xref: /openbmc/linux/arch/powerpc/kvm/book3s_hv_rm_xics.c (revision e983940270f10fe8551baf0098be76ea478294a3)
1 /*
2  * Copyright 2012 Michael Ellerman, IBM Corporation.
3  * Copyright 2012 Benjamin Herrenschmidt, IBM Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/kvm_host.h>
12 #include <linux/err.h>
13 #include <linux/kernel_stat.h>
14 
15 #include <asm/kvm_book3s.h>
16 #include <asm/kvm_ppc.h>
17 #include <asm/hvcall.h>
18 #include <asm/xics.h>
19 #include <asm/debug.h>
20 #include <asm/synch.h>
21 #include <asm/cputhreads.h>
22 #include <asm/pgtable.h>
23 #include <asm/ppc-opcode.h>
24 #include <asm/pnv-pci.h>
25 #include <asm/opal.h>
26 
27 #include "book3s_xics.h"
28 
29 #define DEBUG_PASSUP
30 
31 int h_ipi_redirect = 1;
32 EXPORT_SYMBOL(h_ipi_redirect);
33 int kvm_irq_bypass = 1;
34 EXPORT_SYMBOL(kvm_irq_bypass);
35 
36 static void icp_rm_deliver_irq(struct kvmppc_xics *xics, struct kvmppc_icp *icp,
37 			    u32 new_irq);
38 static int xics_opal_rm_set_server(unsigned int hw_irq, int server_cpu);
39 
40 /* -- ICS routines -- */
41 static void ics_rm_check_resend(struct kvmppc_xics *xics,
42 				struct kvmppc_ics *ics, struct kvmppc_icp *icp)
43 {
44 	int i;
45 
46 	arch_spin_lock(&ics->lock);
47 
48 	for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
49 		struct ics_irq_state *state = &ics->irq_state[i];
50 
51 		if (!state->resend)
52 			continue;
53 
54 		arch_spin_unlock(&ics->lock);
55 		icp_rm_deliver_irq(xics, icp, state->number);
56 		arch_spin_lock(&ics->lock);
57 	}
58 
59 	arch_spin_unlock(&ics->lock);
60 }
61 
62 /* -- ICP routines -- */
63 
64 #ifdef CONFIG_SMP
65 static inline void icp_send_hcore_msg(int hcore, struct kvm_vcpu *vcpu)
66 {
67 	int hcpu;
68 
69 	hcpu = hcore << threads_shift;
70 	kvmppc_host_rm_ops_hv->rm_core[hcore].rm_data = vcpu;
71 	smp_muxed_ipi_set_message(hcpu, PPC_MSG_RM_HOST_ACTION);
72 	icp_native_cause_ipi_rm(hcpu);
73 }
74 #else
75 static inline void icp_send_hcore_msg(int hcore, struct kvm_vcpu *vcpu) { }
76 #endif
77 
78 /*
79  * We start the search from our current CPU Id in the core map
80  * and go in a circle until we get back to our ID looking for a
81  * core that is running in host context and that hasn't already
82  * been targeted for another rm_host_ops.
83  *
84  * In the future, could consider using a fairer algorithm (one
85  * that distributes the IPIs better)
86  *
87  * Returns -1, if no CPU could be found in the host
88  * Else, returns a CPU Id which has been reserved for use
89  */
90 static inline int grab_next_hostcore(int start,
91 		struct kvmppc_host_rm_core *rm_core, int max, int action)
92 {
93 	bool success;
94 	int core;
95 	union kvmppc_rm_state old, new;
96 
97 	for (core = start + 1; core < max; core++)  {
98 		old = new = READ_ONCE(rm_core[core].rm_state);
99 
100 		if (!old.in_host || old.rm_action)
101 			continue;
102 
103 		/* Try to grab this host core if not taken already. */
104 		new.rm_action = action;
105 
106 		success = cmpxchg64(&rm_core[core].rm_state.raw,
107 						old.raw, new.raw) == old.raw;
108 		if (success) {
109 			/*
110 			 * Make sure that the store to the rm_action is made
111 			 * visible before we return to caller (and the
112 			 * subsequent store to rm_data) to synchronize with
113 			 * the IPI handler.
