1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * Copyright 2010-2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7  */
8 
9 #include <linux/types.h>
10 #include <linux/string.h>
11 #include <linux/kvm.h>
12 #include <linux/kvm_host.h>
13 #include <linux/hugetlb.h>
14 #include <linux/module.h>
15 
16 #include <asm/tlbflush.h>
17 #include <asm/kvm_ppc.h>
18 #include <asm/kvm_book3s.h>
19 #include <asm/mmu-hash64.h>
20 #include <asm/hvcall.h>
21 #include <asm/synch.h>
22 #include <asm/ppc-opcode.h>
23 
24 /* Translate address of a vmalloc'd thing to a linear map address */
25 static void *real_vmalloc_addr(void *x)
26 {
27 	unsigned long addr = (unsigned long) x;
28 	pte_t *p;
29 
30 	p = find_linux_pte(swapper_pg_dir, addr);
31 	if (!p || !pte_present(*p))
32 		return NULL;
33 	/* assume we don't have huge pages in vmalloc space... */
34 	addr = (pte_pfn(*p) << PAGE_SHIFT) | (addr & ~PAGE_MASK);
35 	return __va(addr);
36 }
37 
38 /* Return 1 if we need to do a global tlbie, 0 if we can use tlbiel */
39 static int global_invalidates(struct kvm *kvm, unsigned long flags)
40 {
41 	int global;
42 
43 	/*
44 	 * If there is only one vcore, and it's currently running,
45 	 * we can use tlbiel as long as we mark all other physical
46 	 * cores as potentially having stale TLB entries for this lpid.
47 	 * If we're not using MMU notifiers, we never take pages away
48 	 * from the guest, so we can use tlbiel if requested.
49 	 * Otherwise, don't use tlbiel.
50 	 */
51 	if (kvm->arch.online_vcores == 1 && local_paca->kvm_hstate.kvm_vcore)
52 		global = 0;
53 	else if (kvm->arch.using_mmu_notifiers)
54 		global = 1;
55 	else
56 		global = !(flags & H_LOCAL);
57 
58 	if (!global) {
59 		/* any other core might now have stale TLB entries... */
60 		smp_wmb();
61 		cpumask_setall(&kvm->arch.need_tlb_flush);
62 		cpumask_clear_cpu(local_paca->kvm_hstate.kvm_vcore->pcpu,
63 				  &kvm->arch.need_tlb_flush);
64 	}
65 
66 	return global;
67 }
68 
69 /*
70  * Add this HPTE into the chain for the real page.
71  * Must be called with the chain locked; it unlocks the chain.
72  */
73 void kvmppc_add_revmap_chain(struct kvm *kvm, struct revmap_entry *rev,
74 			     unsigned long *rmap, long pte_index, int realmode)
75 {
76 	struct revmap_entry *head, *tail;
77 	unsigned long i;
78 
79 	if (*rmap & KVMPPC_RMAP_PRESENT) {
80 		i = *rmap & KVMPPC_RMAP_INDEX;
81 		head = &kvm->arch.revmap[i];
82 		if (realmode)
83 			head = real_vmalloc_addr(head);
84 		tail = &kvm->arch.revmap[head->back];
85 		if (realmode)
86 			tail = real_vmalloc_addr(tail);
87 		rev->forw = i;
88 		rev->back = head->back;
89 		tail->forw = pte_index;
90 		head->back = pte_index;
91 	} else {
92 		rev->forw = rev->back = pte_index;
93 		*rmap = (*rmap & ~KVMPPC_RMAP_INDEX) |
94 			pte_index | KVMPPC_RMAP_PRESENT;
95 	}
96 	unlock_rmap(rmap);
97 }
98 EXPORT_SYMBOL_GPL(kvmppc_add_revmap_chain);
99 
100 /* Remove this HPTE from the chain for a real page */
101 static void remove_revmap_chain(struct kvm *kvm, long pte_index,
102 				struct revmap_entry *rev,
103 				unsigned long hpte_v, unsigned long hpte_r)
104 {
105 	struct revmap_entry *next, *prev;
106 	unsigned long gfn, ptel, head;
107 	struct kvm_memory_slot *memslot;
108 	unsigned long *rmap;
109 	unsigned long rcbits;
110 
111 	rcbits = hpte_r & (HPTE_R_R | HPTE_R_C);
112 	ptel = rev->guest_rpte |= rcbits;
113 	gfn = hpte_rpn(ptel, hpte_page_size(hpte_v, ptel));
114 	memslot = __gfn_to_memslot(kvm_memslots(kvm), gfn);
115 	if (!memslot)
116 		return;
117 
