(iter, &kvm->arch.uvmem_pfns, list) 369 if (*gfn >= iter->base_pfn && *gfn < iter->base_pfn + iter->nr_pfns) { 370 p = iter; 371 break; 372 } 373 if (!p) 374 return ret; 375 /* 376 * The code below assumes, one to one correspondence between 377 * kvmppc_uvmem_slot and memslot. 378 */ 379 for (i = *gfn; i < p->base_pfn + p->nr_pfns; i++) { 380 unsigned long index = i - p->base_pfn; 381 382 if (!(p->pfns[index] & KVMPPC_GFN_FLAG_MASK)) { 383 *gfn = i; 384 ret = true; 385 break; 386 } 387 } 388 return ret; 389 } 390 391 static int kvmppc_memslot_page_merge(struct kvm *kvm, 392 const struct kvm_memory_slot *memslot, bool merge) 393 { 394 unsigned long gfn = memslot->base_gfn; 395 unsigned long end, start = gfn_to_hva(kvm, gfn); 396 unsigned long vm_flags; 397 int ret = 0; 398 struct vm_area_struct *vma; 399 int merge_flag = (merge) ? MADV_MERGEABLE : MADV_UNMERGEABLE; 400 401 if (kvm_is_error_hva(start)) 402 return H_STATE; 403 404 end = start + (memslot->npages << PAGE_SHIFT); 405 406 mmap_write_lock(kvm->mm); 407 do { 408 vma = find_vma_intersection(kvm->mm, start, end); 409 if (!vma) { 410 ret = H_STATE; 411 break; 412 } 413 /* Copy vm_flags to avoid partial modifications in ksm_madvise */ 414 vm_flags = vma->vm_flags; 415 ret = ksm_madvise(vma, vma->vm_start, vma->vm_end, 416 merge_flag, &vm_flags); 417 if (ret) { 418 ret = H_STATE; 419 break; 420 } 421 vm_flags_reset(vma, vm_flags); 422 start = vma->vm_end; 423 } while (end > vma->vm_end); 424 425 mmap_write_unlock(kvm->mm); 426 return ret; 427 } 428 429 static void __kvmppc_uvmem_memslot_delete(struct kvm *kvm, 430 const struct kvm_memory_slot *memslot) 431 { 432 uv_unregister_mem_slot(kvm->arch.lpid, memslot->id); 433 kvmppc_uvmem_slot_free(kvm, memslot); 434 kvmppc_memslot_page_merge(kvm, memslot, true); 435 } 436 437 static int __kvmppc_uvmem_memslot_create(struct kvm *kvm, 438 const struct kvm_memory_slot *memslot) 439 { 440 int ret = H_PARAMETER; 441 442 if (kvmppc_memslot_page_merge(kvm, memslot, false)) 443 return ret; 444 445 if (kvmppc_uvmem_slot_init(kvm, memslot)) 446 goto out1; 447 448 ret = uv_register_mem_slot(kvm->arch.lpid, 449 memslot->base_gfn << PAGE_SHIFT, 450 memslot->npages * PAGE_SIZE, 451 0, memslot->id); 452 if (ret < 0) { 453 ret = H_PARAMETER; 454 goto out; 455 } 456 return 0; 457 out: 458 kvmppc_uvmem_slot_free(kvm, memslot); 459 out1: 460 kvmppc_memslot_page_merge(kvm, memslot, true); 461 return ret; 462 } 463 464 unsigned long kvmppc_h_svm_init_start(struct kvm *kvm) 465 { 466 struct kvm_memslots *slots; 467 struct kvm_memory_slot *memslot, *m; 468 int ret = H_SUCCESS; 469 int srcu_idx, bkt; 470 471 kvm->arch.secure_guest = KVMPPC_SECURE_INIT_START; 472 473 if (!kvmppc_uvmem_bitmap) 474 return H_UNSUPPORTED; 475 476 /* Only radix guests can be secure guests */ 477 if (!kvm_is_radix(kvm)) 478 return H_UNSUPPORTED; 479 480 /* NAK the transition to secure if not enabled */ 481 if (!kvm->arch.svm_enabled) 482 