xref: /openbmc/linux/arch/powerpc/kvm/book3s_hv_uvmem.c (revision 31ab09b4218879bc394c9faa6da983a82a694600)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Secure pages management: Migration of pages between normal and secure
4  * memory of KVM guests.
5  *
6  * Copyright 2018 Bharata B Rao, IBM Corp. <bharata@linux.ibm.com>
7  */
8 
9 /*
10  * A pseries guest can be run as secure guest on Ultravisor-enabled
11  * POWER platforms. On such platforms, this driver will be used to manage
12  * the movement of guest pages between the normal memory managed by
13  * hypervisor (HV) and secure memory managed by Ultravisor (UV).
14  *
15  * The page-in or page-out requests from UV will come to HV as hcalls and
16  * HV will call back into UV via ultracalls to satisfy these page requests.
17  *
18  * Private ZONE_DEVICE memory equal to the amount of secure memory
19  * available in the platform for running secure guests is hotplugged.
20  * Whenever a page belonging to the guest becomes secure, a page from this
21  * private device memory is used to represent and track that secure page
22  * on the HV side. Some pages (like virtio buffers, VPA pages etc) are
23  * shared between UV and HV. However such pages aren't represented by
24  * device private memory and mappings to shared memory exist in both
25  * UV and HV page tables.
26  */
27 
28 /*
29  * Notes on locking
30  *
31  * kvm->arch.uvmem_lock is a per-guest lock that prevents concurrent
32  * page-in and page-out requests for the same GPA. Concurrent accesses
33  * can either come via UV (guest vCPUs requesting for same page)
34  * or when HV and guest simultaneously access the same page.
35  * This mutex serializes the migration of page from HV(normal) to
36  * UV(secure) and vice versa. So the serialization points are around
37  * migrate_vma routines and page-in/out routines.
38  *
39  * Per-guest mutex comes with a cost though. Mainly it serializes the
40  * fault path as page-out can occur when HV faults on accessing secure
41  * guest pages. Currently UV issues page-in requests for all the guest
42  * PFNs one at a time during early boot (UV_ESM uvcall), so this is
43  * not a cause for concern. Also currently the number of page-outs caused
44  * by HV touching secure pages is very very low. If an when UV supports
45  * overcommitting, then we might see concurrent guest driven page-outs.
46  *
47  * Locking order
48  *
49  * 1. kvm->srcu - Protects KVM memslots
50  * 2. kvm->mm->mmap_lock - find_vma, migrate_vma_pages and helpers, ksm_madvise
51  * 3. kvm->arch.uvmem_lock - protects read/writes to uvmem slots thus acting
52  *			     as sync-points for page-in/out
53  */
54 
55 /*
56  * Notes on page size
57  *
58  * Currently UV uses 2MB mappings internally, but will issue H_SVM_PAGE_IN
59  * and H_SVM_PAGE_OUT hcalls in PAGE_SIZE(64K) granularity. HV tracks
60  * secure GPAs at 64K page size and maintains one device PFN for each
61  * 64K secure GPA. UV_PAGE_IN and UV_PAGE_OUT calls by HV are also issued
62  * for 64K page at a time.
63  *
64  * HV faulting on secure pages: When HV touches any secure page, it
65  * faults and issues a UV_PAGE_OUT request with 64K page size. Currently
66  * UV splits and remaps the 2MB page if necessary and copies out the
67  * required 64K page contents.
68  *
69  * Shared pages: Whenever guest shares a secure page, UV will split and
70  * remap the 2MB page if required and issue H_SVM_PAGE_IN with 64K page size.
71  *
72  * HV invalidating a page: When a regular page belonging to secure
73  * guest gets unmapped, HV informs UV with UV_PAGE_INVAL of 64K
74  * page size. Using 64K page size is correct here because any non-secure
75  * page will essentially be of 64K page size. Splitting by UV during sharing
76  * and page-out ensures this.
77  *
78  * Page fault handling: When HV handles page fault of a page belonging
79  * to secure guest, it sends that to UV with a 64K UV_PAGE_IN request.
80  * Using 64K size is correct here too as UV would have split the 2MB page
81  * into 64k mappings and would have done page-outs earlier.
82  *
83  * In summary, the current secure pages handling code in HV assumes
84  * 64K page size and in fact fails any page-in/page-out requests of
85  * non-64K size upfront. If and when UV starts supporting multiple
86  * page-sizes, we need to break this assumption.
87  */
88 
89 #include <linux/pagemap.h>
90 #include <linux/migrate.h>
91 #include <linux/kvm_host.h>
92 #include <linux/ksm.h>
93 #include <linux/of.h>
94 #include <linux/memremap.h>
95 #include <asm/ultravisor.h>
96 #include <asm/mman.h>
97 #include <asm/kvm_ppc.h>
98 #include <asm/kvm_book3s_uvmem.h>
99 
100 static struct dev_pagemap kvmppc_uvmem_pgmap;
101 static unsigned long *kvmppc_uvmem_bitmap;
102 static DEFINE_SPINLOCK(kvmppc_uvmem_bitmap_lock);
103 
104 /*
105  * States of a GFN
106  * ---------------
107  * The GFN can be in one of the following states.
108  *
109  * (a) Secure - The GFN is secure. The GFN is associated with
110  *	a Secure VM, the contents of the GFN is not accessible
111  *	to the Hypervisor.  This GFN can be backed by a secure-PFN,
112  *	or can be backed by a normal-PFN with contents encrypted.
113  *	The former is true when the GFN is paged-in into the
114  *	ultravisor. The latter is true when the GFN is paged-out
115  *	of the ultravisor.
116  *
117  * (b) Shared - The GFN is shared. The GFN is associated with a
118  *	a secure VM. The contents of the GFN is accessible to
119  *	Hypervisor. This GFN is backed by a normal-PFN and its
120  *	content is un-encrypted.
121  *
122  * (c) Normal - The GFN is a normal. The GFN is associated with
123  *	a normal VM. The contents of the GFN is accesible to
124  *	the Hypervisor. Its content is never encrypted.
125  *
126  * States of a VM.
127  * ---------------
128  *
129  * Normal VM:  A VM whose contents are always accessible to
130  *	the hypervisor.  All its GFNs are normal-GFNs.
