1 /* 2 * This program is free software; you can redistribute it and/or modify 3 * it under the terms of the GNU General Public License, version 2, as 4 * published by the Free Software Foundation. 5 * 6 * Copyright 2010-2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 7 */ 8 9 #include <linux/types.h> 10 #include <linux/string.h> 11 #include <linux/kvm.h> 12 #include <linux/kvm_host.h> 13 #include <linux/hugetlb.h> 14 #include <linux/module.h> 15 #include <linux/log2.h> 16 17 #include <asm/tlbflush.h> 18 #include <asm/trace.h> 19 #include <asm/kvm_ppc.h> 20 #include <asm/kvm_book3s.h> 21 #include <asm/book3s/64/mmu-hash.h> 22 #include <asm/hvcall.h> 23 #include <asm/synch.h> 24 #include <asm/ppc-opcode.h> 25 26 /* Translate address of a vmalloc'd thing to a linear map address */ 27 static void *real_vmalloc_addr(void *x) 28 { 29 unsigned long addr = (unsigned long) x; 30 pte_t *p; 31 /* 32 * assume we don't have huge pages in vmalloc space... 33 * So don't worry about THP collapse/split. Called 34 * Only in realmode, hence won't need irq_save/restore. 35 */ 36 p = __find_linux_pte_or_hugepte(swapper_pg_dir, addr, NULL, NULL); 37 if (!p || !pte_present(*p)) 38 return NULL; 39 addr = (pte_pfn(*p) << PAGE_SHIFT) | (addr & ~PAGE_MASK); 40 return __va(addr); 41 } 42 43 /* Return 1 if we need to do a global tlbie, 0 if we can use tlbiel */ 44 static int global_invalidates(struct kvm *kvm, unsigned long flags) 45 { 46 int global; 47 int cpu; 48 49 /* 50 * If there is only one vcore, and it's currently running, 51 * as indicated by local_paca->kvm_hstate.kvm_vcpu being set, 52 * we can use tlbiel as long as we mark all other physical 53 * cores as potentially having stale TLB entries for this lpid. 54 * Otherwise, don't use tlbiel. 55 */ 56 if (kvm->arch.online_vcores == 1 && local_paca->kvm_hstate.kvm_vcpu) 57 global = 0; 58 else 59 global = 1; 60 61 if (!global) { 62 /* any other core might now have stale TLB entries... */ 63 smp_wmb(); 64 cpumask_setall(&kvm->arch.need_tlb_flush); 65 cpu = local_paca->kvm_hstate.kvm_vcore->pcpu; 66 /* 67 * On POWER9, threads are independent but the TLB is shared, 68 * so use the bit for the first thread to represent the core. 69 */ 70 if (cpu_has_feature(CPU_FTR_ARCH_300)) 71 cpu = cpu_first_thread_sibling(cpu); 72 cpumask_clear_cpu(cpu, &kvm->arch.need_tlb_flush); 73 } 74 75 return global; 76 } 77 78 /* 79 * Add this HPTE into the chain for the real page. 80 * Must be called with the chain locked; it unlocks the chain. 81 */ 82 void kvmppc_add_revmap_chain(struct kvm *kvm, struct revmap_entry *rev, 83 unsigned long *rmap, long pte_index, int realmode) 84 { 85 struct revmap_entry *head, *tail; 86 unsigned long i; 87 88 if (*rmap & KVMPPC_RMAP_PRESENT) { 89 i = *rmap & KVMPPC_RMAP_INDEX; 90 head = &kvm->arch.hpt.rev[i]; 91 if (realmode) 92 head = real_vmalloc_addr(head); 93 tail = &kvm->arch.hpt.rev[head->back]; 94 if (realmode) 95 tail = real_vmalloc_addr(tail); 96 rev->forw = i; 97 rev->back = head->back; 98 tail->forw = pte_index; 99 head->back = pte_index; 100 } else { 101 rev->forw = rev->back = pte_index; 102 *rmap = (*rmap & ~KVMPPC_RMAP_INDEX) | 103 pte_index | KVMPPC_RMAP_PRESENT; 104 } 105 unlock_rmap(rmap); 106 } 107 EXPORT_SYMBOL_GPL(kvmppc_add_revmap_chain); 108 109 /* Update the changed page order field of an rmap entry */ 110 void kvmppc_update_rmap_change(unsigned long *rmap, unsigned long psize) 111 { 112 unsigned long order; 113 114 if (!psize) 115 return; 116 order = ilog2(psize); 117 order <<= KVMPPC_RMAP_CHG_SHIFT; 118 if (order > (*rmap & KVMPPC_RMAP_CHG_ORDER)) 119 *rmap = (*rmap & ~KVMPPC_RMAP_CHG_ORDER) | order; 120 } 121 EXPORT_SYMBOL_GPL(kvmppc_update_rmap_change); 122 123 /* Returns a pointer to the revmap entry for the page mapped by a HPTE */ 124 static unsigned long *revmap_for_hpte(struct kvm *kvm, unsigned long hpte_v, 125 unsigned long hpte_gr) 126 { 127 struct kvm_memory_slot *memslot; 128 unsigned long *rmap; 129 unsigned long gfn; 130 131 gfn = hpte_rpn(hpte_gr, hpte_page_size(hpte_v, hpte_gr)); 132 memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn); 133 if (!memslot) 134 return NULL; 135 136 rmap = real_vmalloc_addr(&memslot->arch.rmap[gfn - memslot->base_gfn]); 137 return rmap; 138 } 139 140 /* Remove this HPTE from the chain for a real page */ 141 static void remove_revmap_chain(struct kvm *kvm, long pte_index, 