xref: /openbmc/linux/arch/powerpc/kvm/book3s_hv_rm_mmu.c (revision 2f0f2441b4a10948e2ec042b48fef13680387f7c)
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * Copyright 2010-2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7  */
8 
9 #include <linux/types.h>
10 #include <linux/string.h>
11 #include <linux/kvm.h>
12 #include <linux/kvm_host.h>
13 #include <linux/hugetlb.h>
14 #include <linux/module.h>
15 #include <linux/log2.h>
16 #include <linux/sizes.h>
17 
18 #include <asm/trace.h>
19 #include <asm/kvm_ppc.h>
20 #include <asm/kvm_book3s.h>
21 #include <asm/book3s/64/mmu-hash.h>
22 #include <asm/hvcall.h>
23 #include <asm/synch.h>
24 #include <asm/ppc-opcode.h>
25 #include <asm/pte-walk.h>
26 
27 /* Translate address of a vmalloc'd thing to a linear map address */
28 static void *real_vmalloc_addr(void *x)
29 {
30 	unsigned long addr = (unsigned long) x;
31 	pte_t *p;
32 	/*
33 	 * assume we don't have huge pages in vmalloc space...
34 	 * So don't worry about THP collapse/split. Called
35 	 * Only in realmode with MSR_EE = 0, hence won't need irq_save/restore.
36 	 */
37 	p = find_init_mm_pte(addr, NULL);
38 	if (!p || !pte_present(*p))
39 		return NULL;
40 	addr = (pte_pfn(*p) << PAGE_SHIFT) | (addr & ~PAGE_MASK);
41 	return __va(addr);
42 }
43 
44 /* Return 1 if we need to do a global tlbie, 0 if we can use tlbiel */
45 static int global_invalidates(struct kvm *kvm)
46 {
47 	int global;
48 	int cpu;
49 
50 	/*
51 	 * If there is only one vcore, and it's currently running,
52 	 * as indicated by local_paca->kvm_hstate.kvm_vcpu being set,
53 	 * we can use tlbiel as long as we mark all other physical
54 	 * cores as potentially having stale TLB entries for this lpid.
55 	 * Otherwise, don't use tlbiel.
56 	 */
57 	if (kvm->arch.online_vcores == 1 && local_paca->kvm_hstate.kvm_vcpu)
58 		global = 0;
59 	else
60 		global = 1;
61 
62 	if (!global) {
63 		/* any other core might now have stale TLB entries... */
64 		smp_wmb();
65 		cpumask_setall(&kvm->arch.need_tlb_flush);
66 		cpu = local_paca->kvm_hstate.kvm_vcore->pcpu;
67 		/*
68 		 * On POWER9, threads are independent but the TLB is shared,
69 		 * so use the bit for the first thread to represent the core.
70 		 */
71 		if (cpu_has_feature(CPU_FTR_ARCH_300))
72 			cpu = cpu_first_thread_sibling(cpu);
73 		cpumask_clear_cpu(cpu, &kvm->arch.need_tlb_flush);
74 	}
75 
76 	return global;
77 }
78 
79 /*
80  * Add this HPTE into the chain for the real page.
81  * Must be called with the chain locked; it unlocks the chain.
82  */
83 void kvmppc_add_revmap_chain(struct kvm *kvm, struct revmap_entry *rev,
84 			     unsigned long *rmap, long pte_index, int realmode)
85 {
86 	struct revmap_entry *head, *tail;
87 	unsigned long i;
88 
89 	if (*rmap & KVMPPC_RMAP_PRESENT) {
90 		i = *rmap & KVMPPC_RMAP_INDEX;
91 		head = &kvm->arch.hpt.rev[i];
92 		if (realmode)
93 			head = real_vmalloc_addr(head);
94 		tail = &kvm->arch.hpt.rev[head->back];
95 		if (realmode)
96 			tail = real_vmalloc_addr(tail);
97 		rev->forw = i;
98 		rev->back = head->back;
99 		tail->forw = pte_index;
100 		head->back = pte_index;
101 	} else {
102 		rev->forw = rev->back = pte_index;
103 		*rmap = (*rmap & ~KVMPPC_RMAP_INDEX) |
104 			pte_index | KVMPPC_RMAP_PRESENT;
105 	}
106 	unlock_rmap(rmap);
107 }
108 EXPORT_SYMBOL_GPL(kvmppc_add_revmap_chain);
109 
110 /* Update the dirty bitmap of a memslot */
111 void kvmppc_update_dirty_map(const struct kvm_memory_slot *memslot,
112 			     unsigned long gfn, unsigned long psize)
113 {
114 	unsigned long npages;
115 
116 	if (!psize || !memslot->dirty_bitmap)
117 		return;
118 	npages = (psize + PAGE_SIZE - 1) / PAGE_SIZE;
119 	gfn -= memslot->base_gfn;
120 	set_dirty_bits_atomic(memslot->dirty_bitmap, gfn, npages);
121 }
122 EXPORT_SYMBOL_GPL(kvmppc_update_dirty_map);
123 
124 static void kvmppc_set_dirty_from_hpte(struct kvm *kvm,
125 				unsigned long hpte_v, unsigned long hpte_gr)
126 {
127 	struct kvm_memory_slot *memslot;
128 	unsigned long gfn;
129 	unsigned long psize;
130 
131 	psize = kvmppc_actual_pgsz(hpte_v, hpte_gr);
132 	gfn = hpte_rpn(hpte_gr, psize);
133 	memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
134 	if (memslot && memslot->dirty_bitmap)
135 		kvmppc_update_dirty_map(memslot, gfn, psize);
136 }
137 
138 /* Returns a pointer to the revmap entry for the page mapped by a HPTE */
139 static unsigned long *revmap_for_hpte(struct kvm *kvm, unsigned long hpte_v,
140 				      unsigned long hpte_gr,
141 				      struct kvm_memory_slot **memslotp,
142 				      unsigned long *gfnp)
143 {
144 	struct kvm_memory_slot *memslot;
145 	unsigned long *rmap;
146 	unsigned long gfn;
147 
148 	gfn = hpte_rpn(hpte_gr, kvmppc_actual_pgsz(hpte_v, hpte_gr));
149 	memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
150 	if (memslotp)
151 		*memslotp = memslot;
152 	if (gfnp)
153 		*gfnp = gfn;
154 	if (!memslot)
155 		return NULL;
156 
157 	rmap = real_vmalloc_addr(&memslot->arch.rmap[gfn - memslot->base_gfn]);
158 	return rmap;
159 }
160 
161 /* Remove this HPTE from the chain for a real page */
162 static void remove_revmap_chain(struct kvm *kvm, long pte_index,
163 				struct revmap_entry *rev,
164 				unsigned long hpte_v, unsigned long hpte_r)
165 {
