1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * Copyright 2010-2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7  */
8 
9 #include <linux/types.h>
10 #include <linux/string.h>
11 #include <linux/kvm.h>
12 #include <linux/kvm_host.h>
13 #include <linux/hugetlb.h>
14 #include <linux/module.h>
15 #include <linux/log2.h>
16 
17 #include <asm/tlbflush.h>
18 #include <asm/kvm_ppc.h>
19 #include <asm/kvm_book3s.h>
20 #include <asm/book3s/64/mmu-hash.h>
21 #include <asm/hvcall.h>
22 #include <asm/synch.h>
23 #include <asm/ppc-opcode.h>
24 
25 /* Translate address of a vmalloc'd thing to a linear map address */
26 static void *real_vmalloc_addr(void *x)
27 {
28 	unsigned long addr = (unsigned long) x;
29 	pte_t *p;
30 	/*
31 	 * assume we don't have huge pages in vmalloc space...
32 	 * So don't worry about THP collapse/split. Called
33 	 * Only in realmode, hence won't need irq_save/restore.
34 	 */
35 	p = __find_linux_pte_or_hugepte(swapper_pg_dir, addr, NULL, NULL);
36 	if (!p || !pte_present(*p))
37 		return NULL;
38 	addr = (pte_pfn(*p) << PAGE_SHIFT) | (addr & ~PAGE_MASK);
39 	return __va(addr);
40 }
41 
42 /* Return 1 if we need to do a global tlbie, 0 if we can use tlbiel */
43 static int global_invalidates(struct kvm *kvm, unsigned long flags)
44 {
45 	int global;
46 
47 	/*
48 	 * If there is only one vcore, and it's currently running,
49 	 * as indicated by local_paca->kvm_hstate.kvm_vcpu being set,
50 	 * we can use tlbiel as long as we mark all other physical
51 	 * cores as potentially having stale TLB entries for this lpid.
52 	 * Otherwise, don't use tlbiel.
53 	 */
54 	if (kvm->arch.online_vcores == 1 && local_paca->kvm_hstate.kvm_vcpu)
55 		global = 0;
56 	else
57 		global = 1;
58 
59 	if (!global) {
60 		/* any other core might now have stale TLB entries... */
61 		smp_wmb();
62 		cpumask_setall(&kvm->arch.need_tlb_flush);
63 		cpumask_clear_cpu(local_paca->kvm_hstate.kvm_vcore->pcpu,
64 				  &kvm->arch.need_tlb_flush);
65 	}
66 
67 	return global;
68 }
69 
70 /*
71  * Add this HPTE into the chain for the real page.
72  * Must be called with the chain locked; it unlocks the chain.
73  */
74 void kvmppc_add_revmap_chain(struct kvm *kvm, struct revmap_entry *rev,
75 			     unsigned long *rmap, long pte_index, int realmode)
76 {
77 	struct revmap_entry *head, *tail;
78 	unsigned long i;
79 
80 	if (*rmap & KVMPPC_RMAP_PRESENT) {
81 		i = *rmap & KVMPPC_RMAP_INDEX;
82 		head = &kvm->arch.revmap[i];
83 		if (realmode)
84 			head = real_vmalloc_addr(head);
85 		tail = &kvm->arch.revmap[head->back];
86 		if (realmode)
87 			tail = real_vmalloc_addr(tail);
88 		rev->forw = i;
89 		rev->back = head->back;
90 		tail->forw = pte_index;
91 		head->back = pte_index;
92 	} else {
93 		rev->forw = rev->back = pte_index;
94 		*rmap = (*rmap & ~KVMPPC_RMAP_INDEX) |
95 			pte_index | KVMPPC_RMAP_PRESENT;
96 	}
97 	unlock_rmap(rmap);
98 }
99 EXPORT_SYMBOL_GPL(kvmppc_add_revmap_chain);
100 
101 /* Update the changed page order field of an rmap entry */
102 void kvmppc_update_rmap_change(unsigned long *rmap, unsigned long psize)
103 {
104 	unsigned long order;
105 
106 	if (!psize)
107 		return;
108 	order = ilog2(psize);
109 	order <<= KVMPPC_RMAP_CHG_SHIFT;
110 	if (order > (*rmap & KVMPPC_RMAP_CHG_ORDER))
111 		*rmap = (*rmap & ~KVMPPC_RMAP_CHG_ORDER) | order;
112 }
113 EXPORT_SYMBOL_GPL(kvmppc_update_rmap_change);
114 
115 /* Returns a pointer to the revmap entry for the page mapped by a HPTE */
116 static unsigned long *revmap_for_hpte(struct kvm *kvm, unsigned long hpte_v,
117 				      unsigned long hpte_gr)
118 {
119 	struct kvm_memory_slot *memslot;
120 	unsigned long *rmap;
121 	unsigned long gfn;
122 
123 	gfn = hpte_rpn(hpte_gr, hpte_page_size(hpte_v, hpte_gr));
124 	memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
125 	if (!memslot)
126 		return NULL;
127 
128 	rmap = real_vmalloc_addr(&memslot->arch.rmap[gfn - memslot->base_gfn]);
129 	return rmap;
130 }
131 
132 /* Remove this HPTE from the chain for a real page */
133 static void remove_revmap_chain(struct kvm *kvm, long pte_index,
134 				struct revmap_entry *rev,
135 				unsigned long hpte_v, unsigned long hpte_r)
136 {
137 	struct revmap_entry *next, *prev;
138 	unsigned long ptel, head;
139 	unsigned long *rmap;