142 struct revmap_entry *rev, 143 unsigned long hpte_v, unsigned long hpte_r) 144 { 145 struct revmap_entry *next, *prev; 146 unsigned long ptel, head; 147 unsigned long *rmap; 148 unsigned long rcbits; 149 150 rcbits = hpte_r & (HPTE_R_R | HPTE_R_C); 151 ptel = rev->guest_rpte |= rcbits; 152 rmap = revmap_for_hpte(kvm, hpte_v, ptel); 153 if (!rmap) 154 return; 155 lock_rmap(rmap); 156 157 head = *rmap & KVMPPC_RMAP_INDEX; 158 next = real_vmalloc_addr(&kvm->arch.hpt.rev[rev->forw]); 159 prev = real_vmalloc_addr(&kvm->arch.hpt.rev[rev->back]); 160 next->back = rev->back; 161 prev->forw = rev->forw; 162 if (head == pte_index) { 163 head = rev->forw; 164 if (head == pte_index) 165 *rmap &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX); 166 else 167 *rmap = (*rmap & ~KVMPPC_RMAP_INDEX) | head; 168 } 169 *rmap |= rcbits << KVMPPC_RMAP_RC_SHIFT; 170 if (rcbits & HPTE_R_C) 171 kvmppc_update_rmap_change(rmap, hpte_page_size(hpte_v, hpte_r)); 172 unlock_rmap(rmap); 173 } 174 175 long kvmppc_do_h_enter(struct kvm *kvm, unsigned long flags, 176 long pte_index, unsigned long pteh, unsigned long ptel, 177 pgd_t *pgdir, bool realmode, unsigned long *pte_idx_ret) 178 { 179 unsigned long i, pa, gpa, gfn, psize; 180 unsigned long slot_fn, hva; 181 __be64 *hpte; 182 struct revmap_entry *rev; 183 unsigned long g_ptel; 184 struct kvm_memory_slot *memslot; 185 unsigned hpage_shift; 186 bool is_ci; 187 unsigned long *rmap; 188 pte_t *ptep; 189 unsigned int writing; 190 unsigned long mmu_seq; 191 unsigned long rcbits, irq_flags = 0; 192 193 if (kvm_is_radix(kvm)) 194 return H_FUNCTION; 195 psize = hpte_page_size(pteh, ptel); 196 if (!psize) 197 return H_PARAMETER; 198 writing = hpte_is_writable(ptel); 199 pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID); 200 ptel &= ~HPTE_GR_RESERVED; 201 g_ptel = ptel; 202 203 /* used later to detect if we might have been invalidated */ 204 mmu_seq = kvm->mmu_notifier_seq; 205 smp_rmb(); 206 207 /* Find the memslot (if any) for this address */ 208 gpa = (ptel & HPTE_R_RPN) & ~(psize - 1); 209 gfn = gpa >> PAGE_SHIFT; 210 memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn); 211 pa = 0; 212 is_ci = false; 213 rmap = NULL; 214 if (!(memslot && !(memslot->flags & KVM_MEMSLOT_INVALID))) { 215 /* Emulated MMIO - mark this with key=31 */ 216 pteh |= HPTE_V_ABSENT; 217 ptel |= HPTE_R_KEY_HI | HPTE_R_KEY_LO; 218 goto do_insert; 219 } 220 221 /* Check if the requested page fits entirely in the memslot. */ 222 if (!slot_is_aligned(memslot, psize)) 223 return H_PARAMETER; 224 slot_fn = gfn - memslot->base_gfn; 225 rmap = &memslot->arch.rmap[slot_fn]; 226 227 /* Translate to host virtual address */ 228 hva = __gfn_to_hva_memslot(memslot, gfn); 229 /* 230 * If we had a page table table change after lookup, we would 231 * retry via mmu_notifier_retry. 232 */ 233 if (realmode) 234 ptep = __find_linux_pte_or_hugepte(pgdir, hva, NULL, 235 &hpage_shift); 236 else { 237 local_irq_save(irq_flags); 238 ptep = find_linux_pte_or_hugepte(pgdir, hva, NULL, 239 &hpage_shift); 240 } 241 if (ptep) { 242 pte_t pte; 243 unsigned int host_pte_size; 244 245 if (hpage_shift) 246 host_pte_size = 1ul << hpage_shift; 247 else 248 host_pte_size = PAGE_SIZE; 249 /* 250 * We should always find the guest page size 251 * to <= host page size, if host is using hugepage 252 */ 253 if (host_pte_size < psize) { 254 if (!realmode) 255 local_irq_restore(flags); 256 return H_PARAMETER; 257 } 258 pte = kvmppc_read_update_linux_pte(ptep, writing); 259 if (pte_present(pte) && !pte_protnone(pte)) { 260 if (writing && !__pte_write(pte)) 261 /* make the actual HPTE be read-only */ 262 ptel = hpte_make_readonly(ptel); 263 is_ci = pte_ci(pte); 264 pa = pte_pfn(pte) << PAGE_SHIFT; 265 pa |= hva & (host_pte_size - 1); 266 pa |= gpa & ~PAGE_MASK; 267 } 268 } 269 if (!realmode) 270 local_irq_restore(irq_flags); 271 272 ptel &= ~(HPTE_R_PP0 - psize); 273 ptel |= pa; 274 275 if (pa) 276 pteh |= HPTE_V_VALID; 277 else { 278 pteh |= HPTE_V_ABSENT; 279 ptel &= ~(HPTE_R_KEY_HI | HPTE_R_KEY_LO); 280 } 281 282 /*If we had host pte mapping then Check WIMG */ 283 if (ptep && !hpte_cache_flags_ok(ptel, is_ci)) { 284 if (is_ci) 285 return H_PARAMETER; 286 /* 287 * Allow guest to map emulated device memory as 288 * uncacheable, but actually make it cacheable. 