166 	struct revmap_entry *next, *prev;
167 	unsigned long ptel, head;
168 	unsigned long *rmap;
169 	unsigned long rcbits;
170 	struct kvm_memory_slot *memslot;
171 	unsigned long gfn;
172 
173 	rcbits = hpte_r & (HPTE_R_R | HPTE_R_C);
174 	ptel = rev->guest_rpte |= rcbits;
175 	rmap = revmap_for_hpte(kvm, hpte_v, ptel, &memslot, &gfn);
176 	if (!rmap)
177 		return;
178 	lock_rmap(rmap);
179 
180 	head = *rmap & KVMPPC_RMAP_INDEX;
181 	next = real_vmalloc_addr(&kvm->arch.hpt.rev[rev->forw]);
182 	prev = real_vmalloc_addr(&kvm->arch.hpt.rev[rev->back]);
183 	next->back = rev->back;
184 	prev->forw = rev->forw;
185 	if (head == pte_index) {
186 		head = rev->forw;
187 		if (head == pte_index)
188 			*rmap &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
189 		else
190 			*rmap = (*rmap & ~KVMPPC_RMAP_INDEX) | head;
191 	}
192 	*rmap |= rcbits << KVMPPC_RMAP_RC_SHIFT;
193 	if (rcbits & HPTE_R_C)
194 		kvmppc_update_dirty_map(memslot, gfn,
195 					kvmppc_actual_pgsz(hpte_v, hpte_r));
196 	unlock_rmap(rmap);
197 }
198 
199 long kvmppc_do_h_enter(struct kvm *kvm, unsigned long flags,
200 		       long pte_index, unsigned long pteh, unsigned long ptel,
201 		       pgd_t *pgdir, bool realmode, unsigned long *pte_idx_ret)
202 {
203 	unsigned long i, pa, gpa, gfn, psize;
204 	unsigned long slot_fn, hva;
205 	__be64 *hpte;
206 	struct revmap_entry *rev;
207 	unsigned long g_ptel;
208 	struct kvm_memory_slot *memslot;
209 	unsigned hpage_shift;
210 	bool is_ci;
211 	unsigned long *rmap;
212 	pte_t *ptep;
213 	unsigned int writing;
214 	unsigned long mmu_seq;
215 	unsigned long rcbits, irq_flags = 0;
216 
217 	if (kvm_is_radix(kvm))
218 		return H_FUNCTION;
219 	psize = kvmppc_actual_pgsz(pteh, ptel);
220 	if (!psize)
221 		return H_PARAMETER;
222 	writing = hpte_is_writable(ptel);
223 	pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
224 	ptel &= ~HPTE_GR_RESERVED;
225 	g_ptel = ptel;
226 
227 	/* used later to detect if we might have been invalidated */
228 	mmu_seq = kvm->mmu_notifier_seq;
229 	smp_rmb();
230 
231 	/* Find the memslot (if any) for this address */
232 	gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
233 	gfn = gpa >> PAGE_SHIFT;
234 	memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
235 	pa = 0;
236 	is_ci = false;
237 	rmap = NULL;
238 	if (!(memslot && !(memslot->flags & KVM_MEMSLOT_INVALID))) {
239 		/* Emulated MMIO - mark this with key=31 */
240 		pteh |= HPTE_V_ABSENT;
241 		ptel |= HPTE_R_KEY_HI | HPTE_R_KEY_LO;
242 		goto do_insert;
243 	}
244 
245 	/* Check if the requested page fits entirely in the memslot. */
246 	if (!slot_is_aligned(memslot, psize))
247 		return H_PARAMETER;
248 	slot_fn = gfn - memslot->base_gfn;
249 	rmap = &memslot->arch.rmap[slot_fn];
250 
251 	/* Translate to host virtual address */
252 	hva = __gfn_to_hva_memslot(memslot, gfn);
253 	/*
254 	 * If we had a page table table change after lookup, we would
255 	 * retry via mmu_notifier_retry.
256 	 */
257 	if (!realmode)
258 		local_irq_save(irq_flags);
259 	/*
260 	 * If called in real mode we have MSR_EE = 0. Otherwise
261 	 * we disable irq above.
262 	 */
263 	ptep = __find_linux_pte(pgdir, hva, NULL, &hpage_shift);
264 	if (ptep) {
265 		pte_t pte;
266 		unsigned int host_pte_size;
267 
268 		if (hpage_shift)
269 			host_pte_size = 1ul << hpage_shift;
270 		else
271 			host_pte_size = PAGE_SIZE;
272 		/*
273 		 * We should always find the guest page size
274 		 * to <= host page size, if host is using hugepage
275 		 */
276 		if (host_pte_size < psize) {
277 			if (!realmode)
278 				local_irq_restore(flags);
279 			return H_PARAMETER;
280 		}
281 		pte = kvmppc_read_update_linux_pte(ptep, writing);
282 		if (pte_present(pte) && !pte_protnone(pte)) {
283 			if (writing && !__pte_write(pte))
284 				/* make the actual HPTE be read-only */
285 				ptel = hpte_make_readonly(ptel);
286 			is_ci = pte_ci(pte);
287 			pa = pte_pfn(pte) << PAGE_SHIFT;
288 			pa |= hva & (host_pte_size - 1);
289 			pa |= gpa & ~PAGE_MASK;
290 		}
291 	}
292 	if (!realmode)
293 		local_irq_restore(irq_flags);
294 
295 	ptel &= HPTE_R_KEY | HPTE_R_PP0 | (psize-1);
296 	ptel |= pa;
297 
298 	if (pa)
299 		pteh |= HPTE_V_VALID;
300 	else {
301 		pteh |= HPTE_V_ABSENT;
302 		ptel &= ~(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
303 	}
304 
305 	/*If we had host pte mapping then  Check WIMG */
306 	if (ptep && !hpte_cache_flags_ok(ptel, is_ci)) {
307 		if (is_ci)
308 			return H_PARAMETER;
309 		/*
310 		 * Allow guest to map emulated device memory as
311 		 * uncacheable, but actually make it cacheable.
312 		 */
313 		ptel &= ~(HPTE_R_W|HPTE_R_I|HPTE_R_G);
314 		ptel |= HPTE_R_M;
315 	}
316 
317 	/* Find and lock the HPTEG slot to use */
318  do_insert:
319 	if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
320 		return H_PARAMETER;
321 	if (likely((flags & H_EXACT) == 0)) {
322 		pte_index &= ~7UL;
323 		hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
324 		for (i = 0; i < 8; ++i) {
325 			if ((be64_to_cpu(*hpte) & HPTE_V_VALID) == 0 &&
326 			    try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
327 					  HPTE_V_ABSENT))
328 				break;
329 			hpte += 2;
330 		}
331 		if (i == 8) {
332 			/*
333 			 * Since try_lock_hpte doesn't retry (not even stdcx.