140 	unsigned long rcbits;
141 
142 	rcbits = hpte_r & (HPTE_R_R | HPTE_R_C);
143 	ptel = rev->guest_rpte |= rcbits;
144 	rmap = revmap_for_hpte(kvm, hpte_v, ptel);
145 	if (!rmap)
146 		return;
147 	lock_rmap(rmap);
148 
149 	head = *rmap & KVMPPC_RMAP_INDEX;
150 	next = real_vmalloc_addr(&kvm->arch.revmap[rev->forw]);
151 	prev = real_vmalloc_addr(&kvm->arch.revmap[rev->back]);
152 	next->back = rev->back;
153 	prev->forw = rev->forw;
154 	if (head == pte_index) {
155 		head = rev->forw;
156 		if (head == pte_index)
157 			*rmap &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
158 		else
159 			*rmap = (*rmap & ~KVMPPC_RMAP_INDEX) | head;
160 	}
161 	*rmap |= rcbits << KVMPPC_RMAP_RC_SHIFT;
162 	if (rcbits & HPTE_R_C)
163 		kvmppc_update_rmap_change(rmap, hpte_page_size(hpte_v, hpte_r));
164 	unlock_rmap(rmap);
165 }
166 
167 long kvmppc_do_h_enter(struct kvm *kvm, unsigned long flags,
168 		       long pte_index, unsigned long pteh, unsigned long ptel,
169 		       pgd_t *pgdir, bool realmode, unsigned long *pte_idx_ret)
170 {
171 	unsigned long i, pa, gpa, gfn, psize;
172 	unsigned long slot_fn, hva;
173 	__be64 *hpte;
174 	struct revmap_entry *rev;
175 	unsigned long g_ptel;
176 	struct kvm_memory_slot *memslot;
177 	unsigned hpage_shift;
178 	bool is_ci;
179 	unsigned long *rmap;
180 	pte_t *ptep;
181 	unsigned int writing;
182 	unsigned long mmu_seq;
183 	unsigned long rcbits, irq_flags = 0;
184 
185 	psize = hpte_page_size(pteh, ptel);
186 	if (!psize)
187 		return H_PARAMETER;
188 	writing = hpte_is_writable(ptel);
189 	pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
190 	ptel &= ~HPTE_GR_RESERVED;
191 	g_ptel = ptel;
192 
193 	/* used later to detect if we might have been invalidated */
194 	mmu_seq = kvm->mmu_notifier_seq;
195 	smp_rmb();
196 
197 	/* Find the memslot (if any) for this address */
198 	gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
199 	gfn = gpa >> PAGE_SHIFT;
200 	memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
201 	pa = 0;
202 	is_ci = false;
203 	rmap = NULL;
204 	if (!(memslot && !(memslot->flags & KVM_MEMSLOT_INVALID))) {
205 		/* Emulated MMIO - mark this with key=31 */
206 		pteh |= HPTE_V_ABSENT;
207 		ptel |= HPTE_R_KEY_HI | HPTE_R_KEY_LO;
208 		goto do_insert;
209 	}
210 
211 	/* Check if the requested page fits entirely in the memslot. */
212 	if (!slot_is_aligned(memslot, psize))
213 		return H_PARAMETER;
214 	slot_fn = gfn - memslot->base_gfn;
215 	rmap = &memslot->arch.rmap[slot_fn];
216 
217 	/* Translate to host virtual address */
218 	hva = __gfn_to_hva_memslot(memslot, gfn);
219 	/*
220 	 * If we had a page table table change after lookup, we would
221 	 * retry via mmu_notifier_retry.
222 	 */
223 	if (realmode)
224 		ptep = __find_linux_pte_or_hugepte(pgdir, hva, NULL,
225 						   &hpage_shift);
226 	else {
227 		local_irq_save(irq_flags);
228 		ptep = find_linux_pte_or_hugepte(pgdir, hva, NULL,
229 						 &hpage_shift);
230 	}
231 	if (ptep) {
232 		pte_t pte;
233 		unsigned int host_pte_size;
234 
235 		if (hpage_shift)
236 			host_pte_size = 1ul << hpage_shift;
237 		else
238 			host_pte_size = PAGE_SIZE;
239 		/*
240 		 * We should always find the guest page size
241 		 * to <= host page size, if host is using hugepage
242 		 */
243 		if (host_pte_size < psize) {
244 			if (!realmode)
245 				local_irq_restore(flags);
246 			return H_PARAMETER;
247 		}
248 		pte = kvmppc_read_update_linux_pte(ptep, writing);
249 		if (pte_present(pte) && !pte_protnone(pte)) {
250 			if (writing && !pte_write(pte))
251 				/* make the actual HPTE be read-only */
252 				ptel = hpte_make_readonly(ptel);
253 			is_ci = pte_ci(pte);
254 			pa = pte_pfn(pte) << PAGE_SHIFT;
255 			pa |= hva & (host_pte_size - 1);
256 			pa |= gpa & ~PAGE_MASK;
257 		}
258 	}
259 	if (!realmode)
260 		local_irq_restore(irq_flags);
261 
262 	ptel &= ~(HPTE_R_PP0 - psize);
263 	ptel |= pa;
264 
265 	if (pa)
266 		pteh |= HPTE_V_VALID;
267 	else
268 		pteh |= HPTE_V_ABSENT;
269 
270 	/*If we had host pte mapping then  Check WIMG */
271 	if (ptep && !hpte_cache_flags_ok(ptel, is_ci)) {
272 		if (is_ci)
273 			return H_PARAMETER;
274 		/*
275 		 * Allow guest to map emulated device memory as
276 		 * uncacheable, but actually make it cacheable.
