xref: /openbmc/linux/arch/powerpc/kvm/book3s_hv_ras.c (revision 82003e04)
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * Copyright 2012 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7  */
8 
9 #include <linux/types.h>
10 #include <linux/string.h>
11 #include <linux/kvm.h>
12 #include <linux/kvm_host.h>
13 #include <linux/kernel.h>
14 #include <asm/opal.h>
15 #include <asm/mce.h>
16 #include <asm/machdep.h>
17 #include <asm/cputhreads.h>
18 #include <asm/hmi.h>
19 
20 /* SRR1 bits for machine check on POWER7 */
21 #define SRR1_MC_LDSTERR		(1ul << (63-42))
22 #define SRR1_MC_IFETCH_SH	(63-45)
23 #define SRR1_MC_IFETCH_MASK	0x7
24 #define SRR1_MC_IFETCH_SLBPAR		2	/* SLB parity error */
25 #define SRR1_MC_IFETCH_SLBMULTI		3	/* SLB multi-hit */
26 #define SRR1_MC_IFETCH_SLBPARMULTI	4	/* SLB parity + multi-hit */
27 #define SRR1_MC_IFETCH_TLBMULTI		5	/* I-TLB multi-hit */
28 
29 /* DSISR bits for machine check on POWER7 */
30 #define DSISR_MC_DERAT_MULTI	0x800		/* D-ERAT multi-hit */
31 #define DSISR_MC_TLB_MULTI	0x400		/* D-TLB multi-hit */
32 #define DSISR_MC_SLB_PARITY	0x100		/* SLB parity error */
33 #define DSISR_MC_SLB_MULTI	0x080		/* SLB multi-hit */
34 #define DSISR_MC_SLB_PARMULTI	0x040		/* SLB parity + multi-hit */
35 
36 /* POWER7 SLB flush and reload */
37 static void reload_slb(struct kvm_vcpu *vcpu)
38 {
39 	struct slb_shadow *slb;
40 	unsigned long i, n;
41 
42 	/* First clear out SLB */
43 	asm volatile("slbmte %0,%0; slbia" : : "r" (0));
44 
45 	/* Do they have an SLB shadow buffer registered? */
46 	slb = vcpu->arch.slb_shadow.pinned_addr;
47 	if (!slb)
48 		return;
49 
50 	/* Sanity check */
51 	n = min_t(u32, be32_to_cpu(slb->persistent), SLB_MIN_SIZE);
52 	if ((void *) &slb->save_area[n] > vcpu->arch.slb_shadow.pinned_end)
53 		return;
54 
55 	/* Load up the SLB from that */
56 	for (i = 0; i < n; ++i) {
57 		unsigned long rb = be64_to_cpu(slb->save_area[i].esid);
58 		unsigned long rs = be64_to_cpu(slb->save_area[i].vsid);
59 
60 		rb = (rb & ~0xFFFul) | i;	/* insert entry number */
61 		asm volatile("slbmte %0,%1" : : "r" (rs), "r" (rb));
62 	}
63 }
64 
65 /*
66  * On POWER7, see if we can handle a machine check that occurred inside
67  * the guest in real mode, without switching to the host partition.
