1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * Copyright 2010-2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7  */
8 
9 #include <linux/types.h>
10 #include <linux/string.h>
11 #include <linux/kvm.h>
12 #include <linux/kvm_host.h>
13 #include <linux/hugetlb.h>
14 #include <linux/module.h>
15 #include <linux/log2.h>
16 
17 #include <asm/tlbflush.h>
18 #include <asm/trace.h>
19 #include <asm/kvm_ppc.h>
20 #include <asm/kvm_book3s.h>
21 #include <asm/book3s/64/mmu-hash.h>
22 #include <asm/hvcall.h>
23 #include <asm/synch.h>
24 #include <asm/ppc-opcode.h>
25 #include <asm/pte-walk.h>
26 
27 /* Translate address of a vmalloc'd thing to a linear map address */
28 static void *real_vmalloc_addr(void *x)
29 {
30 	unsigned long addr = (unsigned long) x;
31 	pte_t *p;
32 	/*
33 	 * assume we don't have huge pages in vmalloc space...
34 	 * So don't worry about THP collapse/split. Called
35 	 * Only in realmode with MSR_EE = 0, hence won't need irq_save/restore.
36 	 */
37 	p = find_init_mm_pte(addr, NULL);
38 	if (!p || !pte_present(*p))
39 		return NULL;
40 	addr = (pte_pfn(*p) << PAGE_SHIFT) | (addr & ~PAGE_MASK);
41 	return __va(addr);
42 }
43 
44 /* Return 1 if we need to do a global tlbie, 0 if we can use tlbiel */
45 static int global_invalidates(struct kvm *kvm, unsigned long flags)
46 {
47 	int global;
48 	int cpu;
49 
50 	/*
51 	 * If there is only one vcore, and it's currently running,
52 	 * as indicated by local_paca->kvm_hstate.kvm_vcpu being set,
53 	 * we can use tlbiel as long as we mark all other physical
54 	 * cores as potentially having stale TLB entries for this lpid.
55 	 * Otherwise, don't use tlbiel.
56 	 */
57 	if (kvm->arch.online_vcores == 1 && local_paca->kvm_hstate.kvm_vcpu)
58 		global = 0;
59 	else
60 		global = 1;
61 
62 	if (!global) {
63 		/* any other core might now have stale TLB entries... */
64 		smp_wmb();
65 		cpumask_setall(&kvm->arch.need_tlb_flush);
66 		cpu = local_paca->kvm_hstate.kvm_vcore->pcpu;
67 		/*
68 		 * On POWER9, threads are independent but the TLB is shared,
69 		 * so use the bit for the first thread to represent the core.
70 		 */
71 		if (cpu_has_feature(CPU_FTR_ARCH_300))
72 			cpu = cpu_first_thread_sibling(cpu);
73 		cpumask_clear_cpu(cpu, &kvm->arch.need_tlb_flush);
74 	}
75 
76 	return global;
77 }
78 
79 /*
80  * Add this HPTE into the chain for the real page.
81  * Must be called with the chain locked; it unlocks the chain.
82  */
83 void kvmppc_add_revmap_chain(struct kvm *kvm, struct revmap_entry *rev,
84 			     unsigned long *rmap, long pte_index, int realmode)
85 {
86 	struct revmap_entry *head, *tail;
87 	unsigned long i;
88 
89 	if (*rmap & KVMPPC_RMAP_PRESENT) {
90 		i = *rmap & KVMPPC_RMAP_INDEX;
91 		head = &kvm->arch.hpt.rev[i];
92 		if (realmode)
93 			head = real_vmalloc_addr(head);
94 		tail = &kvm->arch.hpt.rev[head->back];
95 		if (realmode)
96 			tail = real_vmalloc_addr(tail);
97 		rev->forw = i;
98 		rev->back = head->back;
99 		tail->forw = pte_index;
100 		head->back = pte_index;
101 	} else {
102 		rev->forw = rev->back = pte_index;
103 		*rmap = (*rmap & ~KVMPPC_RMAP_INDEX) |
104 			pte_index | KVMPPC_RMAP_PRESENT;
105 	}
106 	unlock_rmap(rmap);
107 }
108 EXPORT_SYMBOL_GPL(kvmppc_add_revmap_chain);
109 
110 /* Update the changed page order field of an rmap entry */
111 void kvmppc_update_rmap_change(unsigned long *rmap, unsigned long psize)
112 {
113 	unsigned long order;
114 
115 	if (!psize)
116 		return;
117 	order = ilog2(psize);
118 	order <<= KVMPPC_RMAP_CHG_SHIFT;
119 	if (order > (*rmap & KVMPPC_RMAP_CHG_ORDER))
120 		*rmap = (*rmap & ~KVMPPC_RMAP_CHG_ORDER) | order;
121 }
122 EXPORT_SYMBOL_GPL(kvmppc_update_rmap_change);
123 
124 /* Returns a pointer to the revmap entry for the page mapped by a HPTE */
125 static unsigned long *revmap_for_hpte(struct kvm *kvm, unsigned long hpte_v,
126 				      unsigned long hpte_gr)
127 {
128 	struct kvm_memory_slot *memslot;
129 	unsigned long *rmap;
130 	unsigned long gfn;
131 
132 	gfn = hpte_rpn(hpte_gr, hpte_page_size(hpte_v, hpte_gr));
133 	memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
134 	if (!memslot)
135 		return NULL;
136 
137 	rmap = real_vmalloc_addr(&memslot->arch.rmap[gfn - memslot->base_gfn]);
138 	return rmap;
139 }
140 
141 /* Remove this HPTE from the chain for a real page */
142 static void remove_revmap_chain(struct kvm *kvm, long pte_index,
143 				struct revmap_entry *rev,
144 				unsigned long hpte_v, unsigned long hpte_r)
145 {