277 		 */
278 		ptel &= ~(HPTE_R_W|HPTE_R_I|HPTE_R_G);
279 		ptel |= HPTE_R_M;
280 	}
281 
282 	/* Find and lock the HPTEG slot to use */
283  do_insert:
284 	if (pte_index >= kvm->arch.hpt_npte)
285 		return H_PARAMETER;
286 	if (likely((flags & H_EXACT) == 0)) {
287 		pte_index &= ~7UL;
288 		hpte = (__be64 *)(kvm->arch.hpt_virt + (pte_index << 4));
289 		for (i = 0; i < 8; ++i) {
290 			if ((be64_to_cpu(*hpte) & HPTE_V_VALID) == 0 &&
291 			    try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
292 					  HPTE_V_ABSENT))
293 				break;
294 			hpte += 2;
295 		}
296 		if (i == 8) {
297 			/*
298 			 * Since try_lock_hpte doesn't retry (not even stdcx.
299 			 * failures), it could be that there is a free slot
300 			 * but we transiently failed to lock it.  Try again,
301 			 * actually locking each slot and checking it.
302 			 */
303 			hpte -= 16;
304 			for (i = 0; i < 8; ++i) {
305 				u64 pte;
306 				while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
307 					cpu_relax();
308 				pte = be64_to_cpu(hpte[0]);
309 				if (!(pte & (HPTE_V_VALID | HPTE_V_ABSENT)))
310 					break;
311 				__unlock_hpte(hpte, pte);
312 				hpte += 2;
313 			}
314 			if (i == 8)
315 				return H_PTEG_FULL;
316 		}
317 		pte_index += i;
318 	} else {
319 		hpte = (__be64 *)(kvm->arch.hpt_virt + (pte_index << 4));
320 		if (!try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
321 				   HPTE_V_ABSENT)) {
322 			/* Lock the slot and check again */
323 			u64 pte;
324 
325 			while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
326 				cpu_relax();
327 			pte = be64_to_cpu(hpte[0]);
328 			if (pte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
329 				__unlock_hpte(hpte, pte);
330 				return H_PTEG_FULL;
331 			}
332 		}
333 	}
334 
335 	/* Save away the guest's idea of the second HPTE dword */
336 	rev = &kvm->arch.revmap[pte_index];
337 	if (realmode)
338 		rev = real_vmalloc_addr(rev);
339 	if (rev) {
340 		rev->guest_rpte = g_ptel;
341 		note_hpte_modification(kvm, rev);
342 	}
343 
344 	/* Link HPTE into reverse-map chain */
345 	if (pteh & HPTE_V_VALID) {
346 		if (realmode)
347 			rmap = real_vmalloc_addr(rmap);
348 		lock_rmap(rmap);
349 		/* Check for pending invalidations under the rmap chain lock */
350 		if (mmu_notifier_retry(kvm, mmu_seq)) {
351 			/* inval in progress, write a non-present HPTE */
352 			pteh |= HPTE_V_ABSENT;
353 			pteh &= ~HPTE_V_VALID;
354 			unlock_rmap(rmap);
355 		} else {
356 			kvmppc_add_revmap_chain(kvm, rev, rmap, pte_index,
357 						realmode);
358 			/* Only set R/C in real HPTE if already set in *rmap */
359 			rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
360 			ptel &= rcbits | ~(HPTE_R_R | HPTE_R_C);
361 		}
362 	}
363 
364 	hpte[1] = cpu_to_be64(ptel);
365 
366 	/* Write the first HPTE dword, unlocking the HPTE and making it valid */
367 	eieio();
368 	__unlock_hpte(hpte, pteh);
369 	asm volatile("ptesync" : : : "memory");
370 
371 	*pte_idx_ret = pte_index;
372 	return H_SUCCESS;
373 }
374 EXPORT_SYMBOL_GPL(kvmppc_do_h_enter);
375 
376 long kvmppc_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
377 		    long pte_index, unsigned long pteh, unsigned long ptel)
378 {
379 	return kvmppc_do_h_enter(vcpu->kvm, flags, pte_index, pteh, ptel,
380 				 vcpu->arch.pgdir, true, &vcpu->arch.gpr[4]);
381 }
382 
383 #ifdef __BIG_ENDIAN__
384 #define LOCK_TOKEN	(*(u32 *)(&get_paca()->lock_token))
385 #else
386 #define LOCK_TOKEN	(*(u32 *)(&get_paca()->paca_index))
387 #endif
388 
389 static inline int try_lock_tlbie(unsigned int *lock)
390 {
391 	unsigned int tmp, old;
392 	unsigned int token = LOCK_TOKEN;
393 
394 	asm volatile("1:lwarx	%1,0,%2\n"
395 		     "	cmpwi	cr0,%1,0\n"
396 		     "	bne	2f\n"
397 		     "  stwcx.	%3,0,%2\n"
398 		     "	bne-	1b\n"
399 		     "  isync\n"
400 		     "2:"