118 	rmap = real_vmalloc_addr(&memslot->arch.rmap[gfn - memslot->base_gfn]);
119 	lock_rmap(rmap);
120 
121 	head = *rmap & KVMPPC_RMAP_INDEX;
122 	next = real_vmalloc_addr(&kvm->arch.revmap[rev->forw]);
123 	prev = real_vmalloc_addr(&kvm->arch.revmap[rev->back]);
124 	next->back = rev->back;
125 	prev->forw = rev->forw;
126 	if (head == pte_index) {
127 		head = rev->forw;
128 		if (head == pte_index)
129 			*rmap &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
130 		else
131 			*rmap = (*rmap & ~KVMPPC_RMAP_INDEX) | head;
132 	}
133 	*rmap |= rcbits << KVMPPC_RMAP_RC_SHIFT;
134 	unlock_rmap(rmap);
135 }
136 
137 static pte_t lookup_linux_pte(pgd_t *pgdir, unsigned long hva,
138 			      int writing, unsigned long *pte_sizep)
139 {
140 	pte_t *ptep;
141 	unsigned long ps = *pte_sizep;
142 	unsigned int shift;
143 
144 	ptep = find_linux_pte_or_hugepte(pgdir, hva, &shift);
145 	if (!ptep)
146 		return __pte(0);
147 	if (shift)
148 		*pte_sizep = 1ul << shift;
149 	else
150 		*pte_sizep = PAGE_SIZE;
151 	if (ps > *pte_sizep)
152 		return __pte(0);
153 	if (!pte_present(*ptep))
154 		return __pte(0);
155 	return kvmppc_read_update_linux_pte(ptep, writing);
156 }
157 
158 static inline void unlock_hpte(unsigned long *hpte, unsigned long hpte_v)
159 {
160 	asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
161 	hpte[0] = hpte_v;
162 }
163 
164 long kvmppc_do_h_enter(struct kvm *kvm, unsigned long flags,
165 		       long pte_index, unsigned long pteh, unsigned long ptel,
166 		       pgd_t *pgdir, bool realmode, unsigned long *pte_idx_ret)
167 {
168 	unsigned long i, pa, gpa, gfn, psize;
169 	unsigned long slot_fn, hva;
170 	unsigned long *hpte;
171 	struct revmap_entry *rev;
172 	unsigned long g_ptel;
173 	struct kvm_memory_slot *memslot;
174 	unsigned long *physp, pte_size;
175 	unsigned long is_io;
176 	unsigned long *rmap;
177 	pte_t pte;
178 	unsigned int writing;
179 	unsigned long mmu_seq;
180 	unsigned long rcbits;
181 
182 	psize = hpte_page_size(pteh, ptel);
183 	if (!psize)
184 		return H_PARAMETER;
185 	writing = hpte_is_writable(ptel);
186 	pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
187 	ptel &= ~HPTE_GR_RESERVED;
188 	g_ptel = ptel;
189 
190 	/* used later to detect if we might have been invalidated */
191 	mmu_seq = kvm->mmu_notifier_seq;
192 	smp_rmb();
193 
194 	/* Find the memslot (if any) for this address */
195 	gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
196 	gfn = gpa >> PAGE_SHIFT;
197 	memslot = __gfn_to_memslot(kvm_memslots(kvm), gfn);
198 	pa = 0;
199 	is_io = ~0ul;
200 	rmap = NULL;
201 	if (!(memslot && !(memslot->flags & KVM_MEMSLOT_INVALID))) {
202 		/* PPC970 can't do emulated MMIO */
203 		if (!cpu_has_feature(CPU_FTR_ARCH_206))
204 			return H_PARAMETER;
205 		/* Emulated MMIO - mark this with key=31 */
206 		pteh |= HPTE_V_ABSENT;
207 		ptel |= HPTE_R_KEY_HI | HPTE_R_KEY_LO;
208 		goto do_insert;
209 	}
210 
211 	/* Check if the requested page fits entirely in the memslot. */
212 	if (!slot_is_aligned(memslot, psize))
213 		return H_PARAMETER;
214 	slot_fn = gfn - memslot->base_gfn;
215 	rmap = &memslot->arch.rmap[slot_fn];
216 
217 	if (!kvm->arch.using_mmu_notifiers) {
218 		physp = memslot->arch.slot_phys;
219 		if (!physp)
220 			return H_PARAMETER;
221 		physp += slot_fn;
222 		if (realmode)
223 			physp = real_vmalloc_addr(physp);
224 		pa = *physp;
225 		if (!pa)
226 			return H_TOO_HARD;
227 		is_io = pa & (HPTE_R_I | HPTE_R_W);
228 		pte_size = PAGE_SIZE << (pa & KVMPPC_PAGE_ORDER_MASK);