334 			 * failures), it could be that there is a free slot
335 			 * but we transiently failed to lock it.  Try again,
336 			 * actually locking each slot and checking it.
337 			 */
338 			hpte -= 16;
339 			for (i = 0; i < 8; ++i) {
340 				u64 pte;
341 				while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
342 					cpu_relax();
343 				pte = be64_to_cpu(hpte[0]);
344 				if (!(pte & (HPTE_V_VALID | HPTE_V_ABSENT)))
345 					break;
346 				__unlock_hpte(hpte, pte);
347 				hpte += 2;
348 			}
349 			if (i == 8)
350 				return H_PTEG_FULL;
351 		}
352 		pte_index += i;
353 	} else {
354 		hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
355 		if (!try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
356 				   HPTE_V_ABSENT)) {
357 			/* Lock the slot and check again */
358 			u64 pte;
359 
360 			while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
361 				cpu_relax();
362 			pte = be64_to_cpu(hpte[0]);
363 			if (pte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
364 				__unlock_hpte(hpte, pte);
365 				return H_PTEG_FULL;
366 			}
367 		}
368 	}
369 
370 	/* Save away the guest's idea of the second HPTE dword */
371 	rev = &kvm->arch.hpt.rev[pte_index];
372 	if (realmode)
373 		rev = real_vmalloc_addr(rev);
374 	if (rev) {
375 		rev->guest_rpte = g_ptel;
376 		note_hpte_modification(kvm, rev);
377 	}
378 
379 	/* Link HPTE into reverse-map chain */
380 	if (pteh & HPTE_V_VALID) {
381 		if (realmode)
382 			rmap = real_vmalloc_addr(rmap);
383 		lock_rmap(rmap);
384 		/* Check for pending invalidations under the rmap chain lock */
385 		if (mmu_notifier_retry(kvm, mmu_seq)) {
386 			/* inval in progress, write a non-present HPTE */
387 			pteh |= HPTE_V_ABSENT;
388 			pteh &= ~HPTE_V_VALID;
389 			ptel &= ~(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
390 			unlock_rmap(rmap);
391 		} else {
392 			kvmppc_add_revmap_chain(kvm, rev, rmap, pte_index,
393 						realmode);
394 			/* Only set R/C in real HPTE if already set in *rmap */
395 			rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
396 			ptel &= rcbits | ~(HPTE_R_R | HPTE_R_C);
397 		}
398 	}
399 
400 	/* Convert to new format on P9 */
401 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
402 		ptel = hpte_old_to_new_r(pteh, ptel);
403 		pteh = hpte_old_to_new_v(pteh);
404 	}
405 	hpte[1] = cpu_to_be64(ptel);
406 
407 	/* Write the first HPTE dword, unlocking the HPTE and making it valid */
408 	eieio();
409 	__unlock_hpte(hpte, pteh);
410 	asm volatile("ptesync" : : : "memory");
411 
412 	*pte_idx_ret = pte_index;
413 	return H_SUCCESS;
414 }
415 EXPORT_SYMBOL_GPL(kvmppc_do_h_enter);
416 
417 long kvmppc_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
418 		    long pte_index, unsigned long pteh, unsigned long ptel)
419 {
420 	return kvmppc_do_h_enter(vcpu->kvm, flags, pte_index, pteh, ptel,
421 				 vcpu->arch.pgdir, true,
422 				 &vcpu->arch.regs.gpr[4]);
423 }
424 
425 #ifdef __BIG_ENDIAN__
426 #define LOCK_TOKEN	(*(u32 *)(&get_paca()->lock_token))
427 #else
428 #define LOCK_TOKEN	(*(u32 *)(&get_paca()->paca_index))
429 #endif
430 
431 static inline int is_mmio_hpte(unsigned long v, unsigned long r)
432 {
433 	return ((v & HPTE_V_ABSENT) &&
434 		(r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) ==
435 		(HPTE_R_KEY_HI | HPTE_R_KEY_LO));
436 }
437 
438 static void do_tlbies(struct kvm *kvm, unsigned long *rbvalues,
439 		      long npages, int global, bool need_sync)
440 {
441 	long i;
442 
443 	/*
444 	 * We use the POWER9 5-operand versions of tlbie and tlbiel here.
445 	 * Since we are using RIC=0 PRS=0 R=0, and P7/P8 tlbiel ignores
446 	 * the RS field, this is backwards-compatible with P7 and P8.
447 	 */
448 	if (global) {
449 		if (need_sync)
450 			asm volatile("ptesync" : : : "memory");
451 		for (i = 0; i < npages; ++i) {
452 			asm volatile(PPC_TLBIE_5(%0,%1,0,0,0) : :
453 				     "r" (rbvalues[i]), "r" (kvm->arch.lpid));
454 		}
455 
456 		if (cpu_has_feature(CPU_FTR_P9_TLBIE_BUG)) {
457 			/*
458 			 * Need the extra ptesync to make sure we don't
459 			 * re-order the tlbie
460 			 */
461 			asm volatile("ptesync": : :"memory");
462 			asm volatile(PPC_TLBIE_5(%0,%1,0,0,0) : :
463 				     "r" (rbvalues[0]), "r" (kvm->arch.lpid));
464 		}
465 
466 		asm volatile("eieio; tlbsync; ptesync" : : : "memory");
467 	} else {
468 		if (need_sync)
469 			asm volatile("ptesync" : : : "memory");
470 		for (i = 0; i < npages; ++i) {
471 			asm volatile(PPC_TLBIEL(%0,%1,0,0,0) : :
472 				     "r" (rbvalues[i]), "r" (0));
473 		}
474 		asm volatile("ptesync" : : : "memory");
475 	}
476 }
477 
478 long kvmppc_do_h_remove(struct kvm *kvm, unsigned long flags,
479 			unsigned long pte_index, unsigned long avpn,
480 			unsigned long *hpret)
481 {
482 	__be64 *hpte;
483 	unsigned long v, r, rb;
484 	struct revmap_entry *rev;
485 	u64 pte, orig_pte, pte_r;
486 
487 	if (kvm_is_radix(kvm))
488 		return H_FUNCTION;
489 	if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
490 		return H_PARAMETER;
491 	hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
492 	while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
493 		cpu_relax();
494 	pte = orig_pte = be64_to_cpu(hpte[0]);
495 	pte_r = be64_to_cpu(hpte[1]);
496 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
497 		pte = hpte_new_to_old_v(pte, pte_r);
498 		pte_r = hpte_new_to_old_r(pte_r);
499 	}
500 	if ((pte & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
501 	    ((flags & H_AVPN) && (pte & ~0x7fUL) != avpn) ||
502 	    ((flags & H_ANDCOND) && (pte & avpn) != 0)) {
503 		__unlock_hpte(hpte, orig_pte);
504 		return H_NOT_FOUND;
505 	}
506 
507 	rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
508 	v = pte & ~HPTE_V_HVLOCK;
509 	if (v & HPTE_V_VALID) {
510 		hpte[0] &= ~cpu_to_be64(HPTE_V_VALID);
511 		rb = compute_tlbie_rb(v, pte_r, pte_index);
512 		do_tlbies(kvm, &rb, 1, global_invalidates(kvm), true);
513 		/*
514 		 * The reference (R) and change (C) bits in a HPT
515 		 * entry can be set by hardware at any time up until
516 		 * the HPTE is invalidated and the TLB invalidation
517 		 * sequence has completed.  This means that when
518 		 * removing a HPTE, we need to re-read the HPTE after
519 		 * the invalidation sequence has completed in order to
520 		 * obtain reliable values of R and C.