return H_AUTHORITY; 483 484 srcu_idx = srcu_read_lock(&kvm->srcu); 485 486 /* register the memslot */ 487 slots = kvm_memslots(kvm); 488 kvm_for_each_memslot(memslot, bkt, slots) { 489 ret = __kvmppc_uvmem_memslot_create(kvm, memslot); 490 if (ret) 491 break; 492 } 493 494 if (ret) { 495 slots = kvm_memslots(kvm); 496 kvm_for_each_memslot(m, bkt, slots) { 497 if (m == memslot) 498 break; 499 __kvmppc_uvmem_memslot_delete(kvm, memslot); 500 } 501 } 502 503 srcu_read_unlock(&kvm->srcu, srcu_idx); 504 return ret; 505 } 506 507 /* 508 * Provision a new page on HV side and copy over the contents 509 * from secure memory using UV_PAGE_OUT uvcall. 510 * Caller must held kvm->arch.uvmem_lock. 511 */ 512 static int __kvmppc_svm_page_out(struct vm_area_struct *vma, 513 unsigned long start, 514 unsigned long end, unsigned long page_shift, 515 struct kvm *kvm, unsigned long gpa, struct page *fault_page) 516 { 517 unsigned long src_pfn, dst_pfn = 0; 518 struct migrate_vma mig = { 0 }; 519 struct page *dpage, *spage; 520 struct kvmppc_uvmem_page_pvt *pvt; 521 unsigned long pfn; 522 int ret = U_SUCCESS; 523 524 memset(&mig, 0, sizeof(mig)); 525 mig.vma = vma; 526 mig.start = start; 527 mig.end = end; 528 mig.src = &src_pfn; 529 mig.dst = &dst_pfn; 530 mig.pgmap_owner = &kvmppc_uvmem_pgmap; 531 mig.flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE; 532 mig.fault_page = fault_page; 533 534 /* The requested page is already paged-out, nothing to do */ 535 if (!kvmppc_gfn_is_uvmem_pfn(gpa >> page_shift, kvm, NULL)) 536 return ret; 537 538 ret = migrate_vma_setup(&mig); 539 if (ret) 540 return -1; 541 542 spage = migrate_pfn_to_page(*mig.src); 543 if (!spage || !(*mig.src & MIGRATE_PFN_MIGRATE)) 544 goto out_finalize; 545 546 if (!is_zone_device_page(spage)) 547 goto out_finalize; 548 549 dpage = alloc_page_vma(GFP_HIGHUSER, vma, start); 550 if (!dpage) { 551 ret = -1; 552 goto out_finalize; 553 } 554 555 lock_page(dpage); 556 pvt = spage->zone_device_data; 557 pfn = page_to_pfn(dpage); 558 559 /* 560 * This function is used in two cases: 561 * - When HV touches a secure page, for which we do UV_PAGE_OUT 562 * - When a secure page is converted to shared page, we *get* 563 * the page to essentially unmap the device page. In this 564 * case we skip page-out. 565 */ 566 if (!pvt->skip_page_out) 567 ret = uv_page_out(kvm->arch.lpid, pfn << page_shift, 568 gpa, 0, page_shift); 569 570 if (ret == U_SUCCESS) 571 *mig.dst = migrate_pfn(pfn); 572 else { 573 unlock_page(dpage); 574 __free_page(dpage); 575 goto out_finalize; 576 } 577 578 migrate_vma_pages(&mig); 579 580 out_finalize: 581 migrate_vma_finalize(&mig); 582 return ret; 583 } 584 585 static inline int kvmppc_svm_page_out(struct vm_area_struct *vma, 586 unsigned long start, unsigned long end, 587 unsigned long page_shift, 588 struct kvm *kvm, unsigned long gpa, 589 struct page *fault_page) 590 { 591 int ret; 592 593 mutex_lock(&kvm->arch.uvmem_lock); 594 