401 		     : "=&r" (tmp), "=&r" (old)
402 		     : "r" (lock), "r" (token)
403 		     : "cc", "memory");
404 	return old == 0;
405 }
406 
407 static void do_tlbies(struct kvm *kvm, unsigned long *rbvalues,
408 		      long npages, int global, bool need_sync)
409 {
410 	long i;
411 
412 	if (global) {
413 		while (!try_lock_tlbie(&kvm->arch.tlbie_lock))
414 			cpu_relax();
415 		if (need_sync)
416 			asm volatile("ptesync" : : : "memory");
417 		for (i = 0; i < npages; ++i)
418 			asm volatile(PPC_TLBIE(%1,%0) : :
419 				     "r" (rbvalues[i]), "r" (kvm->arch.lpid));
420 		asm volatile("eieio; tlbsync; ptesync" : : : "memory");
421 		kvm->arch.tlbie_lock = 0;
422 	} else {
423 		if (need_sync)
424 			asm volatile("ptesync" : : : "memory");
425 		for (i = 0; i < npages; ++i)
426 			asm volatile("tlbiel %0" : : "r" (rbvalues[i]));
427 		asm volatile("ptesync" : : : "memory");
428 	}
429 }
430 
431 long kvmppc_do_h_remove(struct kvm *kvm, unsigned long flags,
432 			unsigned long pte_index, unsigned long avpn,
433 			unsigned long *hpret)
434 {
435 	__be64 *hpte;
436 	unsigned long v, r, rb;
437 	struct revmap_entry *rev;
438 	u64 pte;
439 
440 	if (pte_index >= kvm->arch.hpt_npte)
441 		return H_PARAMETER;
442 	hpte = (__be64 *)(kvm->arch.hpt_virt + (pte_index << 4));
443 	while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
444 		cpu_relax();
445 	pte = be64_to_cpu(hpte[0]);
446 	if ((pte & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
447 	    ((flags & H_AVPN) && (pte & ~0x7fUL) != avpn) ||
448 	    ((flags & H_ANDCOND) && (pte & avpn) != 0)) {
449 		__unlock_hpte(hpte, pte);
450 		return H_NOT_FOUND;
451 	}
452 
453 	rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
454 	v = pte & ~HPTE_V_HVLOCK;
455 	if (v & HPTE_V_VALID) {
456 		hpte[0] &= ~cpu_to_be64(HPTE_V_VALID);
457 		rb = compute_tlbie_rb(v, be64_to_cpu(hpte[1]), pte_index);
458 		do_tlbies(kvm, &rb, 1, global_invalidates(kvm, flags), true);
459 		/*
460 		 * The reference (R) and change (C) bits in a HPT
461 		 * entry can be set by hardware at any time up until
462 		 * the HPTE is invalidated and the TLB invalidation
463 		 * sequence has completed.  This means that when
464 		 * removing a HPTE, we need to re-read the HPTE after
465 		 * the invalidation sequence has completed in order to
466 		 * obtain reliable values of R and C.
467 		 */
468 		remove_revmap_chain(kvm, pte_index, rev, v,
469 				    be64_to_cpu(hpte[1]));
470 	}
471 	r = rev->guest_rpte & ~HPTE_GR_RESERVED;
472 	note_hpte_modification(kvm, rev);
473 	unlock_hpte(hpte, 0);
474 
475 	if (v & HPTE_V_ABSENT)
476 		v = (v & ~HPTE_V_ABSENT) | HPTE_V_VALID;
477 	hpret[0] = v;
478 	hpret[1] = r;
479 	return H_SUCCESS;
480 }
481 EXPORT_SYMBOL_GPL(kvmppc_do_h_remove);
482 
483 long kvmppc_h_remove(struct kvm_vcpu *vcpu, unsigned long flags,
484 		     unsigned long pte_index, unsigned long avpn)
485 {
486 	return kvmppc_do_h_remove(vcpu->kvm, flags, pte_index, avpn,
487 				  &vcpu->arch.gpr[4]);
488 }
489 
490 long kvmppc_h_bulk_remove(struct kvm_vcpu *vcpu)
491 {
492 	struct kvm *kvm = vcpu->kvm;
493 	unsigned long *args = &vcpu->arch.gpr[4];
494 	__be64 *hp, *hptes[4];
495 	unsigned long tlbrb[4];
496 	long int i, j, k, n, found, indexes[4];
497 	unsigned long flags, req, pte_index, rcbits;
498 	int global;
499 	long int ret = H_SUCCESS;
500 	struct revmap_entry *rev, *revs[4];
501 	u64 hp0;
502 
503 	global = global_invalidates(kvm, 0);
504 	for (i = 0; i < 4 && ret == H_SUCCESS; ) {
505 		n = 0;
506 		for (; i < 4; ++i) {
507 			j = i * 2;
508 			pte_index = args[j];
509 			flags = pte_index >> 56;
510 			pte_index &= ((1ul << 56) - 1);
511 			req = flags >> 6;
512 			flags &= 3;
513 			if (req == 3) {		/* no more requests */
514 				i = 4;
515 				break;
516 			}
517 			if (req != 1 || flags == 3 ||
518 			    pte_index >= kvm->arch.hpt_npte) {