289 */ 290 ptel &= ~(HPTE_R_W|HPTE_R_I|HPTE_R_G); 291 ptel |= HPTE_R_M; 292 } 293 294 /* Find and lock the HPTEG slot to use */ 295 do_insert: 296 if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt)) 297 return H_PARAMETER; 298 if (likely((flags & H_EXACT) == 0)) { 299 pte_index &= ~7UL; 300 hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4)); 301 for (i = 0; i < 8; ++i) { 302 if ((be64_to_cpu(*hpte) & HPTE_V_VALID) == 0 && 303 try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID | 304 HPTE_V_ABSENT)) 305 break; 306 hpte += 2; 307 } 308 if (i == 8) { 309 /* 310 * Since try_lock_hpte doesn't retry (not even stdcx. 311 * failures), it could be that there is a free slot 312 * but we transiently failed to lock it. Try again, 313 * actually locking each slot and checking it. 314 */ 315 hpte -= 16; 316 for (i = 0; i < 8; ++i) { 317 u64 pte; 318 while (!try_lock_hpte(hpte, HPTE_V_HVLOCK)) 319 cpu_relax(); 320 pte = be64_to_cpu(hpte[0]); 321 if (!(pte & (HPTE_V_VALID | HPTE_V_ABSENT))) 322 break; 323 __unlock_hpte(hpte, pte); 324 hpte += 2; 325 } 326 if (i == 8) 327 return H_PTEG_FULL; 328 } 329 pte_index += i; 330 } else { 331 hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4)); 332 if (!try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID | 333 HPTE_V_ABSENT)) { 334 /* Lock the slot and check again */ 335 u64 pte; 336 337 while (!try_lock_hpte(hpte, HPTE_V_HVLOCK)) 338 cpu_relax(); 339 pte = be64_to_cpu(hpte[0]); 340 if (pte & (HPTE_V_VALID | HPTE_V_ABSENT)) { 341 __unlock_hpte(hpte, pte); 342 return H_PTEG_FULL; 343 } 344 } 345 } 346 347 /* Save away the guest's idea of the second HPTE dword */ 348 rev = &kvm->arch.hpt.rev[pte_index]; 349 if (realmode) 350 rev = real_vmalloc_addr(rev); 351 if (rev) { 352 rev->guest_rpte = g_ptel; 353 note_hpte_modification(kvm, rev); 354 } 355 356 /* Link HPTE into reverse-map chain */ 357 if (pteh & HPTE_V_VALID) { 358 if (realmode) 359 rmap = real_vmalloc_addr(rmap); 360 lock_rmap(rmap); 361 /* Check for pending invalidations under the rmap chain lock */ 362 if (mmu_notifier_retry(kvm, mmu_seq)) { 363 /* inval in progress, write a non-present HPTE */ 364 pteh |= HPTE_V_ABSENT; 365 pteh &= ~HPTE_V_VALID; 366 ptel &= ~(HPTE_R_KEY_HI | HPTE_R_KEY_LO); 367 unlock_rmap(rmap); 368 } else { 369 kvmppc_add_revmap_chain(kvm, rev, rmap, pte_index, 370 realmode); 371 /* Only set R/C in real HPTE if already set in *rmap */ 372 rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT; 373 ptel &= rcbits | ~(HPTE_R_R | HPTE_R_C); 374 } 375 } 376 377 /* Convert to new format on P9 */ 378 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 379 ptel = hpte_old_to_new_r(pteh, ptel); 380 pteh = hpte_old_to_new_v(pteh); 381 } 382 hpte[1] = cpu_to_be64(ptel); 383 384 /* Write the first HPTE dword, unlocking the HPTE and making it valid */ 385 eieio(); 386 __unlock_hpte(hpte, pteh); 387 asm volatile("ptesync" : : : "memory"); 388 389 *pte_idx_ret = pte_index; 390 return H_SUCCESS; 391 } 392 EXPORT_SYMBOL_GPL(kvmppc_do_h_enter); 393 394 long kvmppc_h_enter(struct kvm_vcpu *vcpu, unsigned long flags, 395 long pte_index, unsigned long pteh, unsigned long ptel) 396 { 397 return kvmppc_do_h_enter(vcpu->kvm, flags, pte_index, pteh, ptel, 398 vcpu->arch.pgdir, true, &vcpu->arch.gpr[4]); 399 } 400 401 #ifdef __BIG_ENDIAN__ 402 #define LOCK_TOKEN (*(u32 *)(&get_paca()->lock_token)) 403 #else 404 #define LOCK_TOKEN (*(u32 *)(&get_paca()->paca_index)) 405 #endif 406 407 static inline int is_mmio_hpte(unsigned long v, unsigned long r) 408 { 409 return ((v & HPTE_V_ABSENT) && 410 (r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) == 411 (HPTE_R_KEY_HI | HPTE_R_KEY_LO)); 412 } 413 414 static inline int try_lock_tlbie(unsigned int *lock) 415 { 416 unsigned int tmp, old; 417 unsigned int token = LOCK_TOKEN; 418 419 asm volatile("1:lwarx %1,0,%2\n" 420 " cmpwi cr0,%1,0\n" 421 " bne 2f\n" 422 " stwcx. %3,0,%2\n" 423 " bne- 1b\n" 424 " isync\n" 425 "2:" 426 : "=&r" (tmp), "=&r" (old) 427 : "r" (lock), "r" (token) 428 : "cc", "memory"); 429 return old == 0; 430 } 431 432 static void do_tlbies(struct kvm *kvm, unsigned long *rbvalues, 433 long npages, int global, bool need_sync) 434 { 435 long i; 436 437 /* 438 * We use the POWER9 5-operand versions of tlbie and tlbiel here. 439 * Since we are using RIC=0 PRS=0 R=0, and P7/P8 tlbiel ignores 440 * the RS field, this is backwards-compatible with P7 and P8. 