ret = __kvmppc_svm_page_out(vma, start, end, page_shift, kvm, gpa, 595 fault_page); 596 mutex_unlock(&kvm->arch.uvmem_lock); 597 598 return ret; 599 } 600 601 /* 602 * Drop device pages that we maintain for the secure guest 603 * 604 * We first mark the pages to be skipped from UV_PAGE_OUT when there 605 * is HV side fault on these pages. Next we *get* these pages, forcing 606 * fault on them, do fault time migration to replace the device PTEs in 607 * QEMU page table with normal PTEs from newly allocated pages. 608 */ 609 void kvmppc_uvmem_drop_pages(const struct kvm_memory_slot *slot, 610 struct kvm *kvm, bool skip_page_out) 611 { 612 int i; 613 struct kvmppc_uvmem_page_pvt *pvt; 614 struct page *uvmem_page; 615 struct vm_area_struct *vma = NULL; 616 unsigned long uvmem_pfn, gfn; 617 unsigned long addr; 618 619 mmap_read_lock(kvm->mm); 620 621 addr = slot->userspace_addr; 622 623 gfn = slot->base_gfn; 624 for (i = slot->npages; i; --i, ++gfn, addr += PAGE_SIZE) { 625 626 /* Fetch the VMA if addr is not in the latest fetched one */ 627 if (!vma || addr >= vma->vm_end) { 628 vma = vma_lookup(kvm->mm, addr); 629 if (!vma) { 630 pr_err("Can't find VMA for gfn:0x%lx\n", gfn); 631 break; 632 } 633 } 634 635 mutex_lock(&kvm->arch.uvmem_lock); 636 637 if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) { 638 uvmem_page = pfn_to_page(uvmem_pfn); 639 pvt = uvmem_page->zone_device_data; 640 pvt->skip_page_out = skip_page_out; 641 pvt->remove_gfn = true; 642 643 if (__kvmppc_svm_page_out(vma, addr, addr + PAGE_SIZE, 644 PAGE_SHIFT, kvm, pvt->gpa, NULL)) 645 pr_err("Can't page out gpa:0x%lx addr:0x%lx\n", 646 pvt->gpa, addr); 647 } else { 648 /* Remove the shared flag if any */ 649 kvmppc_gfn_remove(gfn, kvm); 650 } 651 652 mutex_unlock(&kvm->arch.uvmem_lock); 653 } 654 655 mmap_read_unlock(kvm->mm); 656 } 657 658 unsigned long kvmppc_h_svm_init_abort(struct kvm *kvm) 659 { 660 int srcu_idx, bkt; 661 struct kvm_memory_slot *memslot; 662 663 /* 664 * Expect to be called only after INIT_START and before INIT_DONE. 665 * If INIT_DONE was completed, use normal VM termination sequence. 666 */ 667 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) 668 return H_UNSUPPORTED; 669 670 if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE) 671 return H_STATE; 672 673 srcu_idx = srcu_read_lock(&kvm->srcu); 674 675 kvm_for_each_memslot(memslot, bkt, kvm_memslots(kvm)) 676 kvmppc_uvmem_drop_pages(memslot, kvm, false); 677 678 srcu_read_unlock(&kvm->srcu, srcu_idx); 679 680 kvm->arch.secure_guest = 0; 681 uv_svm_terminate(kvm->arch.lpid); 682 683 return H_PARAMETER; 684 } 685 686 /* 687 * Get a free device PFN from the pool 688 * 689 * Called when a normal page is moved to secure memory (UV_PAGE_IN). Device 690 * PFN will be used to keep track of the secure page on HV side. 691 * 692 * Called with kvm->arch.uvmem_lock held 693 */ 694 static struct page *kvmppc_uvmem_get_page(unsigned long gpa, struct