1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * Copyright 2010-2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7  */
8 
9 #include <linux/types.h>
10 #include <linux/string.h>
11 #include <linux/kvm.h>
12 #include <linux/kvm_host.h>
13 #include <linux/hugetlb.h>
14 #include <linux/module.h>
15 #include <linux/log2.h>
16 
17 #include <asm/trace.h>
18 #include <asm/kvm_ppc.h>
19 #include <asm/kvm_book3s.h>
20 #include <asm/book3s/64/mmu-hash.h>
21 #include <asm/hvcall.h>
22 #include <asm/synch.h>
23 #include <asm/ppc-opcode.h>
24 #include <asm/pte-walk.h>
25 
26 /* Translate address of a vmalloc'd thing to a linear map address */
27 static void *real_vmalloc_addr(void *x)
28 {
29 	unsigned long addr = (unsigned long) x;
30 	pte_t *p;
31 	/*
32 	 * assume we don't have huge pages in vmalloc space...
33 	 * So don't worry about THP collapse/split. Called
34 	 * Only in realmode with MSR_EE = 0, hence won't need irq_save/restore.
35 	 */
36 	p = find_init_mm_pte(addr, NULL);
37 	if (!p || !pte_present(*p))
38 		return NULL;
39 	addr = (pte_pfn(*p) << PAGE_SHIFT) | (addr & ~PAGE_MASK);
40 	return __va(addr);
41 }
42 
43 /* Return 1 if we need to do a global tlbie, 0 if we can use tlbiel */
44 static int global_invalidates(struct kvm *kvm)
45 {
46 	int global;
47 	int cpu;
48 
49 	/*
50 	 * If there is only one vcore, and it's currently running,
51 	 * as indicated by local_paca->kvm_hstate.kvm_vcpu being set,
52 	 * we can use tlbiel as long as we mark all other physical
53 	 * cores as potentially having stale TLB entries for this lpid.
54 	 * Otherwise, don't use tlbiel.
55 	 */
56 	if (kvm->arch.online_vcores == 1 && local_paca->kvm_hstate.kvm_vcpu)
57 		global = 0;
58 	else
59 		global = 1;
60 
61 	if (!global) {
62 		/* any other core might now have stale TLB entries... */
63 		smp_wmb();
64 		cpumask_setall(&kvm->arch.need_tlb_flush);
65 		cpu = local_paca->kvm_hstate.kvm_vcore->pcpu;
66 		/*
67 		 * On POWER9, threads are independent but the TLB is shared,
68 		 * so use the bit for the first thread to represent the core.
69 		 */
70 		if (cpu_has_feature(CPU_FTR_ARCH_300))
71 			cpu = cpu_first_thread_sibling(cpu);
72 		cpumask_clear_cpu(cpu, &kvm->arch.need_tlb_flush);
73 	}
74 
75 	return global;
76 }
77 
78 /*
79  * Add this HPTE into the chain for the real page.
80  * Must be called with the chain locked; it unlocks the chain.
81  */
82 void kvmppc_add_revmap_chain(struct kvm *kvm, struct revmap_entry *rev,
83 			     unsigned long *rmap, long pte_index, int realmode)
84 {
85 	struct revmap_entry *head, *tail;
86 	unsigned long i;
87 
88 	if (*rmap & KVMPPC_RMAP_PRESENT) {
89 		i = *rmap & KVMPPC_RMAP_INDEX;
90 		head = &kvm->arch.hpt.rev[i];
91 		if (realmode)
92 			head = real_vmalloc_addr(head);
93 		tail = &kvm->arch.hpt.rev[head->back];
94 		if (realmode)
95 			tail = real_vmalloc_addr(tail);
96 		rev->forw = i;
97 		rev->back = head->back;
98 		tail->forw = pte_index;
99 		head->back = pte_index;
100 	} else {
101 		rev->forw = rev->back = pte_index;
102 		*rmap = (*rmap & ~KVMPPC_RMAP_INDEX) |
103 			pte_index | KVMPPC_RMAP_PRESENT;
104 	}
105 	unlock_rmap(rmap);
106 }
107 EXPORT_SYMBOL_GPL(kvmppc_add_revmap_chain);
108 
109 /* Update the dirty bitmap of a memslot */
110 void kvmppc_update_dirty_map(const struct kvm_memory_slot *memslot,
111 			     unsigned long gfn, unsigned long psize)
112 {
113 	unsigned long npages;
114 
115 	if (!psize || !memslot->dirty_bitmap)
116 		return;
117 	npages = (psize + PAGE_SIZE - 1) / PAGE_SIZE;
118 	gfn -= memslot->base_gfn;
119 	set_dirty_bits_atomic(memslot->dirty_bitmap, gfn, npages);
120 }
121 EXPORT_SYMBOL_GPL(kvmppc_update_dirty_map);
122 
123 static void kvmppc_set_dirty_from_hpte(struct kvm *kvm,
124 				unsigned long hpte_v, unsigned long hpte_gr)
125 {
126 	struct kvm_memory_slot *memslot;
127 	unsigned long gfn;
128 	unsigned long psize;
129 
130 	psize = kvmppc_actual_pgsz(hpte_v, hpte_gr);
131 	gfn = hpte_rpn(hpte_gr, psize);
132 	memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
133 	if (memslot && memslot->dirty_bitmap)
134 		kvmppc_update_dirty_map(memslot, gfn, psize);
135 }
136 
137 /* Returns a pointer to the revmap entry for the page mapped by a HPTE */
138 static unsigned long *revmap_for_hpte(struct kvm *kvm, unsigned long hpte_v,
139 				      unsigned long hpte_gr,
140 				      struct kvm_memory_slot **memslotp,
141 				      unsigned long *gfnp)
142 {
143 	struct kvm_memory_slot *memslot;
144 	unsigned long *rmap;
145 	unsigned long gfn;
146 
147 	gfn = hpte_rpn(hpte_gr, kvmppc_actual_pgsz(hpte_v, hpte_gr));
148 	memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
149 	if (memslotp)
150 		*memslotp = memslot;
151 	if (gfnp)
152 		*gfnp = gfn;
153 	if (!memslot)
154 		return NULL;
155 
156 	rmap = real_vmalloc_addr(&memslot->arch.rmap[gfn - memslot->base_gfn]);