131  *
132  * Secure VM: A VM whose contents are not accessible to the
133  *	hypervisor without the VM's consent.  Its GFNs are
134  *	either Shared-GFN or Secure-GFNs.
135  *
136  * Transient VM: A Normal VM that is transitioning to secure VM.
137  *	The transition starts on successful return of
138  *	H_SVM_INIT_START, and ends on successful return
139  *	of H_SVM_INIT_DONE. This transient VM, can have GFNs
140  *	in any of the three states; i.e Secure-GFN, Shared-GFN,
141  *	and Normal-GFN.	The VM never executes in this state
142  *	in supervisor-mode.
143  *
144  * Memory slot State.
145  * -----------------------------
146  *	The state of a memory slot mirrors the state of the
147  *	VM the memory slot is associated with.
148  *
149  * VM State transition.
150  * --------------------
151  *
152  *  A VM always starts in Normal Mode.
153  *
154  *  H_SVM_INIT_START moves the VM into transient state. During this
155  *  time the Ultravisor may request some of its GFNs to be shared or
156  *  secured. So its GFNs can be in one of the three GFN states.
157  *
158  *  H_SVM_INIT_DONE moves the VM entirely from transient state to
159  *  secure-state. At this point any left-over normal-GFNs are
160  *  transitioned to Secure-GFN.
161  *
162  *  H_SVM_INIT_ABORT moves the transient VM back to normal VM.
163  *  All its GFNs are moved to Normal-GFNs.
164  *
165  *  UV_TERMINATE transitions the secure-VM back to normal-VM. All
166  *  the secure-GFN and shared-GFNs are tranistioned to normal-GFN
167  *  Note: The contents of the normal-GFN is undefined at this point.
168  *
169  * GFN state implementation:
170  * -------------------------
171  *
172  * Secure GFN is associated with a secure-PFN; also called uvmem_pfn,
173  * when the GFN is paged-in. Its pfn[] has KVMPPC_GFN_UVMEM_PFN flag
174  * set, and contains the value of the secure-PFN.
175  * It is associated with a normal-PFN; also called mem_pfn, when
176  * the GFN is pagedout. Its pfn[] has KVMPPC_GFN_MEM_PFN flag set.
177  * The value of the normal-PFN is not tracked.
178  *
179  * Shared GFN is associated with a normal-PFN. Its pfn[] has
180  * KVMPPC_UVMEM_SHARED_PFN flag set. The value of the normal-PFN
181  * is not tracked.
182  *
183  * Normal GFN is associated with normal-PFN. Its pfn[] has
184  * no flag set. The value of the normal-PFN is not tracked.
185  *
186  * Life cycle of a GFN
187  * --------------------
188  *
189  * --------------------------------------------------------------
190  * |        |     Share  |  Unshare | SVM       |H_SVM_INIT_DONE|
191  * |        |operation   |operation | abort/    |               |
192  * |        |            |          | terminate |               |
193  * -------------------------------------------------------------
194  * |        |            |          |           |               |
195  * | Secure |     Shared | Secure   |Normal     |Secure         |
196  * |        |            |          |           |               |
197  * | Shared |     Shared | Secure   |Normal     |Shared         |
198  * |        |            |          |           |               |
199  * | Normal |     Shared | Secure   |Normal     |Secure         |
200  * --------------------------------------------------------------
201  *
202  * Life cycle of a VM
203  * --------------------
204  *
205  * --------------------------------------------------------------------
206  * |         |  start    |  H_SVM_  |H_SVM_   |H_SVM_     |UV_SVM_    |
207  * |         |  VM       |INIT_START|INIT_DONE|INIT_ABORT |TERMINATE  |
208  * |         |           |          |         |           |           |
209  * --------- ----------------------------------------------------------
210  * |         |           |          |         |           |           |
211  * | Normal  | Normal    | Transient|Error    |Error      |Normal     |
212  * |         |           |          |         |           |           |
213  * | Secure  |   Error   | Error    |Error    |Error      |Normal     |
214  * |         |           |          |         |           |           |
215  * |Transient|   N/A     | Error    |Secure   |Normal     |Normal     |
216  * --------------------------------------------------------------------
217  */
218 
219 #define KVMPPC_GFN_UVMEM_PFN	(1UL << 63)
220 #define KVMPPC_GFN_MEM_PFN	(1UL << 62)
221 #define KVMPPC_GFN_SHARED	(1UL << 61)
222 #define KVMPPC_GFN_SECURE	(KVMPPC_GFN_UVMEM_PFN | KVMPPC_GFN_MEM_PFN)
223 #define KVMPPC_GFN_FLAG_MASK	(KVMPPC_GFN_SECURE | KVMPPC_GFN_SHARED)
224 #define KVMPPC_GFN_PFN_MASK	(~KVMPPC_GFN_FLAG_MASK)
225 
226 struct kvmppc_uvmem_slot {
227 	struct list_head list;
228 	unsigned long nr_pfns;
229 	unsigned long base_pfn;
230 	unsigned long *pfns;
231 };
232 struct kvmppc_uvmem_page_pvt {
233 	struct kvm *kvm;
234 	unsigned long gpa;
235 	bool skip_page_out;
236 	bool remove_gfn;
237 };
238 
239 bool kvmppc_uvmem_available(void)
240 {
241 	/*
242 	 * If kvmppc_uvmem_bitmap != NULL, then there is an ultravisor
243 	 * and our data structures have been initialized successfully.
244 	 */
245 	return !!kvmppc_uvmem_bitmap;
246 }
247 
248 int kvmppc_uvmem_slot_init(struct kvm *kvm, const struct kvm_memory_slot *slot)
249 {
250 	struct kvmppc_uvmem_slot *p;
251 
252 	p = kzalloc(sizeof(*p), GFP_KERNEL);
253 	if (!p)
254 		return -ENOMEM;
255 	p->pfns = vcalloc(slot->npages, sizeof(*p->pfns));
256 	if (!p->pfns) {
257 		kfree(p);
258 		return -ENOMEM;
259 	}
260 	p->nr_pfns = slot->npages;
261 	p->base_pfn = slot->base_gfn;
262 
263 	mutex_lock(&kvm->arch.uvmem_lock);
264 	list_add(&p->list, &kvm->arch.uvmem_pfns);
265 	mutex_unlock(&kvm->arch.uvmem_lock);
266 
267 	return 0;
268 }
269 
270 /*
271  * All device PFNs are already released by the time we come here.