229 		pa &= PAGE_MASK;
230 	} else {
231 		/* Translate to host virtual address */
232 		hva = __gfn_to_hva_memslot(memslot, gfn);
233 
234 		/* Look up the Linux PTE for the backing page */
235 		pte_size = psize;
236 		pte = lookup_linux_pte(pgdir, hva, writing, &pte_size);
237 		if (pte_present(pte)) {
238 			if (writing && !pte_write(pte))
239 				/* make the actual HPTE be read-only */
240 				ptel = hpte_make_readonly(ptel);
241 			is_io = hpte_cache_bits(pte_val(pte));
242 			pa = pte_pfn(pte) << PAGE_SHIFT;
243 		}
244 	}
245 
246 	if (pte_size < psize)
247 		return H_PARAMETER;
248 	if (pa && pte_size > psize)
249 		pa |= gpa & (pte_size - 1);
250 
251 	ptel &= ~(HPTE_R_PP0 - psize);
252 	ptel |= pa;
253 
254 	if (pa)
255 		pteh |= HPTE_V_VALID;
256 	else
257 		pteh |= HPTE_V_ABSENT;
258 
259 	/* Check WIMG */
260 	if (is_io != ~0ul && !hpte_cache_flags_ok(ptel, is_io)) {
261 		if (is_io)
262 			return H_PARAMETER;
263 		/*
264 		 * Allow guest to map emulated device memory as
265 		 * uncacheable, but actually make it cacheable.
266 		 */
267 		ptel &= ~(HPTE_R_W|HPTE_R_I|HPTE_R_G);
268 		ptel |= HPTE_R_M;
269 	}
270 
271 	/* Find and lock the HPTEG slot to use */
272  do_insert:
273 	if (pte_index >= kvm->arch.hpt_npte)
274 		return H_PARAMETER;
275 	if (likely((flags & H_EXACT) == 0)) {
276 		pte_index &= ~7UL;
277 		hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
278 		for (i = 0; i < 8; ++i) {
279 			if ((*hpte & HPTE_V_VALID) == 0 &&
280 			    try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
281 					  HPTE_V_ABSENT))
282 				break;
283 			hpte += 2;
284 		}
285 		if (i == 8) {
286 			/*
287 			 * Since try_lock_hpte doesn't retry (not even stdcx.
288 			 * failures), it could be that there is a free slot
289 			 * but we transiently failed to lock it.  Try again,
290 			 * actually locking each slot and checking it.
291 			 */
292 			hpte -= 16;
293 			for (i = 0; i < 8; ++i) {
294 				while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
295 					cpu_relax();
296 				if (!(*hpte & (HPTE_V_VALID | HPTE_V_ABSENT)))
297 					break;
298 				*hpte &= ~HPTE_V_HVLOCK;
299 				hpte += 2;
300 			}
301 			if (i == 8)
302 				return H_PTEG_FULL;
303 		}
304 		pte_index += i;
305 	} else {
306 		hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
307 		if (!try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
308 				   HPTE_V_ABSENT)) {
309 			/* Lock the slot and check again */
310 			while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
311 				cpu_relax();
312 			if (*hpte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
313 				*hpte &= ~HPTE_V_HVLOCK;
314 				return H_PTEG_FULL;
315 			}
316 		}
317 	}
318 
319 	/* Save away the guest's idea of the second HPTE dword */
320 	rev = &kvm->arch.revmap[pte_index];
321 	if (realmode)
322 		rev = real_vmalloc_addr(rev);
323 	if (rev) {
324 		rev->guest_rpte = g_ptel;
325 		note_hpte_modification(kvm, rev);
326 	}
327 
328 	/* Link HPTE into reverse-map chain */
329 	if (pteh & HPTE_V_VALID) {
330 		if (realmode)
331 			rmap = real_vmalloc_addr(rmap);
332 		lock_rmap(rmap);
333 		/* Check for pending invalidations under the rmap chain lock */
334 		if (kvm->arch.using_mmu_notifiers &&
335 		    mmu_notifier_retry(kvm, mmu_seq)) {
336 			/* inval in progress, write a non-present HPTE */
337 			pteh |= HPTE_V_ABSENT;
338 			pteh &= ~HPTE_V_VALID;
339 			unlock_rmap(rmap);
340 		} else {
341 			kvmppc_add_revmap_chain(kvm, rev, rmap, pte_index,
342 						realmode);