114 			 */
115 			smp_wmb();
116 			return core;
117 		}
118 	}
119 
120 	return -1;
121 }
122 
123 static inline int find_available_hostcore(int action)
124 {
125 	int core;
126 	int my_core = smp_processor_id() >> threads_shift;
127 	struct kvmppc_host_rm_core *rm_core = kvmppc_host_rm_ops_hv->rm_core;
128 
129 	core = grab_next_hostcore(my_core, rm_core, cpu_nr_cores(), action);
130 	if (core == -1)
131 		core = grab_next_hostcore(core, rm_core, my_core, action);
132 
133 	return core;
134 }
135 
136 static void icp_rm_set_vcpu_irq(struct kvm_vcpu *vcpu,
137 				struct kvm_vcpu *this_vcpu)
138 {
139 	struct kvmppc_icp *this_icp = this_vcpu->arch.icp;
140 	int cpu;
141 	int hcore;
142 
143 	/* Mark the target VCPU as having an interrupt pending */
144 	vcpu->stat.queue_intr++;
145 	set_bit(BOOK3S_IRQPRIO_EXTERNAL_LEVEL, &vcpu->arch.pending_exceptions);
146 
147 	/* Kick self ? Just set MER and return */
148 	if (vcpu == this_vcpu) {
149 		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_MER);
150 		return;
151 	}
152 
153 	/*
154 	 * Check if the core is loaded,
155 	 * if not, find an available host core to post to wake the VCPU,
156 	 * if we can't find one, set up state to eventually return too hard.
157 	 */
158 	cpu = vcpu->arch.thread_cpu;
159 	if (cpu < 0 || cpu >= nr_cpu_ids) {
160 		hcore = -1;
161 		if (kvmppc_host_rm_ops_hv && h_ipi_redirect)
162 			hcore = find_available_hostcore(XICS_RM_KICK_VCPU);
163 		if (hcore != -1) {
164 			icp_send_hcore_msg(hcore, vcpu);
165 		} else {
166 			this_icp->rm_action |= XICS_RM_KICK_VCPU;
167 			this_icp->rm_kick_target = vcpu;
168 		}
169 		return;
170 	}
171 
172 	smp_mb();
173 	kvmhv_rm_send_ipi(cpu);
174 }
175 
176 static void icp_rm_clr_vcpu_irq(struct kvm_vcpu *vcpu)
177 {
178 	/* Note: Only called on self ! */
179 	clear_bit(BOOK3S_IRQPRIO_EXTERNAL_LEVEL,
180 		  &vcpu->arch.pending_exceptions);
181 	mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_MER);
182 }
183 
184 static inline bool icp_rm_try_update(struct kvmppc_icp *icp,
185 				     union kvmppc_icp_state old,
186 				     union kvmppc_icp_state new)
187 {
188 	struct kvm_vcpu *this_vcpu = local_paca->kvm_hstate.kvm_vcpu;
189 	bool success;
190 
191 	/* Calculate new output value */
192 	new.out_ee = (new.xisr && (new.pending_pri < new.cppr));
193 
194 	/* Attempt atomic update */
195 	success = cmpxchg64(&icp->state.raw, old.raw, new.raw) == old.raw;
196 	if (!success)
197 		goto bail;
198 
199 	/*
200 	 * Check for output state update
201 	 *
202 	 * Note that this is racy since another processor could be updating
203 	 * the state already. This is why we never clear the interrupt output
204 	 * here, we only ever set it. The clear only happens prior to doing
205 	 * an update and only by the processor itself. Currently we do it
206 	 * in Accept (H_XIRR) and Up_Cppr (H_XPPR).
207 	 *
208 	 * We also do not try to figure out whether the EE state has changed,
209 	 * we unconditionally set it if the new state calls for it. The reason
210 	 * for that is that we opportunistically remove the pending interrupt
211 	 * flag when raising CPPR, so we need to set it back here if an
212 	 * interrupt is still pending.