157 	return rmap;
158 }
159 
160 /* Remove this HPTE from the chain for a real page */
161 static void remove_revmap_chain(struct kvm *kvm, long pte_index,
162 				struct revmap_entry *rev,
163 				unsigned long hpte_v, unsigned long hpte_r)
164 {
165 	struct revmap_entry *next, *prev;
166 	unsigned long ptel, head;
167 	unsigned long *rmap;
168 	unsigned long rcbits;
169 	struct kvm_memory_slot *memslot;
170 	unsigned long gfn;
171 
172 	rcbits = hpte_r & (HPTE_R_R | HPTE_R_C);
173 	ptel = rev->guest_rpte |= rcbits;
174 	rmap = revmap_for_hpte(kvm, hpte_v, ptel, &memslot, &gfn);
175 	if (!rmap)
176 		return;
177 	lock_rmap(rmap);
178 
179 	head = *rmap & KVMPPC_RMAP_INDEX;
180 	next = real_vmalloc_addr(&kvm->arch.hpt.rev[rev->forw]);
181 	prev = real_vmalloc_addr(&kvm->arch.hpt.rev[rev->back]);
182 	next->back = rev->back;
183 	prev->forw = rev->forw;
184 	if (head == pte_index) {
185 		head = rev->forw;
186 		if (head == pte_index)
187 			*rmap &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
188 		else
189 			*rmap = (*rmap & ~KVMPPC_RMAP_INDEX) | head;
190 	}
191 	*rmap |= rcbits << KVMPPC_RMAP_RC_SHIFT;
192 	if (rcbits & HPTE_R_C)
193 		kvmppc_update_dirty_map(memslot, gfn,
194 					kvmppc_actual_pgsz(hpte_v, hpte_r));
195 	unlock_rmap(rmap);
196 }
197 
198 long kvmppc_do_h_enter(struct kvm *kvm, unsigned long flags,
199 		       long pte_index, unsigned long pteh, unsigned long ptel,
200 		       pgd_t *pgdir, bool realmode, unsigned long *pte_idx_ret)
201 {
202 	unsigned long i, pa, gpa, gfn, psize;
203 	unsigned long slot_fn, hva;
204 	__be64 *hpte;
205 	struct revmap_entry *rev;
206 	unsigned long g_ptel;
207 	struct kvm_memory_slot *memslot;
208 	unsigned hpage_shift;
209 	bool is_ci;
210 	unsigned long *rmap;
211 	pte_t *ptep;
212 	unsigned int writing;
213 	unsigned long mmu_seq;
214 	unsigned long rcbits, irq_flags = 0;
215 
216 	if (kvm_is_radix(kvm))
217 		return H_FUNCTION;
218 	psize = kvmppc_actual_pgsz(pteh, ptel);
219 	if (!psize)
220 		return H_PARAMETER;
221 	writing = hpte_is_writable(ptel);
222 	pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
223 	ptel &= ~HPTE_GR_RESERVED;
224 	g_ptel = ptel;
225 
226 	/* used later to detect if we might have been invalidated */
227 	mmu_seq = kvm->mmu_notifier_seq;
228 	smp_rmb();
229 
230 	/* Find the memslot (if any) for this address */
231 	gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
232 	gfn = gpa >> PAGE_SHIFT;
233 	memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
234 	pa = 0;
235 	is_ci = false;
236 	rmap = NULL;
237 	if (!(memslot && !(memslot->flags & KVM_MEMSLOT_INVALID))) {
238 		/* Emulated MMIO - mark this with key=31 */
239 		pteh |= HPTE_V_ABSENT;
240 		ptel |= HPTE_R_KEY_HI | HPTE_R_KEY_LO;
241 		goto do_insert;
242 	}
243 
244 	/* Check if the requested page fits entirely in the memslot. */
245 	if (!slot_is_aligned(memslot, psize))
246 		return H_PARAMETER;
247 	slot_fn = gfn - memslot->base_gfn;
248 	rmap = &memslot->arch.rmap[slot_fn];
249 
250 	/* Translate to host virtual address */
251 	hva = __gfn_to_hva_memslot(memslot, gfn);
252 	/*
253 	 * If we had a page table table change after lookup, we would
254 	 * retry via mmu_notifier_retry.
255 	 */
256 	if (!realmode)
257 		local_irq_save(irq_flags);
258 	/*
259 	 * If called in real mode we have MSR_EE = 0. Otherwise
260 	 * we disable irq above.
261 	 */
262 	ptep = __find_linux_pte(pgdir, hva, NULL, &hpage_shift);
263 	if (ptep) {
264 		pte_t pte;
265 		unsigned int host_pte_size;
266 
267 		if (hpage_shift)
268 			host_pte_size = 1ul << hpage_shift;
269 		else
270 			host_pte_size = PAGE_SIZE;
271 		/*
272 		 * We should always find the guest page size
273 		 * to <= host page size, if host is using hugepage
274 		 */
275 		if (host_pte_size < psize) {
276 			if (!realmode)
277 				local_irq_restore(flags);
278 			return H_PARAMETER;
279 		}
280 		pte = kvmppc_read_update_linux_pte(ptep, writing);
281 		if (pte_present(pte) && !pte_protnone(pte)) {
282 			if (writing && !__pte_write(pte))
283 				/* make the actual HPTE be read-only */
284 				ptel = hpte_make_readonly(ptel);
285 			is_ci = pte_ci(pte);
286 			pa = pte_pfn(pte) << PAGE_SHIFT;
287 			pa |= hva & (host_pte_size - 1);
288 			pa |= gpa & ~PAGE_MASK;
289 		}
290 	}
291 	if (!realmode)
292 		local_irq_restore(irq_flags);
293 
294 	ptel &= HPTE_R_KEY | HPTE_R_PP0 | (psize-1);
295 	ptel |= pa;
296 
297 	if (pa)
298 		pteh |= HPTE_V_VALID;
299 	else {
300 		pteh |= HPTE_V_ABSENT;
301 		ptel &= ~(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
302 	}
303 
304 	/*If we had host pte mapping then  Check WIMG */
305 	if (ptep && !hpte_cache_flags_ok(ptel, is_ci)) {
306 		if (is_ci)
307 			return H_PARAMETER;
308 		/*
309 		 * Allow guest to map emulated device memory as
310 		 * uncacheable, but actually make it cacheable.