146 	struct revmap_entry *next, *prev;
147 	unsigned long ptel, head;
148 	unsigned long *rmap;
149 	unsigned long rcbits;
150 
151 	rcbits = hpte_r & (HPTE_R_R | HPTE_R_C);
152 	ptel = rev->guest_rpte |= rcbits;
153 	rmap = revmap_for_hpte(kvm, hpte_v, ptel);
154 	if (!rmap)
155 		return;
156 	lock_rmap(rmap);
157 
158 	head = *rmap & KVMPPC_RMAP_INDEX;
159 	next = real_vmalloc_addr(&kvm->arch.hpt.rev[rev->forw]);
160 	prev = real_vmalloc_addr(&kvm->arch.hpt.rev[rev->back]);
161 	next->back = rev->back;
162 	prev->forw = rev->forw;
163 	if (head == pte_index) {
164 		head = rev->forw;
165 		if (head == pte_index)
166 			*rmap &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
167 		else
168 			*rmap = (*rmap & ~KVMPPC_RMAP_INDEX) | head;
169 	}
170 	*rmap |= rcbits << KVMPPC_RMAP_RC_SHIFT;
171 	if (rcbits & HPTE_R_C)
172 		kvmppc_update_rmap_change(rmap, hpte_page_size(hpte_v, hpte_r));
173 	unlock_rmap(rmap);
174 }
175 
176 long kvmppc_do_h_enter(struct kvm *kvm, unsigned long flags,
177 		       long pte_index, unsigned long pteh, unsigned long ptel,
178 		       pgd_t *pgdir, bool realmode, unsigned long *pte_idx_ret)
179 {
180 	unsigned long i, pa, gpa, gfn, psize;
181 	unsigned long slot_fn, hva;
182 	__be64 *hpte;
183 	struct revmap_entry *rev;
184 	unsigned long g_ptel;
185 	struct kvm_memory_slot *memslot;
186 	unsigned hpage_shift;
187 	bool is_ci;
188 	unsigned long *rmap;
189 	pte_t *ptep;
190 	unsigned int writing;
191 	unsigned long mmu_seq;
192 	unsigned long rcbits, irq_flags = 0;
193 
194 	if (kvm_is_radix(kvm))
195 		return H_FUNCTION;
196 	psize = hpte_page_size(pteh, ptel);
197 	if (!psize)
198 		return H_PARAMETER;
199 	writing = hpte_is_writable(ptel);
200 	pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
201 	ptel &= ~HPTE_GR_RESERVED;
202 	g_ptel = ptel;
203 
204 	/* used later to detect if we might have been invalidated */
205 	mmu_seq = kvm->mmu_notifier_seq;
206 	smp_rmb();
207 
208 	/* Find the memslot (if any) for this address */
209 	gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
210 	gfn = gpa >> PAGE_SHIFT;
211 	memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
212 	pa = 0;
213 	is_ci = false;
214 	rmap = NULL;
215 	if (!(memslot && !(memslot->flags & KVM_MEMSLOT_INVALID))) {
216 		/* Emulated MMIO - mark this with key=31 */
217 		pteh |= HPTE_V_ABSENT;
218 		ptel |= HPTE_R_KEY_HI | HPTE_R_KEY_LO;
219 		goto do_insert;
220 	}
221 
222 	/* Check if the requested page fits entirely in the memslot. */
223 	if (!slot_is_aligned(memslot, psize))
224 		return H_PARAMETER;
225 	slot_fn = gfn - memslot->base_gfn;
226 	rmap = &memslot->arch.rmap[slot_fn];
227 
228 	/* Translate to host virtual address */
229 	hva = __gfn_to_hva_memslot(memslot, gfn);
230 	/*
231 	 * If we had a page table table change after lookup, we would
232 	 * retry via mmu_notifier_retry.
233 	 */
234 	if (!realmode)
235 		local_irq_save(irq_flags);
236 	/*
237 	 * If called in real mode we have MSR_EE = 0. Otherwise
238 	 * we disable irq above.
239 	 */
240 	ptep = __find_linux_pte(pgdir, hva, NULL, &hpage_shift);
241 	if (ptep) {
242 		pte_t pte;
243 		unsigned int host_pte_size;
244 
245 		if (hpage_shift)
246 			host_pte_size = 1ul << hpage_shift;
247 		else
248 			host_pte_size = PAGE_SIZE;
249 		/*
250 		 * We should always find the guest page size
251 		 * to <= host page size, if host is using hugepage
252 		 */
253 		if (host_pte_size < psize) {
254 			if (!realmode)
255 				local_irq_restore(flags);
256 			return H_PARAMETER;
257 		}
258 		pte = kvmppc_read_update_linux_pte(ptep, writing);
259 		if (pte_present(pte) && !pte_protnone(pte)) {
260 			if (writing && !__pte_write(pte))
261 				/* make the actual HPTE be read-only */
262 				ptel = hpte_make_readonly(ptel);
263 			is_ci = pte_ci(pte);
264 			pa = pte_pfn(pte) << PAGE_SHIFT;
265 			pa |= hva & (host_pte_size - 1);
266 			pa |= gpa & ~PAGE_MASK;
267 		}
268 	}
269 	if (!realmode)
270 		local_irq_restore(irq_flags);
271 
272 	ptel &= HPTE_R_KEY | HPTE_R_PP0 | (psize-1);
273 	ptel |= pa;
274 
275 	if (pa)
276 		pteh |= HPTE_V_VALID;
277 	else {
278 		pteh |= HPTE_V_ABSENT;
279 		ptel &= ~(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
280 	}
281 
282 	/*If we had host pte mapping then  Check WIMG */
283 	if (ptep && !hpte_cache_flags_ok(ptel, is_ci)) {
284 		if (is_ci)
285 			return H_PARAMETER;
286 		/*
287 		 * Allow guest to map emulated device memory as
288 		 * uncacheable, but actually make it cacheable.