213 	 */
214 	if (new.out_ee)
215 		icp_rm_set_vcpu_irq(icp->vcpu, this_vcpu);
216 
217 	/* Expose the state change for debug purposes */
218 	this_vcpu->arch.icp->rm_dbgstate = new;
219 	this_vcpu->arch.icp->rm_dbgtgt = icp->vcpu;
220 
221  bail:
222 	return success;
223 }
224 
225 static inline int check_too_hard(struct kvmppc_xics *xics,
226 				 struct kvmppc_icp *icp)
227 {
228 	return (xics->real_mode_dbg || icp->rm_action) ? H_TOO_HARD : H_SUCCESS;
229 }
230 
231 static void icp_rm_check_resend(struct kvmppc_xics *xics,
232 			     struct kvmppc_icp *icp)
233 {
234 	u32 icsid;
235 
236 	/* Order this load with the test for need_resend in the caller */
237 	smp_rmb();
238 	for_each_set_bit(icsid, icp->resend_map, xics->max_icsid + 1) {
239 		struct kvmppc_ics *ics = xics->ics[icsid];
240 
241 		if (!test_and_clear_bit(icsid, icp->resend_map))
242 			continue;
243 		if (!ics)
244 			continue;
245 		ics_rm_check_resend(xics, ics, icp);
246 	}
247 }
248 
249 static bool icp_rm_try_to_deliver(struct kvmppc_icp *icp, u32 irq, u8 priority,
250 			       u32 *reject)
251 {
252 	union kvmppc_icp_state old_state, new_state;
253 	bool success;
254 
255 	do {
256 		old_state = new_state = READ_ONCE(icp->state);
257 
258 		*reject = 0;
259 
260 		/* See if we can deliver */
261 		success = new_state.cppr > priority &&
262 			new_state.mfrr > priority &&
263 			new_state.pending_pri > priority;
264 
265 		/*
266 		 * If we can, check for a rejection and perform the
267 		 * delivery
268 		 */
269 		if (success) {
270 			*reject = new_state.xisr;
271 			new_state.xisr = irq;
272 			new_state.pending_pri = priority;
273 		} else {
274 			/*
275 			 * If we failed to deliver we set need_resend
276 			 * so a subsequent CPPR state change causes us
277 			 * to try a new delivery.
278 			 */
279 			new_state.need_resend = true;
280 		}
281 
282 	} while (!icp_rm_try_update(icp, old_state, new_state));
283 
284 	return success;
285 }
286 
287 static void icp_rm_deliver_irq(struct kvmppc_xics *xics, struct kvmppc_icp *icp,
288 			    u32 new_irq)
289 {
290 	struct ics_irq_state *state;
291 	struct kvmppc_ics *ics;
292 	u32 reject;
293 	u16 src;
294 
295 	/*
296 	 * This is used both for initial delivery of an interrupt and
297 	 * for subsequent rejection.
298 	 *
299 	 * Rejection can be racy vs. resends. We have evaluated the
300 	 * rejection in an atomic ICP transaction which is now complete,
301 	 * so potentially the ICP can already accept the interrupt again.
302 	 *
303 	 * So we need to retry the delivery. Essentially the reject path
304 	 * boils down to a failed delivery. Always.
305 	 *
306 	 * Now the interrupt could also have moved to a different target,
307 	 * thus we may need to re-do the ICP lookup as well
308 	 */
309 
310  again:
311 	/* Get the ICS state and lock it */
312 	ics = kvmppc_xics_find_ics(xics, new_irq, &src);
313 	if (!ics) {
314 		/* Unsafe increment, but this does not need to be accurate */
315 		xics->err_noics++;
316 		return;
317 	}
318 	state = &ics->irq_state[src];
319 
320 	/* Get a lock on the ICS */
321 	arch_spin_lock(&ics->lock);
322 
323 	/* Get our server */
324 	if (!icp || state->server != icp->server_num) {
325 		icp = kvmppc_xics_find_server(xics->kvm, state->server);
326 		if (!icp) {
327 			/* Unsafe increment again*/
328 			xics->err_noicp++;
329 			goto out;
330 		}
331 	}
332 
333 	/* Clear the resend bit of that interrupt */
334 	state->resend = 0;
335 
336 	/*
337 	 * If masked, bail out
338 	 *
339 	 * Note: PAPR doesn't mention anything about masked pending
340 	 * when doing a resend, only when doing a delivery.