311 		 */
312 		ptel &= ~(HPTE_R_W|HPTE_R_I|HPTE_R_G);
313 		ptel |= HPTE_R_M;
314 	}
315 
316 	/* Find and lock the HPTEG slot to use */
317  do_insert:
318 	if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
319 		return H_PARAMETER;
320 	if (likely((flags & H_EXACT) == 0)) {
321 		pte_index &= ~7UL;
322 		hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
323 		for (i = 0; i < 8; ++i) {
324 			if ((be64_to_cpu(*hpte) & HPTE_V_VALID) == 0 &&
325 			    try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
326 					  HPTE_V_ABSENT))
327 				break;
328 			hpte += 2;
329 		}
330 		if (i == 8) {
331 			/*
332 			 * Since try_lock_hpte doesn't retry (not even stdcx.
333 			 * failures), it could be that there is a free slot
334 			 * but we transiently failed to lock it.  Try again,
335 			 * actually locking each slot and checking it.
336 			 */
337 			hpte -= 16;
338 			for (i = 0; i < 8; ++i) {
339 				u64 pte;
340 				while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
341 					cpu_relax();
342 				pte = be64_to_cpu(hpte[0]);
343 				if (!(pte & (HPTE_V_VALID | HPTE_V_ABSENT)))
344 					break;
345 				__unlock_hpte(hpte, pte);
346 				hpte += 2;
347 			}
348 			if (i == 8)
349 				return H_PTEG_FULL;
350 		}
351 		pte_index += i;
352 	} else {
353 		hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
354 		if (!try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
355 				   HPTE_V_ABSENT)) {
356 			/* Lock the slot and check again */
357 			u64 pte;
358 
359 			while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
360 				cpu_relax();
361 			pte = be64_to_cpu(hpte[0]);
362 			if (pte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
363 				__unlock_hpte(hpte, pte);
364 				return H_PTEG_FULL;
365 			}
366 		}
367 	}
368 
369 	/* Save away the guest's idea of the second HPTE dword */
370 	rev = &kvm->arch.hpt.rev[pte_index];
371 	if (realmode)
372 		rev = real_vmalloc_addr(rev);
373 	if (rev) {
374 		rev->guest_rpte = g_ptel;
375 		note_hpte_modification(kvm, rev);
376 	}
377 
378 	/* Link HPTE into reverse-map chain */
379 	if (pteh & HPTE_V_VALID) {
380 		if (realmode)
381 			rmap = real_vmalloc_addr(rmap);
382 		lock_rmap(rmap);
383 		/* Check for pending invalidations under the rmap chain lock */
384 		if (mmu_notifier_retry(kvm, mmu_seq)) {
385 			/* inval in progress, write a non-present HPTE */
386 			pteh |= HPTE_V_ABSENT;
387 			pteh &= ~HPTE_V_VALID;
388 			ptel &= ~(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
389 			unlock_rmap(rmap);
390 		} else {
391 			kvmppc_add_revmap_chain(kvm, rev, rmap, pte_index,
392 						realmode);
393 			/* Only set R/C in real HPTE if already set in *rmap */
394 			rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
395 			ptel &= rcbits | ~(HPTE_R_R | HPTE_R_C);
396 		}
397 	}
398 
399 	/* Convert to new format on P9 */
400 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
401 		ptel = hpte_old_to_new_r(pteh, ptel);
402 		pteh = hpte_old_to_new_v(pteh);
403 	}
404 	hpte[1] = cpu_to_be64(ptel);
405 
406 	/* Write the first HPTE dword, unlocking the HPTE and making it valid */
407 	eieio();
408 	__unlock_hpte(hpte, pteh);
409 	asm volatile("ptesync" : : : "memory");
410 
411 	*pte_idx_ret = pte_index;
412 	return H_SUCCESS;
413 }
414 EXPORT_SYMBOL_GPL(kvmppc_do_h_enter);
415 
416 long kvmppc_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
417 		    long pte_index, unsigned long pteh, unsigned long ptel)
418 {
419 	return kvmppc_do_h_enter(vcpu->kvm, flags, pte_index, pteh, ptel,
420 				 vcpu->arch.pgdir, true,
421 				 &vcpu->arch.regs.gpr[4]);
422 }
423 
424 #ifdef __BIG_ENDIAN__
425 #define LOCK_TOKEN	(*(u32 *)(&get_paca()->lock_token))
426 #else
427 #define LOCK_TOKEN	(*(u32 *)(&get_paca()->paca_index))
428 #endif
429 
430 static inline int is_mmio_hpte(unsigned long v, unsigned long r)
431 {
432 	return ((v & HPTE_V_ABSENT) &&
433 		(r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) ==
434 		(HPTE_R_KEY_HI | HPTE_R_KEY_LO));
435 }
436 
437 static void do_tlbies(struct kvm *kvm, unsigned long *rbvalues,
438 		      long npages, int global, bool need_sync)
439 {
440 	long i;
441 
442 	/*
443 	 * We use the POWER9 5-operand versions of tlbie and tlbiel here.
444 	 * Since we are using RIC=0 PRS=0 R=0, and P7/P8 tlbiel ignores
445 	 * the RS field, this is backwards-compatible with P7 and P8.