519 				/* parameter error */
520 				args[j] = ((0xa0 | flags) << 56) + pte_index;
521 				ret = H_PARAMETER;
522 				break;
523 			}
524 			hp = (__be64 *) (kvm->arch.hpt_virt + (pte_index << 4));
525 			/* to avoid deadlock, don't spin except for first */
526 			if (!try_lock_hpte(hp, HPTE_V_HVLOCK)) {
527 				if (n)
528 					break;
529 				while (!try_lock_hpte(hp, HPTE_V_HVLOCK))
530 					cpu_relax();
531 			}
532 			found = 0;
533 			hp0 = be64_to_cpu(hp[0]);
534 			if (hp0 & (HPTE_V_ABSENT | HPTE_V_VALID)) {
535 				switch (flags & 3) {
536 				case 0:		/* absolute */
537 					found = 1;
538 					break;
539 				case 1:		/* andcond */
540 					if (!(hp0 & args[j + 1]))
541 						found = 1;
542 					break;
543 				case 2:		/* AVPN */
544 					if ((hp0 & ~0x7fUL) == args[j + 1])
545 						found = 1;
546 					break;
547 				}
548 			}
549 			if (!found) {
550 				hp[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
551 				args[j] = ((0x90 | flags) << 56) + pte_index;
552 				continue;
553 			}
554 
555 			args[j] = ((0x80 | flags) << 56) + pte_index;
556 			rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
557 			note_hpte_modification(kvm, rev);
558 
559 			if (!(hp0 & HPTE_V_VALID)) {
560 				/* insert R and C bits from PTE */
561 				rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
562 				args[j] |= rcbits << (56 - 5);
563 				hp[0] = 0;
564 				continue;
565 			}
566 
567 			/* leave it locked */
568 			hp[0] &= ~cpu_to_be64(HPTE_V_VALID);
569 			tlbrb[n] = compute_tlbie_rb(be64_to_cpu(hp[0]),
570 				be64_to_cpu(hp[1]), pte_index);
571 			indexes[n] = j;
572 			hptes[n] = hp;
573 			revs[n] = rev;
574 			++n;
575 		}
576 
577 		if (!n)
578 			break;
579 
580 		/* Now that we've collected a batch, do the tlbies */
581 		do_tlbies(kvm, tlbrb, n, global, true);
582 
583 		/* Read PTE low words after tlbie to get final R/C values */
584 		for (k = 0; k < n; ++k) {
585 			j = indexes[k];
586 			pte_index = args[j] & ((1ul << 56) - 1);
587 			hp = hptes[k];
588 			rev = revs[k];
589 			remove_revmap_chain(kvm, pte_index, rev,
590 				be64_to_cpu(hp[0]), be64_to_cpu(hp[1]));
591 			rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
592 			args[j] |= rcbits << (56 - 5);
593 			__unlock_hpte(hp, 0);
594 		}
595 	}
596 
597 	return ret;
598 }
599 
600 long kvmppc_h_protect(struct kvm_vcpu *vcpu, unsigned long flags,
601 		      unsigned long pte_index, unsigned long avpn,
602 		      unsigned long va)
603 {
604 	struct kvm *kvm = vcpu->kvm;
605 	__be64 *hpte;
606 	struct revmap_entry *rev;
607 	unsigned long v, r, rb, mask, bits;
608 	u64 pte;
609 
610 	if (pte_index >= kvm->arch.hpt_npte)
611 		return H_PARAMETER;
612 
613 	hpte = (__be64 *)(kvm->arch.hpt_virt + (pte_index << 4));
614 	while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
615 		cpu_relax();
616 	pte = be64_to_cpu(hpte[0]);
617 	if ((pte & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
618 	    ((flags & H_AVPN) && (pte & ~0x7fUL) != avpn)) {
619 		__unlock_hpte(hpte, pte);
620 		return H_NOT_FOUND;
621 	}
622 
623 	v = pte;
624 	bits = (flags << 55) & HPTE_R_PP0;
625 	bits |= (flags << 48) & HPTE_R_KEY_HI;
626 	bits |= flags & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO);
627 
628 	/* Update guest view of 2nd HPTE dword */
629 	mask = HPTE_R_PP0 | HPTE_R_PP | HPTE_R_N |
630 		HPTE_R_KEY_HI | HPTE_R_KEY_LO;
631 	rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
632 	if (rev) {
633 		r = (rev->guest_rpte & ~mask) | bits;
634 		rev->guest_rpte = r;
635 		note_hpte_modification(kvm, rev);
636 	}
637 
638 	/* Update HPTE */
639 	if (v & HPTE_V_VALID) {
640 		/*
641 		 * If the page is valid, don't let it transition from
642 		 * readonly to writable.  If it should be writable, we'll
643 		 * take a trap and let the page fault code sort it out.