343 			/* Only set R/C in real HPTE if already set in *rmap */
344 			rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
345 			ptel &= rcbits | ~(HPTE_R_R | HPTE_R_C);
346 		}
347 	}
348 
349 	hpte[1] = ptel;
350 
351 	/* Write the first HPTE dword, unlocking the HPTE and making it valid */
352 	eieio();
353 	hpte[0] = pteh;
354 	asm volatile("ptesync" : : : "memory");
355 
356 	*pte_idx_ret = pte_index;
357 	return H_SUCCESS;
358 }
359 EXPORT_SYMBOL_GPL(kvmppc_do_h_enter);
360 
361 long kvmppc_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
362 		    long pte_index, unsigned long pteh, unsigned long ptel)
363 {
364 	return kvmppc_do_h_enter(vcpu->kvm, flags, pte_index, pteh, ptel,
365 				 vcpu->arch.pgdir, true, &vcpu->arch.gpr[4]);
366 }
367 
368 #define LOCK_TOKEN	(*(u32 *)(&get_paca()->lock_token))
369 
370 static inline int try_lock_tlbie(unsigned int *lock)
371 {
372 	unsigned int tmp, old;
373 	unsigned int token = LOCK_TOKEN;
374 
375 	asm volatile("1:lwarx	%1,0,%2\n"
376 		     "	cmpwi	cr0,%1,0\n"
377 		     "	bne	2f\n"
378 		     "  stwcx.	%3,0,%2\n"
379 		     "	bne-	1b\n"
380 		     "  isync\n"
381 		     "2:"
382 		     : "=&r" (tmp), "=&r" (old)
383 		     : "r" (lock), "r" (token)
384 		     : "cc", "memory");
385 	return old == 0;
386 }
387 
388 long kvmppc_do_h_remove(struct kvm *kvm, unsigned long flags,
389 			unsigned long pte_index, unsigned long avpn,
390 			unsigned long *hpret)
391 {
392 	unsigned long *hpte;
393 	unsigned long v, r, rb;
394 	struct revmap_entry *rev;
395 
396 	if (pte_index >= kvm->arch.hpt_npte)
397 		return H_PARAMETER;
398 	hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
399 	while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
400 		cpu_relax();
401 	if ((hpte[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
402 	    ((flags & H_AVPN) && (hpte[0] & ~0x7fUL) != avpn) ||
403 	    ((flags & H_ANDCOND) && (hpte[0] & avpn) != 0)) {
404 		hpte[0] &= ~HPTE_V_HVLOCK;
405 		return H_NOT_FOUND;
406 	}
407 
408 	rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
409 	v = hpte[0] & ~HPTE_V_HVLOCK;
410 	if (v & HPTE_V_VALID) {
411 		hpte[0] &= ~HPTE_V_VALID;
412 		rb = compute_tlbie_rb(v, hpte[1], pte_index);
413 		if (global_invalidates(kvm, flags)) {
414 			while (!try_lock_tlbie(&kvm->arch.tlbie_lock))
415 				cpu_relax();
416 			asm volatile("ptesync" : : : "memory");
417 			asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
418 				     : : "r" (rb), "r" (kvm->arch.lpid));
419 			asm volatile("ptesync" : : : "memory");
420 			kvm->arch.tlbie_lock = 0;
421 		} else {
422 			asm volatile("ptesync" : : : "memory");
423 			asm volatile("tlbiel %0" : : "r" (rb));
424 			asm volatile("ptesync" : : : "memory");
425 		}
426 		/* Read PTE low word after tlbie to get final R/C values */
427 		remove_revmap_chain(kvm, pte_index, rev, v, hpte[1]);
428 	}
429 	r = rev->guest_rpte & ~HPTE_GR_RESERVED;
430 	note_hpte_modification(kvm, rev);
431 	unlock_hpte(hpte, 0);
432 
433 	hpret[0] = v;
434 	hpret[1] = r;
435 	return H_SUCCESS;
436 }
437 EXPORT_SYMBOL_GPL(kvmppc_do_h_remove);
438 
439 long kvmppc_h_remove(struct kvm_vcpu *vcpu, unsigned long flags,
440 		     unsigned long pte_index, unsigned long avpn)
441 {
442 	return kvmppc_do_h_remove(vcpu->kvm, flags, pte_index, avpn,
443 				  &vcpu->arch.gpr[4]);
444 }
445 
446 long kvmppc_h_bulk_remove(struct kvm_vcpu *vcpu)
447 {
448 	struct kvm *kvm = vcpu->kvm;
449 	unsigned long *args = &vcpu->arch.gpr[4];
450 	unsigned long *hp, *hptes[4], tlbrb[4];
451 	long int i, j, k, n, found, indexes[4];