441 */ 442 if (global) { 443 while (!try_lock_tlbie(&kvm->arch.tlbie_lock)) 444 cpu_relax(); 445 if (need_sync) 446 asm volatile("ptesync" : : : "memory"); 447 for (i = 0; i < npages; ++i) { 448 asm volatile(PPC_TLBIE_5(%0,%1,0,0,0) : : 449 "r" (rbvalues[i]), "r" (kvm->arch.lpid)); 450 trace_tlbie(kvm->arch.lpid, 0, rbvalues[i], 451 kvm->arch.lpid, 0, 0, 0); 452 } 453 asm volatile("eieio; tlbsync; ptesync" : : : "memory"); 454 kvm->arch.tlbie_lock = 0; 455 } else { 456 if (need_sync) 457 asm volatile("ptesync" : : : "memory"); 458 for (i = 0; i < npages; ++i) { 459 asm volatile(PPC_TLBIEL(%0,%1,0,0,0) : : 460 "r" (rbvalues[i]), "r" (0)); 461 trace_tlbie(kvm->arch.lpid, 1, rbvalues[i], 462 0, 0, 0, 0); 463 } 464 asm volatile("ptesync" : : : "memory"); 465 } 466 } 467 468 long kvmppc_do_h_remove(struct kvm *kvm, unsigned long flags, 469 unsigned long pte_index, unsigned long avpn, 470 unsigned long *hpret) 471 { 472 __be64 *hpte; 473 unsigned long v, r, rb; 474 struct revmap_entry *rev; 475 u64 pte, orig_pte, pte_r; 476 477 if (kvm_is_radix(kvm)) 478 return H_FUNCTION; 479 if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt)) 480 return H_PARAMETER; 481 hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4)); 482 while (!try_lock_hpte(hpte, HPTE_V_HVLOCK)) 483 cpu_relax(); 484 pte = orig_pte = be64_to_cpu(hpte[0]); 485 pte_r = be64_to_cpu(hpte[1]); 486 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 487 pte = hpte_new_to_old_v(pte, pte_r); 488 pte_r = hpte_new_to_old_r(pte_r); 489 } 490 if ((pte & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 || 491 ((flags & H_AVPN) && (pte & ~0x7fUL) != avpn) || 492 ((flags & H_ANDCOND) && (pte & avpn) != 0)) { 493 __unlock_hpte(hpte, orig_pte); 494 return H_NOT_FOUND; 495 } 496 497 rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]); 498 v = pte & ~HPTE_V_HVLOCK; 499 if (v & HPTE_V_VALID) { 500 hpte[0] &= ~cpu_to_be64(HPTE_V_VALID); 501 rb = compute_tlbie_rb(v, pte_r, pte_index); 502 do_tlbies(kvm, &rb, 1, global_invalidates(kvm, flags), true); 503 /* 504 * The reference (R) and change (C) bits in a HPT 505 * entry can be set by hardware at any time up until 506 * the HPTE is invalidated and the TLB invalidation 507 * sequence has completed. This means that when 508 * removing a HPTE, we need to re-read the HPTE after 509 * the invalidation sequence has completed in order to 510 * obtain reliable values of R and C. 511 */ 512 remove_revmap_chain(kvm, pte_index, rev, v, 513 be64_to_cpu(hpte[1])); 514 } 515 r = rev->guest_rpte & ~HPTE_GR_RESERVED; 516 note_hpte_modification(kvm, rev); 517 unlock_hpte(hpte, 0); 518 519 if (is_mmio_hpte(v, pte_r)) 520 atomic64_inc(&kvm->arch.mmio_update); 521 522 if (v & HPTE_V_ABSENT) 523 v = (v & ~HPTE_V_ABSENT) | HPTE_V_VALID; 524 hpret[0] = v; 525 hpret[1] = r; 526 return H_SUCCESS; 527 } 528 EXPORT_SYMBOL_GPL(kvmppc_do_h_remove); 529 530 long kvmppc_h_remove(struct kvm_vcpu *vcpu, unsigned long flags, 531 unsigned long pte_index, unsigned long avpn) 532 { 533 return kvmppc_do_h_remove(vcpu->kvm, flags, pte_index, avpn, 534 &vcpu->arch.gpr[4]); 535 } 536 537 long kvmppc_h_bulk_remove(struct kvm_vcpu *vcpu) 538 { 539 struct kvm *kvm = vcpu->kvm; 540 unsigned long *args = &vcpu->arch.gpr[4]; 541 __be64 *hp, *hptes[4]; 542 unsigned long tlbrb[4]; 543 long int i, j, k, n, found, indexes[4]; 544 unsigned long flags, req, pte_index, rcbits; 545 int global; 546 long int ret = H_SUCCESS; 547 struct revmap_entry *rev, *revs[4]; 548 u64 hp0, hp1; 549 550 if (kvm_is_radix(kvm)) 551 return H_FUNCTION; 552 global = global_invalidates(kvm, 0); 553 for (i = 0; i < 4 && ret == H_SUCCESS; ) { 554 n = 0; 555 for (; i < 4; ++i) { 556 j = i * 2; 557 pte_index = args[j]; 558 flags = pte_index >> 56; 559 pte_index &= ((1ul << 56) - 1); 560 req = flags >> 6; 561 flags &= 3; 562 if (req == 3) { /* no more requests */ 563 i = 4; 564 break; 565 } 566 if (req != 1 || flags == 3 || 567 pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt)) { 568 /* parameter error */ 569 args[j] = ((0xa0 | flags) << 56) + pte_index; 570 ret = H_PARAMETER; 571 break; 572 } 573 hp = (__be64 *) (kvm->arch.hpt.virt + (pte_index << 4)); 574 /* to avoid deadlock, don't spin except for first */ 575 if (!try_lock_hpte(hp, HPTE_V_HVLOCK)) { 576 if (n) 577 break; 578 while (!try_lock_hpte(hp, HPTE_V_HVLOCK)) 579 cpu_relax(); 580 } 581 found = 0; 582 hp0 = be64_to_cpu(hp[0]); 583 hp1 = be64_to_cpu(hp[1]); 584 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 585 hp0 = hpte_new_to_old_v(hp0, hp1); 586 hp1 = hpte_new_to_old_r(hp1); 587 } 588 if (hp0 & (HPTE_V_ABSENT | HPTE_V_VALID)) { 589 switch (flags & 3) { 590 case 0: /* absolute */ 591 found = 1; 592 break; 593 case 1: /* andcond */ 594 if (!