289 		 */
290 		ptel &= ~(HPTE_R_W|HPTE_R_I|HPTE_R_G);
291 		ptel |= HPTE_R_M;
292 	}
293 
294 	/* Find and lock the HPTEG slot to use */
295  do_insert:
296 	if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
297 		return H_PARAMETER;
298 	if (likely((flags & H_EXACT) == 0)) {
299 		pte_index &= ~7UL;
300 		hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
301 		for (i = 0; i < 8; ++i) {
302 			if ((be64_to_cpu(*hpte) & HPTE_V_VALID) == 0 &&
303 			    try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
304 					  HPTE_V_ABSENT))
305 				break;
306 			hpte += 2;
307 		}
308 		if (i == 8) {
309 			/*
310 			 * Since try_lock_hpte doesn't retry (not even stdcx.
311 			 * failures), it could be that there is a free slot
312 			 * but we transiently failed to lock it.  Try again,
313 			 * actually locking each slot and checking it.
314 			 */
315 			hpte -= 16;
316 			for (i = 0; i < 8; ++i) {
317 				u64 pte;
318 				while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
319 					cpu_relax();
320 				pte = be64_to_cpu(hpte[0]);
321 				if (!(pte & (HPTE_V_VALID | HPTE_V_ABSENT)))
322 					break;
323 				__unlock_hpte(hpte, pte);
324 				hpte += 2;
325 			}
326 			if (i == 8)
327 				return H_PTEG_FULL;
328 		}
329 		pte_index += i;
330 	} else {
331 		hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
332 		if (!try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
333 				   HPTE_V_ABSENT)) {
334 			/* Lock the slot and check again */
335 			u64 pte;
336 
337 			while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
338 				cpu_relax();
339 			pte = be64_to_cpu(hpte[0]);
340 			if (pte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
341 				__unlock_hpte(hpte, pte);
342 				return H_PTEG_FULL;
343 			}
344 		}
345 	}
346 
347 	/* Save away the guest's idea of the second HPTE dword */
348 	rev = &kvm->arch.hpt.rev[pte_index];
349 	if (realmode)
350 		rev = real_vmalloc_addr(rev);
351 	if (rev) {
352 		rev->guest_rpte = g_ptel;
353 		note_hpte_modification(kvm, rev);
354 	}
355 
356 	/* Link HPTE into reverse-map chain */
357 	if (pteh & HPTE_V_VALID) {
358 		if (realmode)
359 			rmap = real_vmalloc_addr(rmap);
360 		lock_rmap(rmap);
361 		/* Check for pending invalidations under the rmap chain lock */
362 		if (mmu_notifier_retry(kvm, mmu_seq)) {
363 			/* inval in progress, write a non-present HPTE */
364 			pteh |= HPTE_V_ABSENT;
365 			pteh &= ~HPTE_V_VALID;
366 			ptel &= ~(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
367 			unlock_rmap(rmap);
368 		} else {
369 			kvmppc_add_revmap_chain(kvm, rev, rmap, pte_index,
370 						realmode);
371 			/* Only set R/C in real HPTE if already set in *rmap */
372 			rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
373 			ptel &= rcbits | ~(HPTE_R_R | HPTE_R_C);
374 		}
375 	}
376 
377 	/* Convert to new format on P9 */
378 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
379 		ptel = hpte_old_to_new_r(pteh, ptel);
380 		pteh = hpte_old_to_new_v(pteh);
381 	}
382 	hpte[1] = cpu_to_be64(ptel);
383 
384 	/* Write the first HPTE dword, unlocking the HPTE and making it valid */
385 	eieio();
386 	__unlock_hpte(hpte, pteh);
387 	asm volatile("ptesync" : : : "memory");
388 
389 	*pte_idx_ret = pte_index;
390 	return H_SUCCESS;
391 }
392 EXPORT_SYMBOL_GPL(kvmppc_do_h_enter);
393 
394 long kvmppc_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
395 		    long pte_index, unsigned long pteh, unsigned long ptel)
396 {
397 	return kvmppc_do_h_enter(vcpu->kvm, flags, pte_index, pteh, ptel,
398 				 vcpu->arch.pgdir, true, &vcpu->arch.gpr[4]);
399 }
400 
401 #ifdef __BIG_ENDIAN__
402 #define LOCK_TOKEN	(*(u32 *)(&get_paca()->lock_token))
403 #else
404 #define LOCK_TOKEN	(*(u32 *)(&get_paca()->paca_index))
405 #endif
406 
407 static inline int is_mmio_hpte(unsigned long v, unsigned long r)
408 {
409 	return ((v & HPTE_V_ABSENT) &&
410 		(r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) ==
411 		(HPTE_R_KEY_HI | HPTE_R_KEY_LO));
412 }
413 
414 static inline int try_lock_tlbie(unsigned int *lock)
415 {
416 	unsigned int tmp, old;
417 	unsigned int token = LOCK_TOKEN;
418 
419 	asm volatile("1:lwarx	%1,0,%2\n"
420 		     "	cmpwi	cr0,%1,0\n"
421 		     "	bne	2f\n"
422 		     "  stwcx.	%3,0,%2\n"
423 		     "	bne-	1b\n"
424 		     "  isync\n"
425 		     "2:"
426 		     : "=&r" (tmp), "=&r" (old)
427 		     : "r" (lock), "r" (token)
428 		     : "cc", "memory");
429 	return old == 0;
430 }
431 
432 static void do_tlbies(struct kvm *kvm, unsigned long *rbvalues,
433 		      long npages, int global, bool need_sync)
434 {
435 	long i;
436 
437 	/*
438 	 * We use the POWER9 5-operand versions of tlbie and tlbiel here.
439 	 * Since we are using RIC=0 PRS=0 R=0, and P7/P8 tlbiel ignores
440 	 * the RS field, this is backwards-compatible with P7 and P8.