kvm *kvm) 695 { 696 struct page *dpage = NULL; 697 unsigned long bit, uvmem_pfn; 698 struct kvmppc_uvmem_page_pvt *pvt; 699 unsigned long pfn_last, pfn_first; 700 701 pfn_first = kvmppc_uvmem_pgmap.range.start >> PAGE_SHIFT; 702 pfn_last = pfn_first + 703 (range_len(&kvmppc_uvmem_pgmap.range) >> PAGE_SHIFT); 704 705 spin_lock(&kvmppc_uvmem_bitmap_lock); 706 bit = find_first_zero_bit(kvmppc_uvmem_bitmap, 707 pfn_last - pfn_first); 708 if (bit >= (pfn_last - pfn_first)) 709 goto out; 710 bitmap_set(kvmppc_uvmem_bitmap, bit, 1); 711 spin_unlock(&kvmppc_uvmem_bitmap_lock); 712 713 pvt = kzalloc(sizeof(*pvt), GFP_KERNEL); 714 if (!pvt) 715 goto out_clear; 716 717 uvmem_pfn = bit + pfn_first; 718 kvmppc_gfn_secure_uvmem_pfn(gpa >> PAGE_SHIFT, uvmem_pfn, kvm); 719 720 pvt->gpa = gpa; 721 pvt->kvm = kvm; 722 723 dpage = pfn_to_page(uvmem_pfn); 724 dpage->zone_device_data = pvt; 725 zone_device_page_init(dpage); 726 return dpage; 727 out_clear: 728 spin_lock(&kvmppc_uvmem_bitmap_lock); 729 bitmap_clear(kvmppc_uvmem_bitmap, bit, 1); 730 out: 731 spin_unlock(&kvmppc_uvmem_bitmap_lock); 732 return NULL; 733 } 734 735 /* 736 * Alloc a PFN from private device memory pool. If @pagein is true, 737 * copy page from normal memory to secure memory using UV_PAGE_IN uvcall. 738 */ 739 static int kvmppc_svm_page_in(struct vm_area_struct *vma, 740 unsigned long start, 741 unsigned long end, unsigned long gpa, struct kvm *kvm, 742 unsigned long page_shift, 743 bool pagein) 744 { 745 unsigned long src_pfn, dst_pfn = 0; 746 struct migrate_vma mig = { 0 }; 747 struct page *spage; 748 unsigned long pfn; 749 struct page *dpage; 750 int ret = 0; 751 752 memset(&mig, 0, sizeof(mig)); 753 mig.vma = vma; 754 mig.start = start; 755 mig.end = end; 756 mig.src = &src_pfn; 757 mig.dst = &dst_pfn; 758 mig.flags = MIGRATE_VMA_SELECT_SYSTEM; 759 760 ret = migrate_vma_setup(&mig); 761 if (ret) 762 return ret; 763 764 if (!(*mig.src & MIGRATE_PFN_MIGRATE)) { 765 ret = -1; 766 goto out_finalize; 767 } 768 769 dpage = kvmppc_uvmem_get_page(gpa, kvm); 770 if (!dpage) { 771 ret = -1; 772 goto out_finalize; 773 } 774 775 if (pagein) { 776 pfn = *mig.src >> MIGRATE_PFN_SHIFT; 777 spage = migrate_pfn_to_page(*mig.src); 778 if (spage) { 779 ret = uv_page_in(kvm->arch.lpid, pfn << page_shift, 780 gpa, 0, page_shift); 781 if (ret) 782 goto out_finalize; 783 } 784 } 785 786 *mig.dst = migrate_pfn(page_to_pfn(dpage)); 787 migrate_vma_pages(&mig); 788 out_finalize: 789 migrate_vma_finalize(&mig); 790 return ret; 791 } 792 793 static int kvmppc_uv_migrate_mem_slot(struct kvm *kvm, 794 const struct kvm_memory_slot *memslot) 795 { 796 unsigned long gfn = memslot->base_gfn; 797 struct vm_area_struct *vma; 798 unsigned long start, end; 799 int ret = 0; 800 801 mmap_read_lock(kvm->mm); 802 mutex_lock(&kvm->arch.uvmem_lock); 803 while (kvmppc_next_nontransitioned_gfn(memslot, kvm, &gfn)) { 804 ret = H_STATE; 805 start = gfn_to_hva(kvm, gfn); 806 if (kvm_is_error_hva(start)) 807 break; 808 809 end = start + (1UL << PAGE_SHIFT); 810 vma = find_vma_intersection(kvm->mm, start, end); 811 if (!vma || vma->vm_start > start || vma->vm_end < end) 812 break; 813 814 ret = kvmppc_svm_page_in(vma, start, end, 815 (gfn << PAGE_SHIFT), kvm, PAGE_SHIFT, false); 816 if (ret) { 817 ret = H_STATE; 818 break; 819 } 820 821 /* relinquish the cpu if needed */ 822 cond_resched(); 823 } 824 mutex_unlock(&kvm->arch.uvmem_lock); 825 mmap_read_unlock(kvm->mm); 826 return ret; 827 } 828 829 unsigned long kvmppc_h_svm_init_done(struct kvm *kvm) 830 { 831 struct kvm_memslots *slots; 832 struct kvm_memory_slot *memslot; 833 int srcu_idx, bkt; 834 long ret = H_SUCCESS; 835 836 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) 837 return H_UNSUPPORTED; 838 839 /* migrate any unmoved normal pfn to device pfns*/ 840 srcu_idx = srcu_read_lock(&kvm->srcu); 841 slots = kvm_memslots(kvm); 842 kvm_for_each_memslot(memslot, bkt, slots) { 843 ret = kvmppc_uv_migrate_mem_slot(kvm, memslot); 844 if (ret) { 845 /* 846 * The pages will remain transitioned. 847 * Its the callers responsibility to 848 * terminate the VM, which will undo 849 * all state of the VM. Till then 850 * this VM is in a erroneous state. 851 * Its KVMPPC_SECURE_INIT_DONE will 852 * remain unset. 853 */ 854 ret = H_STATE; 855 goto out; 856 } 857 } 858 859 kvm->arch.secure_guest |= KVMPPC_SECURE_INIT_DONE; 860 pr_info("LPID %d went secure\n", kvm->arch.lpid); 861 862 out: 863 srcu_read_unlock(&kvm->srcu, srcu_idx); 864 return ret; 865 } 866 867 /* 868 * Shares the page with HV, thus making it a normal page. 869 * 870 * - If the page is already secure, then provision a new page and share 871 * - If the page is a normal page, share the existing page 872 * 873 * In the former case, uses dev_pagemap_ops.migrate_to_ram handler 874 * to unmap the device page from QEMU's page tables. 875 */ 876 static unsigned long kvmppc_share_page(struct kvm *kvm, unsigned long gpa, 877 unsigned long page_shift) 878 { 879 880 int ret = H_PARAMETER; 881 struct page *uvmem_page; 882 struct kvmppc_uvmem_page_pvt *pvt; 883 unsigned long pfn; 884 unsigned long gfn = gpa >> page_shift; 885 int srcu_idx; 886 unsigned long uvmem_pfn; 887 888 srcu_idx = srcu_read_lock(&kvm->srcu); 889 mutex_lock(&kvm->arch.uvmem_lock); 890 if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) { 891 uvmem_page = pfn_to_page(uvmem_pfn); 892 pvt = uvmem_page->zone_device_data; 893 pvt->skip_page_out = true; 894 /* 895 * do not drop the GFN. It is a valid GFN 896 * that is transitioned to a shared GFN. 897 */ 898 pvt->remove_gfn = false; 899 } 900 901 retry: 902 mutex_unlock(&kvm->arch.uvmem_lock); 903 pfn = gfn_to_pfn(kvm, gfn); 904 if (is_error_noslot_pfn(pfn)) 905 goto out; 906 907 mutex_lock(&kvm->arch.uvmem_lock); 908 if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) { 909 uvmem_page = pfn_to_page(uvmem_pfn); 910 pvt = uvmem_page->zone_device_data; 