(hp0 & args[j + 1])) 595 found = 1; 596 break; 597 case 2: /* AVPN */ 598 if ((hp0 & ~0x7fUL) == args[j + 1]) 599 found = 1; 600 break; 601 } 602 } 603 if (!found) { 604 hp[0] &= ~cpu_to_be64(HPTE_V_HVLOCK); 605 args[j] = ((0x90 | flags) << 56) + pte_index; 606 continue; 607 } 608 609 args[j] = ((0x80 | flags) << 56) + pte_index; 610 rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]); 611 note_hpte_modification(kvm, rev); 612 613 if (!(hp0 & HPTE_V_VALID)) { 614 /* insert R and C bits from PTE */ 615 rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C); 616 args[j] |= rcbits << (56 - 5); 617 hp[0] = 0; 618 if (is_mmio_hpte(hp0, hp1)) 619 atomic64_inc(&kvm->arch.mmio_update); 620 continue; 621 } 622 623 /* leave it locked */ 624 hp[0] &= ~cpu_to_be64(HPTE_V_VALID); 625 tlbrb[n] = compute_tlbie_rb(hp0, hp1, pte_index); 626 indexes[n] = j; 627 hptes[n] = hp; 628 revs[n] = rev; 629 ++n; 630 } 631 632 if (!n) 633 break; 634 635 /* Now that we've collected a batch, do the tlbies */ 636 do_tlbies(kvm, tlbrb, n, global, true); 637 638 /* Read PTE low words after tlbie to get final R/C values */ 639 for (k = 0; k < n; ++k) { 640 j = indexes[k]; 641 pte_index = args[j] & ((1ul << 56) - 1); 642 hp = hptes[k]; 643 rev = revs[k]; 644 remove_revmap_chain(kvm, pte_index, rev, 645 be64_to_cpu(hp[0]), be64_to_cpu(hp[1])); 646 rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C); 647 args[j] |= rcbits << (56 - 5); 648 __unlock_hpte(hp, 0); 649 } 650 } 651 652 return ret; 653 } 654 655 long kvmppc_h_protect(struct kvm_vcpu *vcpu, unsigned long flags, 656 unsigned long pte_index, unsigned long avpn, 657 unsigned long va) 658 { 659 struct kvm *kvm = vcpu->kvm; 660 __be64 *hpte; 661 struct revmap_entry *rev; 662 unsigned long v, r, rb, mask, bits; 663 u64 pte_v, pte_r; 664 665 if (kvm_is_radix(kvm)) 666 return H_FUNCTION; 667 if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt)) 668 return H_PARAMETER; 669 670 hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4)); 671 while (!try_lock_hpte(hpte, HPTE_V_HVLOCK)) 672 cpu_relax(); 673 v = pte_v = be64_to_cpu(hpte[0]); 674 if (cpu_has_feature(CPU_FTR_ARCH_300)) 675 v = hpte_new_to_old_v(v, be64_to_cpu(hpte[1])); 676 if ((v & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 || 677 ((flags & H_AVPN) && (v & ~0x7fUL) != avpn)) { 678 __unlock_hpte(hpte, pte_v); 679 return H_NOT_FOUND; 680 } 681 682 pte_r = be64_to_cpu(hpte[1]); 683 bits = (flags << 55) & HPTE_R_PP0; 684 bits |= (flags << 48) & HPTE_R_KEY_HI; 685 bits |= flags & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO); 686 687 /* Update guest view of 2nd HPTE dword */ 688 mask = HPTE_R_PP0 | HPTE_R_PP | HPTE_R_N | 689 HPTE_R_KEY_HI | HPTE_R_KEY_LO; 690 rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]); 691 if (rev) { 692 r = (rev->guest_rpte & ~mask) | bits; 693 rev->guest_rpte = r; 694 note_hpte_modification(kvm, rev); 695 } 696 697 /* Update HPTE */ 698 if (v & HPTE_V_VALID) { 699 /* 700 * If the page is valid, don't let it transition from 701 * readonly to writable. If it should be writable, we'll 702 * take a trap and let the page fault code sort it out. 703 */ 704 r = (pte_r & ~mask) | bits; 705 if (hpte_is_writable(r) && !hpte_is_writable(pte_r)) 706 r = hpte_make_readonly(r); 707 /* If the PTE is changing, invalidate it first */ 708 if (r != pte_r) { 709 rb = compute_tlbie_rb(v, r, pte_index); 710 hpte[0] = cpu_to_be64((pte_v & ~HPTE_V_VALID) | 711 HPTE_V_ABSENT); 712 do_tlbies(kvm, &rb, 1, global_invalidates(kvm, flags), 713 true); 714 /* Don't lose R/C bit updates done by hardware */ 715 r |= be64_to_cpu(hpte[1]) & (HPTE_R_R | HPTE_R_C); 716 hpte[1] = cpu_to_be64(r); 717 } 718 } 719 unlock_hpte(hpte, pte_v & ~HPTE_V_HVLOCK); 720 asm volatile("ptesync" : : : "memory"); 721 if (is_mmio_hpte(v, pte_r)) 722 atomic64_inc(&kvm->arch.mmio_update); 723 724 return H_SUCCESS; 725 } 726 727 long kvmppc_h_read(struct kvm_vcpu *vcpu, unsigned long flags, 728 unsigned long pte_index) 729 { 730 struct kvm *kvm = vcpu->kvm; 731 __be64 *hpte; 732 unsigned long