441 	 */
442 	if (global) {
443 		while (!try_lock_tlbie(&kvm->arch.tlbie_lock))
444 			cpu_relax();
445 		if (need_sync)
446 			asm volatile("ptesync" : : : "memory");
447 		for (i = 0; i < npages; ++i) {
448 			asm volatile(PPC_TLBIE_5(%0,%1,0,0,0) : :
449 				     "r" (rbvalues[i]), "r" (kvm->arch.lpid));
450 			trace_tlbie(kvm->arch.lpid, 0, rbvalues[i],
451 				kvm->arch.lpid, 0, 0, 0);
452 		}
453 		asm volatile("eieio; tlbsync; ptesync" : : : "memory");
454 		kvm->arch.tlbie_lock = 0;
455 	} else {
456 		if (need_sync)
457 			asm volatile("ptesync" : : : "memory");
458 		for (i = 0; i < npages; ++i) {
459 			asm volatile(PPC_TLBIEL(%0,%1,0,0,0) : :
460 				     "r" (rbvalues[i]), "r" (0));
461 			trace_tlbie(kvm->arch.lpid, 1, rbvalues[i],
462 				0, 0, 0, 0);
463 		}
464 		asm volatile("ptesync" : : : "memory");
465 	}
466 }
467 
468 long kvmppc_do_h_remove(struct kvm *kvm, unsigned long flags,
469 			unsigned long pte_index, unsigned long avpn,
470 			unsigned long *hpret)
471 {
472 	__be64 *hpte;
473 	unsigned long v, r, rb;
474 	struct revmap_entry *rev;
475 	u64 pte, orig_pte, pte_r;
476 
477 	if (kvm_is_radix(kvm))
478 		return H_FUNCTION;
479 	if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
480 		return H_PARAMETER;
481 	hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
482 	while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
483 		cpu_relax();
484 	pte = orig_pte = be64_to_cpu(hpte[0]);
485 	pte_r = be64_to_cpu(hpte[1]);
486 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
487 		pte = hpte_new_to_old_v(pte, pte_r);
488 		pte_r = hpte_new_to_old_r(pte_r);
489 	}
490 	if ((pte & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
491 	    ((flags & H_AVPN) && (pte & ~0x7fUL) != avpn) ||
492 	    ((flags & H_ANDCOND) && (pte & avpn) != 0)) {
493 		__unlock_hpte(hpte, orig_pte);
494 		return H_NOT_FOUND;
495 	}
496 
497 	rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
498 	v = pte & ~HPTE_V_HVLOCK;
499 	if (v & HPTE_V_VALID) {
500 		hpte[0] &= ~cpu_to_be64(HPTE_V_VALID);
501 		rb = compute_tlbie_rb(v, pte_r, pte_index);
502 		do_tlbies(kvm, &rb, 1, global_invalidates(kvm, flags), true);
503 		/*
504 		 * The reference (R) and change (C) bits in a HPT
505 		 * entry can be set by hardware at any time up until
506 		 * the HPTE is invalidated and the TLB invalidation
507 		 * sequence has completed.  This means that when
508 		 * removing a HPTE, we need to re-read the HPTE after
509 		 * the invalidation sequence has completed in order to
510 		 * obtain reliable values of R and C.
511 		 */
512 		remove_revmap_chain(kvm, pte_index, rev, v,
513 				    be64_to_cpu(hpte[1]));
514 	}
515 	r = rev->guest_rpte & ~HPTE_GR_RESERVED;
516 	note_hpte_modification(kvm, rev);
517 	unlock_hpte(hpte, 0);
518 
519 	if (is_mmio_hpte(v, pte_r))
520 		atomic64_inc(&kvm->arch.mmio_update);
521 
522 	if (v & HPTE_V_ABSENT)
523 		v = (v & ~HPTE_V_ABSENT) | HPTE_V_VALID;
524 	hpret[0] = v;
525 	hpret[1] = r;
526 	return H_SUCCESS;
527 }
528 EXPORT_SYMBOL_GPL(kvmppc_do_h_remove);
529 
530 long kvmppc_h_remove(struct kvm_vcpu *vcpu, unsigned long flags,
531 		     unsigned long pte_index, unsigned long avpn)
532 {
533 	return kvmppc_do_h_remove(vcpu->kvm, flags, pte_index, avpn,
534 				  &vcpu->arch.gpr[4]);
535 }
536 
537 long kvmppc_h_bulk_remove(struct kvm_vcpu *vcpu)
538 {
539 	struct kvm *kvm = vcpu->kvm;
540 	unsigned long *args = &vcpu->arch.gpr[4];
541 	__be64 *hp, *hptes[4];
542 	unsigned long tlbrb[4];
543 	long int i, j, k, n, found, indexes[4];
544 	unsigned long flags, req, pte_index, rcbits;
545 	int global;
546 	long int ret = H_SUCCESS;
547 	struct revmap_entry *rev, *revs[4];
548 	u64 hp0, hp1;
549 
550 	if (kvm_is_radix(kvm))
551 		return H_FUNCTION;
552 	global = global_invalidates(kvm, 0);
553 	for (i = 0; i < 4 && ret == H_SUCCESS; ) {
554 		n = 0;
555 		for (; i < 4; ++i) {
556 			j = i * 2;
557 			pte_index = args[j];
558 			flags = pte_index >> 56;
559 			pte_index &= ((1ul << 56) - 1);
560 			req = flags >> 6;
561 			flags &= 3;
562 			if (req == 3) {		/* no more requests */
563 				i = 4;
564 				break;
565 			}
566 			if (req != 1 || flags == 3 ||
567 			    pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt)) {