521 		 */
522 		remove_revmap_chain(kvm, pte_index, rev, v,
523 				    be64_to_cpu(hpte[1]));
524 	}
525 	r = rev->guest_rpte & ~HPTE_GR_RESERVED;
526 	note_hpte_modification(kvm, rev);
527 	unlock_hpte(hpte, 0);
528 
529 	if (is_mmio_hpte(v, pte_r))
530 		atomic64_inc(&kvm->arch.mmio_update);
531 
532 	if (v & HPTE_V_ABSENT)
533 		v = (v & ~HPTE_V_ABSENT) | HPTE_V_VALID;
534 	hpret[0] = v;
535 	hpret[1] = r;
536 	return H_SUCCESS;
537 }
538 EXPORT_SYMBOL_GPL(kvmppc_do_h_remove);
539 
540 long kvmppc_h_remove(struct kvm_vcpu *vcpu, unsigned long flags,
541 		     unsigned long pte_index, unsigned long avpn)
542 {
543 	return kvmppc_do_h_remove(vcpu->kvm, flags, pte_index, avpn,
544 				  &vcpu->arch.regs.gpr[4]);
545 }
546 
547 long kvmppc_h_bulk_remove(struct kvm_vcpu *vcpu)
548 {
549 	struct kvm *kvm = vcpu->kvm;
550 	unsigned long *args = &vcpu->arch.regs.gpr[4];
551 	__be64 *hp, *hptes[4];
552 	unsigned long tlbrb[4];
553 	long int i, j, k, n, found, indexes[4];
554 	unsigned long flags, req, pte_index, rcbits;
555 	int global;
556 	long int ret = H_SUCCESS;
557 	struct revmap_entry *rev, *revs[4];
558 	u64 hp0, hp1;
559 
560 	if (kvm_is_radix(kvm))
561 		return H_FUNCTION;
562 	global = global_invalidates(kvm);
563 	for (i = 0; i < 4 && ret == H_SUCCESS; ) {
564 		n = 0;
565 		for (; i < 4; ++i) {
566 			j = i * 2;
567 			pte_index = args[j];
568 			flags = pte_index >> 56;
569 			pte_index &= ((1ul << 56) - 1);
570 			req = flags >> 6;
571 			flags &= 3;
572 			if (req == 3) {		/* no more requests */
573 				i = 4;
574 				break;
575 			}
576 			if (req != 1 || flags == 3 ||
577 			    pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt)) {
578 				/* parameter error */
579 				args[j] = ((0xa0 | flags) << 56) + pte_index;
580 				ret = H_PARAMETER;
581 				break;
582 			}
583 			hp = (__be64 *) (kvm->arch.hpt.virt + (pte_index << 4));
584 			/* to avoid deadlock, don't spin except for first */
585 			if (!try_lock_hpte(hp, HPTE_V_HVLOCK)) {
586 				if (n)
587 					break;
588 				while (!try_lock_hpte(hp, HPTE_V_HVLOCK))
589 					cpu_relax();
590 			}
591 			found = 0;
592 			hp0 = be64_to_cpu(hp[0]);
593 			hp1 = be64_to_cpu(hp[1]);
594 			if (cpu_has_feature(CPU_FTR_ARCH_300)) {
595 				hp0 = hpte_new_to_old_v(hp0, hp1);
596 				hp1 = hpte_new_to_old_r(hp1);
597 			}
598 			if (hp0 & (HPTE_V_ABSENT | HPTE_V_VALID)) {
599 				switch (flags & 3) {
600 				case 0:		/* absolute */
601 					found = 1;
602 					break;
603 				case 1:		/* andcond */
604 					if (!(hp0 & args[j + 1]))
605 						found = 1;
606 					break;
607 				case 2:		/* AVPN */
608 					if ((hp0 & ~0x7fUL) == args[j + 1])
609 						found = 1;
610 					break;
611 				}
612 			}
613 			if (!found) {
614 				hp[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
615 				args[j] = ((0x90 | flags) << 56) + pte_index;
616 				continue;
617 			}
618 
619 			args[j] = ((0x80 | flags) << 56) + pte_index;
620 			rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
621 			note_hpte_modification(kvm, rev);
622 
623 			if (!(hp0 & HPTE_V_VALID)) {
624 				/* insert R and C bits from PTE */
625 				rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
626 				args[j] |= rcbits << (56 - 5);
627 				hp[0] = 0;
628 				if (is_mmio_hpte(hp0, hp1))
629 					atomic64_inc(&kvm->arch.mmio_update);
630 				continue;
631 			}
632 
633 			/* leave it locked */
634 			hp[0] &= ~cpu_to_be64(HPTE_V_VALID);
635 			tlbrb[n] = compute_tlbie_rb(hp0, hp1, pte_index);
636 			indexes[n] = j;
637 			hptes[n] = hp;
638 			revs[n] = rev;
639 			++n;
640 		}
641 
642 		if (!n)
643 			break;
644 
645 		/* Now that we've collected a batch, do the tlbies */
646 		do_tlbies(kvm, tlbrb, n, global, true);
647 
648 		/* Read PTE low words after tlbie to get final R/C values */
649 		for (k = 0; k < n; ++k) {
650 			j = indexes[k];
651 			pte_index = args[j] & ((1ul << 56) - 1);
652 			hp = hptes[k];
653 			rev = revs[k];
654 			remove_revmap_chain(kvm, pte_index, rev,
655 				be64_to_cpu(hp[0]), be64_to_cpu(hp[1]));
656 			rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
657 			args[j] |= rcbits << (56 - 5);
658 			__unlock_hpte(hp, 0);
659 		}
660 	}
661 
662 	return ret;
663 }
664 
665 long kvmppc_h_protect(struct kvm_vcpu *vcpu, unsigned long flags,
666 		      unsigned long pte_index, unsigned long avpn,
667 		      unsigned long va)
668 {
669 	struct kvm *kvm = vcpu->kvm;
670 	__be64 *hpte;
671 	struct revmap_entry *rev;
672 	unsigned long v, r, rb, mask, bits;
673 	u64 pte_v, pte_r;
674 
675 	if (kvm_is_radix(kvm))
676 		return H_FUNCTION;
677 	if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
678 		return H_PARAMETER;
679 
680 	hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
681 	while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
682 		cpu_relax();
683 	v = pte_v = be64_to_cpu(hpte[0]);
684 	if (cpu_has_feature(CPU_FTR_ARCH_300))
685 		v = hpte_new_to_old_v(v, be64_to_cpu(hpte[1]));
686 	if ((v & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
687 	    ((flags & H_AVPN) && (v & ~0x7fUL) != avpn)) {
688 		__unlock_hpte(hpte, pte_v);
689 		return H_NOT_FOUND;
690 	}
691 
692 	pte_r = be64_to_cpu(hpte[1]);
693 	bits = (flags << 55) & HPTE_R_PP0;
694 	bits |= (flags << 48) & HPTE_R_KEY_HI;
695 	bits |= flags & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO);
696 
697 	/* Update guest view of 2nd HPTE dword */
698 	mask = HPTE_R_PP0 | HPTE_R_PP | HPTE_R_N |
699 		HPTE_R_KEY_HI | HPTE_R_KEY_LO;
700 	rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
701 	if (rev) {
702 		r = (rev->guest_rpte & ~mask) | bits;
703 		rev->guest_rpte = r;
704 		note_hpte_modification(kvm, rev);
705 	}
706 
707 	/* Update HPTE */
708 	if (v & HPTE_V_VALID) {
709 		/*
710 		 * If the page is valid, don't let it transition from
711 		 * readonly to writable.  If it should be writable, we'll
712 		 * take a trap and let the page fault code sort it out.