446 	 */
447 	if (global) {
448 		if (need_sync)
449 			asm volatile("ptesync" : : : "memory");
450 		for (i = 0; i < npages; ++i) {
451 			asm volatile(PPC_TLBIE_5(%0,%1,0,0,0) : :
452 				     "r" (rbvalues[i]), "r" (kvm->arch.lpid));
453 		}
454 
455 		if (cpu_has_feature(CPU_FTR_P9_TLBIE_BUG)) {
456 			/*
457 			 * Need the extra ptesync to make sure we don't
458 			 * re-order the tlbie
459 			 */
460 			asm volatile("ptesync": : :"memory");
461 			asm volatile(PPC_TLBIE_5(%0,%1,0,0,0) : :
462 				     "r" (rbvalues[0]), "r" (kvm->arch.lpid));
463 		}
464 
465 		asm volatile("eieio; tlbsync; ptesync" : : : "memory");
466 	} else {
467 		if (need_sync)
468 			asm volatile("ptesync" : : : "memory");
469 		for (i = 0; i < npages; ++i) {
470 			asm volatile(PPC_TLBIEL(%0,%1,0,0,0) : :
471 				     "r" (rbvalues[i]), "r" (0));
472 		}
473 		asm volatile("ptesync" : : : "memory");
474 	}
475 }
476 
477 long kvmppc_do_h_remove(struct kvm *kvm, unsigned long flags,
478 			unsigned long pte_index, unsigned long avpn,
479 			unsigned long *hpret)
480 {
481 	__be64 *hpte;
482 	unsigned long v, r, rb;
483 	struct revmap_entry *rev;
484 	u64 pte, orig_pte, pte_r;
485 
486 	if (kvm_is_radix(kvm))
487 		return H_FUNCTION;
488 	if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
489 		return H_PARAMETER;
490 	hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
491 	while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
492 		cpu_relax();
493 	pte = orig_pte = be64_to_cpu(hpte[0]);
494 	pte_r = be64_to_cpu(hpte[1]);
495 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
496 		pte = hpte_new_to_old_v(pte, pte_r);
497 		pte_r = hpte_new_to_old_r(pte_r);
498 	}
499 	if ((pte & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
500 	    ((flags & H_AVPN) && (pte & ~0x7fUL) != avpn) ||
501 	    ((flags & H_ANDCOND) && (pte & avpn) != 0)) {
502 		__unlock_hpte(hpte, orig_pte);
503 		return H_NOT_FOUND;
504 	}
505 
506 	rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
507 	v = pte & ~HPTE_V_HVLOCK;
508 	if (v & HPTE_V_VALID) {
509 		hpte[0] &= ~cpu_to_be64(HPTE_V_VALID);
510 		rb = compute_tlbie_rb(v, pte_r, pte_index);
511 		do_tlbies(kvm, &rb, 1, global_invalidates(kvm), true);
512 		/*
513 		 * The reference (R) and change (C) bits in a HPT
514 		 * entry can be set by hardware at any time up until
515 		 * the HPTE is invalidated and the TLB invalidation
516 		 * sequence has completed.  This means that when
517 		 * removing a HPTE, we need to re-read the HPTE after
518 		 * the invalidation sequence has completed in order to
519 		 * obtain reliable values of R and C.
520 		 */
521 		remove_revmap_chain(kvm, pte_index, rev, v,
522 				    be64_to_cpu(hpte[1]));
523 	}
524 	r = rev->guest_rpte & ~HPTE_GR_RESERVED;
525 	note_hpte_modification(kvm, rev);
526 	unlock_hpte(hpte, 0);
527 
528 	if (is_mmio_hpte(v, pte_r))
529 		atomic64_inc(&kvm->arch.mmio_update);
530 
531 	if (v & HPTE_V_ABSENT)
532 		v = (v & ~HPTE_V_ABSENT) | HPTE_V_VALID;
533 	hpret[0] = v;
534 	hpret[1] = r;
535 	return H_SUCCESS;
536 }
537 EXPORT_SYMBOL_GPL(kvmppc_do_h_remove);
538 
539 long kvmppc_h_remove(struct kvm_vcpu *vcpu, unsigned long flags,
540 		     unsigned long pte_index, unsigned long avpn)
541 {
542 	return kvmppc_do_h_remove(vcpu->kvm, flags, pte_index, avpn,
543 				  &vcpu->arch.regs.gpr[4]);
544 }
545 
546 long kvmppc_h_bulk_remove(struct kvm_vcpu *vcpu)
547 {
548 	struct kvm *kvm = vcpu->kvm;
549 	unsigned long *args = &vcpu->arch.regs.gpr[4];
550 	__be64 *hp, *hptes[4];
551 	unsigned long tlbrb[4];
552 	long int i, j, k, n, found, indexes[4];
553 	unsigned long flags, req, pte_index, rcbits;
554 	int global;
555 	long int ret = H_SUCCESS;
556 	struct revmap_entry *rev, *revs[4];
557 	u64 hp0, hp1;
558 
559 	if (kvm_is_radix(kvm))
560 		return H_FUNCTION;
561 	global = global_invalidates(kvm);
562 	for (i = 0; i < 4 && ret == H_SUCCESS; ) {
563 		n = 0;
564 		for (; i < 4; ++i) {
565 			j = i * 2;
566 			pte_index = args[j];
567 			flags = pte_index >> 56;
568 			pte_index &= ((1ul << 56) - 1);
569 			req = flags >> 6;
570 			flags &= 3;
571 			if (req == 3) {		/* no more requests */
572 				i = 4;
573 				break;
574 			}
575 			if (req != 1 || flags == 3 ||
576 			    pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt)) {