644 		 */
645 		pte = be64_to_cpu(hpte[1]);
646 		r = (pte & ~mask) | bits;
647 		if (hpte_is_writable(r) && !hpte_is_writable(pte))
648 			r = hpte_make_readonly(r);
649 		/* If the PTE is changing, invalidate it first */
650 		if (r != pte) {
651 			rb = compute_tlbie_rb(v, r, pte_index);
652 			hpte[0] = cpu_to_be64((v & ~HPTE_V_VALID) |
653 					      HPTE_V_ABSENT);
654 			do_tlbies(kvm, &rb, 1, global_invalidates(kvm, flags),
655 				  true);
656 			hpte[1] = cpu_to_be64(r);
657 		}
658 	}
659 	unlock_hpte(hpte, v & ~HPTE_V_HVLOCK);
660 	asm volatile("ptesync" : : : "memory");
661 	return H_SUCCESS;
662 }
663 
664 long kvmppc_h_read(struct kvm_vcpu *vcpu, unsigned long flags,
665 		   unsigned long pte_index)
666 {
667 	struct kvm *kvm = vcpu->kvm;
668 	__be64 *hpte;
669 	unsigned long v, r;
670 	int i, n = 1;
671 	struct revmap_entry *rev = NULL;
672 
673 	if (pte_index >= kvm->arch.hpt_npte)
674 		return H_PARAMETER;
675 	if (flags & H_READ_4) {
676 		pte_index &= ~3;
677 		n = 4;
678 	}
679 	rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
680 	for (i = 0; i < n; ++i, ++pte_index) {
681 		hpte = (__be64 *)(kvm->arch.hpt_virt + (pte_index << 4));
682 		v = be64_to_cpu(hpte[0]) & ~HPTE_V_HVLOCK;
683 		r = be64_to_cpu(hpte[1]);
684 		if (v & HPTE_V_ABSENT) {
685 			v &= ~HPTE_V_ABSENT;
686 			v |= HPTE_V_VALID;
687 		}
688 		if (v & HPTE_V_VALID) {
689 			r = rev[i].guest_rpte | (r & (HPTE_R_R | HPTE_R_C));
690 			r &= ~HPTE_GR_RESERVED;
691 		}
692 		vcpu->arch.gpr[4 + i * 2] = v;
693 		vcpu->arch.gpr[5 + i * 2] = r;
694 	}
695 	return H_SUCCESS;
696 }
697 
698 long kvmppc_h_clear_ref(struct kvm_vcpu *vcpu, unsigned long flags,
699 			unsigned long pte_index)
700 {
701 	struct kvm *kvm = vcpu->kvm;
702 	__be64 *hpte;
703 	unsigned long v, r, gr;
704 	struct revmap_entry *rev;
705 	unsigned long *rmap;
706 	long ret = H_NOT_FOUND;
707 
708 	if (pte_index >= kvm->arch.hpt_npte)
709 		return H_PARAMETER;
710 
711 	rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
712 	hpte = (__be64 *)(kvm->arch.hpt_virt + (pte_index << 4));
713 	while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
714 		cpu_relax();
715 	v = be64_to_cpu(hpte[0]);
716 	r = be64_to_cpu(hpte[1]);
717 	if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
718 		goto out;
719 
720 	gr = rev->guest_rpte;
721 	if (rev->guest_rpte & HPTE_R_R) {
722 		rev->guest_rpte &= ~HPTE_R_R;
723 		note_hpte_modification(kvm, rev);
724 	}
725 	if (v & HPTE_V_VALID) {
726 		gr |= r & (HPTE_R_R | HPTE_R_C);
727 		if (r & HPTE_R_R) {
728 			kvmppc_clear_ref_hpte(kvm, hpte, pte_index);
729 			rmap = revmap_for_hpte(kvm, v, gr);
730 			if (rmap) {
731 				lock_rmap(rmap);
732 				*rmap |= KVMPPC_RMAP_REFERENCED;
733 				unlock_rmap(rmap);
734 			}
735 		}
736 	}
737 	vcpu->arch.gpr[4] = gr;
738 	ret = H_SUCCESS;
739  out:
740 	unlock_hpte(hpte, v & ~HPTE_V_HVLOCK);
741 	return ret;
742 }
743 
744 long kvmppc_h_clear_mod(struct kvm_vcpu *vcpu, unsigned long flags,
745 			unsigned long pte_index)
746 {
747 	struct kvm *kvm = vcpu->kvm;
748 	__be64 *hpte;
749 	unsigned long v, r, gr;
750 	struct revmap_entry *rev;
751 	unsigned long *rmap;
752 	long ret = H_NOT_FOUND;
753 
754 	if (pte_index >= kvm->arch.hpt_npte)
755 		return H_PARAMETER;
756 
757 	rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
758 	hpte = (__be64 *)(kvm->arch.hpt_virt + (pte_index << 4));
759 	while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
760 		cpu_relax();
761 	v = be64_to_cpu(hpte[0]);
762 	r = be64_to_cpu(hpte[1]);
763 	if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
764 		goto out;
765 
766 	gr = rev->guest_rpte;
767 	if (gr & HPTE_R_C) {
768 		rev->guest_rpte &= ~HPTE_R_C;
769 		note_hpte_modification(kvm, rev);
770 	}
771 	if (v & HPTE_V_VALID) {
772 		/* need to make it temporarily absent so C is stable */
773 		hpte[0] |= cpu_to_be64(HPTE_V_ABSENT);
774 		kvmppc_invalidate_hpte(kvm, hpte, pte_index);
775 		r = be64_to_cpu(hpte[1]);
776 		gr |= r & (HPTE_R_R | HPTE_R_C);
777 		if (r & HPTE_R_C) {
778 			unsigned long psize = hpte_page_size(v, r);
779 			hpte[1] = cpu_to_be64(r & ~HPTE_R_C);