713 		 */
714 		r = (pte_r & ~mask) | bits;
715 		if (hpte_is_writable(r) && !hpte_is_writable(pte_r))
716 			r = hpte_make_readonly(r);
717 		/* If the PTE is changing, invalidate it first */
718 		if (r != pte_r) {
719 			rb = compute_tlbie_rb(v, r, pte_index);
720 			hpte[0] = cpu_to_be64((pte_v & ~HPTE_V_VALID) |
721 					      HPTE_V_ABSENT);
722 			do_tlbies(kvm, &rb, 1, global_invalidates(kvm), true);
723 			/* Don't lose R/C bit updates done by hardware */
724 			r |= be64_to_cpu(hpte[1]) & (HPTE_R_R | HPTE_R_C);
725 			hpte[1] = cpu_to_be64(r);
726 		}
727 	}
728 	unlock_hpte(hpte, pte_v & ~HPTE_V_HVLOCK);
729 	asm volatile("ptesync" : : : "memory");
730 	if (is_mmio_hpte(v, pte_r))
731 		atomic64_inc(&kvm->arch.mmio_update);
732 
733 	return H_SUCCESS;
734 }
735 
736 long kvmppc_h_read(struct kvm_vcpu *vcpu, unsigned long flags,
737 		   unsigned long pte_index)
738 {
739 	struct kvm *kvm = vcpu->kvm;
740 	__be64 *hpte;
741 	unsigned long v, r;
742 	int i, n = 1;
743 	struct revmap_entry *rev = NULL;
744 
745 	if (kvm_is_radix(kvm))
746 		return H_FUNCTION;
747 	if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
748 		return H_PARAMETER;
749 	if (flags & H_READ_4) {
750 		pte_index &= ~3;
751 		n = 4;
752 	}
753 	rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
754 	for (i = 0; i < n; ++i, ++pte_index) {
755 		hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
756 		v = be64_to_cpu(hpte[0]) & ~HPTE_V_HVLOCK;
757 		r = be64_to_cpu(hpte[1]);
758 		if (cpu_has_feature(CPU_FTR_ARCH_300)) {
759 			v = hpte_new_to_old_v(v, r);
760 			r = hpte_new_to_old_r(r);
761 		}
762 		if (v & HPTE_V_ABSENT) {
763 			v &= ~HPTE_V_ABSENT;
764 			v |= HPTE_V_VALID;
765 		}
766 		if (v & HPTE_V_VALID) {
767 			r = rev[i].guest_rpte | (r & (HPTE_R_R | HPTE_R_C));
768 			r &= ~HPTE_GR_RESERVED;
769 		}
770 		vcpu->arch.regs.gpr[4 + i * 2] = v;
771 		vcpu->arch.regs.gpr[5 + i * 2] = r;
772 	}
773 	return H_SUCCESS;
774 }
775 
776 long kvmppc_h_clear_ref(struct kvm_vcpu *vcpu, unsigned long flags,
777 			unsigned long pte_index)
778 {
779 	struct kvm *kvm = vcpu->kvm;
780 	__be64 *hpte;
781 	unsigned long v, r, gr;
782 	struct revmap_entry *rev;
783 	unsigned long *rmap;
784 	long ret = H_NOT_FOUND;
785 
786 	if (kvm_is_radix(kvm))
787 		return H_FUNCTION;
788 	if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
789 		return H_PARAMETER;
790 
791 	rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
792 	hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
793 	while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
794 		cpu_relax();
795 	v = be64_to_cpu(hpte[0]);
796 	r = be64_to_cpu(hpte[1]);
797 	if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
798 		goto out;
799 
800 	gr = rev->guest_rpte;
801 	if (rev->guest_rpte & HPTE_R_R) {
802 		rev->guest_rpte &= ~HPTE_R_R;
803 		note_hpte_modification(kvm, rev);
804 	}
805 	if (v & HPTE_V_VALID) {
806 		gr |= r & (HPTE_R_R | HPTE_R_C);
807 		if (r & HPTE_R_R) {
808 			kvmppc_clear_ref_hpte(kvm, hpte, pte_index);
809 			rmap = revmap_for_hpte(kvm, v, gr, NULL, NULL);
810 			if (rmap) {
811 				lock_rmap(rmap);
812 				*rmap |= KVMPPC_RMAP_REFERENCED;
813 				unlock_rmap(rmap);
814 			}
815 		}
816 	}
817 	vcpu->arch.regs.gpr[4] = gr;
818 	ret = H_SUCCESS;
819  out:
820 	unlock_hpte(hpte, v & ~HPTE_V_HVLOCK);
821 	return ret;
822 }
823 
824 long kvmppc_h_clear_mod(struct kvm_vcpu *vcpu, unsigned long flags,
825 			unsigned long pte_index)
826 {
827 	struct kvm *kvm = vcpu->kvm;
828 	__be64 *hpte;
829 	unsigned long v, r, gr;
830 	struct revmap_entry *rev;
831 	long ret = H_NOT_FOUND;
832 
833 	if (kvm_is_radix(kvm))
834 		return H_FUNCTION;
835 	if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
836 		return H_PARAMETER;
837 
838 	rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
839 	hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
840 	while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
841 		cpu_relax();
842 	v = be64_to_cpu(hpte[0]);
843 	r = be64_to_cpu(hpte[1]);
844 	if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
845 		goto out;
846 
847 	gr = rev->guest_rpte;
848 	if (gr & HPTE_R_C) {
849 		rev->guest_rpte &= ~HPTE_R_C;
850 		note_hpte_modification(kvm, rev);
851 	}
852 	if (v & HPTE_V_VALID) {
853 		/* need to make it temporarily absent so C is stable */
854 		hpte[0] |= cpu_to_be64(HPTE_V_ABSENT);
855 		kvmppc_invalidate_hpte(kvm, hpte, pte_index);
856 		r = be64_to_cpu(hpte[1]);
857 		gr |= r & (HPTE_R_R | HPTE_R_C);
858 		if (r & HPTE_R_C) {
859 			hpte[1] = cpu_to_be64(r & ~HPTE_R_C);
860 			eieio();
861 			kvmppc_set_dirty_from_hpte(kvm, v, gr);
862 		}
863 	}
864 	vcpu->arch.regs.gpr[4] = gr;
865 	ret = H_SUCCESS;
866  out:
867 	unlock_hpte(hpte, v & ~HPTE_V_HVLOCK);
868 	return ret;
869 }
870 
871 static int kvmppc_get_hpa(struct kvm_vcpu *vcpu, unsigned long gpa,
872 			  int writing, unsigned long *hpa,