v, r; 733 int i, n = 1; 734 struct revmap_entry *rev = NULL; 735 736 if (kvm_is_radix(kvm)) 737 return H_FUNCTION; 738 if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt)) 739 return H_PARAMETER; 740 if (flags & H_READ_4) { 741 pte_index &= ~3; 742 n = 4; 743 } 744 rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]); 745 for (i = 0; i < n; ++i, ++pte_index) { 746 hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4)); 747 v = be64_to_cpu(hpte[0]) & ~HPTE_V_HVLOCK; 748 r = be64_to_cpu(hpte[1]); 749 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 750 v = hpte_new_to_old_v(v, r); 751 r = hpte_new_to_old_r(r); 752 } 753 if (v & HPTE_V_ABSENT) { 754 v &= ~HPTE_V_ABSENT; 755 v |= HPTE_V_VALID; 756 } 757 if (v & HPTE_V_VALID) { 758 r = rev[i].guest_rpte | (r & (HPTE_R_R | HPTE_R_C)); 759 r &= ~HPTE_GR_RESERVED; 760 } 761 vcpu->arch.gpr[4 + i * 2] = v; 762 vcpu->arch.gpr[5 + i * 2] = r; 763 } 764 return H_SUCCESS; 765 } 766 767 long kvmppc_h_clear_ref(struct kvm_vcpu *vcpu, unsigned long flags, 768 unsigned long pte_index) 769 { 770 struct kvm *kvm = vcpu->kvm; 771 __be64 *hpte; 772 unsigned long v, r, gr; 773 struct revmap_entry *rev; 774 unsigned long *rmap; 775 long ret = H_NOT_FOUND; 776 777 if (kvm_is_radix(kvm)) 778 return H_FUNCTION; 779 if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt)) 780 return H_PARAMETER; 781 782 rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]); 783 hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4)); 784 while (!try_lock_hpte(hpte, HPTE_V_HVLOCK)) 785 cpu_relax(); 786 v = be64_to_cpu(hpte[0]); 787 r = be64_to_cpu(hpte[1]); 788 if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT))) 789 goto out; 790 791 gr = rev->guest_rpte; 792 if (rev->guest_rpte & HPTE_R_R) { 793 rev->guest_rpte &= ~HPTE_R_R; 794 note_hpte_modification(kvm, rev); 795 } 796 if (v & HPTE_V_VALID) { 797 gr |= r & (HPTE_R_R | HPTE_R_C); 798 if (r & HPTE_R_R) { 799 kvmppc_clear_ref_hpte(kvm, hpte, pte_index); 800 rmap = revmap_for_hpte(kvm, v, gr); 801 if (rmap) { 802 lock_rmap(rmap); 803 *rmap |= KVMPPC_RMAP_REFERENCED; 804 unlock_rmap(rmap); 805 } 806 } 807 } 808 vcpu->arch.gpr[4] = gr; 809 ret = H_SUCCESS; 810 out: 811 unlock_hpte(hpte, v & ~HPTE_V_HVLOCK); 812 return ret; 813 } 814 815 long kvmppc_h_clear_mod(struct kvm_vcpu *vcpu, unsigned long flags, 816 unsigned long pte_index) 817 { 818 struct kvm *kvm = vcpu->kvm; 819 __be64 *hpte; 820 unsigned long v, r, gr; 821 struct revmap_entry *rev; 822 unsigned long *rmap; 823 long ret = H_NOT_FOUND; 824 825 if (kvm_is_radix(kvm)) 826 return H_FUNCTION; 827 if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt)) 828 return H_PARAMETER; 829 830 rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]); 831 hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4)); 832 while (!try_lock_hpte(hpte, HPTE_V_HVLOCK)) 833 cpu_relax(); 834 v = be64_to_cpu(hpte[0]); 835 r = be64_to_cpu(hpte[1]); 836 if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT))) 837 goto out; 838 839 gr = rev->guest_rpte; 840 if (gr & HPTE_R_C) { 841 rev->guest_rpte &= ~HPTE_R_C; 842 note_hpte_modification(kvm, rev); 843 } 844 if (v & HPTE_V_VALID) { 845 /* need to make it temporarily absent so C is stable */ 846 hpte[0] |= cpu_to_be64(HPTE_V_ABSENT); 847 kvmppc_invalidate_hpte(kvm, hpte, pte_index); 848 r = be64_to_cpu(hpte[1]); 849 gr |= r & (HPTE_R_R | HPTE_R_C); 850 if (r & HPTE_R_C) { 851 unsigned long psize = hpte_page_size(v, r); 852 hpte[1] = cpu_to_be64(r & ~HPTE_R_C); 853 eieio(); 854 rmap = revmap_for_hpte(kvm, v, gr); 855 if (rmap) { 856 lock_rmap(rmap); 857 *rmap |= KVMPPC_RMAP_CHANGED; 858 kvmppc_update_rmap_change(rmap, psize); 859 unlock_rmap(rmap); 860 } 861 } 862 } 863 vcpu->arch.gpr[4] = gr; 864 ret = H_SUCCESS; 865 out: 866 unlock_hpte(hpte, v & ~HPTE_V_HVLOCK); 867 return ret; 868 } 869 870 void kvmppc_invalidate_hpte(struct kvm *kvm, __be64 *hptep, 871 unsigned long pte_index) 872 { 873 unsigned long rb; 874 u64 hp0, hp1; 875 876 hptep[0] &= ~cpu_to_be64(HPTE_V_VALID); 877 hp0 = be64_to_cpu(hptep[0]); 878 hp1 = be64_to_cpu(hptep[1]); 879 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 880 hp0 = hpte_new_to_old_v(hp0, hp1); 881 hp1 = hpte_new_to_old_r(hp1); 882 } 883 rb = compute_tlbie_rb(hp0, hp1, pte_index); 884 do_tlbies(kvm, &rb, 1, 1, true); 885 } 886 EXPORT_SYMBOL_GPL(kvmppc_invalidate_hpte); 887 888 void