577 				/* parameter error */
578 				args[j] = ((0xa0 | flags) << 56) + pte_index;
579 				ret = H_PARAMETER;
580 				break;
581 			}
582 			hp = (__be64 *) (kvm->arch.hpt.virt + (pte_index << 4));
583 			/* to avoid deadlock, don't spin except for first */
584 			if (!try_lock_hpte(hp, HPTE_V_HVLOCK)) {
585 				if (n)
586 					break;
587 				while (!try_lock_hpte(hp, HPTE_V_HVLOCK))
588 					cpu_relax();
589 			}
590 			found = 0;
591 			hp0 = be64_to_cpu(hp[0]);
592 			hp1 = be64_to_cpu(hp[1]);
593 			if (cpu_has_feature(CPU_FTR_ARCH_300)) {
594 				hp0 = hpte_new_to_old_v(hp0, hp1);
595 				hp1 = hpte_new_to_old_r(hp1);
596 			}
597 			if (hp0 & (HPTE_V_ABSENT | HPTE_V_VALID)) {
598 				switch (flags & 3) {
599 				case 0:		/* absolute */
600 					found = 1;
601 					break;
602 				case 1:		/* andcond */
603 					if (!(hp0 & args[j + 1]))
604 						found = 1;
605 					break;
606 				case 2:		/* AVPN */
607 					if ((hp0 & ~0x7fUL) == args[j + 1])
608 						found = 1;
609 					break;
610 				}
611 			}
612 			if (!found) {
613 				hp[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
614 				args[j] = ((0x90 | flags) << 56) + pte_index;
615 				continue;
616 			}
617 
618 			args[j] = ((0x80 | flags) << 56) + pte_index;
619 			rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
620 			note_hpte_modification(kvm, rev);
621 
622 			if (!(hp0 & HPTE_V_VALID)) {
623 				/* insert R and C bits from PTE */
624 				rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
625 				args[j] |= rcbits << (56 - 5);
626 				hp[0] = 0;
627 				if (is_mmio_hpte(hp0, hp1))
628 					atomic64_inc(&kvm->arch.mmio_update);
629 				continue;
630 			}
631 
632 			/* leave it locked */
633 			hp[0] &= ~cpu_to_be64(HPTE_V_VALID);
634 			tlbrb[n] = compute_tlbie_rb(hp0, hp1, pte_index);
635 			indexes[n] = j;
636 			hptes[n] = hp;
637 			revs[n] = rev;
638 			++n;
639 		}
640 
641 		if (!n)
642 			break;
643 
644 		/* Now that we've collected a batch, do the tlbies */
645 		do_tlbies(kvm, tlbrb, n, global, true);
646 
647 		/* Read PTE low words after tlbie to get final R/C values */
648 		for (k = 0; k < n; ++k) {
649 			j = indexes[k];
650 			pte_index = args[j] & ((1ul << 56) - 1);
651 			hp = hptes[k];
652 			rev = revs[k];
653 			remove_revmap_chain(kvm, pte_index, rev,
654 				be64_to_cpu(hp[0]), be64_to_cpu(hp[1]));
655 			rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
656 			args[j] |= rcbits << (56 - 5);
657 			__unlock_hpte(hp, 0);
658 		}
659 	}
660 
661 	return ret;
662 }
663 
664 long kvmppc_h_protect(struct kvm_vcpu *vcpu, unsigned long flags,
665 		      unsigned long pte_index, unsigned long avpn,
666 		      unsigned long va)
667 {
668 	struct kvm *kvm = vcpu->kvm;
669 	__be64 *hpte;
670 	struct revmap_entry *rev;
671 	unsigned long v, r, rb, mask, bits;
672 	u64 pte_v, pte_r;
673 
674 	if (kvm_is_radix(kvm))
675 		return H_FUNCTION;
676 	if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
677 		return H_PARAMETER;
678 
679 	hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
680 	while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
681 		cpu_relax();
682 	v = pte_v = be64_to_cpu(hpte[0]);
683 	if (cpu_has_feature(CPU_FTR_ARCH_300))
684 		v = hpte_new_to_old_v(v, be64_to_cpu(hpte[1]));
685 	if ((v & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
686 	    ((flags & H_AVPN) && (v & ~0x7fUL) != avpn)) {
687 		__unlock_hpte(hpte, pte_v);
688 		return H_NOT_FOUND;
689 	}
690 
691 	pte_r = be64_to_cpu(hpte[1]);
692 	bits = (flags << 55) & HPTE_R_PP0;
693 	bits |= (flags << 48) & HPTE_R_KEY_HI;
694 	bits |= flags & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO);
695 
696 	/* Update guest view of 2nd HPTE dword */
697 	mask = HPTE_R_PP0 | HPTE_R_PP | HPTE_R_N |
698 		HPTE_R_KEY_HI | HPTE_R_KEY_LO;
699 	rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
700 	if (rev) {
701 		r = (rev->guest_rpte & ~mask) | bits;
702 		rev->guest_rpte = r;
703 		note_hpte_modification(kvm, rev);
704 	}
705 
706 	/* Update HPTE */
707 	if (v & HPTE_V_VALID) {
708 		/*
709 		 * If the page is valid, don't let it transition from
710 		 * readonly to writable.  If it should be writable, we'll
711 		 * take a trap and let the page fault code sort it out.