568 				/* parameter error */
569 				args[j] = ((0xa0 | flags) << 56) + pte_index;
570 				ret = H_PARAMETER;
571 				break;
572 			}
573 			hp = (__be64 *) (kvm->arch.hpt.virt + (pte_index << 4));
574 			/* to avoid deadlock, don't spin except for first */
575 			if (!try_lock_hpte(hp, HPTE_V_HVLOCK)) {
576 				if (n)
577 					break;
578 				while (!try_lock_hpte(hp, HPTE_V_HVLOCK))
579 					cpu_relax();
580 			}
581 			found = 0;
582 			hp0 = be64_to_cpu(hp[0]);
583 			hp1 = be64_to_cpu(hp[1]);
584 			if (cpu_has_feature(CPU_FTR_ARCH_300)) {
585 				hp0 = hpte_new_to_old_v(hp0, hp1);
586 				hp1 = hpte_new_to_old_r(hp1);
587 			}
588 			if (hp0 & (HPTE_V_ABSENT | HPTE_V_VALID)) {
589 				switch (flags & 3) {
590 				case 0:		/* absolute */
591 					found = 1;
592 					break;
593 				case 1:		/* andcond */
594 					if (!(hp0 & args[j + 1]))
595 						found = 1;
596 					break;
597 				case 2:		/* AVPN */
598 					if ((hp0 & ~0x7fUL) == args[j + 1])
599 						found = 1;
600 					break;
601 				}
602 			}
603 			if (!found) {
604 				hp[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
605 				args[j] = ((0x90 | flags) << 56) + pte_index;
606 				continue;
607 			}
608 
609 			args[j] = ((0x80 | flags) << 56) + pte_index;
610 			rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
611 			note_hpte_modification(kvm, rev);
612 
613 			if (!(hp0 & HPTE_V_VALID)) {
614 				/* insert R and C bits from PTE */
615 				rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
616 				args[j] |= rcbits << (56 - 5);
617 				hp[0] = 0;
618 				if (is_mmio_hpte(hp0, hp1))
619 					atomic64_inc(&kvm->arch.mmio_update);
620 				continue;
621 			}
622 
623 			/* leave it locked */
624 			hp[0] &= ~cpu_to_be64(HPTE_V_VALID);
625 			tlbrb[n] = compute_tlbie_rb(hp0, hp1, pte_index);
626 			indexes[n] = j;
627 			hptes[n] = hp;
628 			revs[n] = rev;
629 			++n;
630 		}
631 
632 		if (!n)
633 			break;
634 
635 		/* Now that we've collected a batch, do the tlbies */
636 		do_tlbies(kvm, tlbrb, n, global, true);
637 
638 		/* Read PTE low words after tlbie to get final R/C values */
639 		for (k = 0; k < n; ++k) {
640 			j = indexes[k];
641 			pte_index = args[j] & ((1ul << 56) - 1);
642 			hp = hptes[k];
643 			rev = revs[k];
644 			remove_revmap_chain(kvm, pte_index, rev,
645 				be64_to_cpu(hp[0]), be64_to_cpu(hp[1]));
646 			rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
647 			args[j] |= rcbits << (56 - 5);
648 			__unlock_hpte(hp, 0);
649 		}
650 	}
651 
652 	return ret;
653 }
654 
655 long kvmppc_h_protect(struct kvm_vcpu *vcpu, unsigned long flags,
656 		      unsigned long pte_index, unsigned long avpn,
657 		      unsigned long va)
658 {
659 	struct kvm *kvm = vcpu->kvm;
660 	__be64 *hpte;
661 	struct revmap_entry *rev;
662 	unsigned long v, r, rb, mask, bits;
663 	u64 pte_v, pte_r;
664 
665 	if (kvm_is_radix(kvm))
666 		return H_FUNCTION;
667 	if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
668 		return H_PARAMETER;
669 
670 	hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
671 	while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
672 		cpu_relax();
673 	v = pte_v = be64_to_cpu(hpte[0]);
674 	if (cpu_has_feature(CPU_FTR_ARCH_300))
675 		v = hpte_new_to_old_v(v, be64_to_cpu(hpte[1]));
676 	if ((v & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
677 	    ((flags & H_AVPN) && (v & ~0x7fUL) != avpn)) {
678 		__unlock_hpte(hpte, pte_v);
679 		return H_NOT_FOUND;
680 	}
681 
682 	pte_r = be64_to_cpu(hpte[1]);
683 	bits = (flags << 55) & HPTE_R_PP0;
684 	bits |= (flags << 48) & HPTE_R_KEY_HI;
685 	bits |= flags & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO);
686 
687 	/* Update guest view of 2nd HPTE dword */
688 	mask = HPTE_R_PP0 | HPTE_R_PP | HPTE_R_N |
689 		HPTE_R_KEY_HI | HPTE_R_KEY_LO;
690 	rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
691 	if (rev) {
692 		r = (rev->guest_rpte & ~mask) | bits;
693 		rev->guest_rpte = r;
694 		note_hpte_modification(kvm, rev);
695 	}
696 
697 	/* Update HPTE */
698 	if (v & HPTE_V_VALID) {
699 		/*
700 		 * If the page is valid, don't let it transition from
701 		 * readonly to writable.  If it should be writable, we'll
702 		 * take a trap and let the page fault code sort it out.