272  */
273 void kvmppc_uvmem_slot_free(struct kvm *kvm, const struct kvm_memory_slot *slot)
274 {
275 	struct kvmppc_uvmem_slot *p, *next;
276 
277 	mutex_lock(&kvm->arch.uvmem_lock);
278 	list_for_each_entry_safe(p, next, &kvm->arch.uvmem_pfns, list) {
279 		if (p->base_pfn == slot->base_gfn) {
280 			vfree(p->pfns);
281 			list_del(&p->list);
282 			kfree(p);
283 			break;
284 		}
285 	}
286 	mutex_unlock(&kvm->arch.uvmem_lock);
287 }
288 
289 static void kvmppc_mark_gfn(unsigned long gfn, struct kvm *kvm,
290 			unsigned long flag, unsigned long uvmem_pfn)
291 {
292 	struct kvmppc_uvmem_slot *p;
293 
294 	list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) {
295 		if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) {
296 			unsigned long index = gfn - p->base_pfn;
297 
298 			if (flag == KVMPPC_GFN_UVMEM_PFN)
299 				p->pfns[index] = uvmem_pfn | flag;
300 			else
301 				p->pfns[index] = flag;
302 			return;
303 		}
304 	}
305 }
306 
307 /* mark the GFN as secure-GFN associated with @uvmem pfn device-PFN. */
308 static void kvmppc_gfn_secure_uvmem_pfn(unsigned long gfn,
309 			unsigned long uvmem_pfn, struct kvm *kvm)
310 {
311 	kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_UVMEM_PFN, uvmem_pfn);
312 }
313 
314 /* mark the GFN as secure-GFN associated with a memory-PFN. */
315 static void kvmppc_gfn_secure_mem_pfn(unsigned long gfn, struct kvm *kvm)
316 {
317 	kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_MEM_PFN, 0);
318 }
319 
320 /* mark the GFN as a shared GFN. */
321 static void kvmppc_gfn_shared(unsigned long gfn, struct kvm *kvm)
322 {
323 	kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_SHARED, 0);
324 }
325 
326 /* mark the GFN as a non-existent GFN. */
327 static void kvmppc_gfn_remove(unsigned long gfn, struct kvm *kvm)
328 {
329 	kvmppc_mark_gfn(gfn, kvm, 0, 0);
330 }
331 
332 /* return true, if the GFN is a secure-GFN backed by a secure-PFN */
333 static bool kvmppc_gfn_is_uvmem_pfn(unsigned long gfn, struct kvm *kvm,
334 				    unsigned long *uvmem_pfn)
335 {
336 	struct kvmppc_uvmem_slot *p;
337 
338 	list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) {
339 		if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) {
340 			unsigned long index = gfn - p->base_pfn;
341 
342 			if (p->pfns[index] & KVMPPC_GFN_UVMEM_PFN) {
343 				if (uvmem_pfn)
344 					*uvmem_pfn = p->pfns[index] &
345 						     KVMPPC_GFN_PFN_MASK;
346 				return true;
347 			} else
348 				return false;
349 		}
350 	}
351 	return false;
352 }
353 
354 /*
355  * starting from *gfn search for the next available GFN that is not yet
356  * transitioned to a secure GFN.  return the value of that GFN in *gfn.  If a
357  * GFN is found, return true, else return false
358  *
359  * Must be called with kvm->arch.uvmem_lock  held.
360  */
361 static bool kvmppc_next_nontransitioned_gfn(const struct kvm_memory_slot *memslot,
362 		struct kvm *kvm, unsigned long *gfn)
363 {
364 	struct kvmppc_uvmem_slot *p;
365 	bool ret = false;
366 	unsigned long i;
367 
368 	list_for_each_entry(p, &kvm->arch.uvmem_pfns, list)
369 		if (*gfn >= p->base_pfn && *gfn < p->base_pfn + p->nr_pfns)
370 			break;
371 	if (!p)
372 		return ret;
373 	/*
374 	 * The code below assumes, one to one correspondence between
375 	 * kvmppc_uvmem_slot and memslot.
376 	 */
377 	for (i = *gfn; i < p->base_pfn + p->nr_pfns; i++) {
378 		unsigned long index = i - p->base_pfn;
379 
380 		if (!(p->pfns[index] & KVMPPC_GFN_FLAG_MASK)) {
381 			*gfn = i;
382 			ret = true;
383 			break;
384 		}
385 	}
386 	return ret;
387 }
388 
389 static int kvmppc_memslot_page_merge(struct kvm *kvm,
390 		const struct kvm_memory_slot *memslot, bool merge)
391 {
392 	unsigned long gfn = memslot->base_gfn;
393 	unsigned long end, start = gfn_to_hva(kvm, gfn);
394 	int ret = 0;
395 	struct vm_area_struct *vma;
396 	int merge_flag = (merge) ? MADV_MERGEABLE : MADV_UNMERGEABLE;
397 
398 	if (kvm_is_error_hva(start))
399 		return H_STATE;
400 
401 	end = start + (memslot->npages << PAGE_SHIFT);
402 
403 	mmap_write_lock(kvm->mm);
404 	do {
405 		vma = find_vma_intersection(kvm->mm, start, end);
406 		if (!vma) {
407 			ret = H_STATE;
408 			break;
409 		}
410 		ret = ksm_madvise(vma, vma->vm_start, vma->vm_end,
411 			  merge_flag, &vma->vm_flags);
412 		if (ret) {
413 			ret = H_STATE;
414 			break;
415 		}
416 		start = vma->vm_end;
417 	} while (end > vma->vm_end);
418 
419 	mmap_write_unlock(kvm->mm);
420 	return ret;
421 }
422 
423 static void __kvmppc_uvmem_memslot_delete(struct kvm *kvm,
424 		const struct kvm_memory_slot *memslot)
425 {
426 	uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
427 	kvmppc_uvmem_slot_free(kvm, memslot);
428 	kvmppc_memslot_page_merge(kvm, memslot, true);