712 		 */
713 		r = (pte_r & ~mask) | bits;
714 		if (hpte_is_writable(r) && !hpte_is_writable(pte_r))
715 			r = hpte_make_readonly(r);
716 		/* If the PTE is changing, invalidate it first */
717 		if (r != pte_r) {
718 			rb = compute_tlbie_rb(v, r, pte_index);
719 			hpte[0] = cpu_to_be64((pte_v & ~HPTE_V_VALID) |
720 					      HPTE_V_ABSENT);
721 			do_tlbies(kvm, &rb, 1, global_invalidates(kvm), true);
722 			/* Don't lose R/C bit updates done by hardware */
723 			r |= be64_to_cpu(hpte[1]) & (HPTE_R_R | HPTE_R_C);
724 			hpte[1] = cpu_to_be64(r);
725 		}
726 	}
727 	unlock_hpte(hpte, pte_v & ~HPTE_V_HVLOCK);
728 	asm volatile("ptesync" : : : "memory");
729 	if (is_mmio_hpte(v, pte_r))
730 		atomic64_inc(&kvm->arch.mmio_update);
731 
732 	return H_SUCCESS;
733 }
734 
735 long kvmppc_h_read(struct kvm_vcpu *vcpu, unsigned long flags,
736 		   unsigned long pte_index)
737 {
738 	struct kvm *kvm = vcpu->kvm;
739 	__be64 *hpte;
740 	unsigned long v, r;
741 	int i, n = 1;
742 	struct revmap_entry *rev = NULL;
743 
744 	if (kvm_is_radix(kvm))
745 		return H_FUNCTION;
746 	if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
747 		return H_PARAMETER;
748 	if (flags & H_READ_4) {
749 		pte_index &= ~3;
750 		n = 4;
751 	}
752 	rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
753 	for (i = 0; i < n; ++i, ++pte_index) {
754 		hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
755 		v = be64_to_cpu(hpte[0]) & ~HPTE_V_HVLOCK;
756 		r = be64_to_cpu(hpte[1]);
757 		if (cpu_has_feature(CPU_FTR_ARCH_300)) {
758 			v = hpte_new_to_old_v(v, r);
759 			r = hpte_new_to_old_r(r);
760 		}
761 		if (v & HPTE_V_ABSENT) {
762 			v &= ~HPTE_V_ABSENT;
763 			v |= HPTE_V_VALID;
764 		}
765 		if (v & HPTE_V_VALID) {
766 			r = rev[i].guest_rpte | (r & (HPTE_R_R | HPTE_R_C));
767 			r &= ~HPTE_GR_RESERVED;
768 		}
769 		vcpu->arch.regs.gpr[4 + i * 2] = v;
770 		vcpu->arch.regs.gpr[5 + i * 2] = r;
771 	}
772 	return H_SUCCESS;
773 }
774 
775 long kvmppc_h_clear_ref(struct kvm_vcpu *vcpu, unsigned long flags,
776 			unsigned long pte_index)
777 {
778 	struct kvm *kvm = vcpu->kvm;
779 	__be64 *hpte;
780 	unsigned long v, r, gr;
781 	struct revmap_entry *rev;
782 	unsigned long *rmap;
783 	long ret = H_NOT_FOUND;
784 
785 	if (kvm_is_radix(kvm))
786 		return H_FUNCTION;
787 	if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
788 		return H_PARAMETER;
789 
790 	rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
791 	hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
792 	while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
793 		cpu_relax();
794 	v = be64_to_cpu(hpte[0]);
795 	r = be64_to_cpu(hpte[1]);
796 	if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
797 		goto out;
798 
799 	gr = rev->guest_rpte;
800 	if (rev->guest_rpte & HPTE_R_R) {
801 		rev->guest_rpte &= ~HPTE_R_R;
802 		note_hpte_modification(kvm, rev);
803 	}
804 	if (v & HPTE_V_VALID) {
805 		gr |= r & (HPTE_R_R | HPTE_R_C);
806 		if (r & HPTE_R_R) {
807 			kvmppc_clear_ref_hpte(kvm, hpte, pte_index);
808 			rmap = revmap_for_hpte(kvm, v, gr, NULL, NULL);
809 			if (rmap) {
810 				lock_rmap(rmap);
811 				*rmap |= KVMPPC_RMAP_REFERENCED;
812 				unlock_rmap(rmap);
813 			}
814 		}
815 	}
816 	vcpu->arch.regs.gpr[4] = gr;
817 	ret = H_SUCCESS;
818  out:
819 	unlock_hpte(hpte, v & ~HPTE_V_HVLOCK);
820 	return ret;
821 }
822 
823 long kvmppc_h_clear_mod(struct kvm_vcpu *vcpu, unsigned long flags,
824 			unsigned long pte_index)
825 {
826 	struct kvm *kvm = vcpu->kvm;
827 	__be64 *hpte;
828 	unsigned long v, r, gr;
829 	struct revmap_entry *rev;
830 	long ret = H_NOT_FOUND;
831 
832 	if (kvm_is_radix(kvm))
833 		return H_FUNCTION;
834 	if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
835 		return H_PARAMETER;
836 
837 	rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
838 	hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
839 	while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
840 		cpu_relax();
841 	v = be64_to_cpu(hpte[0]);
842 	r = be64_to_cpu(hpte[1]);
843 	if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
844 		goto out;
845 
846 	gr = rev->guest_rpte;
847 	if (gr & HPTE_R_C) {
848 		rev->guest_rpte &= ~HPTE_R_C;
849 		note_hpte_modification(kvm, rev);
850 	}
851 	if (v & HPTE_V_VALID) {
852 		/* need to make it temporarily absent so C is stable */
853 		hpte[0] |= cpu_to_be64(HPTE_V_ABSENT);
854 		kvmppc_invalidate_hpte(kvm, hpte, pte_index);
855 		r = be64_to_cpu(hpte[1]);
856 		gr |= r & (HPTE_R_R | HPTE_R_C);
857 		if (r & HPTE_R_C) {
858 			hpte[1] = cpu_to_be64(r & ~HPTE_R_C);
859 			eieio();
860 			kvmppc_set_dirty_from_hpte(kvm, v, gr);
861 		}
862 	}
863 	vcpu->arch.regs.gpr[4] = gr;
864 	ret = H_SUCCESS;
865  out:
866 	unlock_hpte(hpte, v & ~HPTE_V_HVLOCK);
867 	return ret;
868 }
869 
870 void kvmppc_invalidate_hpte(struct kvm *kvm, __be64 *hptep,
871 			unsigned long pte_index)
872 {
873 	unsigned long rb;
874 	u64 hp0, hp1;
875 
876 	hptep[0] &= ~cpu_to_be64(HPTE_V_VALID);
877 	hp0 = be64_to_cpu(hptep[0]);
878 	hp1 = be64_to_cpu(hptep[1]);
879 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