452 	unsigned long flags, req, pte_index, rcbits;
453 	long int local = 0;
454 	long int ret = H_SUCCESS;
455 	struct revmap_entry *rev, *revs[4];
456 
457 	if (atomic_read(&kvm->online_vcpus) == 1)
458 		local = 1;
459 	for (i = 0; i < 4 && ret == H_SUCCESS; ) {
460 		n = 0;
461 		for (; i < 4; ++i) {
462 			j = i * 2;
463 			pte_index = args[j];
464 			flags = pte_index >> 56;
465 			pte_index &= ((1ul << 56) - 1);
466 			req = flags >> 6;
467 			flags &= 3;
468 			if (req == 3) {		/* no more requests */
469 				i = 4;
470 				break;
471 			}
472 			if (req != 1 || flags == 3 ||
473 			    pte_index >= kvm->arch.hpt_npte) {
474 				/* parameter error */
475 				args[j] = ((0xa0 | flags) << 56) + pte_index;
476 				ret = H_PARAMETER;
477 				break;
478 			}
479 			hp = (unsigned long *)
480 				(kvm->arch.hpt_virt + (pte_index << 4));
481 			/* to avoid deadlock, don't spin except for first */
482 			if (!try_lock_hpte(hp, HPTE_V_HVLOCK)) {
483 				if (n)
484 					break;
485 				while (!try_lock_hpte(hp, HPTE_V_HVLOCK))
486 					cpu_relax();
487 			}
488 			found = 0;
489 			if (hp[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) {
490 				switch (flags & 3) {
491 				case 0:		/* absolute */
492 					found = 1;
493 					break;
494 				case 1:		/* andcond */
495 					if (!(hp[0] & args[j + 1]))
496 						found = 1;
497 					break;
498 				case 2:		/* AVPN */
499 					if ((hp[0] & ~0x7fUL) == args[j + 1])
500 						found = 1;
501 					break;
502 				}
503 			}
504 			if (!found) {
505 				hp[0] &= ~HPTE_V_HVLOCK;
506 				args[j] = ((0x90 | flags) << 56) + pte_index;
507 				continue;
508 			}
509 
510 			args[j] = ((0x80 | flags) << 56) + pte_index;
511 			rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
512 			note_hpte_modification(kvm, rev);
513 
514 			if (!(hp[0] & HPTE_V_VALID)) {
515 				/* insert R and C bits from PTE */
516 				rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
517 				args[j] |= rcbits << (56 - 5);
518 				hp[0] = 0;
519 				continue;
520 			}
521 
522 			hp[0] &= ~HPTE_V_VALID;		/* leave it locked */
523 			tlbrb[n] = compute_tlbie_rb(hp[0], hp[1], pte_index);
524 			indexes[n] = j;
525 			hptes[n] = hp;
526 			revs[n] = rev;
527 			++n;
528 		}
529 
530 		if (!n)
531 			break;
532 
533 		/* Now that we've collected a batch, do the tlbies */
534 		if (!local) {
535 			while(!try_lock_tlbie(&kvm->arch.tlbie_lock))
536 				cpu_relax();
537 			asm volatile("ptesync" : : : "memory");
538 			for (k = 0; k < n; ++k)
539 				asm volatile(PPC_TLBIE(%1,%0) : :
540 					     "r" (tlbrb[k]),
541 					     "r" (kvm->arch.lpid));
542 			asm volatile("eieio; tlbsync; ptesync" : : : "memory");
543 			kvm->arch.tlbie_lock = 0;
544 		} else {
545 			asm volatile("ptesync" : : : "memory");
546 			for (k = 0; k < n; ++k)
547 				asm volatile("tlbiel %0" : : "r" (tlbrb[k]));
548 			asm volatile("ptesync" : : : "memory");
549 		}
550 
551 		/* Read PTE low words after tlbie to get final R/C values */
552 		for (k = 0; k < n; ++k) {
553 			j = indexes[k];
554 			pte_index = args[j] & ((1ul << 56) - 1);
555 			hp = hptes[k];
556 			rev = revs[k];
557 			remove_revmap_chain(kvm, pte_index, rev, hp[0], hp[1]);
558 			rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
559 			args[j] |= rcbits << (56 - 5);
560 			hp[0] = 0;
561 		}
562 	}
563 
564 	return ret;
565 }
566 
567 long kvmppc_h_protect(struct kvm_vcpu *vcpu, unsigned long flags,
568 		      unsigned long pte_index, unsigned long avpn,
569 		      unsigned long va)
570 {