341 	 *
342 	 * However that would have the effect of losing a masked
343 	 * interrupt that was rejected and isn't consistent with
344 	 * the whole masked_pending business which is about not
345 	 * losing interrupts that occur while masked.
346 	 *
347 	 * I don't differentiate normal deliveries and resends, this
348 	 * implementation will differ from PAPR and not lose such
349 	 * interrupts.
350 	 */
351 	if (state->priority == MASKED) {
352 		state->masked_pending = 1;
353 		goto out;
354 	}
355 
356 	/*
357 	 * Try the delivery, this will set the need_resend flag
358 	 * in the ICP as part of the atomic transaction if the
359 	 * delivery is not possible.
360 	 *
361 	 * Note that if successful, the new delivery might have itself
362 	 * rejected an interrupt that was "delivered" before we took the
363 	 * ics spin lock.
364 	 *
365 	 * In this case we do the whole sequence all over again for the
366 	 * new guy. We cannot assume that the rejected interrupt is less
367 	 * favored than the new one, and thus doesn't need to be delivered,
368 	 * because by the time we exit icp_rm_try_to_deliver() the target
369 	 * processor may well have already consumed & completed it, and thus
370 	 * the rejected interrupt might actually be already acceptable.
371 	 */
372 	if (icp_rm_try_to_deliver(icp, new_irq, state->priority, &reject)) {
373 		/*
374 		 * Delivery was successful, did we reject somebody else ?
375 		 */
376 		if (reject && reject != XICS_IPI) {
377 			arch_spin_unlock(&ics->lock);
378 			new_irq = reject;
379 			goto again;
380 		}
381 	} else {
382 		/*
383 		 * We failed to deliver the interrupt we need to set the
384 		 * resend map bit and mark the ICS state as needing a resend
385 		 */
386 		set_bit(ics->icsid, icp->resend_map);
387 		state->resend = 1;
388 
389 		/*
390 		 * If the need_resend flag got cleared in the ICP some time
391 		 * between icp_rm_try_to_deliver() atomic update and now, then
392 		 * we know it might have missed the resend_map bit. So we
393 		 * retry
394 		 */
395 		smp_mb();
396 		if (!icp->state.need_resend) {
397 			arch_spin_unlock(&ics->lock);
398 			goto again;
399 		}
400 	}
401  out:
402 	arch_spin_unlock(&ics->lock);
403 }
404 
405 static void icp_rm_down_cppr(struct kvmppc_xics *xics, struct kvmppc_icp *icp,
406 			     u8 new_cppr)
407 {
408 	union kvmppc_icp_state old_state, new_state;
409 	bool resend;
410 
411 	/*
412 	 * This handles several related states in one operation:
413 	 *
414 	 * ICP State: Down_CPPR
415 	 *
416 	 * Load CPPR with new value and if the XISR is 0
417 	 * then check for resends:
418 	 *
419 	 * ICP State: Resend
420 	 *
421 	 * If MFRR is more favored than CPPR, check for IPIs
422 	 * and notify ICS of a potential resend. This is done
423 	 * asynchronously (when used in real mode, we will have
424 	 * to exit here).
425 	 *
426 	 * We do not handle the complete Check_IPI as documented
427 	 * here. In the PAPR, this state will be used for both
428 	 * Set_MFRR and Down_CPPR. However, we know that we aren't
429 	 * changing the MFRR state here so we don't need to handle
430 	 * the case of an MFRR causing a reject of a pending irq,
431 	 * this will have been handled when the MFRR was set in the
432 	 * first place.
433 	 *
434 	 * Thus we don't have to handle rejects, only resends.
435 	 *
436 	 * When implementing real mode for HV KVM, resend will lead to
437 	 * a H_TOO_HARD return and the whole transaction will be handled
438 	 * in virtual mode.