911 pvt->skip_page_out = true; 912 pvt->remove_gfn = false; /* it continues to be a valid GFN */ 913 kvm_release_pfn_clean(pfn); 914 goto retry; 915 } 916 917 if (!uv_page_in(kvm->arch.lpid, pfn << page_shift, gpa, 0, 918 page_shift)) { 919 kvmppc_gfn_shared(gfn, kvm); 920 ret = H_SUCCESS; 921 } 922 kvm_release_pfn_clean(pfn); 923 mutex_unlock(&kvm->arch.uvmem_lock); 924 out: 925 srcu_read_unlock(&kvm->srcu, srcu_idx); 926 return ret; 927 } 928 929 /* 930 * H_SVM_PAGE_IN: Move page from normal memory to secure memory. 931 * 932 * H_PAGE_IN_SHARED flag makes the page shared which means that the same 933 * memory in is visible from both UV and HV. 934 */ 935 unsigned long kvmppc_h_svm_page_in(struct kvm *kvm, unsigned long gpa, 936 unsigned long flags, 937 unsigned long page_shift) 938 { 939 unsigned long start, end; 940 struct vm_area_struct *vma; 941 int srcu_idx; 942 unsigned long gfn = gpa >> page_shift; 943 int ret; 944 945 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) 946 return H_UNSUPPORTED; 947 948 if (page_shift != PAGE_SHIFT) 949 return H_P3; 950 951 if (flags & ~H_PAGE_IN_SHARED) 952 return H_P2; 953 954 if (flags & H_PAGE_IN_SHARED) 955 return kvmppc_share_page(kvm, gpa, page_shift); 956 957 ret = H_PARAMETER; 958 srcu_idx = srcu_read_lock(&kvm->srcu); 959 mmap_read_lock(kvm->mm); 960 961 start = gfn_to_hva(kvm, gfn); 962 if (kvm_is_error_hva(start)) 963 goto out; 964 965 mutex_lock(&kvm->arch.uvmem_lock); 966 /* Fail the page-in request of an already paged-in page */ 967 if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, NULL)) 968 goto out_unlock; 969 970 end = start + (1UL << page_shift); 971 vma = find_vma_intersection(kvm->mm, start, end); 972 if (!vma || vma->vm_start > start || vma->vm_end < end) 973 goto out_unlock; 974 975 if (kvmppc_svm_page_in(vma, start, end, gpa, kvm, page_shift, 976 true)) 977 goto out_unlock; 978 979 ret = H_SUCCESS; 980 981 out_unlock: 982 mutex_unlock(&kvm->arch.uvmem_lock); 983 out: 984 mmap_read_unlock(kvm->mm); 985 srcu_read_unlock(&kvm->srcu, srcu_idx); 986 return ret; 987 } 988 989 990 /* 991 * Fault handler callback that gets called when HV touches any page that 992 * has been moved to secure memory, we ask UV to give back the page by 993 * issuing UV_PAGE_OUT uvcall. 994 * 995 * This eventually results in dropping of device PFN and the newly 996 * provisioned page/PFN gets populated in QEMU page tables. 997 */ 998 static vm_fault_t kvmppc_uvmem_migrate_to_ram(struct vm_fault *vmf) 999 { 1000 struct kvmppc_uvmem_page_pvt *pvt = vmf->page->zone_device_data; 1001 1002 if (kvmppc_svm_page_out(vmf->vma, vmf->address, 1003 vmf->address + PAGE_SIZE, PAGE_SHIFT, 1004 pvt->kvm, pvt->gpa, vmf->page)) 1005 return VM_FAULT_SIGBUS; 1006 else 1007 return 0; 1008 } 1009 1010 /* 1011 * Release the device PFN back to the pool 1012 * 1013 * Gets called when secure GFN tranistions from a secure-PFN 1014 * to a normal PFN during