1 /* 2 * This program is free software; you can redistribute it and/or modify 3 * it under the terms of the GNU General Public License, version 2, as 4 * published by the Free Software Foundation. 5 * 6 * Copyright 2010-2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 7 */ 8 9 #include <linux/types.h> 10 #include <linux/string.h> 11 #include <linux/kvm.h> 12 #include <linux/kvm_host.h> 13 #include <linux/hugetlb.h> 14 #include <linux/module.h> 15 #include <linux/log2.h> 16 17 #include <asm/tlbflush.h> 18 #include <asm/trace.h> 19 #include <asm/kvm_ppc.h> 20 #include <asm/kvm_book3s.h> 21 #include <asm/book3s/64/mmu-hash.h> 22 #include <asm/hvcall.h> 23 #include <asm/synch.h> 24 #include <asm/ppc-opcode.h> 25 #include <asm/pte-walk.h> 26 27 /* Translate address of a vmalloc'd thing to a linear map address */ 28 static void *real_vmalloc_addr(void *x) 29 { 30 unsigned long addr = (unsigned long) x; 31 pte_t *p; 32 /* 33 * assume we don't have huge pages in vmalloc space... 34 * So don't worry about THP collapse/split. Called 35 * Only in realmode with MSR_EE = 0, hence won't need irq_save/restore. 36 */ 37 p = find_init_mm_pte(addr, NULL); 38 if (!p || !pte_present(*p)) 39 return NULL; 40 addr = (pte_pfn(*p) << PAGE_SHIFT) | (addr & ~PAGE_MASK); 41 return __va(addr); 42 } 43 44 /* Return 1 if we need to do a global tlbie, 0 if we can use tlbiel */ 45 static int global_invalidates(struct kvm *kvm, unsigned long flags) 46 { 47 int global; 48 int cpu; 49 50 /* 51 * If there is only one vcore, and it's currently running, 52 * as indicated by local_paca->kvm_hstate.kvm_vcpu being set, 53 * we can use tlbiel as long as we mark all other physical 54 * cores as potentially having stale TLB entries for this lpid. 55 * Otherwise, don't use tlbiel. 56 */ 57 if (kvm->arch.online_vcores == 1 && local_paca->kvm_hstate.kvm_vcpu) 58 global = 0; 59 else 60 global = 1; 61 62 if (!global) { 63 /* any other core might now have stale TLB entries... */ 64 smp_wmb(); 65 cpumask_setall(&kvm->arch.need_tlb_flush); 66 cpu = local_paca->kvm_hstate.kvm_vcore->pcpu; 67 /* 68 * On POWER9, threads are independent but the TLB is shared, 69 * so use the bit for the first thread to represent the core. 70 */ 71 if (cpu_has_feature(CPU_FTR_ARCH_300)) 72 cpu = cpu_first_thread_sibling(cpu); 73 cpumask_clear_cpu(cpu, &kvm->arch.need_tlb_flush); 74 } 75 76 return global; 77 } 78 79 /* 80 * Add this HPTE into the chain for the real page. 81 * Must be called with the chain locked; it unlocks the chain. 82 */ 83 void kvmppc_add_revmap_chain(struct kvm *kvm, struct revmap_entry *rev, 84 unsigned long *rmap, long pte_index, int realmode) 85 { 86 struct revmap_entry *head, *tail; 87 unsigned long i; 88 89 if (*rmap & KVMPPC_RMAP_PRESENT) { 90 i = *rmap & KVMPPC_RMAP_INDEX; 91 head = &kvm->arch.hpt.rev[i]; 92 if (realmode) 93 head = real_vmalloc_addr(head); 94 tail = &kvm->arch.hpt.rev[head->back]; 95 if (realmode) 96 tail = real_vmalloc_addr(tail); 97 rev->forw = i; 98 rev->back = head->back; 99 tail->forw = pte_index; 100 head->back = pte_index; 101 } else { 102 rev->forw = rev->back = pte_index; 103 *rmap = (*rmap & ~KVMPPC_RMAP_INDEX) | 104 pte_index | KVMPPC_RMAP_PRESENT; 105 } 106 unlock_rmap(rmap); 107 } 108 EXPORT_SYMBOL_GPL(kvmppc_add_revmap_chain); 109 110 /* Update the dirty bitmap of a memslot */ 111 void kvmppc_update_dirty_map(struct kvm_memory_slot *memslot, 112 unsigned long gfn, unsigned long psize) 113 { 114 unsigned long npages; 115 116 if (!psize || !memslot->dirty_bitmap) 117 return; 118 npages = (psize + PAGE_SIZE - 1) / PAGE_SIZE; 119 gfn -= memslot->base_gfn; 120 set_dirty_bits_atomic(memslot->dirty_bitmap, gfn, npages); 121 } 122 EXPORT_SYMBOL_GPL(kvmppc_update_dirty_map); 123 124 static void kvmppc_set_dirty_from_hpte(struct kvm *kvm, 125 unsigned long hpte_v, unsigned long hpte_gr) 126 { 127 struct kvm_memory_slot *memslot; 128 unsigned long gfn; 129 unsigned long psize; 130 131 psize = kvmppc_actual_pgsz(hpte_v, hpte_gr); 132 gfn = hpte_rpn(hpte_gr, psize); 133 memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn); 134 if (memslot && memslot->dirty_bitmap) 135 kvmppc_update_dirty_map(memslot, gfn, psize); 136 } 137 138 /* Returns a pointer to the revmap entry for the page mapped by a HPTE */ 139 static unsigned long *revmap_for_hpte(struct kvm *kvm, unsigned long hpte_v, 140 unsigned long hpte_gr, 141 struct kvm_memory_slot **memslotp, 142 unsigned long *gfnp) 143 { 