kvmppc_clear_ref_hpte(struct kvm *kvm, __be64 *hptep, 889 unsigned long pte_index) 890 { 891 unsigned long rb; 892 unsigned char rbyte; 893 u64 hp0, hp1; 894 895 hp0 = be64_to_cpu(hptep[0]); 896 hp1 = be64_to_cpu(hptep[1]); 897 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 898 hp0 = hpte_new_to_old_v(hp0, hp1); 899 hp1 = hpte_new_to_old_r(hp1); 900 } 901 rb = compute_tlbie_rb(hp0, hp1, pte_index); 902 rbyte = (be64_to_cpu(hptep[1]) & ~HPTE_R_R) >> 8; 903 /* modify only the second-last byte, which contains the ref bit */ 904 *((char *)hptep + 14) = rbyte; 905 do_tlbies(kvm, &rb, 1, 1, false); 906 } 907 EXPORT_SYMBOL_GPL(kvmppc_clear_ref_hpte); 908 909 static int slb_base_page_shift[4] = { 910 24, /* 16M */ 911 16, /* 64k */ 912 34, /* 16G */ 913 20, /* 1M, unsupported */ 914 }; 915 916 static struct mmio_hpte_cache_entry *mmio_cache_search(struct kvm_vcpu *vcpu, 917 unsigned long eaddr, unsigned long slb_v, long mmio_update) 918 { 919 struct mmio_hpte_cache_entry *entry = NULL; 920 unsigned int pshift; 921 unsigned int i; 922 923 for (i = 0; i < MMIO_HPTE_CACHE_SIZE; i++) { 924 entry = &vcpu->arch.mmio_cache.entry[i]; 925 if (entry->mmio_update == mmio_update) { 926 pshift = entry->slb_base_pshift; 927 if ((entry->eaddr >> pshift) == (eaddr >> pshift) && 928 entry->slb_v == slb_v) 929 return entry; 930 } 931 } 932 return NULL; 933 } 934 935 static struct mmio_hpte_cache_entry * 936 next_mmio_cache_entry(struct kvm_vcpu *vcpu) 937 { 938 unsigned int index = vcpu->arch.mmio_cache.index; 939 940 vcpu->arch.mmio_cache.index++; 941 if (vcpu->arch.mmio_cache.index == MMIO_HPTE_CACHE_SIZE) 942 vcpu->arch.mmio_cache.index = 0; 943 944 return &vcpu->arch.mmio_cache.entry[index]; 945 } 946 947 /* When called from virtmode, this func should be protected by 948 * preempt_disable(), otherwise, the holding of HPTE_V_HVLOCK 949 * can trigger deadlock issue. 950 */ 951 long kvmppc_hv_find_lock_hpte(struct kvm *kvm, gva_t eaddr, unsigned long slb_v, 952 unsigned long valid) 953 { 954 unsigned int i; 955 unsigned int pshift; 956 unsigned long somask; 957 unsigned long vsid, hash; 958 unsigned long avpn; 959 __be64 *hpte; 960 unsigned long mask, val; 961 unsigned long v, r, orig_v; 962 963 /* Get page shift, work out hash and AVPN etc. */ 964 mask = SLB_VSID_B | HPTE_V_AVPN | HPTE_V_SECONDARY; 965 val = 0; 966 pshift = 12; 967 if (slb_v & SLB_VSID_L) { 968 mask |= HPTE_V_LARGE; 969 val |= HPTE_V_LARGE; 970 pshift = slb_base_page_shift[(slb_v & SLB_VSID_LP) >> 4]; 971 } 972 if (slb_v & SLB_VSID_B_1T) { 973 somask = (1UL << 40) - 1; 974 vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T; 975 vsid ^= vsid << 25; 976 } else { 977 somask = (1UL << 28) - 1; 978 vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT; 979 } 980 hash = (vsid ^ ((eaddr & somask) >> pshift)) & kvmppc_hpt_mask(&kvm->arch.hpt); 981 avpn = slb_v & ~(somask >> 16); /* also includes B */ 982 avpn |= (eaddr & somask) >> 16; 983 984 if (pshift >= 24) 985 avpn &= ~((1UL << (pshift - 16)) - 1); 986 else 987 avpn &= ~0x7fUL; 988 val |= avpn; 989 990 for (;;) { 991 hpte = (__be64 *)(kvm->arch.hpt.virt + (hash << 7)); 992 993 for (i = 0; i < 16; i += 2) { 994 /* Read the PTE racily */ 995 v = be64_to_cpu(hpte[i]) & ~HPTE_V_HVLOCK; 996 if (cpu_has_feature(CPU_FTR_ARCH_300)) 997 v = hpte_new_to_old_v(v, be64_to_cpu(hpte[i+1])); 998 999 /* Check valid/absent, hash, segment size and AVPN */ 1000 if (!(v & valid) || (v & mask) != val) 1001 continue; 1002 1003 /* Lock the PTE and read it under the lock */ 1004 while (!try_lock_hpte(&hpte[i], HPTE_V_HVLOCK)) 1005 cpu_relax(); 1006 v = orig_v = be64_to_cpu(hpte[i]) & ~HPTE_V_HVLOCK; 1007 r = be64_to_cpu(hpte[i+1]); 1008 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1009 v = hpte_new_to_old_v(v, r); 1010 r = hpte_new_to_old_r(r); 1011 } 1012 1013 /* 1014 * Check the HPTE again, including base page size 1015 */ 1016 if ((v & valid) && (v & mask) == val && 1017 hpte_base_page_size(v, r) == (1ul << pshift)) 1018 /* Return with the HPTE still locked */ 1019 return (hash << 3) + (i >> 1); 1020 1021 __unlock_hpte(&hpte[i], orig_v); 1022 } 1023 1024 if (val & HPTE_V_SECONDARY) 1025 break; 1026 val |= HPTE_V_SECONDARY; 1027 hash = hash ^ kvmppc_hpt_mask(&kvm->arch.hpt); 1028 } 1029 return -1; 1030 } 1031 EXPORT_SYMBOL(kvmppc_hv_find_lock_hpte); 1032 1033 /* 1034 * Called in real mode to check whether an HPTE not found fault 1035 * is due to accessing a paged-out page or an emulated MMIO page, 1036 * or if a protection fault is due to accessing a page that the 1037 * guest wanted read/write access to but which we made read-only. 1038 * Returns a possibly modified status (DSISR) value if not 1039 * (i.e. pass the interrupt to the guest), 1040 * -1 to pass the fault up to host kernel mode code, -2 to do that 1041 * and also load the instruction word (for MMIO emulation), 1042 * or 0 if we should make the guest retry the access. 