703 		 */
704 		r = (pte_r & ~mask) | bits;
705 		if (hpte_is_writable(r) && !hpte_is_writable(pte_r))
706 			r = hpte_make_readonly(r);
707 		/* If the PTE is changing, invalidate it first */
708 		if (r != pte_r) {
709 			rb = compute_tlbie_rb(v, r, pte_index);
710 			hpte[0] = cpu_to_be64((pte_v & ~HPTE_V_VALID) |
711 					      HPTE_V_ABSENT);
712 			do_tlbies(kvm, &rb, 1, global_invalidates(kvm, flags),
713 				  true);
714 			/* Don't lose R/C bit updates done by hardware */
715 			r |= be64_to_cpu(hpte[1]) & (HPTE_R_R | HPTE_R_C);
716 			hpte[1] = cpu_to_be64(r);
717 		}
718 	}
719 	unlock_hpte(hpte, pte_v & ~HPTE_V_HVLOCK);
720 	asm volatile("ptesync" : : : "memory");
721 	if (is_mmio_hpte(v, pte_r))
722 		atomic64_inc(&kvm->arch.mmio_update);
723 
724 	return H_SUCCESS;
725 }
726 
727 long kvmppc_h_read(struct kvm_vcpu *vcpu, unsigned long flags,
728 		   unsigned long pte_index)
729 {
730 	struct kvm *kvm = vcpu->kvm;
731 	__be64 *hpte;
732 	unsigned long v, r;
733 	int i, n = 1;
734 	struct revmap_entry *rev = NULL;
735 
736 	if (kvm_is_radix(kvm))
737 		return H_FUNCTION;
738 	if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
739 		return H_PARAMETER;
740 	if (flags & H_READ_4) {
741 		pte_index &= ~3;
742 		n = 4;
743 	}
744 	rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
745 	for (i = 0; i < n; ++i, ++pte_index) {
746 		hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
747 		v = be64_to_cpu(hpte[0]) & ~HPTE_V_HVLOCK;
748 		r = be64_to_cpu(hpte[1]);
749 		if (cpu_has_feature(CPU_FTR_ARCH_300)) {
750 			v = hpte_new_to_old_v(v, r);
751 			r = hpte_new_to_old_r(r);
752 		}
753 		if (v & HPTE_V_ABSENT) {
754 			v &= ~HPTE_V_ABSENT;
755 			v |= HPTE_V_VALID;
756 		}
757 		if (v & HPTE_V_VALID) {
758 			r = rev[i].guest_rpte | (r & (HPTE_R_R | HPTE_R_C));
759 			r &= ~HPTE_GR_RESERVED;
760 		}
761 		vcpu->arch.gpr[4 + i * 2] = v;
762 		vcpu->arch.gpr[5 + i * 2] = r;
763 	}
764 	return H_SUCCESS;
765 }
766 
767 long kvmppc_h_clear_ref(struct kvm_vcpu *vcpu, unsigned long flags,
768 			unsigned long pte_index)
769 {
770 	struct kvm *kvm = vcpu->kvm;
771 	__be64 *hpte;
772 	unsigned long v, r, gr;
773 	struct revmap_entry *rev;
774 	unsigned long *rmap;
775 	long ret = H_NOT_FOUND;
776 
777 	if (kvm_is_radix(kvm))
778 		return H_FUNCTION;
779 	if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
780 		return H_PARAMETER;
781 
782 	rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
783 	hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
784 	while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
785 		cpu_relax();
786 	v = be64_to_cpu(hpte[0]);
787 	r = be64_to_cpu(hpte[1]);
788 	if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
789 		goto out;
790 
791 	gr = rev->guest_rpte;
792 	if (rev->guest_rpte & HPTE_R_R) {
793 		rev->guest_rpte &= ~HPTE_R_R;
794 		note_hpte_modification(kvm, rev);
795 	}
796 	if (v & HPTE_V_VALID) {
797 		gr |= r & (HPTE_R_R | HPTE_R_C);
798 		if (r & HPTE_R_R) {
799 			kvmppc_clear_ref_hpte(kvm, hpte, pte_index);
800 			rmap = revmap_for_hpte(kvm, v, gr);
801 			if (rmap) {
802 				lock_rmap(rmap);
803 				*rmap |= KVMPPC_RMAP_REFERENCED;
804 				unlock_rmap(rmap);
805 			}
806 		}
807 	}
808 	vcpu->arch.gpr[4] = gr;
809 	ret = H_SUCCESS;
810  out:
811 	unlock_hpte(hpte, v & ~HPTE_V_HVLOCK);
812 	return ret;
813 }
814 
815 long kvmppc_h_clear_mod(struct kvm_vcpu *vcpu, unsigned long flags,
816 			unsigned long pte_index)
817 {
818 	struct kvm *kvm = vcpu->kvm;
819 	__be64 *hpte;
820 	unsigned long v, r, gr;
821 	struct revmap_entry *rev;
822 	unsigned long *rmap;
823 	long ret = H_NOT_FOUND;
824 
825 	if (kvm_is_radix(kvm))
826 		return H_FUNCTION;
827 	if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
828 		return H_PARAMETER;
829 
830 	rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
831 	hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
832 	while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
833 		cpu_relax();
834 	v = be64_to_cpu(hpte[0]);
835 	r = be64_to_cpu(hpte[1]);
836 	if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
837 		goto out;
838 
839 	gr = rev->guest_rpte;
840 	if (gr & HPTE_R_C) {
841 		rev->guest_rpte &= ~HPTE_R_C;
842 		note_hpte_modification(kvm, rev);
843 	}
844 	if (v & HPTE_V_VALID) {
845 		/* need to make it temporarily absent so C is stable */
846 		hpte[0] |= cpu_to_be64(HPTE_V_ABSENT);
847 		kvmppc_invalidate_hpte(kvm, hpte, pte_index);
848 		r = be64_to_cpu(hpte[1]);
849 		gr |= r & (HPTE_R_R | HPTE_R_C);
850 		if (r & HPTE_R_C) {
851 			unsigned long psize = hpte_page_size(v, r);
852 			hpte[1] = cpu_to_be64(r & ~HPTE_R_C);
853 			eieio();
854 			rmap = revmap_for_hpte(kvm, v, gr);
855 			if (rmap) {
856 				lock_rmap(rmap);
857 				*rmap |= KVMPPC_RMAP_CHANGED;
858 				kvmppc_update_rmap_change(rmap, psize);
859 				unlock_rmap(rmap);
860 			}
861 		}
862 	}
863 	vcpu->arch.gpr[4] = gr;
864 	ret = H_SUCCESS;
865  out:
866 	unlock_hpte(hpte, v & ~HPTE_V_HVLOCK);
867 	return ret;
868 }
869 
870 void kvmppc_invalidate_hpte(struct kvm *kvm, __be64 *hptep,
871 			unsigned long pte_index)
872 {
873 	unsigned long rb;
874 	u64 hp0, hp1;
875 
876 	hptep[0] &= ~cpu_to_be64(HPTE_V_VALID);