873 			  struct kvm_memory_slot **memslot_p)
874 {
875 	struct kvm *kvm = vcpu->kvm;
876 	struct kvm_memory_slot *memslot;
877 	unsigned long gfn, hva, pa, psize = PAGE_SHIFT;
878 	unsigned int shift;
879 	pte_t *ptep, pte;
880 
881 	/* Find the memslot for this address */
882 	gfn = gpa >> PAGE_SHIFT;
883 	memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
884 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
885 		return H_PARAMETER;
886 
887 	/* Translate to host virtual address */
888 	hva = __gfn_to_hva_memslot(memslot, gfn);
889 
890 	/* Try to find the host pte for that virtual address */
891 	ptep = __find_linux_pte(vcpu->arch.pgdir, hva, NULL, &shift);
892 	if (!ptep)
893 		return H_TOO_HARD;
894 	pte = kvmppc_read_update_linux_pte(ptep, writing);
895 	if (!pte_present(pte))
896 		return H_TOO_HARD;
897 
898 	/* Convert to a physical address */
899 	if (shift)
900 		psize = 1UL << shift;
901 	pa = pte_pfn(pte) << PAGE_SHIFT;
902 	pa |= hva & (psize - 1);
903 	pa |= gpa & ~PAGE_MASK;
904 
905 	if (hpa)
906 		*hpa = pa;
907 	if (memslot_p)
908 		*memslot_p = memslot;
909 
910 	return H_SUCCESS;
911 }
912 
913 static long kvmppc_do_h_page_init_zero(struct kvm_vcpu *vcpu,
914 				       unsigned long dest)
915 {
916 	struct kvm_memory_slot *memslot;
917 	struct kvm *kvm = vcpu->kvm;
918 	unsigned long pa, mmu_seq;
919 	long ret = H_SUCCESS;
920 	int i;
921 
922 	/* Used later to detect if we might have been invalidated */
923 	mmu_seq = kvm->mmu_notifier_seq;
924 	smp_rmb();
925 
926 	ret = kvmppc_get_hpa(vcpu, dest, 1, &pa, &memslot);
927 	if (ret != H_SUCCESS)
928 		return ret;
929 
930 	/* Check if we've been invalidated */
931 	raw_spin_lock(&kvm->mmu_lock.rlock);
932 	if (mmu_notifier_retry(kvm, mmu_seq)) {
933 		ret = H_TOO_HARD;
934 		goto out_unlock;
935 	}
936 
937 	/* Zero the page */
938 	for (i = 0; i < SZ_4K; i += L1_CACHE_BYTES, pa += L1_CACHE_BYTES)
939 		dcbz((void *)pa);
940 	kvmppc_update_dirty_map(memslot, dest >> PAGE_SHIFT, PAGE_SIZE);
941 
942 out_unlock:
943 	raw_spin_unlock(&kvm->mmu_lock.rlock);
944 	return ret;
945 }
946 
947 static long kvmppc_do_h_page_init_copy(struct kvm_vcpu *vcpu,
948 				       unsigned long dest, unsigned long src)
949 {
950 	unsigned long dest_pa, src_pa, mmu_seq;
951 	struct kvm_memory_slot *dest_memslot;
952 	struct kvm *kvm = vcpu->kvm;
953 	long ret = H_SUCCESS;
954 
955 	/* Used later to detect if we might have been invalidated */
956 	mmu_seq = kvm->mmu_notifier_seq;
957 	smp_rmb();
958 
959 	ret = kvmppc_get_hpa(vcpu, dest, 1, &dest_pa, &dest_memslot);
960 	if (ret != H_SUCCESS)
961 		return ret;
962 	ret = kvmppc_get_hpa(vcpu, src, 0, &src_pa, NULL);
963 	if (ret != H_SUCCESS)
964 		return ret;
965 
966 	/* Check if we've been invalidated */
967 	raw_spin_lock(&kvm->mmu_lock.rlock);
968 	if (mmu_notifier_retry(kvm, mmu_seq)) {
969 		ret = H_TOO_HARD;
970 		goto out_unlock;
971 	}
972 
973 	/* Copy the page */
974 	memcpy((void *)dest_pa, (void *)src_pa, SZ_4K);
975 
976 	kvmppc_update_dirty_map(dest_memslot, dest >> PAGE_SHIFT, PAGE_SIZE);
977 
978 out_unlock:
979 	raw_spin_unlock(&kvm->mmu_lock.rlock);
980 	return ret;
981 }
982 
983 long kvmppc_rm_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
984 			   unsigned long dest, unsigned long src)
985 {
986 	struct kvm *kvm = vcpu->kvm;
987 	u64 pg_mask = SZ_4K - 1;	/* 4K page size */
988 	long ret = H_SUCCESS;
989 
990 	/* Don't handle radix mode here, go up to the virtual mode handler */
991 	if (kvm_is_radix(kvm))
992 		return H_TOO_HARD;
993 
994 	/* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
995 	if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
996 		      H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
997 		return H_PARAMETER;
998 
999 	/* dest (and src if copy_page flag set) must be page aligned */
1000 	if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
1001 		return H_PARAMETER;
1002 
1003 	/* zero and/or copy the page as determined by the flags */
1004 	if (flags & H_COPY_PAGE)
1005 		ret = kvmppc_do_h_page_init_copy(vcpu, dest, src);
1006 	else if (flags & H_ZERO_PAGE)
1007 		ret = kvmppc_do_h_page_init_zero(vcpu, dest);
1008 
1009 	/* We can ignore the other flags */
1010 
1011 	return ret;
1012 }
1013 
1014 void kvmppc_invalidate_hpte(struct kvm *kvm, __be64 *hptep,
1015 			unsigned long pte_index)
1016 {
1017 	unsigned long rb;
1018 	u64 hp0, hp1;
1019 
1020 	hptep[0] &= ~cpu_to_be64(HPTE_V_VALID);
1021 	hp0 = be64_to_cpu(hptep[0]);
1022 	hp1 = be64_to_cpu(hptep[1]);
1023 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1024 		hp0 = hpte_new_to_old_v(hp0, hp1);
1025 		hp1 = hpte_new_to_old_r(hp1);
1026 	}
1027 	rb = compute_tlbie_rb(hp0, hp1, pte_index);
1028 	do_tlbies(kvm, &rb, 1, 1, true);
1029 }
1030 EXPORT_SYMBOL_GPL(kvmppc_invalidate_hpte);
1031 
1032 void kvmppc_clear_ref_hpte(struct kvm *kvm, __be64 *hptep,