439 	 */
440 	do {
441 		old_state = new_state = READ_ONCE(icp->state);
442 
443 		/* Down_CPPR */
444 		new_state.cppr = new_cppr;
445 
446 		/*
447 		 * Cut down Resend / Check_IPI / IPI
448 		 *
449 		 * The logic is that we cannot have a pending interrupt
450 		 * trumped by an IPI at this point (see above), so we
451 		 * know that either the pending interrupt is already an
452 		 * IPI (in which case we don't care to override it) or
453 		 * it's either more favored than us or non existent
454 		 */
455 		if (new_state.mfrr < new_cppr &&
456 		    new_state.mfrr <= new_state.pending_pri) {
457 			new_state.pending_pri = new_state.mfrr;
458 			new_state.xisr = XICS_IPI;
459 		}
460 
461 		/* Latch/clear resend bit */
462 		resend = new_state.need_resend;
463 		new_state.need_resend = 0;
464 
465 	} while (!icp_rm_try_update(icp, old_state, new_state));
466 
467 	/*
468 	 * Now handle resend checks. Those are asynchronous to the ICP
469 	 * state update in HW (ie bus transactions) so we can handle them
470 	 * separately here as well.
471 	 */
472 	if (resend) {
473 		icp->n_check_resend++;
474 		icp_rm_check_resend(xics, icp);
475 	}
476 }
477 
478 
479 unsigned long kvmppc_rm_h_xirr(struct kvm_vcpu *vcpu)
480 {
481 	union kvmppc_icp_state old_state, new_state;
482 	struct kvmppc_xics *xics = vcpu->kvm->arch.xics;
483 	struct kvmppc_icp *icp = vcpu->arch.icp;
484 	u32 xirr;
485 
486 	if (!xics || !xics->real_mode)
487 		return H_TOO_HARD;
488 
489 	/* First clear the interrupt */
490 	icp_rm_clr_vcpu_irq(icp->vcpu);
491 
492 	/*
493 	 * ICP State: Accept_Interrupt
494 	 *
495 	 * Return the pending interrupt (if any) along with the
496 	 * current CPPR, then clear the XISR & set CPPR to the
497 	 * pending priority
498 	 */
499 	do {
500 		old_state = new_state = READ_ONCE(icp->state);
501 
502 		xirr = old_state.xisr | (((u32)old_state.cppr) << 24);
503 		if (!old_state.xisr)
504 			break;
505 		new_state.cppr = new_state.pending_pri;
506 		new_state.pending_pri = 0xff;
507 		new_state.xisr = 0;
508 
509 	} while (!icp_rm_try_update(icp, old_state, new_state));
510 
511 	/* Return the result in GPR4 */
512 	vcpu->arch.gpr[4] = xirr;
513 
514 	return check_too_hard(xics, icp);
515 }
516 
517 int kvmppc_rm_h_ipi(struct kvm_vcpu *vcpu, unsigned long server,
518 		    unsigned long mfrr)
519 {
520 	union kvmppc_icp_state old_state, new_state;
521 	struct kvmppc_xics *xics = vcpu->kvm->arch.xics;
522 	struct kvmppc_icp *icp, *this_icp = vcpu->arch.icp;
523 	u32 reject;
524 	bool resend;
525 	bool local;
526 
527 	if (!xics || !xics->real_mode)
528 		return H_TOO_HARD;
529 
530 	local = this_icp->server_num == server;
531 	if (local)
532 		icp = this_icp;
533 	else
534 		icp = kvmppc_xics_find_server(vcpu->kvm, server);
535 	if (!icp)
536 		return H_PARAMETER;
537 
538 	/*
539 	 * ICP state: Set_MFRR
540 	 *
541 	 * If the CPPR is more favored than the new MFRR, then
542 	 * nothing needs to be done as there can be no XISR to
543 	 * reject.
544 	 *
545 	 * ICP state: Check_IPI
546 	 *
547 	 * If the CPPR is less favored, then we might be replacing
548 	 * an interrupt, and thus need to possibly reject it.