144 struct kvm_memory_slot *memslot; 145 unsigned long *rmap; 146 unsigned long gfn; 147 148 gfn = hpte_rpn(hpte_gr, kvmppc_actual_pgsz(hpte_v, hpte_gr)); 149 memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn); 150 if (memslotp) 151 *memslotp = memslot; 152 if (gfnp) 153 *gfnp = gfn; 154 if (!memslot) 155 return NULL; 156 157 rmap = real_vmalloc_addr(&memslot->arch.rmap[gfn - memslot->base_gfn]); 158 return rmap; 159 } 160 161 /* Remove this HPTE from the chain for a real page */ 162 static void remove_revmap_chain(struct kvm *kvm, long pte_index, 163 struct revmap_entry *rev, 164 unsigned long hpte_v, unsigned long hpte_r) 165 { 166 struct revmap_entry *next, *prev; 167 unsigned long ptel, head; 168 unsigned long *rmap; 169 unsigned long rcbits; 170 struct kvm_memory_slot *memslot; 171 unsigned long gfn; 172 173 rcbits = hpte_r & (HPTE_R_R | HPTE_R_C); 174 ptel = rev->guest_rpte |= rcbits; 175 rmap = revmap_for_hpte(kvm, hpte_v, ptel, &memslot, &gfn); 176 if (!rmap) 177 return; 178 lock_rmap(rmap); 179 180 head = *rmap & KVMPPC_RMAP_INDEX; 181 next = real_vmalloc_addr(&kvm->arch.hpt.rev[rev->forw]); 182 prev = real_vmalloc_addr(&kvm->arch.hpt.rev[rev->back]); 183 next->back = rev->back; 184 prev->forw = rev->forw; 185 if (head == pte_index) { 186 head = rev->forw; 187 if (head == pte_index) 188 *rmap &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX); 189 else 190 *rmap = (*rmap & ~KVMPPC_RMAP_INDEX) | head; 191 } 192 *rmap |= rcbits << KVMPPC_RMAP_RC_SHIFT; 193 if (rcbits & HPTE_R_C) 194 kvmppc_update_dirty_map(memslot, gfn, 195 kvmppc_actual_pgsz(hpte_v, hpte_r)); 196 unlock_rmap(rmap); 197 } 198 199 long kvmppc_do_h_enter(struct kvm *kvm, unsigned long flags, 200 long pte_index, unsigned long pteh, unsigned long ptel, 201 pgd_t *pgdir, bool realmode, unsigned long *pte_idx_ret) 202 { 203 unsigned long i, pa, gpa, gfn, psize; 204 unsigned long slot_fn, hva; 205 __be64 *hpte; 206 struct revmap_entry *rev; 207 unsigned long g_ptel; 208 struct kvm_memory_slot *memslot; 209 unsigned hpage_shift; 210 bool is_ci; 211 unsigned long *rmap; 212 pte_t *ptep; 213 unsigned int writing; 214 unsigned long mmu_seq; 215 unsigned long rcbits, irq_flags = 0; 216 217 if (kvm_is_radix(kvm)) 218 return H_FUNCTION; 219 psize = kvmppc_actual_pgsz(pteh, ptel); 220 if (!psize) 221 return H_PARAMETER; 222 writing = hpte_is_writable(ptel); 223 pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID); 224 ptel &= ~HPTE_GR_RESERVED; 225 g_ptel = ptel; 226 227 /* used later to detect if we might have been invalidated */ 228 mmu_seq = kvm->mmu_notifier_seq; 229 smp_rmb(); 230 231 /* Find the memslot (if any) for this address */ 232 gpa = (ptel & HPTE_R_RPN) & ~(psize - 1); 233 gfn = gpa >> PAGE_SHIFT; 234 memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn); 235 pa = 0; 236 is_ci = false; 237 rmap = NULL; 238 if (!(memslot && !(memslot->flags & KVM_MEMSLOT_INVALID))) { 239 /* Emulated MMIO - mark this with key=31 */ 240 pteh |= HPTE_V_ABSENT; 241 ptel |= HPTE_R_KEY_HI | HPTE_R_KEY_LO; 242 goto do_insert; 243 } 244 245 /* Check if the requested page fits entirely in the memslot. */ 246 if (!slot_is_aligned(memslot, psize)) 247 return H_PARAMETER; 248 slot_fn = gfn - memslot->base_gfn; 249 rmap = &memslot->arch.rmap[slot_fn]; 250 251 /* Translate to host virtual address */ 252 hva = __gfn_to_hva_memslot(memslot, gfn); 253 /* 254 * If we had a page table table change after lookup, we would 255 * retry via mmu_notifier_retry. 256 */ 257 if (!realmode) 258 local_irq_save(irq_flags); 259 /* 260 * If called in real mode we have MSR_EE = 0. Otherwise 261 * we disable irq above. 262 */ 263 ptep = __find_linux_pte(pgdir, hva, NULL, &hpage_shift); 264 if (ptep) { 265 pte_t pte; 266 unsigned int host_pte_size; 267 268 if (hpage_shift) 269 host_pte_size = 1ul << hpage_shift; 270 else 271 host_pte_size = PAGE_SIZE; 272 /* 273 * We should always find the guest page size 274 * to <= host page size, if host is using hugepage 275 */ 276 if (host_pte_size < psize) { 277 if (!realmode) 278 local_irq_restore(flags); 279 return H_PARAMETER; 280 } 281 pte = kvmppc_read_update_linux_pte(ptep, writing); 282 if (pte_present(pte) && !pte_protnone(pte)) { 283 if (writing && !