429 }
430 
431 static int __kvmppc_uvmem_memslot_create(struct kvm *kvm,
432 		const struct kvm_memory_slot *memslot)
433 {
434 	int ret = H_PARAMETER;
435 
436 	if (kvmppc_memslot_page_merge(kvm, memslot, false))
437 		return ret;
438 
439 	if (kvmppc_uvmem_slot_init(kvm, memslot))
440 		goto out1;
441 
442 	ret = uv_register_mem_slot(kvm->arch.lpid,
443 				   memslot->base_gfn << PAGE_SHIFT,
444 				   memslot->npages * PAGE_SIZE,
445 				   0, memslot->id);
446 	if (ret < 0) {
447 		ret = H_PARAMETER;
448 		goto out;
449 	}
450 	return 0;
451 out:
452 	kvmppc_uvmem_slot_free(kvm, memslot);
453 out1:
454 	kvmppc_memslot_page_merge(kvm, memslot, true);
455 	return ret;
456 }
457 
458 unsigned long kvmppc_h_svm_init_start(struct kvm *kvm)
459 {
460 	struct kvm_memslots *slots;
461 	struct kvm_memory_slot *memslot, *m;
462 	int ret = H_SUCCESS;
463 	int srcu_idx, bkt;
464 
465 	kvm->arch.secure_guest = KVMPPC_SECURE_INIT_START;
466 
467 	if (!kvmppc_uvmem_bitmap)
468 		return H_UNSUPPORTED;
469 
470 	/* Only radix guests can be secure guests */
471 	if (!kvm_is_radix(kvm))
472 		return H_UNSUPPORTED;
473 
474 	/* NAK the transition to secure if not enabled */
475 	if (!kvm->arch.svm_enabled)
476 		return H_AUTHORITY;
477 
478 	srcu_idx = srcu_read_lock(&kvm->srcu);
479 
480 	/* register the memslot */
481 	slots = kvm_memslots(kvm);
482 	kvm_for_each_memslot(memslot, bkt, slots) {
483 		ret = __kvmppc_uvmem_memslot_create(kvm, memslot);
484 		if (ret)
485 			break;
486 	}
487 
488 	if (ret) {
489 		slots = kvm_memslots(kvm);
490 		kvm_for_each_memslot(m, bkt, slots) {
491 			if (m == memslot)
492 				break;
493 			__kvmppc_uvmem_memslot_delete(kvm, memslot);
494 		}
495 	}
496 
497 	srcu_read_unlock(&kvm->srcu, srcu_idx);
498 	return ret;
499 }
500 
501 /*
502  * Provision a new page on HV side and copy over the contents
503  * from secure memory using UV_PAGE_OUT uvcall.
504  * Caller must held kvm->arch.uvmem_lock.
505  */
506 static int __kvmppc_svm_page_out(struct vm_area_struct *vma,
507 		unsigned long start,
508 		unsigned long end, unsigned long page_shift,
509 		struct kvm *kvm, unsigned long gpa)
510 {
511 	unsigned long src_pfn, dst_pfn = 0;
512 	struct migrate_vma mig;
513 	struct page *dpage, *spage;
514 	struct kvmppc_uvmem_page_pvt *pvt;
515 	unsigned long pfn;
516 	int ret = U_SUCCESS;
517 
518 	memset(&mig, 0, sizeof(mig));
519 	mig.vma = vma;
520 	mig.start = start;
521 	mig.end = end;
522 	mig.src = &src_pfn;
523 	mig.dst = &dst_pfn;
524 	mig.pgmap_owner = &kvmppc_uvmem_pgmap;
525 	mig.flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE;
526 
527 	/* The requested page is already paged-out, nothing to do */
528 	if (!kvmppc_gfn_is_uvmem_pfn(gpa >> page_shift, kvm, NULL))
529 		return ret;
530 
531 	ret = migrate_vma_setup(&mig);
532 	if (ret)
533 		return -1;
534 
535 	spage = migrate_pfn_to_page(*mig.src);
536 	if (!spage || !(*mig.src & MIGRATE_PFN_MIGRATE))
537 		goto out_finalize;
538 
539 	if (!is_zone_device_page(spage))
540 		goto out_finalize;
541 
542 	dpage = alloc_page_vma(GFP_HIGHUSER, vma, start);
543 	if (!dpage) {
544 		ret = -1;
545 		goto out_finalize;
546 	}
547 
548 	lock_page(dpage);
549 	pvt = spage->zone_device_data;
550 	pfn = page_to_pfn(dpage);
551 
552 	/*
553 	 * This function is used in two cases:
554 	 * - When HV touches a secure page, for which we do UV_PAGE_OUT
555 	 * - When a secure page is converted to shared page, we *get*
556 	 *   the page to essentially unmap the device page. In this
557 	 *   case we skip page-out.
558 	 */
559 	if (!pvt->skip_page_out)
560 		ret = uv_page_out(kvm->arch.lpid, pfn << page_shift,
561 				  gpa, 0, page_shift);
562 
563 	if (ret == U_SUCCESS)
564 		*mig.dst = migrate_pfn(pfn);
565 	else {
566 		unlock_page(dpage);
567 		__free_page(dpage);
568 		goto out_finalize;
569 	}
570 
571 	migrate_vma_pages(&mig);
572 
573 out_finalize:
574 	migrate_vma_finalize(&mig);
575 	return ret;
576 }
577 
578 static inline int kvmppc_svm_page_out(struct vm_area_struct *vma,
579 				      unsigned long start, unsigned long end,
580 				      unsigned long page_shift,
581 				      struct kvm *kvm, unsigned long gpa)
582 {
583 	int ret;
584 
585 	mutex_lock(&kvm->arch.uvmem_lock);
586 	ret = __kvmppc_svm_page_out(vma, start, end, page_shift, kvm, gpa);
587 	mutex_unlock(&kvm->arch.uvmem_lock);
588 
589 	return ret;
590 }
591 
592 /*
593  * Drop device pages that we maintain for the secure guest
594  *
595  * We first mark the pages to be skipped from UV_PAGE_OUT when there
596  * is HV side fault on these pages. Next we *get* these pages, forcing
597  * fault on them, do fault time migration to replace the device PTEs in
598  * QEMU page table with normal PTEs from newly allocated pages.