780 			eieio();
781 			rmap = revmap_for_hpte(kvm, v, gr);
782 			if (rmap) {
783 				lock_rmap(rmap);
784 				*rmap |= KVMPPC_RMAP_CHANGED;
785 				kvmppc_update_rmap_change(rmap, psize);
786 				unlock_rmap(rmap);
787 			}
788 		}
789 	}
790 	vcpu->arch.gpr[4] = gr;
791 	ret = H_SUCCESS;
792  out:
793 	unlock_hpte(hpte, v & ~HPTE_V_HVLOCK);
794 	return ret;
795 }
796 
797 void kvmppc_invalidate_hpte(struct kvm *kvm, __be64 *hptep,
798 			unsigned long pte_index)
799 {
800 	unsigned long rb;
801 
802 	hptep[0] &= ~cpu_to_be64(HPTE_V_VALID);
803 	rb = compute_tlbie_rb(be64_to_cpu(hptep[0]), be64_to_cpu(hptep[1]),
804 			      pte_index);
805 	do_tlbies(kvm, &rb, 1, 1, true);
806 }
807 EXPORT_SYMBOL_GPL(kvmppc_invalidate_hpte);
808 
809 void kvmppc_clear_ref_hpte(struct kvm *kvm, __be64 *hptep,
810 			   unsigned long pte_index)
811 {
812 	unsigned long rb;
813 	unsigned char rbyte;
814 
815 	rb = compute_tlbie_rb(be64_to_cpu(hptep[0]), be64_to_cpu(hptep[1]),
816 			      pte_index);
817 	rbyte = (be64_to_cpu(hptep[1]) & ~HPTE_R_R) >> 8;
818 	/* modify only the second-last byte, which contains the ref bit */
819 	*((char *)hptep + 14) = rbyte;
820 	do_tlbies(kvm, &rb, 1, 1, false);
821 }
822 EXPORT_SYMBOL_GPL(kvmppc_clear_ref_hpte);
823 
824 static int slb_base_page_shift[4] = {
825 	24,	/* 16M */
826 	16,	/* 64k */
827 	34,	/* 16G */
828 	20,	/* 1M, unsupported */
829 };
830 
831 /* When called from virtmode, this func should be protected by
832  * preempt_disable(), otherwise, the holding of HPTE_V_HVLOCK
833  * can trigger deadlock issue.
834  */
835 long kvmppc_hv_find_lock_hpte(struct kvm *kvm, gva_t eaddr, unsigned long slb_v,
836 			      unsigned long valid)
837 {
838 	unsigned int i;
839 	unsigned int pshift;
840 	unsigned long somask;
841 	unsigned long vsid, hash;
842 	unsigned long avpn;
843 	__be64 *hpte;
844 	unsigned long mask, val;
845 	unsigned long v, r;
846 
847 	/* Get page shift, work out hash and AVPN etc. */
848 	mask = SLB_VSID_B | HPTE_V_AVPN | HPTE_V_SECONDARY;
849 	val = 0;
850 	pshift = 12;
851 	if (slb_v & SLB_VSID_L) {
852 		mask |= HPTE_V_LARGE;
853 		val |= HPTE_V_LARGE;
854 		pshift = slb_base_page_shift[(slb_v & SLB_VSID_LP) >> 4];
855 	}
856 	if (slb_v & SLB_VSID_B_1T) {
857 		somask = (1UL << 40) - 1;
858 		vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T;
859 		vsid ^= vsid << 25;
860 	} else {
861 		somask = (1UL << 28) - 1;
862 		vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT;
863 	}
864 	hash = (vsid ^ ((eaddr & somask) >> pshift)) & kvm->arch.hpt_mask;
865 	avpn = slb_v & ~(somask >> 16);	/* also includes B */
866 	avpn |= (eaddr & somask) >> 16;
867 
868 	if (pshift >= 24)
869 		avpn &= ~((1UL << (pshift - 16)) - 1);
870 	else
871 		avpn &= ~0x7fUL;
872 	val |= avpn;
873 
874 	for (;;) {
875 		hpte = (__be64 *)(kvm->arch.hpt_virt + (hash << 7));
876 
877 		for (i = 0; i < 16; i += 2) {
878 			/* Read the PTE racily */
879 			v = be64_to_cpu(hpte[i]) & ~HPTE_V_HVLOCK;
880 
881 			/* Check valid/absent, hash, segment size and AVPN */
882 			if (!(v & valid) || (v & mask) != val)
883 				continue;
884 
885 			/* Lock the PTE and read it under the lock */
886 			while (!try_lock_hpte(&hpte[i], HPTE_V_HVLOCK))
887 				cpu_relax();
888 			v = be64_to_cpu(hpte[i]) & ~HPTE_V_HVLOCK;
889 			r = be64_to_cpu(hpte[i+1]);
890 
891 			/*
892 			 * Check the HPTE again, including base page size
893 			 */
894 			if ((v & valid) && (v & mask) == val &&
895 			    hpte_base_page_size(v, r) == (1ul << pshift))
896 				/* Return with the HPTE still locked */
897 				return (hash << 3) + (i >> 1);
898 
899 			__unlock_hpte(&hpte[i], v);
900 		}
901 
902 		if (val & HPTE_V_SECONDARY)
903 			break;
904 		val |= HPTE_V_SECONDARY;
905 		hash = hash ^ kvm->arch.hpt_mask;
906 	}
907 	return -1;
908 }
909 EXPORT_SYMBOL(kvmppc_hv_find_lock_hpte);
910 
911 /*
912  * Called in real mode to check whether an HPTE not found fault
913  * is due to accessing a paged-out page or an emulated MMIO page,
914  * or if a protection fault is due to accessing a page that the
915  * guest wanted read/write access to but which we made read-only.