1033 			   unsigned long pte_index)
1034 {
1035 	unsigned long rb;
1036 	unsigned char rbyte;
1037 	u64 hp0, hp1;
1038 
1039 	hp0 = be64_to_cpu(hptep[0]);
1040 	hp1 = be64_to_cpu(hptep[1]);
1041 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1042 		hp0 = hpte_new_to_old_v(hp0, hp1);
1043 		hp1 = hpte_new_to_old_r(hp1);
1044 	}
1045 	rb = compute_tlbie_rb(hp0, hp1, pte_index);
1046 	rbyte = (be64_to_cpu(hptep[1]) & ~HPTE_R_R) >> 8;
1047 	/* modify only the second-last byte, which contains the ref bit */
1048 	*((char *)hptep + 14) = rbyte;
1049 	do_tlbies(kvm, &rb, 1, 1, false);
1050 }
1051 EXPORT_SYMBOL_GPL(kvmppc_clear_ref_hpte);
1052 
1053 static int slb_base_page_shift[4] = {
1054 	24,	/* 16M */
1055 	16,	/* 64k */
1056 	34,	/* 16G */
1057 	20,	/* 1M, unsupported */
1058 };
1059 
1060 static struct mmio_hpte_cache_entry *mmio_cache_search(struct kvm_vcpu *vcpu,
1061 		unsigned long eaddr, unsigned long slb_v, long mmio_update)
1062 {
1063 	struct mmio_hpte_cache_entry *entry = NULL;
1064 	unsigned int pshift;
1065 	unsigned int i;
1066 
1067 	for (i = 0; i < MMIO_HPTE_CACHE_SIZE; i++) {
1068 		entry = &vcpu->arch.mmio_cache.entry[i];
1069 		if (entry->mmio_update == mmio_update) {
1070 			pshift = entry->slb_base_pshift;
1071 			if ((entry->eaddr >> pshift) == (eaddr >> pshift) &&
1072 			    entry->slb_v == slb_v)
1073 				return entry;
1074 		}
1075 	}
1076 	return NULL;
1077 }
1078 
1079 static struct mmio_hpte_cache_entry *
1080 			next_mmio_cache_entry(struct kvm_vcpu *vcpu)
1081 {
1082 	unsigned int index = vcpu->arch.mmio_cache.index;
1083 
1084 	vcpu->arch.mmio_cache.index++;
1085 	if (vcpu->arch.mmio_cache.index == MMIO_HPTE_CACHE_SIZE)
1086 		vcpu->arch.mmio_cache.index = 0;
1087 
1088 	return &vcpu->arch.mmio_cache.entry[index];
1089 }
1090 
1091 /* When called from virtmode, this func should be protected by
1092  * preempt_disable(), otherwise, the holding of HPTE_V_HVLOCK
1093  * can trigger deadlock issue.
1094  */
1095 long kvmppc_hv_find_lock_hpte(struct kvm *kvm, gva_t eaddr, unsigned long slb_v,
1096 			      unsigned long valid)
1097 {
1098 	unsigned int i;
1099 	unsigned int pshift;
1100 	unsigned long somask;
1101 	unsigned long vsid, hash;
1102 	unsigned long avpn;
1103 	__be64 *hpte;
1104 	unsigned long mask, val;
1105 	unsigned long v, r, orig_v;
1106 
1107 	/* Get page shift, work out hash and AVPN etc. */
1108 	mask = SLB_VSID_B | HPTE_V_AVPN | HPTE_V_SECONDARY;
1109 	val = 0;
1110 	pshift = 12;
1111 	if (slb_v & SLB_VSID_L) {
1112 		mask |= HPTE_V_LARGE;
1113 		val |= HPTE_V_LARGE;
1114 		pshift = slb_base_page_shift[(slb_v & SLB_VSID_LP) >> 4];
1115 	}
1116 	if (slb_v & SLB_VSID_B_1T) {
1117 		somask = (1UL << 40) - 1;
1118 		vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T;
1119 		vsid ^= vsid << 25;
1120 	} else {
1121 		somask = (1UL << 28) - 1;
1122 		vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT;
1123 	}
1124 	hash = (vsid ^ ((eaddr & somask) >> pshift)) & kvmppc_hpt_mask(&kvm->arch.hpt);
1125 	avpn = slb_v & ~(somask >> 16);	/* also includes B */
1126 	avpn |= (eaddr & somask) >> 16;
1127 
1128 	if (pshift >= 24)
1129 		avpn &= ~((1UL << (pshift - 16)) - 1);
1130 	else
1131 		avpn &= ~0x7fUL;
1132 	val |= avpn;
1133 
1134 	for (;;) {
1135 		hpte = (__be64 *)(kvm->arch.hpt.virt + (hash << 7));
1136 
1137 		for (i = 0; i < 16; i += 2) {
1138 			/* Read the PTE racily */
1139 			v = be64_to_cpu(hpte[i]) & ~HPTE_V_HVLOCK;
1140 			if (cpu_has_feature(CPU_FTR_ARCH_300))
1141 				v = hpte_new_to_old_v(v, be64_to_cpu(hpte[i+1]));
1142 
1143 			/* Check valid/absent, hash, segment size and AVPN */
1144 			if (!(v & valid) || (v & mask) != val)
1145 				continue;
1146 
1147 			/* Lock the PTE and read it under the lock */
1148 			while (!try_lock_hpte(&hpte[i], HPTE_V_HVLOCK))
1149 				cpu_relax();
1150 			v = orig_v = be64_to_cpu(hpte[i]) & ~HPTE_V_HVLOCK;
1151 			r = be64_to_cpu(hpte[i+1]);
1152 			if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1153 				v = hpte_new_to_old_v(v, r);
1154 				r = hpte_new_to_old_r(r);
1155 			}
1156 
1157 			/*
1158 			 * Check the HPTE again, including base page size
1159 			 */
1160 			if ((v & valid) && (v & mask) == val &&
1161 			    kvmppc_hpte_base_page_shift(v, r) == pshift)
1162 				/* Return with the HPTE still locked */
1163 				return (hash << 3) + (i >> 1);
1164 
1165 			__unlock_hpte(&hpte[i], orig_v);
1166 		}
1167 
1168 		if (val & HPTE_V_SECONDARY)
1169 			break;
1170 		val |= HPTE_V_SECONDARY;
1171 		hash = hash ^ kvmppc_hpt_mask(&kvm->arch.hpt);
1172 	}
1173 	return -1;
1174 }
1175 EXPORT_SYMBOL(kvmppc_hv_find_lock_hpte);
1176 
1177 /*
1178  * Called in real mode to check whether an HPTE not found fault
1179  * is due to accessing a paged-out page or an emulated MMIO page,
1180  * or if a protection fault is due to accessing a page that the
1181  * guest wanted read/write access to but which we made read-only.