__pte_write(pte)) 284 /* make the actual HPTE be read-only */ 285 ptel = hpte_make_readonly(ptel); 286 is_ci = pte_ci(pte); 287 pa = pte_pfn(pte) << PAGE_SHIFT; 288 pa |= hva & (host_pte_size - 1); 289 pa |= gpa & ~PAGE_MASK; 290 } 291 } 292 if (!realmode) 293 local_irq_restore(irq_flags); 294 295 ptel &= HPTE_R_KEY | HPTE_R_PP0 | (psize-1); 296 ptel |= pa; 297 298 if (pa) 299 pteh |= HPTE_V_VALID; 300 else { 301 pteh |= HPTE_V_ABSENT; 302 ptel &= ~(HPTE_R_KEY_HI | HPTE_R_KEY_LO); 303 } 304 305 /*If we had host pte mapping then Check WIMG */ 306 if (ptep && !hpte_cache_flags_ok(ptel, is_ci)) { 307 if (is_ci) 308 return H_PARAMETER; 309 /* 310 * Allow guest to map emulated device memory as 311 * uncacheable, but actually make it cacheable. 312 */ 313 ptel &= ~(HPTE_R_W|HPTE_R_I|HPTE_R_G); 314 ptel |= HPTE_R_M; 315 } 316 317 /* Find and lock the HPTEG slot to use */ 318 do_insert: 319 if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt)) 320 return H_PARAMETER; 321 if (likely((flags & H_EXACT) == 0)) { 322 pte_index &= ~7UL; 323 hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4)); 324 for (i = 0; i < 8; ++i) { 325 if ((be64_to_cpu(*hpte) & HPTE_V_VALID) == 0 && 326 try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID | 327 HPTE_V_ABSENT)) 328 break; 329 hpte += 2; 330 } 331 if (i == 8) { 332 /* 333 * Since try_lock_hpte doesn't retry (not even stdcx. 334 * failures), it could be that there is a free slot 335 * but we transiently failed to lock it. Try again, 336 * actually locking each slot and checking it. 337 */ 338 hpte -= 16; 339 for (i = 0; i < 8; ++i) { 340 u64 pte; 341 while (!try_lock_hpte(hpte, HPTE_V_HVLOCK)) 342 cpu_relax(); 343 pte = be64_to_cpu(hpte[0]); 344 if (!(pte & (HPTE_V_VALID | HPTE_V_ABSENT))) 345 break; 346 __unlock_hpte(hpte, pte); 347 hpte += 2; 348 } 349 if (i == 8) 350 return H_PTEG_FULL; 351 } 352 pte_index += i; 353 } else { 354 hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4)); 355 if (!try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID | 356 HPTE_V_ABSENT)) { 357 /* Lock the slot and check again */ 358 u64 pte; 359 360 while (!try_lock_hpte(hpte, HPTE_V_HVLOCK)) 361 cpu_relax(); 362 pte = be64_to_cpu(hpte[0]); 363 if (pte & (HPTE_V_VALID | HPTE_V_ABSENT)) { 364 __unlock_hpte(hpte, pte); 365 return H_PTEG_FULL; 366 } 367 } 368 } 369 370 /* Save away the guest's idea of the second HPTE dword */ 371 rev = &kvm->arch.hpt.rev[pte_index]; 372 if (realmode) 373 rev = real_vmalloc_addr(rev); 374 if (rev) { 375 rev->guest_rpte = g_ptel; 376 note_hpte_modification(kvm, rev); 377 } 378 379 /* Link HPTE into reverse-map chain */ 380 if (pteh & HPTE_V_VALID) { 381 if (realmode) 382 rmap = real_vmalloc_addr(rmap); 383 lock_rmap(rmap); 384 /* Check for pending invalidations under the rmap chain lock */ 385 if (mmu_notifier_retry(kvm, mmu_seq)) { 386 /* inval in progress, write a non-present HPTE */ 387 pteh |= HPTE_V_ABSENT; 388 pteh &= ~HPTE_V_VALID; 389 ptel &= ~(HPTE_R_KEY_HI | HPTE_R_KEY_LO); 390 unlock_rmap(rmap); 391 } else { 392 kvmppc_add_revmap_chain(kvm, rev, rmap, pte_index, 393 realmode); 394 /* Only set R/C in real HPTE if already set in *rmap */ 395 rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT; 396 ptel &= rcbits | ~(HPTE_R_R | HPTE_R_C); 397 } 398 } 399 400 /* Convert to new format on P9 */ 401 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 402 ptel = hpte_old_to_new_r(pteh, ptel); 403 pteh = hpte_old_to_new_v(pteh); 404 } 405 hpte[1] = cpu_to_be64(ptel); 406 407 /* Write the first HPTE dword, unlocking the HPTE and making it valid */ 408 eieio(); 409 __unlock_hpte(hpte, pteh); 410 asm volatile("ptesync" : : : "memory"); 411 412 *pte_idx_ret = pte_index; 413 return H_SUCCESS; 414 } 415 EXPORT_SYMBOL_GPL(kvmppc_do_h_enter); 416 417 long kvmppc_h_enter(struct kvm_vcpu *vcpu, unsigned long flags, 418 long pte_index, unsigned long pteh, unsigned long ptel) 419 { 420 return kvmppc_do_h_enter(vcpu->kvm, flags, pte_index, pteh, ptel, 421 vcpu->arch.pgdir, true, &vcpu->arch.gpr[4]); 422 } 423 424 #ifdef __BIG_ENDIAN__ 425 #define LOCK_TOKEN (*(u32 *)(&get_paca()->lock_token)) 426 #else 427 #define LOCK_TOKEN (*(u32 *)(&get_paca()->paca_index)) 428 #endif 429 430 static inline int is_mmio_hpte(unsigned long v, unsigned long r) 431 { 432 return ((v & HPTE_V_ABSENT) && 433 (r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) == 434 (HPTE_R_KEY_HI | HPTE_R_KEY_LO)); 435 } 436 437 static inline int try_lock_tlbie(unsigned int *lock) 438 { 439 unsigned int tmp, old; 440 unsigned int token = LOCK_TOKEN; 441 442 asm volatile("1:lwarx %1,0,%2\n" 443 " cmpwi cr0,%1,0\n" 444 " bne 2f\n" 445 " stwcx. %3,0,%2\n" 446 " bne- 1b\n" 447 " isync\n" 448 "2:" 449 : "=&r" (tmp), "=&r" (old) 450 : "r" (lock), "r" (token) 451 : "cc", "memory"); 452 return old == 0; 453 } 454 455 static void do_tlbies(struct kvm *kvm, unsigned long *rbvalues, 456 long npages, int global, bool need_sync) 457 { 458 long i; 459 460 /* 461 * We use the POWER9 5-operand versions of tlbie and tlbiel here. 462 * Since we are using RIC=0 PRS=0 R=0, and P7/P8 tlbiel ignores 463 * the RS field, this is backwards-compatible with P7 and P8. 