599  */
600 void kvmppc_uvmem_drop_pages(const struct kvm_memory_slot *slot,
601 			     struct kvm *kvm, bool skip_page_out)
602 {
603 	int i;
604 	struct kvmppc_uvmem_page_pvt *pvt;
605 	struct page *uvmem_page;
606 	struct vm_area_struct *vma = NULL;
607 	unsigned long uvmem_pfn, gfn;
608 	unsigned long addr;
609 
610 	mmap_read_lock(kvm->mm);
611 
612 	addr = slot->userspace_addr;
613 
614 	gfn = slot->base_gfn;
615 	for (i = slot->npages; i; --i, ++gfn, addr += PAGE_SIZE) {
616 
617 		/* Fetch the VMA if addr is not in the latest fetched one */
618 		if (!vma || addr >= vma->vm_end) {
619 			vma = vma_lookup(kvm->mm, addr);
620 			if (!vma) {
621 				pr_err("Can't find VMA for gfn:0x%lx\n", gfn);
622 				break;
623 			}
624 		}
625 
626 		mutex_lock(&kvm->arch.uvmem_lock);
627 
628 		if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
629 			uvmem_page = pfn_to_page(uvmem_pfn);
630 			pvt = uvmem_page->zone_device_data;
631 			pvt->skip_page_out = skip_page_out;
632 			pvt->remove_gfn = true;
633 
634 			if (__kvmppc_svm_page_out(vma, addr, addr + PAGE_SIZE,
635 						  PAGE_SHIFT, kvm, pvt->gpa))
636 				pr_err("Can't page out gpa:0x%lx addr:0x%lx\n",
637 				       pvt->gpa, addr);
638 		} else {
639 			/* Remove the shared flag if any */
640 			kvmppc_gfn_remove(gfn, kvm);
641 		}
642 
643 		mutex_unlock(&kvm->arch.uvmem_lock);
644 	}
645 
646 	mmap_read_unlock(kvm->mm);
647 }
648 
649 unsigned long kvmppc_h_svm_init_abort(struct kvm *kvm)
650 {
651 	int srcu_idx, bkt;
652 	struct kvm_memory_slot *memslot;
653 
654 	/*
655 	 * Expect to be called only after INIT_START and before INIT_DONE.
656 	 * If INIT_DONE was completed, use normal VM termination sequence.
657 	 */
658 	if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
659 		return H_UNSUPPORTED;
660 
661 	if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE)
662 		return H_STATE;
663 
664 	srcu_idx = srcu_read_lock(&kvm->srcu);
665 
666 	kvm_for_each_memslot(memslot, bkt, kvm_memslots(kvm))
667 		kvmppc_uvmem_drop_pages(memslot, kvm, false);
668 
669 	srcu_read_unlock(&kvm->srcu, srcu_idx);
670 
671 	kvm->arch.secure_guest = 0;
672 	uv_svm_terminate(kvm->arch.lpid);
673 
674 	return H_PARAMETER;
675 }
676 
677 /*
678  * Get a free device PFN from the pool
679  *
680  * Called when a normal page is moved to secure memory (UV_PAGE_IN). Device
681  * PFN will be used to keep track of the secure page on HV side.
682  *
683  * Called with kvm->arch.uvmem_lock held
684  */
685 static struct page *kvmppc_uvmem_get_page(unsigned long gpa, struct kvm *kvm)
686 {
687 	struct page *dpage = NULL;
688 	unsigned long bit, uvmem_pfn;
689 	struct kvmppc_uvmem_page_pvt *pvt;
690 	unsigned long pfn_last, pfn_first;
691 
692 	pfn_first = kvmppc_uvmem_pgmap.range.start >> PAGE_SHIFT;
693 	pfn_last = pfn_first +
694 		   (range_len(&kvmppc_uvmem_pgmap.range) >> PAGE_SHIFT);
695 
696 	spin_lock(&kvmppc_uvmem_bitmap_lock);
697 	bit = find_first_zero_bit(kvmppc_uvmem_bitmap,
698 				  pfn_last - pfn_first);
699 	if (bit >= (pfn_last - pfn_first))
700 		goto out;
701 	bitmap_set(kvmppc_uvmem_bitmap, bit, 1);
702 	spin_unlock(&kvmppc_uvmem_bitmap_lock);
703 
704 	pvt = kzalloc(sizeof(*pvt), GFP_KERNEL);
705 	if (!pvt)
706 		goto out_clear;
707 
708 	uvmem_pfn = bit + pfn_first;
709 	kvmppc_gfn_secure_uvmem_pfn(gpa >> PAGE_SHIFT, uvmem_pfn, kvm);
710 
711 	pvt->gpa = gpa;
712 	pvt->kvm = kvm;
713 
714 	dpage = pfn_to_page(uvmem_pfn);
715 	dpage->zone_device_data = pvt;
716 	lock_page(dpage);
717 	return dpage;
718 out_clear:
719 	spin_lock(&kvmppc_uvmem_bitmap_lock);
720 	bitmap_clear(kvmppc_uvmem_bitmap, bit, 1);
721 out:
722 	spin_unlock(&kvmppc_uvmem_bitmap_lock);
723 	return NULL;
724 }
725 
726 /*
727  * Alloc a PFN from private device memory pool. If @pagein is true,
728  * copy page from normal memory to secure memory using UV_PAGE_IN uvcall.