1182  * Returns a possibly modified status (DSISR) value if not
1183  * (i.e. pass the interrupt to the guest),
1184  * -1 to pass the fault up to host kernel mode code, -2 to do that
1185  * and also load the instruction word (for MMIO emulation),
1186  * or 0 if we should make the guest retry the access.
1187  */
1188 long kvmppc_hpte_hv_fault(struct kvm_vcpu *vcpu, unsigned long addr,
1189 			  unsigned long slb_v, unsigned int status, bool data)
1190 {
1191 	struct kvm *kvm = vcpu->kvm;
1192 	long int index;
1193 	unsigned long v, r, gr, orig_v;
1194 	__be64 *hpte;
1195 	unsigned long valid;
1196 	struct revmap_entry *rev;
1197 	unsigned long pp, key;
1198 	struct mmio_hpte_cache_entry *cache_entry = NULL;
1199 	long mmio_update = 0;
1200 
1201 	/* For protection fault, expect to find a valid HPTE */
1202 	valid = HPTE_V_VALID;
1203 	if (status & DSISR_NOHPTE) {
1204 		valid |= HPTE_V_ABSENT;
1205 		mmio_update = atomic64_read(&kvm->arch.mmio_update);
1206 		cache_entry = mmio_cache_search(vcpu, addr, slb_v, mmio_update);
1207 	}
1208 	if (cache_entry) {
1209 		index = cache_entry->pte_index;
1210 		v = cache_entry->hpte_v;
1211 		r = cache_entry->hpte_r;
1212 		gr = cache_entry->rpte;
1213 	} else {
1214 		index = kvmppc_hv_find_lock_hpte(kvm, addr, slb_v, valid);
1215 		if (index < 0) {
1216 			if (status & DSISR_NOHPTE)
1217 				return status;	/* there really was no HPTE */
1218 			return 0;	/* for prot fault, HPTE disappeared */
1219 		}
1220 		hpte = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
1221 		v = orig_v = be64_to_cpu(hpte[0]) & ~HPTE_V_HVLOCK;
1222 		r = be64_to_cpu(hpte[1]);
1223 		if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1224 			v = hpte_new_to_old_v(v, r);
1225 			r = hpte_new_to_old_r(r);
1226 		}
1227 		rev = real_vmalloc_addr(&kvm->arch.hpt.rev[index]);
1228 		gr = rev->guest_rpte;
1229 
1230 		unlock_hpte(hpte, orig_v);
1231 	}
1232 
1233 	/* For not found, if the HPTE is valid by now, retry the instruction */
1234 	if ((status & DSISR_NOHPTE) && (v & HPTE_V_VALID))
1235 		return 0;
1236 
1237 	/* Check access permissions to the page */
1238 	pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
1239 	key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
1240 	status &= ~DSISR_NOHPTE;	/* DSISR_NOHPTE == SRR1_ISI_NOPT */
1241 	if (!data) {
1242 		if (gr & (HPTE_R_N | HPTE_R_G))
1243 			return status | SRR1_ISI_N_OR_G;
1244 		if (!hpte_read_permission(pp, slb_v & key))
1245 			return status | SRR1_ISI_PROT;
1246 	} else if (status & DSISR_ISSTORE) {
1247 		/* check write permission */
1248 		if (!hpte_write_permission(pp, slb_v & key))
1249 			return status | DSISR_PROTFAULT;
1250 	} else {
1251 		if (!hpte_read_permission(pp, slb_v & key))
1252 			return status | DSISR_PROTFAULT;
1253 	}
1254 
1255 	/* Check storage key, if applicable */
1256 	if (data && (vcpu->arch.shregs.msr & MSR_DR)) {
1257 		unsigned int perm = hpte_get_skey_perm(gr, vcpu->arch.amr);
1258 		if (status & DSISR_ISSTORE)
1259 			perm >>= 1;
1260 		if (perm & 1)
1261 			return status | DSISR_KEYFAULT;
1262 	}
1263 
1264 	/* Save HPTE info for virtual-mode handler */
1265 	vcpu->arch.pgfault_addr = addr;
1266 	vcpu->arch.pgfault_index = index;
1267 	vcpu->arch.pgfault_hpte[0] = v;
1268 	vcpu->arch.pgfault_hpte[1] = r;
1269 	vcpu->arch.pgfault_cache = cache_entry;
1270 
1271 	/* Check the storage key to see if it is possibly emulated MMIO */
1272 	if ((r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) ==
1273 	    (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) {
1274 		if (!cache_entry) {
1275 			unsigned int pshift = 12;
1276 			unsigned int pshift_index;
1277 
1278 			if (slb_v & SLB_VSID_L) {
1279 				pshift_index = ((slb_v & SLB_VSID_LP) >> 4);
1280 				pshift = slb_base_page_shift[pshift_index];
1281 			}
1282 			cache_entry = next_mmio_cache_entry(vcpu);
1283 			cache_entry->eaddr = addr;
1284 			cache_entry->slb_base_pshift = pshift;
1285 			cache_entry->pte_index = index;
1286 			cache_entry->hpte_v = v;
1287 			cache_entry->hpte_r = r;
1288 			cache_entry->rpte = gr;
1289 			cache_entry->slb_v = slb_v;
1290 			cache_entry->mmio_update = mmio_update;
1291 		}
1292 		if (data && (vcpu->arch.shregs.msr & MSR_IR))
1293 			return -2;	/* MMIO emulation - load instr word */
1294 	}
1295 
1296 	return -1;		/* send fault up to host kernel mode */
1297 }
1298