464 */ 465 if (global) { 466 while (!try_lock_tlbie(&kvm->arch.tlbie_lock)) 467 cpu_relax(); 468 if (need_sync) 469 asm volatile("ptesync" : : : "memory"); 470 for (i = 0; i < npages; ++i) { 471 asm volatile(PPC_TLBIE_5(%0,%1,0,0,0) : : 472 "r" (rbvalues[i]), "r" (kvm->arch.lpid)); 473 trace_tlbie(kvm->arch.lpid, 0, rbvalues[i], 474 kvm->arch.lpid, 0, 0, 0); 475 } 476 asm volatile("eieio; tlbsync; ptesync" : : : "memory"); 477 kvm->arch.tlbie_lock = 0; 478 } else { 479 if (need_sync) 480 asm volatile("ptesync" : : : "memory"); 481 for (i = 0; i < npages; ++i) { 482 asm volatile(PPC_TLBIEL(%0,%1,0,0,0) : : 483 "r" (rbvalues[i]), "r" (0)); 484 trace_tlbie(kvm->arch.lpid, 1, rbvalues[i], 485 0, 0, 0, 0); 486 } 487 asm volatile("ptesync" : : : "memory"); 488 } 489 } 490 491 long kvmppc_do_h_remove(struct kvm *kvm, unsigned long flags, 492 unsigned long pte_index, unsigned long avpn, 493 unsigned long *hpret) 494 { 495 __be64 *hpte; 496 unsigned long v, r, rb; 497 struct revmap_entry *rev; 498 u64 pte, orig_pte, pte_r; 499 500 if (kvm_is_radix(kvm)) 501 return H_FUNCTION; 502 if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt)) 503 return H_PARAMETER; 504 hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4)); 505 while (!try_lock_hpte(hpte, HPTE_V_HVLOCK)) 506 cpu_relax(); 507 pte = orig_pte = be64_to_cpu(hpte[0]); 508 pte_r = be64_to_cpu(hpte[1]); 509 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 510 pte = hpte_new_to_old_v(pte, pte_r); 511 pte_r = hpte_new_to_old_r(pte_r); 512 } 513 if ((pte & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 || 514 ((flags & H_AVPN) && (pte & ~0x7fUL) != avpn) || 515 ((flags & H_ANDCOND) && (pte & avpn) != 0)) { 516 __unlock_hpte(hpte, orig_pte); 517 return H_NOT_FOUND; 518 } 519 520 rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]); 521 v = pte & ~HPTE_V_HVLOCK; 522 if (v & HPTE_V_VALID) { 523 hpte[0] &= ~cpu_to_be64(HPTE_V_VALID); 524 rb = compute_tlbie_rb(v, pte_r, pte_index); 525 do_tlbies(kvm, &rb, 1, global_invalidates(kvm, flags), true); 526 /* 527 * The reference (R) and change (C) bits in a HPT 528 * entry can be set by hardware at any time up until 529 * the HPTE is invalidated and the TLB invalidation 530 * sequence has completed. This means that when 531 * removing a HPTE, we need to re-read the HPTE after 532 * the invalidation sequence has completed in order to 533 * obtain reliable values of R and C. 534 */ 535 remove_revmap_chain(kvm, pte_index, rev, v, 536 be64_to_cpu(hpte[1])); 537 } 538 r = rev->guest_rpte & ~HPTE_GR_RESERVED; 539 note_hpte_modification(kvm, rev); 540 unlock_hpte(hpte, 0); 541 542 if (is_mmio_hpte(v, pte_r)) 543 atomic64_inc(&kvm->arch.mmio_update); 544 545 if (v & HPTE_V_ABSENT) 546 v = (v & ~HPTE_V_ABSENT) | HPTE_V_VALID; 547 hpret[0] = v; 548 hpret[1] = r; 549 return H_SUCCESS; 550 } 551 EXPORT_SYMBOL_GPL(kvmppc_do_h_remove); 552 553 long kvmppc_h_remove(struct kvm_vcpu *vcpu, unsigned long flags, 554 unsigned long pte_index, unsigned long avpn) 555 { 556 return kvmppc_do_h_remove(vcpu->kvm, flags, pte_index, avpn, 557 &vcpu->arch.gpr[4]); 558 } 559 560 long kvmppc_h_bulk_remove(struct kvm_vcpu *vcpu) 561 { 562 struct kvm *kvm = vcpu->kvm; 563 unsigned long *args = &vcpu->arch.gpr[4]; 564 __be64 *hp, *hptes[4]; 565 unsigned long tlbrb[4]; 566 long int i, j, k, n, found, indexes[4]; 567 unsigned long flags, req, pte_index, rcbits; 568 int global; 569 long int ret = H_SUCCESS; 570 struct revmap_entry *rev, *revs[4]; 571 u64 hp0, hp1; 572 573 if (kvm_is_radix(kvm)) 574 return H_FUNCTION; 575 global = global_invalidates(kvm, 0); 576 for (i = 0; i < 4 && ret == H_SUCCESS; ) { 577 n = 0; 578 for (; i < 4; ++i) { 579 j = i * 2; 580 pte_index = args[j]; 581 flags = pte_index >> 56; 582 pte_index &= ((1ul << 56) - 1); 583 req = flags >> 6; 584 flags &= 3; 585 if (req == 3) { /* no more requests */ 586 i = 4; 587 break; 588 } 589 if (req != 1 || flags == 3 || 590 pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt)) { 591 /* parameter error */ 592 args[j] = ((0xa0 | flags) << 56) + pte_index; 593 ret = H_PARAMETER; 594 break; 595 } 596 hp = (__be64 *) (kvm->arch.hpt.virt + (pte_index << 4)); 597 /* to avoid deadlock, don't spin except for first */ 598 if (!try_lock_hpte(hp, HPTE_V_HVLOCK)) { 599 if (n) 600 break; 601 while (!try_lock_hpte(hp, HPTE_V_HVLOCK)) 602 cpu_relax(); 603 } 604 found = 0; 605 hp0 = be64_to_cpu(hp[0]); 606 hp1 = be64_to_cpu(hp[1]); 607 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 608 hp0 = hpte_new_to_old_v(hp0, hp1); 609 hp1 = hpte_new_to_old_r(hp1); 610 } 611 if (hp0 & (HPTE_V_ABSENT | HPTE_V_VALID)) { 612 switch (flags & 3) { 613 case 0: /* absolute */ 614 found = 1; 615 break; 616 case 1: /* andcond */ 617 if (!(hp0 & args[j + 1])) 618 found = 1; 619 break; 620 case 2: /* AVPN */ 621 if ((hp0 & ~0x7fUL) == args[j + 1]) 622 found = 1; 623 break; 624 } 625 } 626 if (!found) { 627 hp[0] &= ~cpu_to_be64(HPTE_V_HVLOCK); 628 args[j] = ((0x90 | flags) << 56) + pte_index; 629 continue; 630 } 631 632 args[j] = ((0x80 | flags) << 56) + pte_index; 633 rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]); 634 note_hpte_modification(kvm, rev); 635 636 if (!(hp0 & HPTE_V_VALID)) { 637 /* insert R and C bits from PTE */ 638 rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C); 639 args[j] |= rcbits << (56 - 5); 640 hp[0] = 0; 641 if (is_mmio_hpte(hp0, hp1)) 642 atomic64_inc(&kvm->arch.mmio_update); 643 continue; 644 } 645 646 /* leave it locked */ 647 hp[0] &= ~cpu_to_be64(HPTE_V_VALID); 648 tlbrb[n] = compute_tlbie_rb(hp0, hp1, pte_index); 649 indexes[n] = j; 650 hptes[n] = hp; 651 revs[n] = rev; 652 ++n; 653 } 654 655 if (!n) 656 break; 657 658 /* Now that we've collected a batch, do the tlbies */ 659 do_tlbies(kvm, tlbrb, n, global, true); 660 661 /* Read PTE low words after tlbie to get final R/C values */ 662 for (k = 0; k < n; ++k) { 663 j = indexes[k]; 664 pte_index = args[j] & ((1ul << 56) - 1); 665 hp = hptes[k]; 666 rev = revs[k]; 667 remove_revmap_chain(kvm, pte_index, rev, 668 be64_to_cpu(hp[0]), be64_to_cpu(hp[1])); 669 rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C); 670 args[j] |= rcbits << (56 - 5); 671 __unlock_hpte(hp, 0); 672 } 673 } 674 675 return ret; 676 } 677 678 long kvmppc_h_protect(struct kvm_vcpu *vcpu, unsigned long flags, 679 unsigned long pte_index, unsigned long avpn, 680 unsigned long va) 681 { 682 struct kvm *kvm = vcpu->kvm; 683 __be64 *hpte; 684 struct revmap_entry *rev; 685 unsigned long v, r, rb, mask, bits; 686 u64 pte_v, pte_r; 687 688 if (kvm_is_radix(kvm)) 689 return H_FUNCTION; 690 if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt)) 691 return H_PARAMETER; 692 693 hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4)); 694 while (!try_lock_hpte(hpte, HPTE_V_HVLOCK)) 695 cpu_relax(); 696 v = pte_v = be64_to_cpu(hpte[0]); 697 if (cpu_has_feature(CPU_FTR_ARCH_300)) 698 v = hpte_new_to_old_v(v, be64_to_cpu(hpte[1])); 699 if ((v & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 || 700 ((flags & H_AVPN) && (v & ~0x7fUL) != avpn)) { 701 __unlock_hpte(hpte, pte_v); 702 return H_NOT_FOUND; 703 } 704 705 pte_r = be64_to_cpu(hpte[1]); 706 bits = (flags << 55) & HPTE_R_PP0; 707 bits |= (flags << 48) & HPTE_R_KEY_HI; 708 bits |= flags & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO); 709 710 /* Update guest view of 2nd HPTE dword */ 711 mask = HPTE_R_PP0 | HPTE_R_PP | HPTE_R_N | 712 HPTE_R_KEY_HI | HPTE_R_KEY_LO; 713 rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]); 714 if (rev) { 715 r = (rev->guest_rpte & ~mask) | bits; 716 rev->guest_rpte = r; 717 note_hpte_modification(kvm, rev); 718 } 719 720 /* Update HPTE */ 721 if (v & HPTE_V_VALID) { 722 /* 723 * If the page is valid, don't let it transition from 724 * readonly to writable. If it should be writable, we'll 725 * take a trap and let the page fault code sort it out. 726 */ 727 r = (pte_r & ~mask) | bits; 728 if (hpte_is_writable(r) && !hpte_is_writable(pte_r)) 729 r = hpte_make_readonly(r); 730 /* If the PTE is changing, invalidate it first */ 731 if (r != pte_r) { 732 rb = compute_tlbie_rb(v, r, pte_index); 733 hpte[0] = cpu_to_be64((pte_v & ~HPTE_V_VALID) | 734 HPTE_V_ABSENT); 735 do_tlbies(kvm, &rb, 1, global_invalidates(kvm, flags), 736 true); 737 /* Don't lose R/C bit updates done by hardware */ 738 r |= be64_to_cpu(hpte[1]) & (HPTE_R_R | HPTE_R_C); 739 hpte[1] = cpu_to_be64(r); 740 } 741 } 742 unlock_hpte(hpte, pte_v & ~HPTE_V_HVLOCK); 743 asm volatile("ptesync" : : : "memory"); 744 if (is_mmio_hpte(v, pte_r)) 745 atomic64_inc(&kvm->arch.mmio_update); 746 747 return H_SUCCESS; 748 } 749 750 long kvmppc_h_read(struct kvm_vcpu *vcpu, unsigned long flags, 751 unsigned long pte_index) 752 { 753 struct kvm *kvm = vcpu->kvm; 754 __be64 *hpte; 755 unsigned long v, r; 756 int i, n = 1; 757 struct revmap_entry *rev = NULL; 758 759 if (kvm_is_radix(kvm)) 760 return H_FUNCTION; 761 if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt)) 762 return H_PARAMETER; 763 if (flags & H_READ_4) { 764 pte_index &= ~3; 765 n = 4; 766 } 767 rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]); 768 for (i = 0; i < n; ++i, ++pte_index) { 769 hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4)); 770 v = be64_to_cpu(hpte[0]) & ~HPTE_V_HVLOCK; 771 r = be64_to_cpu(hpte[1]); 772 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 773 v = hpte_new_to_old_v(v, r); 774 r = hpte_new_to_old_r(r); 775 } 776 if (v & HPTE_V_ABSENT) { 777 v &= ~HPTE_V_ABSENT; 778 v |= HPTE_V_VALID; 779 } 780 if (v & HPTE_V_VALID) { 781 r = rev[i].guest_rpte | (r & (HPTE_R_R | HPTE_R_C)); 782 r &= ~HPTE_GR_RESERVED; 783 } 784 vcpu->arch.gpr[4 + i * 2] = v; 785 vcpu->arch.gpr[5 + i * 2] = r; 786 } 787 return H_SUCCESS; 788 } 789 790 long kvmppc_h_clear_ref(struct kvm_vcpu *vcpu, unsigned long flags, 791 unsigned long pte_index) 792 { 793 struct kvm *kvm = vcpu->kvm; 794 __be64 *hpte; 795 unsigned long v, r, gr; 796 struct revmap_entry *rev; 797 unsigned long *rmap; 798 long ret = H_NOT_FOUND; 799 800 if (kvm_is_radix(kvm)) 801 return H_FUNCTION; 802 if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt)) 803 return H_PARAMETER; 804 805 rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]); 806 hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4)); 807 while (!try_lock_hpte(hpte, HPTE_V_HVLOCK)) 808 cpu_relax(); 809 v = be64_to_cpu(hpte[0]); 810 r = be64_to_cpu(hpte[1]); 811 if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT))) 812 goto out; 813 814 gr = rev->guest_rpte; 815 if (rev->guest_rpte & HPTE_R_R) { 816 rev->guest_rpte &= ~HPTE_R_R; 817 note_hpte_modification(kvm, rev); 818 } 819 if (v & HPTE_V_VALID) { 820 gr |= r & (HPTE_R_R | HPTE_R_C); 821 if (r & HPTE_R_R) { 822 kvmppc_clear_ref_hpte(kvm, hpte, pte_index); 823 rmap = revmap_for_hpte(kvm, v, gr, NULL, NULL); 824 if (rmap) { 825 lock_rmap(rmap); 826 *rmap |= KVMPPC_RMAP_REFERENCED; 827 unlock_rmap(rmap); 828 } 829 } 830 } 831 vcpu->arch.gpr[4] = gr; 832 ret = H_SUCCESS; 833 out: 834 unlock_hpte(hpte, v & ~HPTE_V_HVLOCK); 835 return ret; 836 } 837 838 long kvmppc_h_clear_mod(struct kvm_vcpu *vcpu, unsigned long flags, 839 unsigned long pte_index) 840 { 841 struct kvm *kvm = vcpu->kvm; 842 __be64 *hpte; 843 unsigned long v, r, gr; 844 struct revmap_entry *rev; 845 long ret = H_NOT_FOUND; 846 847 if (kvm_is_radix(kvm)) 848 return H_FUNCTION; 849 if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt)) 850 return H_PARAMETER; 851 852 rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]); 853 hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4)); 854 while (!try_lock_hpte(hpte, HPTE_V_HVLOCK)) 855 cpu_relax(); 856 v = be64_to_cpu(hpte[0]); 857 r = be64_to_cpu(hpte[1]); 858 if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT))) 859 goto out; 860 861 gr = rev->guest_rpte; 862 if (gr & HPTE_R_C) { 863 rev->guest_rpte &= ~HPTE_R_C; 864 note_hpte_modification(kvm, rev); 865 } 866 if (v & HPTE_V_VALID) { 867 /* need to make it temporarily absent so C is stable */ 868 hpte[0] |= cpu_to_be64(HPTE_V_ABSENT); 869 kvmppc_invalidate_hpte(kvm, hpte, pte_index); 870 r = be64_to_cpu(hpte[1]); 871 gr |= r & (HPTE_R_R | HPTE_R_C); 872 if (r & HPTE_R_C) { 873 hpte[1] = cpu_to_be64(r & ~HPTE_R_C); 874 eieio(); 875 kvmppc_set_dirty_from_hpte(kvm, v, gr); 876 } 877 } 878 vcpu->arch.gpr[4] = gr; 879 ret = H_SUCCESS; 880 out: 881 unlock_hpte(hpte, v & ~HPTE_V_HVLOCK); 882 return ret; 883 } 884 885 void kvmppc_invalidate_hpte(struct kvm *kvm, __be64 *hptep, 886 unsigned long pte_index) 887 { 888 unsigned long rb; 889 u64 hp0, hp1; 890 891 hptep[0] &= ~cpu_to_be64(HPTE_V_VALID); 892 hp0 = be64_to_cpu(hptep[0]); 893 hp1 = be64_to_cpu(hptep[1]); 894 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 895 hp0 = hpte_new_to_old_v(hp0, hp1); 896 hp1 = hpte_new_to_old_r(hp1); 897 } 898 rb = compute_tlbie_rb(hp0, hp1, pte_index); 