880 		hp0 = hpte_new_to_old_v(hp0, hp1);
881 		hp1 = hpte_new_to_old_r(hp1);
882 	}
883 	rb = compute_tlbie_rb(hp0, hp1, pte_index);
884 	do_tlbies(kvm, &rb, 1, 1, true);
885 }
886 EXPORT_SYMBOL_GPL(kvmppc_invalidate_hpte);
887 
888 void kvmppc_clear_ref_hpte(struct kvm *kvm, __be64 *hptep,
889 			   unsigned long pte_index)
890 {
891 	unsigned long rb;
892 	unsigned char rbyte;
893 	u64 hp0, hp1;
894 
895 	hp0 = be64_to_cpu(hptep[0]);
896 	hp1 = be64_to_cpu(hptep[1]);
897 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
898 		hp0 = hpte_new_to_old_v(hp0, hp1);
899 		hp1 = hpte_new_to_old_r(hp1);
900 	}
901 	rb = compute_tlbie_rb(hp0, hp1, pte_index);
902 	rbyte = (be64_to_cpu(hptep[1]) & ~HPTE_R_R) >> 8;
903 	/* modify only the second-last byte, which contains the ref bit */
904 	*((char *)hptep + 14) = rbyte;
905 	do_tlbies(kvm, &rb, 1, 1, false);
906 }
907 EXPORT_SYMBOL_GPL(kvmppc_clear_ref_hpte);
908 
909 static int slb_base_page_shift[4] = {
910 	24,	/* 16M */
911 	16,	/* 64k */
912 	34,	/* 16G */
913 	20,	/* 1M, unsupported */
914 };
915 
916 static struct mmio_hpte_cache_entry *mmio_cache_search(struct kvm_vcpu *vcpu,
917 		unsigned long eaddr, unsigned long slb_v, long mmio_update)
918 {
919 	struct mmio_hpte_cache_entry *entry = NULL;
920 	unsigned int pshift;
921 	unsigned int i;
922 
923 	for (i = 0; i < MMIO_HPTE_CACHE_SIZE; i++) {
924 		entry = &vcpu->arch.mmio_cache.entry[i];
925 		if (entry->mmio_update == mmio_update) {
926 			pshift = entry->slb_base_pshift;
927 			if ((entry->eaddr >> pshift) == (eaddr >> pshift) &&
928 			    entry->slb_v == slb_v)
929 				return entry;
930 		}
931 	}
932 	return NULL;
933 }
934 
935 static struct mmio_hpte_cache_entry *
936 			next_mmio_cache_entry(struct kvm_vcpu *vcpu)
937 {
938 	unsigned int index = vcpu->arch.mmio_cache.index;
939 
940 	vcpu->arch.mmio_cache.index++;
941 	if (vcpu->arch.mmio_cache.index == MMIO_HPTE_CACHE_SIZE)
942 		vcpu->arch.mmio_cache.index = 0;
943 
944 	return &vcpu->arch.mmio_cache.entry[index];
945 }
946 
947 /* When called from virtmode, this func should be protected by
948  * preempt_disable(), otherwise, the holding of HPTE_V_HVLOCK
949  * can trigger deadlock issue.
950  */
951 long kvmppc_hv_find_lock_hpte(struct kvm *kvm, gva_t eaddr, unsigned long slb_v,
952 			      unsigned long valid)
953 {
954 	unsigned int i;
955 	unsigned int pshift;
956 	unsigned long somask;
957 	unsigned long vsid, hash;
958 	unsigned long avpn;
959 	__be64 *hpte;
960 	unsigned long mask, val;
961 	unsigned long v, r, orig_v;
962 
963 	/* Get page shift, work out hash and AVPN etc. */
964 	mask = SLB_VSID_B | HPTE_V_AVPN | HPTE_V_SECONDARY;
965 	val = 0;
966 	pshift = 12;
967 	if (slb_v & SLB_VSID_L) {
968 		mask |= HPTE_V_LARGE;
969 		val |= HPTE_V_LARGE;
970 		pshift = slb_base_page_shift[(slb_v & SLB_VSID_LP) >> 4];
971 	}
972 	if (slb_v & SLB_VSID_B_1T) {
973 		somask = (1UL << 40) - 1;
974 		vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T;
975 		vsid ^= vsid << 25;
976 	} else {
977 		somask = (1UL << 28) - 1;
978 		vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT;
979 	}
980 	hash = (vsid ^ ((eaddr & somask) >> pshift)) & kvmppc_hpt_mask(&kvm->arch.hpt);
981 	avpn = slb_v & ~(somask >> 16);	/* also includes B */
982 	avpn |= (eaddr & somask) >> 16;
983 
984 	if (pshift >= 24)
985 		avpn &= ~((1UL << (pshift - 16)) - 1);
986 	else
987 		avpn &= ~0x7fUL;
988 	val |= avpn;
989 
990 	for (;;) {
991 		hpte = (__be64 *)(kvm->arch.hpt.virt + (hash << 7));
992 
993 		for (i = 0; i < 16; i += 2) {
994 			/* Read the PTE racily */
995 			v = be64_to_cpu(hpte[i]) & ~HPTE_V_HVLOCK;
996 			if (cpu_has_feature(CPU_FTR_ARCH_300))
997 				v = hpte_new_to_old_v(v, be64_to_cpu(hpte[i+1]));
998 
999 			/* Check valid/absent, hash, segment size and AVPN */
1000 			if (!(v & valid) || (v & mask) != val)
1001 				continue;
1002 
1003 			/* Lock the PTE and read it under the lock */
1004 			while (!try_lock_hpte(&hpte[i], HPTE_V_HVLOCK))
1005 				cpu_relax();
1006 			v = orig_v = be64_to_cpu(hpte[i]) & ~HPTE_V_HVLOCK;
1007 			r = be64_to_cpu(hpte[i+1]);
1008 			if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1009 				v = hpte_new_to_old_v(v, r);
1010 				r = hpte_new_to_old_r(r);
1011 			}
1012 
1013 			/*
1014 			 * Check the HPTE again, including base page size
1015 			 */
1016 			if ((v & valid) && (v & mask) == val &&
1017 			    kvmppc_hpte_base_page_shift(v, r) == pshift)
1018 				/* Return with the HPTE still locked */
1019 				return (hash << 3) + (i >> 1);
1020 
1021 			__unlock_hpte(&hpte[i], orig_v);
1022 		}
1023 
1024 		if (val & HPTE_V_SECONDARY)
1025 			break;
1026 		val |= HPTE_V_SECONDARY;
1027 		hash = hash ^ kvmppc_hpt_mask(&kvm->arch.hpt);
1028 	}
1029 	return -1;
1030 }
1031 EXPORT_SYMBOL(kvmppc_hv_find_lock_hpte);
1032 
1033 /*
1034  * Called in real mode to check whether an HPTE not found fault
1035  * is due to accessing a paged-out page or an emulated MMIO page,
1036  * or if a protection fault is due to accessing a page that the
1037  * guest wanted read/write access to but which we made read-only.