571 	struct kvm *kvm = vcpu->kvm;
572 	unsigned long *hpte;
573 	struct revmap_entry *rev;
574 	unsigned long v, r, rb, mask, bits;
575 
576 	if (pte_index >= kvm->arch.hpt_npte)
577 		return H_PARAMETER;
578 
579 	hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
580 	while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
581 		cpu_relax();
582 	if ((hpte[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
583 	    ((flags & H_AVPN) && (hpte[0] & ~0x7fUL) != avpn)) {
584 		hpte[0] &= ~HPTE_V_HVLOCK;
585 		return H_NOT_FOUND;
586 	}
587 
588 	v = hpte[0];
589 	bits = (flags << 55) & HPTE_R_PP0;
590 	bits |= (flags << 48) & HPTE_R_KEY_HI;
591 	bits |= flags & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO);
592 
593 	/* Update guest view of 2nd HPTE dword */
594 	mask = HPTE_R_PP0 | HPTE_R_PP | HPTE_R_N |
595 		HPTE_R_KEY_HI | HPTE_R_KEY_LO;
596 	rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
597 	if (rev) {
598 		r = (rev->guest_rpte & ~mask) | bits;
599 		rev->guest_rpte = r;
600 		note_hpte_modification(kvm, rev);
601 	}
602 	r = (hpte[1] & ~mask) | bits;
603 
604 	/* Update HPTE */
605 	if (v & HPTE_V_VALID) {
606 		rb = compute_tlbie_rb(v, r, pte_index);
607 		hpte[0] = v & ~HPTE_V_VALID;
608 		if (global_invalidates(kvm, flags)) {
609 			while(!try_lock_tlbie(&kvm->arch.tlbie_lock))
610 				cpu_relax();
611 			asm volatile("ptesync" : : : "memory");
612 			asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
613 				     : : "r" (rb), "r" (kvm->arch.lpid));
614 			asm volatile("ptesync" : : : "memory");
615 			kvm->arch.tlbie_lock = 0;
616 		} else {
617 			asm volatile("ptesync" : : : "memory");
618 			asm volatile("tlbiel %0" : : "r" (rb));
619 			asm volatile("ptesync" : : : "memory");
620 		}
621 		/*
622 		 * If the host has this page as readonly but the guest
623 		 * wants to make it read/write, reduce the permissions.
624 		 * Checking the host permissions involves finding the
625 		 * memslot and then the Linux PTE for the page.
626 		 */
627 		if (hpte_is_writable(r) && kvm->arch.using_mmu_notifiers) {
628 			unsigned long psize, gfn, hva;
629 			struct kvm_memory_slot *memslot;
630 			pgd_t *pgdir = vcpu->arch.pgdir;
631 			pte_t pte;
632 
633 			psize = hpte_page_size(v, r);
634 			gfn = ((r & HPTE_R_RPN) & ~(psize - 1)) >> PAGE_SHIFT;
635 			memslot = __gfn_to_memslot(kvm_memslots(kvm), gfn);
636 			if (memslot) {
637 				hva = __gfn_to_hva_memslot(memslot, gfn);
638 				pte = lookup_linux_pte(pgdir, hva, 1, &psize);
639 				if (pte_present(pte) && !pte_write(pte))
640 					r = hpte_make_readonly(r);
641 			}
642 		}
643 	}
644 	hpte[1] = r;
645 	eieio();
646 	hpte[0] = v & ~HPTE_V_HVLOCK;
647 	asm volatile("ptesync" : : : "memory");
648 	return H_SUCCESS;
649 }
650 
651 long kvmppc_h_read(struct kvm_vcpu *vcpu, unsigned long flags,
652 		   unsigned long pte_index)
653 {
654 	struct kvm *kvm = vcpu->kvm;
655 	unsigned long *hpte, v, r;
656 	int i, n = 1;
657 	struct revmap_entry *rev = NULL;
658 
659 	if (pte_index >= kvm->arch.hpt_npte)
660 		return H_PARAMETER;
661 	if (flags & H_READ_4) {
662 		pte_index &= ~3;
663 		n = 4;
664 	}
665 	rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
666 	for (i = 0; i < n; ++i, ++pte_index) {
667 		hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
668 		v = hpte[0] & ~HPTE_V_HVLOCK;
669 		r = hpte[1];
670 		if (v & HPTE_V_ABSENT) {
671 			v &= ~HPTE_V_ABSENT;
672 			v |= HPTE_V_VALID;
673 		}
674 		if (v & HPTE_V_VALID) {
675 			r = rev[i].guest_rpte | (r & (HPTE_R_R | HPTE_R_C));