899 do_tlbies(kvm, &rb, 1, 1, true); 900 } 901 EXPORT_SYMBOL_GPL(kvmppc_invalidate_hpte); 902 903 void kvmppc_clear_ref_hpte(struct kvm *kvm, __be64 *hptep, 904 unsigned long pte_index) 905 { 906 unsigned long rb; 907 unsigned char rbyte; 908 u64 hp0, hp1; 909 910 hp0 = be64_to_cpu(hptep[0]); 911 hp1 = be64_to_cpu(hptep[1]); 912 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 913 hp0 = hpte_new_to_old_v(hp0, hp1); 914 hp1 = hpte_new_to_old_r(hp1); 915 } 916 rb = compute_tlbie_rb(hp0, hp1, pte_index); 917 rbyte = (be64_to_cpu(hptep[1]) & ~HPTE_R_R) >> 8; 918 /* modify only the second-last byte, which contains the ref bit */ 919 *((char *)hptep + 14) = rbyte; 920 do_tlbies(kvm, &rb, 1, 1, false); 921 } 922 EXPORT_SYMBOL_GPL(kvmppc_clear_ref_hpte); 923 924 static int slb_base_page_shift[4] = { 925 24, /* 16M */ 926 16, /* 64k */ 927 34, /* 16G */ 928 20, /* 1M, unsupported */ 929 }; 930 931 static struct mmio_hpte_cache_entry *mmio_cache_search(struct kvm_vcpu *vcpu, 932 unsigned long eaddr, unsigned long slb_v, long mmio_update) 933 { 934 struct mmio_hpte_cache_entry *entry = NULL; 935 unsigned int pshift; 936 unsigned int i; 937 938 for (i = 0; i < MMIO_HPTE_CACHE_SIZE; i++) { 939 entry = &vcpu->arch.mmio_cache.entry[i]; 940 if (entry->mmio_update == mmio_update) { 941 pshift = entry->slb_base_pshift; 942 if ((entry->eaddr >> pshift) == (eaddr >> pshift) && 943 entry->slb_v == slb_v) 944 return entry; 945 } 946 } 947 return NULL; 948 } 949 950 static struct mmio_hpte_cache_entry * 951 next_mmio_cache_entry(struct kvm_vcpu *vcpu) 952 { 953 unsigned int index = vcpu->arch.mmio_cache.index; 954 955 vcpu->arch.mmio_cache.index++; 956 if (vcpu->arch.mmio_cache.index == MMIO_HPTE_CACHE_SIZE) 957 vcpu->arch.mmio_cache.index = 0; 958 959 return &vcpu->arch.mmio_cache.entry[index]; 960 } 961 962 /* When called from virtmode, this func should be protected by 963 * preempt_disable(), otherwise, the holding of HPTE_V_HVLOCK 964 * can trigger deadlock issue. 965 */ 966 long kvmppc_hv_find_lock_hpte(struct kvm *kvm, gva_t eaddr, unsigned long slb_v, 967 unsigned long valid) 968 { 969 unsigned int i; 970 unsigned int pshift; 971 unsigned long somask; 972 unsigned long vsid, hash; 973 unsigned long avpn; 974 __be64 *hpte; 975 unsigned long mask, val; 976 unsigned long v, r, orig_v; 977 978 /* Get page shift, work out hash and AVPN etc. */ 979 mask = SLB_VSID_B | HPTE_V_AVPN | HPTE_V_SECONDARY; 980 val = 0; 981 pshift = 12; 982 if (slb_v & SLB_VSID_L) { 983 mask |= HPTE_V_LARGE; 984 val |= HPTE_V_LARGE; 985 pshift = slb_base_page_shift[(slb_v & SLB_VSID_LP) >> 4]; 986 } 987 if (slb_v & SLB_VSID_B_1T) { 988 somask = (1UL << 40) - 1; 989 vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T; 990 vsid ^= vsid << 25; 991 } else { 992 somask = (1UL << 28) - 1; 993 vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT; 994 } 995 hash = (vsid ^ ((eaddr & somask) >> pshift)) & kvmppc_hpt_mask(&kvm->arch.hpt); 996 avpn = slb_v & ~(somask >> 16); /* also includes B */ 997 avpn |= (eaddr & somask) >> 16; 998 999 if (pshift >= 24) 1000 avpn &= ~((1UL << (pshift - 16)) - 1); 1001 else 1002 avpn &= ~0x7fUL; 1003 val |= avpn; 1004 1005 for (;;) { 1006 hpte = (__be64 *)(kvm->arch.hpt.virt + (hash << 7)); 1007 1008 for (i = 0; i < 16; i += 2) { 1009 /* Read the PTE racily */ 1010 v = be64_to_cpu(hpte[i]) & ~HPTE_V_HVLOCK; 1011 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1012 v = hpte_new_to_old_v(v, be64_to_cpu(hpte[i+1])); 1013 1014 /* Check valid/absent, hash, segment size and AVPN */ 1015 if (!(v & valid) || (v & mask) != val) 1016 continue; 1017 1018 /* Lock the PTE and read it under the lock */ 1019 while (!try_lock_hpte(&hpte[i], HPTE_V_HVLOCK)) 1020 cpu_relax(); 1021 v = orig_v = be64_to_cpu(hpte[i]) & ~HPTE_V_HVLOCK; 1022 r = be64_to_cpu(hpte[i+1]); 1023 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1024 v = hpte_new_to_old_v(v, r); 1025 r = hpte_new_to_old_r(r); 1026 } 1027 1028 /* 1029 * Check the HPTE again, including base page size 1030 */ 1031 if ((v & valid) && (v & mask) == val && 1032 kvmppc_hpte_base_page_shift(v, r) == pshift) 1033 /* Return with the HPTE still locked */ 1034 return (hash << 3) + (i >> 1); 1035 1036 __unlock_hpte(&hpte[i], orig_v); 1037 } 1038 1039 if (val & HPTE_V_SECONDARY) 1040 break; 1041 val |= HPTE_V_SECONDARY; 1042 hash = hash ^ kvmppc_hpt_mask(&kvm->arch.hpt); 1043 } 1044 return -1; 1045 } 1046 EXPORT_SYMBOL(kvmppc_hv_find_lock_hpte); 1047 1048 /* 1049 * Called in real mode to check whether an HPTE not found fault 1050 * is due to accessing a paged-out page or an emulated MMIO page, 1051 * or if a protection fault is due to accessing a page that the 1052 * guest wanted read/write access to but which we made read-only. 1053 * Returns a possibly modified status (DSISR) value if not 1054 * (i.e. pass the interrupt to the guest), 1055 * -1 to pass the fault up to host kernel mode code, -2 to do that 1056 * and also load the instruction word (for MMIO emulation), 1057 * or 0 if we should make the guest retry the access. 