549 	 *
550 	 * ICP State: IPI
551 	 *
552 	 * Besides rejecting any pending interrupts, we also
553 	 * update XISR and pending_pri to mark IPI as pending.
554 	 *
555 	 * PAPR does not describe this state, but if the MFRR is being
556 	 * made less favored than its earlier value, there might be
557 	 * a previously-rejected interrupt needing to be resent.
558 	 * Ideally, we would want to resend only if
559 	 *	prio(pending_interrupt) < mfrr &&
560 	 *	prio(pending_interrupt) < cppr
561 	 * where pending interrupt is the one that was rejected. But
562 	 * we don't have that state, so we simply trigger a resend
563 	 * whenever the MFRR is made less favored.
564 	 */
565 	do {
566 		old_state = new_state = READ_ONCE(icp->state);
567 
568 		/* Set_MFRR */
569 		new_state.mfrr = mfrr;
570 
571 		/* Check_IPI */
572 		reject = 0;
573 		resend = false;
574 		if (mfrr < new_state.cppr) {
575 			/* Reject a pending interrupt if not an IPI */
576 			if (mfrr <= new_state.pending_pri) {
577 				reject = new_state.xisr;
578 				new_state.pending_pri = mfrr;
579 				new_state.xisr = XICS_IPI;
580 			}
581 		}
582 
583 		if (mfrr > old_state.mfrr) {
584 			resend = new_state.need_resend;
585 			new_state.need_resend = 0;
586 		}
587 	} while (!icp_rm_try_update(icp, old_state, new_state));
588 
589 	/* Handle reject in real mode */
590 	if (reject && reject != XICS_IPI) {
591 		this_icp->n_reject++;
592 		icp_rm_deliver_irq(xics, icp, reject);
593 	}
594 
595 	/* Handle resends in real mode */
596 	if (resend) {
597 		this_icp->n_check_resend++;
598 		icp_rm_check_resend(xics, icp);
599 	}
600 
601 	return check_too_hard(xics, this_icp);
602 }
603 
604 int kvmppc_rm_h_cppr(struct kvm_vcpu *vcpu, unsigned long cppr)
605 {
606 	union kvmppc_icp_state old_state, new_state;
607 	struct kvmppc_xics *xics = vcpu->kvm->arch.xics;
608 	struct kvmppc_icp *icp = vcpu->arch.icp;
609 	u32 reject;
610 
611 	if (!xics || !xics->real_mode)
612 		return H_TOO_HARD;
613 
614 	/*
615 	 * ICP State: Set_CPPR
616 	 *
617 	 * We can safely compare the new value with the current
618 	 * value outside of the transaction as the CPPR is only
619 	 * ever changed by the processor on itself
620 	 */
621 	if (cppr > icp->state.cppr) {
622 		icp_rm_down_cppr(xics, icp, cppr);
623 		goto bail;
624 	} else if (cppr == icp->state.cppr)
625 		return H_SUCCESS;
626 
627 	/*
628 	 * ICP State: Up_CPPR
629 	 *
630 	 * The processor is raising its priority, this can result
631 	 * in a rejection of a pending interrupt:
632 	 *
633 	 * ICP State: Reject_Current
634 	 *
635 	 * We can remove EE from the current processor, the update
636 	 * transaction will set it again if needed
637 	 */
638 	icp_rm_clr_vcpu_irq(icp->vcpu);
639 
640 	do {
641 		old_state = new_state = READ_ONCE(icp->state);
642 
643 		reject = 0;
644 		new_state.cppr = cppr;
645 
646 		if (cppr <= new_state.pending_pri) {
647 			reject = new_state.xisr;
648 			new_state.xisr = 0;
649 			new_state.pending_pri = 0xff;
650 		}
651 
652 	} while (!icp_rm_try_update(icp, old_state, new_state));
653 
654 	/*
655 	 * Check for rejects. They are handled by doing a new delivery
656 	 * attempt (see comments in icp_rm_deliver_irq).