916  * Returns a possibly modified status (DSISR) value if not
917  * (i.e. pass the interrupt to the guest),
918  * -1 to pass the fault up to host kernel mode code, -2 to do that
919  * and also load the instruction word (for MMIO emulation),
920  * or 0 if we should make the guest retry the access.
921  */
922 long kvmppc_hpte_hv_fault(struct kvm_vcpu *vcpu, unsigned long addr,
923 			  unsigned long slb_v, unsigned int status, bool data)
924 {
925 	struct kvm *kvm = vcpu->kvm;
926 	long int index;
927 	unsigned long v, r, gr;
928 	__be64 *hpte;
929 	unsigned long valid;
930 	struct revmap_entry *rev;
931 	unsigned long pp, key;
932 
933 	/* For protection fault, expect to find a valid HPTE */
934 	valid = HPTE_V_VALID;
935 	if (status & DSISR_NOHPTE)
936 		valid |= HPTE_V_ABSENT;
937 
938 	index = kvmppc_hv_find_lock_hpte(kvm, addr, slb_v, valid);
939 	if (index < 0) {
940 		if (status & DSISR_NOHPTE)
941 			return status;	/* there really was no HPTE */
942 		return 0;		/* for prot fault, HPTE disappeared */
943 	}
944 	hpte = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
945 	v = be64_to_cpu(hpte[0]) & ~HPTE_V_HVLOCK;
946 	r = be64_to_cpu(hpte[1]);
947 	rev = real_vmalloc_addr(&kvm->arch.revmap[index]);
948 	gr = rev->guest_rpte;
949 
950 	unlock_hpte(hpte, v);
951 
952 	/* For not found, if the HPTE is valid by now, retry the instruction */
953 	if ((status & DSISR_NOHPTE) && (v & HPTE_V_VALID))
954 		return 0;
955 
956 	/* Check access permissions to the page */
957 	pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
958 	key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
959 	status &= ~DSISR_NOHPTE;	/* DSISR_NOHPTE == SRR1_ISI_NOPT */
960 	if (!data) {
961 		if (gr & (HPTE_R_N | HPTE_R_G))
962 			return status | SRR1_ISI_N_OR_G;
963 		if (!hpte_read_permission(pp, slb_v & key))
964 			return status | SRR1_ISI_PROT;
965 	} else if (status & DSISR_ISSTORE) {
966 		/* check write permission */
967 		if (!hpte_write_permission(pp, slb_v & key))
968 			return status | DSISR_PROTFAULT;
969 	} else {
970 		if (!hpte_read_permission(pp, slb_v & key))
971 			return status | DSISR_PROTFAULT;
972 	}
973 
974 	/* Check storage key, if applicable */
975 	if (data && (vcpu->arch.shregs.msr & MSR_DR)) {
976 		unsigned int perm = hpte_get_skey_perm(gr, vcpu->arch.amr);
977 		if (status & DSISR_ISSTORE)
978 			perm >>= 1;
979 		if (perm & 1)
980 			return status | DSISR_KEYFAULT;
981 	}
982 
983 	/* Save HPTE info for virtual-mode handler */
984 	vcpu->arch.pgfault_addr = addr;
985 	vcpu->arch.pgfault_index = index;
986 	vcpu->arch.pgfault_hpte[0] = v;
987 	vcpu->arch.pgfault_hpte[1] = r;
988 
989 	/* Check the storage key to see if it is possibly emulated MMIO */
990 	if (data && (vcpu->arch.shregs.msr & MSR_IR) &&
991 	    (r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) ==
992 	    (HPTE_R_KEY_HI | HPTE_R_KEY_LO))
993 		return -2;	/* MMIO emulation - load instr word */
994 
995 	return -1;		/* send fault up to host kernel mode */
996 }
997