729  */
730 static int kvmppc_svm_page_in(struct vm_area_struct *vma,
731 		unsigned long start,
732 		unsigned long end, unsigned long gpa, struct kvm *kvm,
733 		unsigned long page_shift,
734 		bool pagein)
735 {
736 	unsigned long src_pfn, dst_pfn = 0;
737 	struct migrate_vma mig;
738 	struct page *spage;
739 	unsigned long pfn;
740 	struct page *dpage;
741 	int ret = 0;
742 
743 	memset(&mig, 0, sizeof(mig));
744 	mig.vma = vma;
745 	mig.start = start;
746 	mig.end = end;
747 	mig.src = &src_pfn;
748 	mig.dst = &dst_pfn;
749 	mig.flags = MIGRATE_VMA_SELECT_SYSTEM;
750 
751 	ret = migrate_vma_setup(&mig);
752 	if (ret)
753 		return ret;
754 
755 	if (!(*mig.src & MIGRATE_PFN_MIGRATE)) {
756 		ret = -1;
757 		goto out_finalize;
758 	}
759 
760 	dpage = kvmppc_uvmem_get_page(gpa, kvm);
761 	if (!dpage) {
762 		ret = -1;
763 		goto out_finalize;
764 	}
765 
766 	if (pagein) {
767 		pfn = *mig.src >> MIGRATE_PFN_SHIFT;
768 		spage = migrate_pfn_to_page(*mig.src);
769 		if (spage) {
770 			ret = uv_page_in(kvm->arch.lpid, pfn << page_shift,
771 					gpa, 0, page_shift);
772 			if (ret)
773 				goto out_finalize;
774 		}
775 	}
776 
777 	*mig.dst = migrate_pfn(page_to_pfn(dpage));
778 	migrate_vma_pages(&mig);
779 out_finalize:
780 	migrate_vma_finalize(&mig);
781 	return ret;
782 }
783 
784 static int kvmppc_uv_migrate_mem_slot(struct kvm *kvm,
785 		const struct kvm_memory_slot *memslot)
786 {
787 	unsigned long gfn = memslot->base_gfn;
788 	struct vm_area_struct *vma;
789 	unsigned long start, end;
790 	int ret = 0;
791 
792 	mmap_read_lock(kvm->mm);
793 	mutex_lock(&kvm->arch.uvmem_lock);
794 	while (kvmppc_next_nontransitioned_gfn(memslot, kvm, &gfn)) {
795 		ret = H_STATE;
796 		start = gfn_to_hva(kvm, gfn);
797 		if (kvm_is_error_hva(start))
798 			break;
799 
800 		end = start + (1UL << PAGE_SHIFT);
801 		vma = find_vma_intersection(kvm->mm, start, end);
802 		if (!vma || vma->vm_start > start || vma->vm_end < end)
803 			break;
804 
805 		ret = kvmppc_svm_page_in(vma, start, end,
806 				(gfn << PAGE_SHIFT), kvm, PAGE_SHIFT, false);
807 		if (ret) {
808 			ret = H_STATE;
809 			break;
810 		}
811 
812 		/* relinquish the cpu if needed */
813 		cond_resched();
814 	}
815 	mutex_unlock(&kvm->arch.uvmem_lock);
816 	mmap_read_unlock(kvm->mm);
817 	return ret;
818 }
819 
820 unsigned long kvmppc_h_svm_init_done(struct kvm *kvm)
821 {
822 	struct kvm_memslots *slots;
823 	struct kvm_memory_slot *memslot;
824 	int srcu_idx, bkt;
825 	long ret = H_SUCCESS;
826 
827 	if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
828 		return H_UNSUPPORTED;
829 
830 	/* migrate any unmoved normal pfn to device pfns*/
831 	srcu_idx = srcu_read_lock(&kvm->srcu);
832 	slots = kvm_memslots(kvm);
833 	kvm_for_each_memslot(memslot, bkt, slots) {
834 		ret = kvmppc_uv_migrate_mem_slot(kvm, memslot);
835 		if (ret) {
836 			/*
837 			 * The pages will remain transitioned.
838 			 * Its the callers responsibility to
839 			 * terminate the VM, which will undo
840 			 * all state of the VM. Till then
841 			 * this VM is in a erroneous state.
842 			 * Its KVMPPC_SECURE_INIT_DONE will
843 			 * remain unset.
844 			 */
845 			ret = H_STATE;
846 			goto out;
847 		}
848 	}
849 
850 	kvm->arch.secure_guest |= KVMPPC_SECURE_INIT_DONE;
851 	pr_info("LPID %d went secure\n", kvm->arch.lpid);
852 
853 out:
854 	srcu_read_unlock(&kvm->srcu, srcu_idx);
855 	return ret;
856 }
857 
858 /*
859  * Shares the page with HV, thus making it a normal page.
860  *
861  * - If the page is already secure, then provision a new page and share
862  * - If the page is a normal page, share the existing page
863  *
864  * In the former case, uses dev_pagemap_ops.migrate_to_ram handler
865  * to unmap the device page from QEMU's page tables.
866  */
867 static unsigned long kvmppc_share_page(struct kvm *kvm, unsigned long gpa,
868 		unsigned long page_shift)
869 {
870 
871 	int ret = H_PARAMETER;
872 	struct page *uvmem_page;
873 	struct kvmppc_uvmem_page_pvt *pvt;
874 	unsigned long pfn;
875 	unsigned long gfn = gpa >> page_shift;
876 	int srcu_idx;
877 	unsigned long uvmem_pfn;
878 
879 	srcu_idx = srcu_read_lock(&kvm->srcu);
880 	mutex_lock(&kvm->arch.uvmem_lock);
881 	if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
882 		uvmem_page = pfn_to_page(uvmem_pfn);
883 		pvt = uvmem_page->zone_device_data;
884 		pvt->skip_page_out = true;
885 		/*
886 		 * do not drop the GFN. It is a valid GFN
887 		 * that is transitioned to a shared GFN.
888 		 */
889 		pvt->remove_gfn = false;
890 	}
891 
892 retry:
893 	mutex_unlock(&kvm->arch.uvmem_lock);
894 	pfn = gfn_to_pfn(kvm, gfn);
895 	if (is_error_noslot_pfn(pfn))
896 		goto out;
897 
898 	mutex_lock(&kvm->arch.uvmem_lock);
899 	if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
900 		uvmem_page = pfn_to_page(uvmem_pfn);
901 		pvt = uvmem_page->zone_device_data;
902 		pvt->skip_page_out = true;
903 		pvt->remove_gfn = false; /* it continues to be a valid GFN */
904 		kvm_release_pfn_clean(pfn);
905 		goto retry;
906 	}
907 
908 	if (!uv_page_in(kvm->arch.lpid, pfn << page_shift, gpa, 0,
909 				page_shift)) {
910 		kvmppc_gfn_shared(gfn, kvm);
911 		ret = H_SUCCESS;
912 	}
913 	kvm_release_pfn_clean(pfn);
914 	mutex_unlock(&kvm->arch.uvmem_lock);
915 out:
916 	srcu_read_unlock(&kvm->srcu, srcu_idx);
917 	return ret;
918 }
919 
920 /*
921  * H_SVM_PAGE_IN: Move page from normal memory to secure memory.