657 	 */
658 	if (reject && reject != XICS_IPI) {
659 		icp->n_reject++;
660 		icp_rm_deliver_irq(xics, icp, reject);
661 	}
662  bail:
663 	return check_too_hard(xics, icp);
664 }
665 
666 int kvmppc_rm_h_eoi(struct kvm_vcpu *vcpu, unsigned long xirr)
667 {
668 	struct kvmppc_xics *xics = vcpu->kvm->arch.xics;
669 	struct kvmppc_icp *icp = vcpu->arch.icp;
670 	struct kvmppc_ics *ics;
671 	struct ics_irq_state *state;
672 	u32 irq = xirr & 0x00ffffff;
673 	u16 src;
674 
675 	if (!xics || !xics->real_mode)
676 		return H_TOO_HARD;
677 
678 	/*
679 	 * ICP State: EOI
680 	 *
681 	 * Note: If EOI is incorrectly used by SW to lower the CPPR
682 	 * value (ie more favored), we do not check for rejection of
683 	 * a pending interrupt, this is a SW error and PAPR sepcifies
684 	 * that we don't have to deal with it.
685 	 *
686 	 * The sending of an EOI to the ICS is handled after the
687 	 * CPPR update
688 	 *
689 	 * ICP State: Down_CPPR which we handle
690 	 * in a separate function as it's shared with H_CPPR.
691 	 */
692 	icp_rm_down_cppr(xics, icp, xirr >> 24);
693 
694 	/* IPIs have no EOI */
695 	if (irq == XICS_IPI)
696 		goto bail;
697 	/*
698 	 * EOI handling: If the interrupt is still asserted, we need to
699 	 * resend it. We can take a lockless "peek" at the ICS state here.
700 	 *
701 	 * "Message" interrupts will never have "asserted" set
702 	 */
703 	ics = kvmppc_xics_find_ics(xics, irq, &src);
704 	if (!ics)
705 		goto bail;
706 	state = &ics->irq_state[src];
707 
708 	/* Still asserted, resend it */
709 	if (state->asserted) {
710 		icp->n_reject++;
711 		icp_rm_deliver_irq(xics, icp, irq);
712 	}
713 
714 	if (!hlist_empty(&vcpu->kvm->irq_ack_notifier_list)) {
715 		icp->rm_action |= XICS_RM_NOTIFY_EOI;
716 		icp->rm_eoied_irq = irq;
717 	}
718 
719 	if (state->host_irq) {
720 		++vcpu->stat.pthru_all;
721 		if (state->intr_cpu != -1) {
722 			int pcpu = raw_smp_processor_id();
723 
724 			pcpu = cpu_first_thread_sibling(pcpu);
725 			++vcpu->stat.pthru_host;
726 			if (state->intr_cpu != pcpu) {
727 				++vcpu->stat.pthru_bad_aff;
728 				xics_opal_rm_set_server(state->host_irq, pcpu);
729 			}
730 			state->intr_cpu = -1;
731 		}
732 	}
733  bail:
734 	return check_too_hard(xics, icp);
735 }
736 
737 unsigned long eoi_rc;
738 
739 static void icp_eoi(struct irq_chip *c, u32 hwirq, u32 xirr)
740 {
741 	unsigned long xics_phys;
742 	int64_t rc;
743 
744 	rc = pnv_opal_pci_msi_eoi(c, hwirq);
745 
746 	if (rc)
747 		eoi_rc = rc;
748 
749 	iosync();
750 
751 	/* EOI it */
752 	xics_phys = local_paca->kvm_hstate.xics_phys;
753 	_stwcix(xics_phys + XICS_XIRR, xirr);
754 }
755 
756 static int xics_opal_rm_set_server(unsigned int hw_irq, int server_cpu)
757 {
758 	unsigned int mangle_cpu = get_hard_smp_processor_id(server_cpu) << 2;
759 
760 	return opal_rm_set_xive(hw_irq, mangle_cpu, DEFAULT_PRIORITY);
761 }
762 
763 /*
764  * Increment a per-CPU 32-bit unsigned integer variable.