676 			r &= ~HPTE_GR_RESERVED;
677 		}
678 		vcpu->arch.gpr[4 + i * 2] = v;
679 		vcpu->arch.gpr[5 + i * 2] = r;
680 	}
681 	return H_SUCCESS;
682 }
683 
684 void kvmppc_invalidate_hpte(struct kvm *kvm, unsigned long *hptep,
685 			unsigned long pte_index)
686 {
687 	unsigned long rb;
688 
689 	hptep[0] &= ~HPTE_V_VALID;
690 	rb = compute_tlbie_rb(hptep[0], hptep[1], pte_index);
691 	while (!try_lock_tlbie(&kvm->arch.tlbie_lock))
692 		cpu_relax();
693 	asm volatile("ptesync" : : : "memory");
694 	asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
695 		     : : "r" (rb), "r" (kvm->arch.lpid));
696 	asm volatile("ptesync" : : : "memory");
697 	kvm->arch.tlbie_lock = 0;
698 }
699 EXPORT_SYMBOL_GPL(kvmppc_invalidate_hpte);
700 
701 void kvmppc_clear_ref_hpte(struct kvm *kvm, unsigned long *hptep,
702 			   unsigned long pte_index)
703 {
704 	unsigned long rb;
705 	unsigned char rbyte;
706 
707 	rb = compute_tlbie_rb(hptep[0], hptep[1], pte_index);
708 	rbyte = (hptep[1] & ~HPTE_R_R) >> 8;
709 	/* modify only the second-last byte, which contains the ref bit */
710 	*((char *)hptep + 14) = rbyte;
711 	while (!try_lock_tlbie(&kvm->arch.tlbie_lock))
712 		cpu_relax();
713 	asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
714 		     : : "r" (rb), "r" (kvm->arch.lpid));
715 	asm volatile("ptesync" : : : "memory");
716 	kvm->arch.tlbie_lock = 0;
717 }
718 EXPORT_SYMBOL_GPL(kvmppc_clear_ref_hpte);
719 
720 static int slb_base_page_shift[4] = {
721 	24,	/* 16M */
722 	16,	/* 64k */
723 	34,	/* 16G */
724 	20,	/* 1M, unsupported */
725 };
726 
727 long kvmppc_hv_find_lock_hpte(struct kvm *kvm, gva_t eaddr, unsigned long slb_v,
728 			      unsigned long valid)
729 {
730 	unsigned int i;
731 	unsigned int pshift;
732 	unsigned long somask;
733 	unsigned long vsid, hash;
734 	unsigned long avpn;
735 	unsigned long *hpte;
736 	unsigned long mask, val;
737 	unsigned long v, r;
738 
739 	/* Get page shift, work out hash and AVPN etc. */
740 	mask = SLB_VSID_B | HPTE_V_AVPN | HPTE_V_SECONDARY;
741 	val = 0;
742 	pshift = 12;
743 	if (slb_v & SLB_VSID_L) {
744 		mask |= HPTE_V_LARGE;
745 		val |= HPTE_V_LARGE;
746 		pshift = slb_base_page_shift[(slb_v & SLB_VSID_LP) >> 4];
747 	}
748 	if (slb_v & SLB_VSID_B_1T) {
749 		somask = (1UL << 40) - 1;
750 		vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T;
751 		vsid ^= vsid << 25;
752 	} else {
753 		somask = (1UL << 28) - 1;
754 		vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT;
755 	}
756 	hash = (vsid ^ ((eaddr & somask) >> pshift)) & kvm->arch.hpt_mask;
757 	avpn = slb_v & ~(somask >> 16);	/* also includes B */
758 	avpn |= (eaddr & somask) >> 16;
759 
760 	if (pshift >= 24)
761 		avpn &= ~((1UL << (pshift - 16)) - 1);
762 	else
763 		avpn &= ~0x7fUL;
764 	val |= avpn;
765 
766 	for (;;) {
767 		hpte = (unsigned long *)(kvm->arch.hpt_virt + (hash << 7));
768 
769 		for (i = 0; i < 16; i += 2) {
770 			/* Read the PTE racily */
771 			v = hpte[i] & ~HPTE_V_HVLOCK;
772 
773 			/* Check valid/absent, hash, segment size and AVPN */
774 			if (!(v & valid) || (v & mask) != val)
775 				continue;
776 
777 			/* Lock the PTE and read it under the lock */
778 			while (!try_lock_hpte(&hpte[i], HPTE_V_HVLOCK))
779 				cpu_relax();
780 			v = hpte[i] & ~HPTE_V_HVLOCK;
781 			r = hpte[i+1];
782 
783 			/*
784 			 * Check the HPTE again, including large page size
785 			 * Since we don't currently allow any MPSS (mixed
786 			 * page-size segment) page sizes, it is sufficient
787 			 * to check against the actual page size.