922  *
923  * H_PAGE_IN_SHARED flag makes the page shared which means that the same
924  * memory in is visible from both UV and HV.
925  */
926 unsigned long kvmppc_h_svm_page_in(struct kvm *kvm, unsigned long gpa,
927 		unsigned long flags,
928 		unsigned long page_shift)
929 {
930 	unsigned long start, end;
931 	struct vm_area_struct *vma;
932 	int srcu_idx;
933 	unsigned long gfn = gpa >> page_shift;
934 	int ret;
935 
936 	if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
937 		return H_UNSUPPORTED;
938 
939 	if (page_shift != PAGE_SHIFT)
940 		return H_P3;
941 
942 	if (flags & ~H_PAGE_IN_SHARED)
943 		return H_P2;
944 
945 	if (flags & H_PAGE_IN_SHARED)
946 		return kvmppc_share_page(kvm, gpa, page_shift);
947 
948 	ret = H_PARAMETER;
949 	srcu_idx = srcu_read_lock(&kvm->srcu);
950 	mmap_read_lock(kvm->mm);
951 
952 	start = gfn_to_hva(kvm, gfn);
953 	if (kvm_is_error_hva(start))
954 		goto out;
955 
956 	mutex_lock(&kvm->arch.uvmem_lock);
957 	/* Fail the page-in request of an already paged-in page */
958 	if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, NULL))
959 		goto out_unlock;
960 
961 	end = start + (1UL << page_shift);
962 	vma = find_vma_intersection(kvm->mm, start, end);
963 	if (!vma || vma->vm_start > start || vma->vm_end < end)
964 		goto out_unlock;
965 
966 	if (kvmppc_svm_page_in(vma, start, end, gpa, kvm, page_shift,
967 				true))
968 		goto out_unlock;
969 
970 	ret = H_SUCCESS;
971 
972 out_unlock:
973 	mutex_unlock(&kvm->arch.uvmem_lock);
974 out:
975 	mmap_read_unlock(kvm->mm);
976 	srcu_read_unlock(&kvm->srcu, srcu_idx);
977 	return ret;
978 }
979 
980 
981 /*
982  * Fault handler callback that gets called when HV touches any page that
983  * has been moved to secure memory, we ask UV to give back the page by
984  * issuing UV_PAGE_OUT uvcall.
985  *
986  * This eventually results in dropping of device PFN and the newly
987  * provisioned page/PFN gets populated in QEMU page tables.
988  */
989 static vm_fault_t kvmppc_uvmem_migrate_to_ram(struct vm_fault *vmf)
990 {
991 	struct kvmppc_uvmem_page_pvt *pvt = vmf->page->zone_device_data;
992 
993 	if (kvmppc_svm_page_out(vmf->vma, vmf->address,
994 				vmf->address + PAGE_SIZE, PAGE_SHIFT,
995 				pvt->kvm, pvt->gpa))
996 		return VM_FAULT_SIGBUS;
997 	else
998 		return 0;
999 }
1000 
1001 /*
1002  * Release the device PFN back to the pool
1003  *
1004  * Gets called when secure GFN tranistions from a secure-PFN
1005  * to a normal PFN during H_SVM_PAGE_OUT.
1006  * Gets called with kvm->arch.uvmem_lock held.
1007  */
1008 static void kvmppc_uvmem_page_free(struct page *page)
1009 {
1010 	unsigned long pfn = page_to_pfn(page) -
1011 			(kvmppc_uvmem_pgmap.range.start >> PAGE_SHIFT);
1012 	struct kvmppc_uvmem_page_pvt *pvt;
1013 
1014 	spin_lock(&kvmppc_uvmem_bitmap_lock);
1015 	bitmap_clear(kvmppc_uvmem_bitmap, pfn, 1);
1016 	spin_unlock(&kvmppc_uvmem_bitmap_lock);
1017 
1018 	pvt = page->zone_device_data;
1019 	page->zone_device_data = NULL;
1020 	if (pvt->remove_gfn)
1021 		kvmppc_gfn_remove(pvt->gpa >> PAGE_SHIFT, pvt->kvm);
1022 	else
1023 		kvmppc_gfn_secure_mem_pfn(pvt->gpa >> PAGE_SHIFT, pvt->kvm);
1024 	kfree(pvt);
1025 }
1026 
1027 static const struct dev_pagemap_ops kvmppc_uvmem_ops = {
1028 	.page_free = kvmppc_uvmem_page_free,
1029 	.migrate_to_ram	= kvmppc_uvmem_migrate_to_ram,
1030 };
1031 
1032 /*
1033  * H_SVM_PAGE_OUT: Move page from secure memory to normal memory.