765  * Safe to call in real-mode. Handles vmalloc'ed addresses
766  *
767  * ToDo: Make this work for any integral type
768  */
769 
770 static inline void this_cpu_inc_rm(unsigned int __percpu *addr)
771 {
772 	unsigned long l;
773 	unsigned int *raddr;
774 	int cpu = smp_processor_id();
775 
776 	raddr = per_cpu_ptr(addr, cpu);
777 	l = (unsigned long)raddr;
778 
779 	if (REGION_ID(l) == VMALLOC_REGION_ID) {
780 		l = vmalloc_to_phys(raddr);
781 		raddr = (unsigned int *)l;
782 	}
783 	++*raddr;
784 }
785 
786 /*
787  * We don't try to update the flags in the irq_desc 'istate' field in
788  * here as would happen in the normal IRQ handling path for several reasons:
789  *  - state flags represent internal IRQ state and are not expected to be
790  *    updated outside the IRQ subsystem
791  *  - more importantly, these are useful for edge triggered interrupts,
792  *    IRQ probing, etc., but we are only handling MSI/MSIx interrupts here
793  *    and these states shouldn't apply to us.
794  *
795  * However, we do update irq_stats - we somewhat duplicate the code in
796  * kstat_incr_irqs_this_cpu() for this since this function is defined
797  * in irq/internal.h which we don't want to include here.
798  * The only difference is that desc->kstat_irqs is an allocated per CPU
799  * variable and could have been vmalloc'ed, so we can't directly
800  * call __this_cpu_inc() on it. The kstat structure is a static
801  * per CPU variable and it should be accessible by real-mode KVM.
802  *
803  */
804 static void kvmppc_rm_handle_irq_desc(struct irq_desc *desc)
805 {
806 	this_cpu_inc_rm(desc->kstat_irqs);
807 	__this_cpu_inc(kstat.irqs_sum);
808 }
809 
810 long kvmppc_deliver_irq_passthru(struct kvm_vcpu *vcpu,
811 				 u32 xirr,
812 				 struct kvmppc_irq_map *irq_map,
813 				 struct kvmppc_passthru_irqmap *pimap)
814 {
815 	struct kvmppc_xics *xics;
816 	struct kvmppc_icp *icp;
817 	u32 irq;
818 
819 	irq = irq_map->v_hwirq;
820 	xics = vcpu->kvm->arch.xics;
821 	icp = vcpu->arch.icp;
822 
823 	kvmppc_rm_handle_irq_desc(irq_map->desc);
824 	icp_rm_deliver_irq(xics, icp, irq);
825 
826 	/* EOI the interrupt */
827 	icp_eoi(irq_desc_get_chip(irq_map->desc), irq_map->r_hwirq, xirr);
828 
829 	if (check_too_hard(xics, icp) == H_TOO_HARD)
830 		return 2;
831 	else
832 		return -2;
833 }
834 
835 /*  --- Non-real mode XICS-related built-in routines ---  */
836 
837 /**
838  * Host Operations poked by RM KVM
839  */
840 static void rm_host_ipi_action(int action, void *data)
841 {
842 	switch (action) {
843 	case XICS_RM_KICK_VCPU:
844 		kvmppc_host_rm_ops_hv->vcpu_kick(data);
845 		break;
846 	default:
847 		WARN(1, "Unexpected rm_action=%d data=%p\n", action, data);
848 		break;
849 	}
850 
851 }
852 
853 void kvmppc_xics_ipi_action(void)
854 {
855 	int core;
856 	unsigned int cpu = smp_processor_id();
857 	struct kvmppc_host_rm_core *rm_corep;
858 
859 	core = cpu >> threads_shift;
860 	rm_corep = &kvmppc_host_rm_ops_hv->rm_core[core];
861 
862 	if (rm_corep->rm_data) {
863 		rm_host_ipi_action(rm_corep->rm_state.rm_action,
864 							rm_corep->rm_data);
865 		/* Order these stores against the real mode KVM */
866 		rm_corep->rm_data = NULL;
867 		smp_wmb();
868 		rm_corep->rm_state.rm_action = 0;
869 	}
870 }
871