1043 */ 1044 long kvmppc_hpte_hv_fault(struct kvm_vcpu *vcpu, unsigned long addr, 1045 unsigned long slb_v, unsigned int status, bool data) 1046 { 1047 struct kvm *kvm = vcpu->kvm; 1048 long int index; 1049 unsigned long v, r, gr, orig_v; 1050 __be64 *hpte; 1051 unsigned long valid; 1052 struct revmap_entry *rev; 1053 unsigned long pp, key; 1054 struct mmio_hpte_cache_entry *cache_entry = NULL; 1055 long mmio_update = 0; 1056 1057 /* For protection fault, expect to find a valid HPTE */ 1058 valid = HPTE_V_VALID; 1059 if (status & DSISR_NOHPTE) { 1060 valid |= HPTE_V_ABSENT; 1061 mmio_update = atomic64_read(&kvm->arch.mmio_update); 1062 cache_entry = mmio_cache_search(vcpu, addr, slb_v, mmio_update); 1063 } 1064 if (cache_entry) { 1065 index = cache_entry->pte_index; 1066 v = cache_entry->hpte_v; 1067 r = cache_entry->hpte_r; 1068 gr = cache_entry->rpte; 1069 } else { 1070 index = kvmppc_hv_find_lock_hpte(kvm, addr, slb_v, valid); 1071 if (index < 0) { 1072 if (status & DSISR_NOHPTE) 1073 return status; /* there really was no HPTE */ 1074 return 0; /* for prot fault, HPTE disappeared */ 1075 } 1076 hpte = (__be64 *)(kvm->arch.hpt.virt + (index << 4)); 1077 v = orig_v = be64_to_cpu(hpte[0]) & ~HPTE_V_HVLOCK; 1078 r = be64_to_cpu(hpte[1]); 1079 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1080 v = hpte_new_to_old_v(v, r); 1081 r = hpte_new_to_old_r(r); 1082 } 1083 rev = real_vmalloc_addr(&kvm->arch.hpt.rev[index]); 1084 gr = rev->guest_rpte; 1085 1086 unlock_hpte(hpte, orig_v); 1087 } 1088 1089 /* For not found, if the HPTE is valid by now, retry the instruction */ 1090 if ((status & DSISR_NOHPTE) && (v & HPTE_V_VALID)) 1091 return 0; 1092 1093 /* Check access permissions to the page */ 1094 pp = gr & (HPTE_R_PP0 | HPTE_R_PP); 1095 key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS; 1096 status &= ~DSISR_NOHPTE; /* DSISR_NOHPTE == SRR1_ISI_NOPT */ 1097 if (!data) { 1098 if (gr & (HPTE_R_N | HPTE_R_G)) 1099 return status | SRR1_ISI_N_OR_G; 1100 if (!hpte_read_permission(pp, slb_v & key)) 1101 return status | SRR1_ISI_PROT; 1102 } else if (status & DSISR_ISSTORE) { 1103 /* check write permission */ 1104 if (!hpte_write_permission(pp, slb_v & key)) 1105 return status | DSISR_PROTFAULT; 1106 } else { 1107 if (!hpte_read_permission(pp, slb_v & key)) 1108 return status | DSISR_PROTFAULT; 1109 } 1110 1111 /* Check storage key, if applicable */ 1112 if (data && (vcpu->arch.shregs.msr & MSR_DR)) { 1113 unsigned int perm = hpte_get_skey_perm(gr, vcpu->arch.amr); 1114 if (status & DSISR_ISSTORE) 1115 perm >>= 1; 1116 if (perm & 1) 1117 return status | DSISR_KEYFAULT; 1118 } 1119 1120 /* Save HPTE info for virtual-mode handler */ 1121 vcpu->arch.pgfault_addr = addr; 1122 vcpu->arch.pgfault_index = index; 1123 vcpu->arch.pgfault_hpte[0] = v; 1124 vcpu->arch.pgfault_hpte[1] = r; 1125 vcpu->arch.pgfault_cache = cache_entry; 1126 1127 /* Check the storage key to see if it is possibly emulated MMIO */ 1128 if ((r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) == 1129 (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) { 1130 if (!cache_entry) { 1131 unsigned int pshift = 12; 1132 unsigned int pshift_index; 1133 1134 if (slb_v & SLB_VSID_L) { 1135 pshift_index = ((slb_v & SLB_VSID_LP) >> 4); 1136 pshift = slb_base_page_shift[pshift_index]; 1137 } 1138 cache_entry = next_mmio_cache_entry(vcpu); 1139 cache_entry->eaddr = addr; 1140 cache_entry->slb_base_pshift = pshift; 1141 cache_entry->pte_index = index; 1142 cache_entry->hpte_v = v; 1143 cache_entry->hpte_r = r; 1144 cache_entry->rpte = gr; 1145 cache_entry->slb_v = slb_v; 1146 cache_entry->mmio_update = mmio_update; 1147 } 1148 if (data && (vcpu->arch.shregs.msr & MSR_IR)) 1149 return -2; /* MMIO emulation - load instr word */ 1150 } 1151 1152 return -1; /* send fault up to host kernel mode */ 1153 } 1154