1034  */
1035 unsigned long
1036 kvmppc_h_svm_page_out(struct kvm *kvm, unsigned long gpa,
1037 		      unsigned long flags, unsigned long page_shift)
1038 {
1039 	unsigned long gfn = gpa >> page_shift;
1040 	unsigned long start, end;
1041 	struct vm_area_struct *vma;
1042 	int srcu_idx;
1043 	int ret;
1044 
1045 	if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
1046 		return H_UNSUPPORTED;
1047 
1048 	if (page_shift != PAGE_SHIFT)
1049 		return H_P3;
1050 
1051 	if (flags)
1052 		return H_P2;
1053 
1054 	ret = H_PARAMETER;
1055 	srcu_idx = srcu_read_lock(&kvm->srcu);
1056 	mmap_read_lock(kvm->mm);
1057 	start = gfn_to_hva(kvm, gfn);
1058 	if (kvm_is_error_hva(start))
1059 		goto out;
1060 
1061 	end = start + (1UL << page_shift);
1062 	vma = find_vma_intersection(kvm->mm, start, end);
1063 	if (!vma || vma->vm_start > start || vma->vm_end < end)
1064 		goto out;
1065 
1066 	if (!kvmppc_svm_page_out(vma, start, end, page_shift, kvm, gpa))
1067 		ret = H_SUCCESS;
1068 out:
1069 	mmap_read_unlock(kvm->mm);
1070 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1071 	return ret;
1072 }
1073 
1074 int kvmppc_send_page_to_uv(struct kvm *kvm, unsigned long gfn)
1075 {
1076 	unsigned long pfn;
1077 	int ret = U_SUCCESS;
1078 
1079 	pfn = gfn_to_pfn(kvm, gfn);
1080 	if (is_error_noslot_pfn(pfn))
1081 		return -EFAULT;
1082 
1083 	mutex_lock(&kvm->arch.uvmem_lock);
1084 	if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, NULL))
1085 		goto out;
1086 
1087 	ret = uv_page_in(kvm->arch.lpid, pfn << PAGE_SHIFT, gfn << PAGE_SHIFT,
1088 			 0, PAGE_SHIFT);
1089 out:
1090 	kvm_release_pfn_clean(pfn);
1091 	mutex_unlock(&kvm->arch.uvmem_lock);
1092 	return (ret == U_SUCCESS) ? RESUME_GUEST : -EFAULT;
1093 }
1094 
1095 int kvmppc_uvmem_memslot_create(struct kvm *kvm, const struct kvm_memory_slot *new)
1096 {
1097 	int ret = __kvmppc_uvmem_memslot_create(kvm, new);
1098 
1099 	if (!ret)
1100 		ret = kvmppc_uv_migrate_mem_slot(kvm, new);
1101 
1102 	return ret;
1103 }
1104 
1105 void kvmppc_uvmem_memslot_delete(struct kvm *kvm, const struct kvm_memory_slot *old)
1106 {
1107 	__kvmppc_uvmem_memslot_delete(kvm, old);
1108 }
1109 
1110 static u64 kvmppc_get_secmem_size(void)
1111 {
1112 	struct device_node *np;
1113 	int i, len;
1114 	const __be32 *prop;
1115 	u64 size = 0;
1116 
1117 	/*
1118 	 * First try the new ibm,secure-memory nodes which supersede the
1119 	 * secure-memory-ranges property.
1120 	 * If we found some, no need to read the deprecated ones.
1121 	 */
1122 	for_each_compatible_node(np, NULL, "ibm,secure-memory") {
1123 		prop = of_get_property(np, "reg", &len);
1124 		if (!prop)
1125 			continue;
1126 		size += of_read_number(prop + 2, 2);
1127 	}
1128 	if (size)
1129 		return size;
1130 
1131 	np = of_find_compatible_node(NULL, NULL, "ibm,uv-firmware");
1132 	if (!np)
1133 		goto out;
1134 
1135 	prop = of_get_property(np, "secure-memory-ranges", &len);
1136 	if (!prop)
1137 		goto out_put;
1138 
1139 	for (i = 0; i < len / (sizeof(*prop) * 4); i++)
1140 		size += of_read_number(prop + (i * 4) + 2, 2);
1141 
1142 out_put:
1143 	of_node_put(np);
1144 out:
1145 	return size;
1146 }
1147 
1148 int kvmppc_uvmem_init(void)
1149 {
1150 	int ret = 0;
1151 	unsigned long size;
1152 	struct resource *res;
1153 	void *addr;
1154 	unsigned long pfn_last, pfn_first;
1155 
1156 	size = kvmppc_get_secmem_size();
1157 	if (!size) {
1158 		/*
1159 		 * Don't fail the initialization of kvm-hv module if
1160 		 * the platform doesn't export ibm,uv-firmware node.
1161 		 * Let normal guests run on such PEF-disabled platform.
1162 		 */
1163 		pr_info("KVMPPC-UVMEM: No support for secure guests\n");
1164 		goto out;
1165 	}
1166 
1167 	res = request_free_mem_region(&iomem_resource, size, "kvmppc_uvmem");
1168 	if (IS_ERR(res)) {
1169 		ret = PTR_ERR(res);
1170 		goto out;
1171 	}
1172 
1173 	kvmppc_uvmem_pgmap.type = MEMORY_DEVICE_PRIVATE;
1174 	kvmppc_uvmem_pgmap.range.start = res->start;
1175 	kvmppc_uvmem_pgmap.range.end = res->end;
1176 	kvmppc_uvmem_pgmap.nr_range = 1;
1177 	kvmppc_uvmem_pgmap.ops = &kvmppc_uvmem_ops;
1178 	/* just one global instance: */
1179 	kvmppc_uvmem_pgmap.owner = &kvmppc_uvmem_pgmap;
1180 	addr = memremap_pages(&kvmppc_uvmem_pgmap, NUMA_NO_NODE);
1181 	if (IS_ERR(addr)) {
1182 		ret = PTR_ERR(addr);
1183 		goto out_free_region;
1184 	}
1185 
1186 	pfn_first = res->start >> PAGE_SHIFT;
1187 	pfn_last = pfn_first + (resource_size(res) >> PAGE_SHIFT);
1188 	kvmppc_uvmem_bitmap = kcalloc(BITS_TO_LONGS(pfn_last - pfn_first),
1189 				      sizeof(unsigned long), GFP_KERNEL);
1190 	if (!kvmppc_uvmem_bitmap) {
1191 		ret = -ENOMEM;
1192 		goto out_unmap;
1193 	}
1194 
1195 	pr_info("KVMPPC-UVMEM: Secure Memory size 0x%lx\n", size);
1196 	return ret;
1197 out_unmap:
1198 	memunmap_pages(&kvmppc_uvmem_pgmap);
1199 out_free_region:
1200 	release_mem_region(res->start, size);
1201 out:
1202 	return ret;
1203 }
1204 
1205 void kvmppc_uvmem_free(void)
1206 {
1207 	if (!kvmppc_uvmem_bitmap)
1208 		return;
1209 
1210 	memunmap_pages(&kvmppc_uvmem_pgmap);
1211 	release_mem_region(kvmppc_uvmem_pgmap.range.start,
1212 			   range_len(&kvmppc_uvmem_pgmap.range));
1213 	kfree(kvmppc_uvmem_bitmap);
1214 }
1215