877 	hp0 = be64_to_cpu(hptep[0]);
878 	hp1 = be64_to_cpu(hptep[1]);
879 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
880 		hp0 = hpte_new_to_old_v(hp0, hp1);
881 		hp1 = hpte_new_to_old_r(hp1);
882 	}
883 	rb = compute_tlbie_rb(hp0, hp1, pte_index);
884 	do_tlbies(kvm, &rb, 1, 1, true);
885 }
886 EXPORT_SYMBOL_GPL(kvmppc_invalidate_hpte);
887 
888 void kvmppc_clear_ref_hpte(struct kvm *kvm, __be64 *hptep,
889 			   unsigned long pte_index)
890 {
891 	unsigned long rb;
892 	unsigned char rbyte;
893 	u64 hp0, hp1;
894 
895 	hp0 = be64_to_cpu(hptep[0]);
896 	hp1 = be64_to_cpu(hptep[1]);
897 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
898 		hp0 = hpte_new_to_old_v(hp0, hp1);
899 		hp1 = hpte_new_to_old_r(hp1);
900 	}
901 	rb = compute_tlbie_rb(hp0, hp1, pte_index);
902 	rbyte = (be64_to_cpu(hptep[1]) & ~HPTE_R_R) >> 8;
903 	/* modify only the second-last byte, which contains the ref bit */
904 	*((char *)hptep + 14) = rbyte;
905 	do_tlbies(kvm, &rb, 1, 1, false);
906 }
907 EXPORT_SYMBOL_GPL(kvmppc_clear_ref_hpte);
908 
909 static int slb_base_page_shift[4] = {
910 	24,	/* 16M */
911 	16,	/* 64k */
912 	34,	/* 16G */
913 	20,	/* 1M, unsupported */
914 };
915 
916 static struct mmio_hpte_cache_entry *mmio_cache_search(struct kvm_vcpu *vcpu,
917 		unsigned long eaddr, unsigned long slb_v, long mmio_update)
918 {
919 	struct mmio_hpte_cache_entry *entry = NULL;
920 	unsigned int pshift;
921 	unsigned int i;
922 
923 	for (i = 0; i < MMIO_HPTE_CACHE_SIZE; i++) {
924 		entry = &vcpu->arch.mmio_cache.entry[i];
925 		if (entry->mmio_update == mmio_update) {
926 			pshift = entry->slb_base_pshift;
927 			if ((entry->eaddr >> pshift) == (eaddr >> pshift) &&
928 			    entry->slb_v == slb_v)
929 				return entry;
930 		}
931 	}
932 	return NULL;
933 }
934 
935 static struct mmio_hpte_cache_entry *
936 			next_mmio_cache_entry(struct kvm_vcpu *vcpu)
937 {
938 	unsigned int index = vcpu->arch.mmio_cache.index;
939 
940 	vcpu->arch.mmio_cache.index++;
941 	if (vcpu->arch.mmio_cache.index == MMIO_HPTE_CACHE_SIZE)
942 		vcpu->arch.mmio_cache.index = 0;
943 
944 	return &vcpu->arch.mmio_cache.entry[index];
945 }
946 
947 /* When called from virtmode, this func should be protected by
948  * preempt_disable(), otherwise, the holding of HPTE_V_HVLOCK
949  * can trigger deadlock issue.
950  */
951 long kvmppc_hv_find_lock_hpte(struct kvm *kvm, gva_t eaddr, unsigned long slb_v,
952 			      unsigned long valid)
953 {
954 	unsigned int i;
955 	unsigned int pshift;
956 	unsigned long somask;
957 	unsigned long vsid, hash;
958 	unsigned long avpn;
959 	__be64 *hpte;
960 	unsigned long mask, val;
961 	unsigned long v, r, orig_v;
962 
963 	/* Get page shift, work out hash and AVPN etc. */
964 	mask = SLB_VSID_B | HPTE_V_AVPN | HPTE_V_SECONDARY;
965 	val = 0;
966 	pshift = 12;
967 	if (slb_v & SLB_VSID_L) {
968 		mask |= HPTE_V_LARGE;
969 		val |= HPTE_V_LARGE;
970 		pshift = slb_base_page_shift[(slb_v & SLB_VSID_LP) >> 4];
971 	}
972 	if (slb_v & SLB_VSID_B_1T) {
973 		somask = (1UL << 40) - 1;
974 		vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T;
975 		vsid ^= vsid << 25;
976 	} else {
977 		somask = (1UL << 28) - 1;
978 		vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT;
979 	}
980 	hash = (vsid ^ ((eaddr & somask) >> pshift)) & kvmppc_hpt_mask(&kvm->arch.hpt);
981 	avpn = slb_v & ~(somask >> 16);	/* also includes B */
982 	avpn |= (eaddr & somask) >> 16;
983 
984 	if (pshift >= 24)
985 		avpn &= ~((1UL << (pshift - 16)) - 1);
986 	else
987 		avpn &= ~0x7fUL;
988 	val |= avpn;
989 
990 	for (;;) {
991 		hpte = (__be64 *)(kvm->arch.hpt.virt + (hash << 7));
992 
993 		for (i = 0; i < 16; i += 2) {
994 			/* Read the PTE racily */
995 			v = be64_to_cpu(hpte[i]) & ~HPTE_V_HVLOCK;
996 			if (cpu_has_feature(CPU_FTR_ARCH_300))
997 				v = hpte_new_to_old_v(v, be64_to_cpu(hpte[i+1]));
998 
999 			/* Check valid/absent, hash, segment size and AVPN */
1000 			if (!(v & valid) || (v & mask) != val)
1001 				continue;
1002 
1003 			/* Lock the PTE and read it under the lock */
1004 			while (!try_lock_hpte(&hpte[i], HPTE_V_HVLOCK))
1005 				cpu_relax();
1006 			v = orig_v = be64_to_cpu(hpte[i]) & ~HPTE_V_HVLOCK;
1007 			r = be64_to_cpu(hpte[i+1]);
1008 			if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1009 				v = hpte_new_to_old_v(v, r);
1010 				r = hpte_new_to_old_r(r);
1011 			}
1012 
1013 			/*
1014 			 * Check the HPTE again, including base page size
1015 			 */
1016 			if ((v & valid) && (v & mask) == val &&
1017 			    hpte_base_page_size(v, r) == (1ul << pshift))
1018 				/* Return with the HPTE still locked */
1019 				return (hash << 3) + (i >> 1);
1020 
1021 			__unlock_hpte(&hpte[i], orig_v);
1022 		}
1023 
1024 		if (val & HPTE_V_SECONDARY)
1025 			break;
1026 		val |= HPTE_V_SECONDARY;
1027 		hash = hash ^ kvmppc_hpt_mask(&kvm->arch.hpt);
1028 	}
1029 	return -1;
1030 }
1031 EXPORT_SYMBOL(kvmppc_hv_find_lock_hpte);
1032 
1033 /*
1034  * Called in real mode to check whether an HPTE not found fault
1035  * is due to accessing a paged-out page or an emulated MMIO page,
1036  * or if a protection fault is due to accessing a page that the
1037  * guest wanted read/write access to but which we made read-only.