1038  * Returns a possibly modified status (DSISR) value if not
1039  * (i.e. pass the interrupt to the guest),
1040  * -1 to pass the fault up to host kernel mode code, -2 to do that
1041  * and also load the instruction word (for MMIO emulation),
1042  * or 0 if we should make the guest retry the access.
1043  */
1044 long kvmppc_hpte_hv_fault(struct kvm_vcpu *vcpu, unsigned long addr,
1045 			  unsigned long slb_v, unsigned int status, bool data)
1046 {
1047 	struct kvm *kvm = vcpu->kvm;
1048 	long int index;
1049 	unsigned long v, r, gr, orig_v;
1050 	__be64 *hpte;
1051 	unsigned long valid;
1052 	struct revmap_entry *rev;
1053 	unsigned long pp, key;
1054 	struct mmio_hpte_cache_entry *cache_entry = NULL;
1055 	long mmio_update = 0;
1056 
1057 	/* For protection fault, expect to find a valid HPTE */
1058 	valid = HPTE_V_VALID;
1059 	if (status & DSISR_NOHPTE) {
1060 		valid |= HPTE_V_ABSENT;
1061 		mmio_update = atomic64_read(&kvm->arch.mmio_update);
1062 		cache_entry = mmio_cache_search(vcpu, addr, slb_v, mmio_update);
1063 	}
1064 	if (cache_entry) {
1065 		index = cache_entry->pte_index;
1066 		v = cache_entry->hpte_v;
1067 		r = cache_entry->hpte_r;
1068 		gr = cache_entry->rpte;
1069 	} else {
1070 		index = kvmppc_hv_find_lock_hpte(kvm, addr, slb_v, valid);
1071 		if (index < 0) {
1072 			if (status & DSISR_NOHPTE)
1073 				return status;	/* there really was no HPTE */
1074 			return 0;	/* for prot fault, HPTE disappeared */
1075 		}
1076 		hpte = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
1077 		v = orig_v = be64_to_cpu(hpte[0]) & ~HPTE_V_HVLOCK;
1078 		r = be64_to_cpu(hpte[1]);
1079 		if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1080 			v = hpte_new_to_old_v(v, r);
1081 			r = hpte_new_to_old_r(r);
1082 		}
1083 		rev = real_vmalloc_addr(&kvm->arch.hpt.rev[index]);
1084 		gr = rev->guest_rpte;
1085 
1086 		unlock_hpte(hpte, orig_v);
1087 	}
1088 
1089 	/* For not found, if the HPTE is valid by now, retry the instruction */
1090 	if ((status & DSISR_NOHPTE) && (v & HPTE_V_VALID))
1091 		return 0;
1092 
1093 	/* Check access permissions to the page */
1094 	pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
1095 	key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
1096 	status &= ~DSISR_NOHPTE;	/* DSISR_NOHPTE == SRR1_ISI_NOPT */
1097 	if (!data) {
1098 		if (gr & (HPTE_R_N | HPTE_R_G))
1099 			return status | SRR1_ISI_N_OR_G;
1100 		if (!hpte_read_permission(pp, slb_v & key))
1101 			return status | SRR1_ISI_PROT;
1102 	} else if (status & DSISR_ISSTORE) {
1103 		/* check write permission */
1104 		if (!hpte_write_permission(pp, slb_v & key))
1105 			return status | DSISR_PROTFAULT;
1106 	} else {
1107 		if (!hpte_read_permission(pp, slb_v & key))
1108 			return status | DSISR_PROTFAULT;
1109 	}
1110 
1111 	/* Check storage key, if applicable */
1112 	if (data && (vcpu->arch.shregs.msr & MSR_DR)) {
1113 		unsigned int perm = hpte_get_skey_perm(gr, vcpu->arch.amr);
1114 		if (status & DSISR_ISSTORE)
1115 			perm >>= 1;
1116 		if (perm & 1)
1117 			return status | DSISR_KEYFAULT;
1118 	}
1119 
1120 	/* Save HPTE info for virtual-mode handler */
1121 	vcpu->arch.pgfault_addr = addr;
1122 	vcpu->arch.pgfault_index = index;
1123 	vcpu->arch.pgfault_hpte[0] = v;
1124 	vcpu->arch.pgfault_hpte[1] = r;
1125 	vcpu->arch.pgfault_cache = cache_entry;
1126 
1127 	/* Check the storage key to see if it is possibly emulated MMIO */
1128 	if ((r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) ==
1129 	    (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) {
1130 		if (!cache_entry) {
1131 			unsigned int pshift = 12;
1132 			unsigned int pshift_index;
1133 
1134 			if (slb_v & SLB_VSID_L) {
1135 				pshift_index = ((slb_v & SLB_VSID_LP) >> 4);
1136 				pshift = slb_base_page_shift[pshift_index];
1137 			}
1138 			cache_entry = next_mmio_cache_entry(vcpu);
1139 			cache_entry->eaddr = addr;
1140 			cache_entry->slb_base_pshift = pshift;
1141 			cache_entry->pte_index = index;
1142 			cache_entry->hpte_v = v;
1143 			cache_entry->hpte_r = r;
1144 			cache_entry->rpte = gr;
1145 			cache_entry->slb_v = slb_v;
1146 			cache_entry->mmio_update = mmio_update;
1147 		}
1148 		if (data && (vcpu->arch.shregs.msr & MSR_IR))
1149 			return -2;	/* MMIO emulation - load instr word */
1150 	}
1151 
1152 	return -1;		/* send fault up to host kernel mode */
1153 }
1154