788 			 */
789 			if ((v & valid) && (v & mask) == val &&
790 			    hpte_page_size(v, r) == (1ul << pshift))
791 				/* Return with the HPTE still locked */
792 				return (hash << 3) + (i >> 1);
793 
794 			/* Unlock and move on */
795 			hpte[i] = v;
796 		}
797 
798 		if (val & HPTE_V_SECONDARY)
799 			break;
800 		val |= HPTE_V_SECONDARY;
801 		hash = hash ^ kvm->arch.hpt_mask;
802 	}
803 	return -1;
804 }
805 EXPORT_SYMBOL(kvmppc_hv_find_lock_hpte);
806 
807 /*
808  * Called in real mode to check whether an HPTE not found fault
809  * is due to accessing a paged-out page or an emulated MMIO page,
810  * or if a protection fault is due to accessing a page that the
811  * guest wanted read/write access to but which we made read-only.
812  * Returns a possibly modified status (DSISR) value if not
813  * (i.e. pass the interrupt to the guest),
814  * -1 to pass the fault up to host kernel mode code, -2 to do that
815  * and also load the instruction word (for MMIO emulation),
816  * or 0 if we should make the guest retry the access.
817  */
818 long kvmppc_hpte_hv_fault(struct kvm_vcpu *vcpu, unsigned long addr,
819 			  unsigned long slb_v, unsigned int status, bool data)
820 {
821 	struct kvm *kvm = vcpu->kvm;
822 	long int index;
823 	unsigned long v, r, gr;
824 	unsigned long *hpte;
825 	unsigned long valid;
826 	struct revmap_entry *rev;
827 	unsigned long pp, key;
828 
829 	/* For protection fault, expect to find a valid HPTE */
830 	valid = HPTE_V_VALID;
831 	if (status & DSISR_NOHPTE)
832 		valid |= HPTE_V_ABSENT;
833 
834 	index = kvmppc_hv_find_lock_hpte(kvm, addr, slb_v, valid);
835 	if (index < 0) {
836 		if (status & DSISR_NOHPTE)
837 			return status;	/* there really was no HPTE */
838 		return 0;		/* for prot fault, HPTE disappeared */
839 	}
840 	hpte = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
841 	v = hpte[0] & ~HPTE_V_HVLOCK;
842 	r = hpte[1];
843 	rev = real_vmalloc_addr(&kvm->arch.revmap[index]);
844 	gr = rev->guest_rpte;
845 
846 	unlock_hpte(hpte, v);
847 
848 	/* For not found, if the HPTE is valid by now, retry the instruction */
849 	if ((status & DSISR_NOHPTE) && (v & HPTE_V_VALID))
850 		return 0;
851 
852 	/* Check access permissions to the page */
853 	pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
854 	key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
855 	status &= ~DSISR_NOHPTE;	/* DSISR_NOHPTE == SRR1_ISI_NOPT */
856 	if (!data) {
857 		if (gr & (HPTE_R_N | HPTE_R_G))
858 			return status | SRR1_ISI_N_OR_G;
859 		if (!hpte_read_permission(pp, slb_v & key))
860 			return status | SRR1_ISI_PROT;
861 	} else if (status & DSISR_ISSTORE) {
862 		/* check write permission */
863 		if (!hpte_write_permission(pp, slb_v & key))
864 			return status | DSISR_PROTFAULT;
865 	} else {
866 		if (!hpte_read_permission(pp, slb_v & key))
867 			return status | DSISR_PROTFAULT;
868 	}
869 
870 	/* Check storage key, if applicable */
871 	if (data && (vcpu->arch.shregs.msr & MSR_DR)) {
872 		unsigned int perm = hpte_get_skey_perm(gr, vcpu->arch.amr);
873 		if (status & DSISR_ISSTORE)
874 			perm >>= 1;
875 		if (perm & 1)
876 			return status | DSISR_KEYFAULT;
877 	}
878 
879 	/* Save HPTE info for virtual-mode handler */
880 	vcpu->arch.pgfault_addr = addr;
881 	vcpu->arch.pgfault_index = index;
882 	vcpu->arch.pgfault_hpte[0] = v;
883 	vcpu->arch.pgfault_hpte[1] = r;
884 
885 	/* Check the storage key to see if it is possibly emulated MMIO */
886 	if (data && (vcpu->arch.shregs.msr & MSR_IR) &&
887 	    (r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) ==
888 	    (HPTE_R_KEY_HI | HPTE_R_KEY_LO))
889 		return -2;	/* MMIO emulation - load instr word */
890 
891 	return -1;		/* send fault up to host kernel mode */
892 }
893