1058 */ 1059 long kvmppc_hpte_hv_fault(struct kvm_vcpu *vcpu, unsigned long addr, 1060 unsigned long slb_v, unsigned int status, bool data) 1061 { 1062 struct kvm *kvm = vcpu->kvm; 1063 long int index; 1064 unsigned long v, r, gr, orig_v; 1065 __be64 *hpte; 1066 unsigned long valid; 1067 struct revmap_entry *rev; 1068 unsigned long pp, key; 1069 struct mmio_hpte_cache_entry *cache_entry = NULL; 1070 long mmio_update = 0; 1071 1072 /* For protection fault, expect to find a valid HPTE */ 1073 valid = HPTE_V_VALID; 1074 if (status & DSISR_NOHPTE) { 1075 valid |= HPTE_V_ABSENT; 1076 mmio_update = atomic64_read(&kvm->arch.mmio_update); 1077 cache_entry = mmio_cache_search(vcpu, addr, slb_v, mmio_update); 1078 } 1079 if (cache_entry) { 1080 index = cache_entry->pte_index; 1081 v = cache_entry->hpte_v; 1082 r = cache_entry->hpte_r; 1083 gr = cache_entry->rpte; 1084 } else { 1085 index = kvmppc_hv_find_lock_hpte(kvm, addr, slb_v, valid); 1086 if (index < 0) { 1087 if (status & DSISR_NOHPTE) 1088 return status; /* there really was no HPTE */ 1089 return 0; /* for prot fault, HPTE disappeared */ 1090 } 1091 hpte = (__be64 *)(kvm->arch.hpt.virt + (index << 4)); 1092 v = orig_v = be64_to_cpu(hpte[0]) & ~HPTE_V_HVLOCK; 1093 r = be64_to_cpu(hpte[1]); 1094 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1095 v = hpte_new_to_old_v(v, r); 1096 r = hpte_new_to_old_r(r); 1097 } 1098 rev = real_vmalloc_addr(&kvm->arch.hpt.rev[index]); 1099 gr = rev->guest_rpte; 1100 1101 unlock_hpte(hpte, orig_v); 1102 } 1103 1104 /* For not found, if the HPTE is valid by now, retry the instruction */ 1105 if ((status & DSISR_NOHPTE) && (v & HPTE_V_VALID)) 1106 return 0; 1107 1108 /* Check access permissions to the page */ 1109 pp = gr & (HPTE_R_PP0 | HPTE_R_PP); 1110 key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS; 1111 status &= ~DSISR_NOHPTE; /* DSISR_NOHPTE == SRR1_ISI_NOPT */ 1112 if (!data) { 1113 if (gr & (HPTE_R_N | HPTE_R_G)) 1114 return status | SRR1_ISI_N_OR_G; 1115 if (!hpte_read_permission(pp, slb_v & key)) 1116 return status | SRR1_ISI_PROT; 1117 } else if (status & DSISR_ISSTORE) { 1118 /* check write permission */ 1119 if (!hpte_write_permission(pp, slb_v & key)) 1120 return status | DSISR_PROTFAULT; 1121 } else { 1122 if (!hpte_read_permission(pp, slb_v & key)) 1123 return status | DSISR_PROTFAULT; 1124 } 1125 1126 /* Check storage key, if applicable */ 1127 if (data && (vcpu->arch.shregs.msr & MSR_DR)) { 1128 unsigned int perm = hpte_get_skey_perm(gr, vcpu->arch.amr); 1129 if (status & DSISR_ISSTORE) 1130 perm >>= 1; 1131 if (perm & 1) 1132 return status | DSISR_KEYFAULT; 1133 } 1134 1135 /* Save HPTE info for virtual-mode handler */ 1136 vcpu->arch.pgfault_addr = addr; 1137 vcpu->arch.pgfault_index = index; 1138 vcpu->arch.pgfault_hpte[0] = v; 1139 vcpu->arch.pgfault_hpte[1] = r; 1140 vcpu->arch.pgfault_cache = cache_entry; 1141 1142 /* Check the storage key to see if it is possibly emulated MMIO */ 1143 if ((r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) == 1144 (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) { 1145 if (!cache_entry) { 1146 unsigned int pshift = 12; 1147 unsigned int pshift_index; 1148 1149 if (slb_v & SLB_VSID_L) { 1150 pshift_index = ((slb_v & SLB_VSID_LP) >> 4); 1151 pshift = slb_base_page_shift[pshift_index]; 1152 } 1153 cache_entry = next_mmio_cache_entry(vcpu); 1154 cache_entry->eaddr = addr; 1155 cache_entry->slb_base_pshift = pshift; 1156 cache_entry->pte_index = index; 1157 cache_entry->hpte_v = v; 1158 cache_entry->hpte_r = r; 1159 cache_entry->rpte = gr; 1160 cache_entry->slb_v = slb_v; 1161 cache_entry->mmio_update = mmio_update; 1162 } 1163 if (data && (vcpu->arch.shregs.msr & MSR_IR)) 1164 return -2; /* MMIO emulation - load instr word */ 1165 } 1166 1167 return -1; /* send fault up to host kernel mode */ 1168 } 1169