H_SVM_PAGE_OUT. 1015 * Gets called with kvm->arch.uvmem_lock held. 1016 */ 1017 static void kvmppc_uvmem_page_free(struct page *page) 1018 { 1019 unsigned long pfn = page_to_pfn(page) - 1020 (kvmppc_uvmem_pgmap.range.start >> PAGE_SHIFT); 1021 struct kvmppc_uvmem_page_pvt *pvt; 1022 1023 spin_lock(&kvmppc_uvmem_bitmap_lock); 1024 bitmap_clear(kvmppc_uvmem_bitmap, pfn, 1); 1025 spin_unlock(&kvmppc_uvmem_bitmap_lock); 1026 1027 pvt = page->zone_device_data; 1028 page->zone_device_data = NULL; 1029 if (pvt->remove_gfn) 1030 kvmppc_gfn_remove(pvt->gpa >> PAGE_SHIFT, pvt->kvm); 1031 else 1032 kvmppc_gfn_secure_mem_pfn(pvt->gpa >> PAGE_SHIFT, pvt->kvm); 1033 kfree(pvt); 1034 } 1035 1036 static const struct dev_pagemap_ops kvmppc_uvmem_ops = { 1037 .page_free = kvmppc_uvmem_page_free, 1038 .migrate_to_ram = kvmppc_uvmem_migrate_to_ram, 1039 }; 1040 1041 /* 1042 * H_SVM_PAGE_OUT: Move page from secure memory to normal memory. 1043 */ 1044 unsigned long 1045 kvmppc_h_svm_page_out(struct kvm *kvm, unsigned long gpa, 1046 unsigned long flags, unsigned long page_shift) 1047 { 1048 unsigned long gfn = gpa >> page_shift; 1049 unsigned long start, end; 1050 struct vm_area_struct *vma; 1051 int srcu_idx; 1052 int ret; 1053 1054 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) 1055 return H_UNSUPPORTED; 1056 1057 if (page_shift != PAGE_SHIFT) 1058 return H_P3; 1059 1060 if (flags) 1061 return H_P2; 1062 1063 ret = H_PARAMETER; 1064 srcu_idx = srcu_read_lock(&kvm->srcu); 1065 mmap_read_lock(kvm->mm); 1066 start = gfn_to_hva(kvm, gfn); 1067 if (kvm_is_error_hva(start)) 1068 goto out; 1069 1070 end = start + (1UL << page_shift); 1071 vma = find_vma_intersection(kvm->mm, start, end); 1072 if (!vma || vma->vm_start > start || vma->vm_end < end) 1073 goto out; 1074 1075 if (!kvmppc_svm_page_out(vma, start, end, page_shift, kvm, gpa, NULL)) 1076 ret = H_SUCCESS; 1077 out: 1078 mmap_read_unlock(kvm->mm); 1079 srcu_read_unlock(&kvm->srcu, srcu_idx); 1080 return ret; 1081 } 1082 1083 int kvmppc_send_page_to_uv(struct kvm *kvm, unsigned long gfn) 1084 { 1085 unsigned long pfn; 1086 int ret = U_SUCCESS; 1087 1088 pfn = gfn_to_pfn(kvm, gfn); 1089 if (is_error_noslot_pfn(pfn)) 1090 return -EFAULT; 1091 1092 mutex_lock(&kvm->arch.uvmem_lock); 1093 if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, NULL)) 1094 goto out; 1095 1096 ret = uv_page_in(kvm->arch.lpid, pfn << PAGE_SHIFT, gfn << PAGE_SHIFT, 1097 0, PAGE_SHIFT); 1098 out: 1099 kvm_release_pfn_clean(pfn); 1100 mutex_unlock(&kvm->arch.uvmem_lock); 1101 return (ret == U_SUCCESS) ? RESUME_GUEST : -EFAULT; 1102 } 1103 1104 int kvmppc_uvmem_memslot_create(struct kvm *kvm, const struct kvm_memory_slot *new) 1105 { 1106 int ret = __kvmppc_uvmem_memslot_create(kvm, new); 1107 1108 if (!ret) 1109 ret = kvmppc_uv_migrate_mem_slot(kvm, new); 1110 1111 return ret; 1112 } 1113 1114 void kvmppc_uvmem_memslot_delete(struct kvm *kvm, const struct kvm_memory_slot *old) 1115 { 1116 __kvmppc_uvmem_memslot_delete(kvm, old); 1117 } 1118 1119 static u64 kvmppc_get_secmem_size(void) 1120 { 1121 struct device_node *np; 1122 int i, len; 1123 const __be32 *prop; 1124 u64 size = 0; 1125 1126 /* 1127 * First try the new ibm,secure-memory nodes which supersede the 1128 * secure-memory-ranges property. 