1038  * Returns a possibly modified status (DSISR) value if not
1039  * (i.e. pass the interrupt to the guest),
1040  * -1 to pass the fault up to host kernel mode code, -2 to do that
1041  * and also load the instruction word (for MMIO emulation),
1042  * or 0 if we should make the guest retry the access.
1043  */
1044 long kvmppc_hpte_hv_fault(struct kvm_vcpu *vcpu, unsigned long addr,
1045 			  unsigned long slb_v, unsigned int status, bool data)
1046 {
1047 	struct kvm *kvm = vcpu->kvm;
1048 	long int index;
1049 	unsigned long v, r, gr, orig_v;
1050 	__be64 *hpte;
1051 	unsigned long valid;
1052 	struct revmap_entry *rev;
1053 	unsigned long pp, key;
1054 	struct mmio_hpte_cache_entry *cache_entry = NULL;
1055 	long mmio_update = 0;
1056 
1057 	/* For protection fault, expect to find a valid HPTE */
1058 	valid = HPTE_V_VALID;
1059 	if (status & DSISR_NOHPTE) {
1060 		valid |= HPTE_V_ABSENT;
1061 		mmio_update = atomic64_read(&kvm->arch.mmio_update);
1062 		cache_entry = mmio_cache_search(vcpu, addr, slb_v, mmio_update);
1063 	}
1064 	if (cache_entry) {
1065 		index = cache_entry->pte_index;
1066 		v = cache_entry->hpte_v;
1067 		r = cache_entry->hpte_r;
1068 		gr = cache_entry->rpte;
1069 	} else {
1070 		index = kvmppc_hv_find_lock_hpte(kvm, addr, slb_v, valid);
1071 		if (index < 0) {
1072 			if (status & DSISR_NOHPTE)
1073 				return status;	/* there really was no HPTE */
1074 			return 0;	/* for prot fault, HPTE disappeared */
1075 		}
1076 		hpte = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
1077 		v = orig_v = be64_to_cpu(hpte[0]) & ~HPTE_V_HVLOCK;
1078 		r = be64_to_cpu(hpte[1]);
1079 		if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1080 			v = hpte_new_to_old_v(v, r);
1081 			r = hpte_new_to_old_r(r);
1082 		}
1083 		rev = real_vmalloc_addr(&kvm->arch.hpt.rev[index]);
1084 		gr = rev->guest_rpte;
1085 
1086 		unlock_hpte(hpte, orig_v);
1087 	}
1088 
1089 	/* For not found, if the HPTE is valid by now, retry the instruction */
1090 	if ((status & DSISR_NOHPTE) && (v & HPTE_V_VALID))
1091 		return 0;
1092 
1093 	/* Check access permissions to the page */
1094 	pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
1095 	key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
1096 	status &= ~DSISR_NOHPTE;	/* DSISR_NOHPTE == SRR1_ISI_NOPT */
1097 	if (!data) {
1098 		if (gr & (HPTE_R_N | HPTE_R_G))
1099 			return status | SRR1_ISI_N_OR_G;
1100 		if (!hpte_read_permission(pp, slb_v & key))
1101 			return status | SRR1_ISI_PROT;
1102 	} else if (status & DSISR_ISSTORE) {
1103 		/* check write permission */
1104 		if (!hpte_write_permission(pp, slb_v & key))
1105 			return status | DSISR_PROTFAULT;
1106 	} else {
1107 		if (!hpte_read_permission(pp, slb_v & key))
1108 			return status | DSISR_PROTFAULT;
1109 	}
1110 
1111 	/* Check storage key, if applicable */
1112 	if (data && (vcpu->arch.shregs.msr & MSR_DR)) {
1113 		unsigned int perm = hpte_get_skey_perm(gr, vcpu->arch.amr);
1114 		if (status & DSISR_ISSTORE)
1115 			perm >>= 1;
1116 		if (perm & 1)
1117 			return status | DSISR_KEYFAULT;
1118 	}
1119 
1120 	/* Save HPTE info for virtual-mode handler */
1121 	vcpu->arch.pgfault_addr = addr;
1122 	vcpu->arch.pgfault_index = index;
1123 	vcpu->arch.pgfault_hpte[0] = v;
1124 	vcpu->arch.pgfault_hpte[1] = r;
1125 	vcpu->arch.pgfault_cache = cache_entry;
1126 
1127 	/* Check the storage key to see if it is possibly emulated MMIO */
1128 	if ((r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) ==
1129 	    (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) {
1130 		if (!cache_entry) {
1131 			unsigned int pshift = 12;
1132 			unsigned int pshift_index;
1133 
1134 			if (slb_v & SLB_VSID_L) {
1135 				pshift_index = ((slb_v & SLB_VSID_LP) >> 4);
1136 				pshift = slb_base_page_shift[pshift_index];
1137 			}
1138 			cache_entry = next_mmio_cache_entry(vcpu);
1139 			cache_entry->eaddr = addr;
1140 			cache_entry->slb_base_pshift = pshift;
1141 			cache_entry->pte_index = index;
1142 			cache_entry->hpte_v = v;
1143 			cache_entry->hpte_r = r;
1144 			cache_entry->rpte = gr;
1145 			cache_entry->slb_v = slb_v;
1146 			cache_entry->mmio_update = mmio_update;
1147 		}
1148 		if (data && (vcpu->arch.shregs.msr & MSR_IR))
1149 			return -2;	/* MMIO emulation - load instr word */
1150 	}
1151 
1152 	return -1;		/* send fault up to host kernel mode */
1153 }
1154