1129 * If we found some, no need to read the deprecated ones. 1130 */ 1131 for_each_compatible_node(np, NULL, "ibm,secure-memory") { 1132 prop = of_get_property(np, "reg", &len); 1133 if (!prop) 1134 continue; 1135 size += of_read_number(prop + 2, 2); 1136 } 1137 if (size) 1138 return size; 1139 1140 np = of_find_compatible_node(NULL, NULL, "ibm,uv-firmware"); 1141 if (!np) 1142 goto out; 1143 1144 prop = of_get_property(np, "secure-memory-ranges", &len); 1145 if (!prop) 1146 goto out_put; 1147 1148 for (i = 0; i < len / (sizeof(*prop) * 4); i++) 1149 size += of_read_number(prop + (i * 4) + 2, 2); 1150 1151 out_put: 1152 of_node_put(np); 1153 out: 1154 return size; 1155 } 1156 1157 int kvmppc_uvmem_init(void) 1158 { 1159 int ret = 0; 1160 unsigned long size; 1161 struct resource *res; 1162 void *addr; 1163 unsigned long pfn_last, pfn_first; 1164 1165 size = kvmppc_get_secmem_size(); 1166 if (!size) { 1167 /* 1168 * Don't fail the initialization of kvm-hv module if 1169 * the platform doesn't export ibm,uv-firmware node. 1170 * Let normal guests run on such PEF-disabled platform. 1171 */ 1172 pr_info("KVMPPC-UVMEM: No support for secure guests\n"); 1173 goto out; 1174 } 1175 1176 res = request_free_mem_region(&iomem_resource, size, "kvmppc_uvmem"); 1177 if (IS_ERR(res)) { 1178 ret = PTR_ERR(res); 1179 goto out; 1180 } 1181 1182 kvmppc_uvmem_pgmap.type = MEMORY_DEVICE_PRIVATE; 1183 kvmppc_uvmem_pgmap.range.start = res->start; 1184 kvmppc_uvmem_pgmap.range.end = res->end; 1185 kvmppc_uvmem_pgmap.nr_range = 1; 1186 kvmppc_uvmem_pgmap.ops = &kvmppc_uvmem_ops; 1187 /* just one global instance: */ 1188 kvmppc_uvmem_pgmap.owner = &kvmppc_uvmem_pgmap; 1189 addr = memremap_pages(&kvmppc_uvmem_pgmap, NUMA_NO_NODE); 1190 if (IS_ERR(addr)) { 1191 ret = PTR_ERR(addr); 1192 goto out_free_region; 1193 } 1194 1195 pfn_first = res->start >> PAGE_SHIFT; 1196 pfn_last = pfn_first + (resource_size(res) >> PAGE_SHIFT); 1197 kvmppc_uvmem_bitmap = bitmap_zalloc(pfn_last - pfn_first, GFP_KERNEL); 1198 if (!kvmppc_uvmem_bitmap) { 1199 ret = -ENOMEM; 1200 goto out_unmap; 1201 } 1202 1203 pr_info("KVMPPC-UVMEM: Secure Memory size 0x%lx\n", size); 1204 return ret; 1205 out_unmap: 1206 memunmap_pages(&kvmppc_uvmem_pgmap); 1207 out_free_region: 1208 release_mem_region(res->start, size); 1209 out: 1210 return ret; 1211 } 1212 1213 void kvmppc_uvmem_free(void) 1214 { 1215 if (!kvmppc_uvmem_bitmap) 1216 return; 1217 1218 memunmap_pages(&kvmppc_uvmem_pgmap); 1219 release_mem_region(kvmppc_uvmem_pgmap.range.start, 1220 range_len(&kvmppc_uvmem_pgmap.range)); 1221 bitmap_free(kvmppc_uvmem_bitmap); 1222 } 1223