68  *
69  * Returns: 0 => exit guest, 1 => deliver machine check to guest
70  */
71 static long kvmppc_realmode_mc_power7(struct kvm_vcpu *vcpu)
72 {
73 	unsigned long srr1 = vcpu->arch.shregs.msr;
74 	struct machine_check_event mce_evt;
75 	long handled = 1;
76 
77 	if (srr1 & SRR1_MC_LDSTERR) {
78 		/* error on load/store */
79 		unsigned long dsisr = vcpu->arch.shregs.dsisr;
80 
81 		if (dsisr & (DSISR_MC_SLB_PARMULTI | DSISR_MC_SLB_MULTI |
82 			     DSISR_MC_SLB_PARITY | DSISR_MC_DERAT_MULTI)) {
83 			/* flush and reload SLB; flushes D-ERAT too */
84 			reload_slb(vcpu);
85 			dsisr &= ~(DSISR_MC_SLB_PARMULTI | DSISR_MC_SLB_MULTI |
86 				   DSISR_MC_SLB_PARITY | DSISR_MC_DERAT_MULTI);
87 		}
88 		if (dsisr & DSISR_MC_TLB_MULTI) {
89 			if (cur_cpu_spec && cur_cpu_spec->flush_tlb)
90 				cur_cpu_spec->flush_tlb(TLB_INVAL_SCOPE_LPID);
91 			dsisr &= ~DSISR_MC_TLB_MULTI;
92 		}
93 		/* Any other errors we don't understand? */
94 		if (dsisr & 0xffffffffUL)
95 			handled = 0;
96 	}
97 
98 	switch ((srr1 >> SRR1_MC_IFETCH_SH) & SRR1_MC_IFETCH_MASK) {
99 	case 0:
100 		break;
101 	case SRR1_MC_IFETCH_SLBPAR:
102 	case SRR1_MC_IFETCH_SLBMULTI:
103 	case SRR1_MC_IFETCH_SLBPARMULTI:
104 		reload_slb(vcpu);
105 		break;
106 	case SRR1_MC_IFETCH_TLBMULTI:
107 		if (cur_cpu_spec && cur_cpu_spec->flush_tlb)
108 			cur_cpu_spec->flush_tlb(TLB_INVAL_SCOPE_LPID);
109 		break;
110 	default:
111 		handled = 0;
112 	}
113 
114 	/*
115 	 * See if we have already handled the condition in the linux host.
116 	 * We assume that if the condition is recovered then linux host
117 	 * will have generated an error log event that we will pick
118 	 * up and log later.
119 	 * Don't release mce event now. We will queue up the event so that
120 	 * we can log the MCE event info on host console.
121 	 */
122 	if (!get_mce_event(&mce_evt, MCE_EVENT_DONTRELEASE))
123 		goto out;
124 
125 	if (mce_evt.version == MCE_V1 &&
126 	    (mce_evt.severity == MCE_SEV_NO_ERROR ||
127 	     mce_evt.disposition == MCE_DISPOSITION_RECOVERED))
128 		handled = 1;
129 
130 out:
131 	/*
132 	 * We are now going enter guest either through machine check
133 	 * interrupt (for unhandled errors) or will continue from
134 	 * current HSRR0 (for handled errors) in guest. Hence
135 	 * queue up the event so that we can log it from host console later.
136 	 */
137 	machine_check_queue_event();
138 
139 	return handled;
140 }
141 
142 long kvmppc_realmode_machine_check(struct kvm_vcpu *vcpu)
143 {
144 	return kvmppc_realmode_mc_power7(vcpu);
145 }
146 
147 /* Check if dynamic split is in force and return subcore size accordingly. */
148 static inline int kvmppc_cur_subcore_size(void)
149 {
150 	if (local_paca->kvm_hstate.kvm_split_mode)
151 		return local_paca->kvm_hstate.kvm_split_mode->subcore_size;
152 
153 	return threads_per_subcore;
154 }
155 
156 void kvmppc_subcore_enter_guest(void)
157 {
158 	int thread_id, subcore_id;
159 
160 	thread_id = cpu_thread_in_core(local_paca->paca_index);
161 	subcore_id = thread_id / kvmppc_cur_subcore_size();
162 
163 	local_paca->sibling_subcore_state->in_guest[subcore_id] = 1;
164 }
165 
166 void kvmppc_subcore_exit_guest(void)
167 {
168 	int thread_id, subcore_id;
169 
170 	thread_id = cpu_thread_in_core(local_paca->paca_index);
171 	subcore_id = thread_id / kvmppc_cur_subcore_size();
172 
173 	local_paca->sibling_subcore_state->in_guest[subcore_id] = 0;
174 }
175 
176 static bool kvmppc_tb_resync_required(void)
177 {
178 	if (test_and_set_bit(CORE_TB_RESYNC_REQ_BIT,
179 				&local_paca->sibling_subcore_state->flags))
180 		return false;
181 
182 	return true;
183 }
184 
185 static void kvmppc_tb_resync_done(void)
186 {
187 	clear_bit(CORE_TB_RESYNC_REQ_BIT,
188 			&local_paca->sibling_subcore_state->flags);
189 }
190 
191 /*
192  * kvmppc_realmode_hmi_handler() is called only by primary thread during
193  * guest exit path.
194  *
195  * There are multiple reasons why HMI could occur, one of them is
196  * Timebase (TB) error. If this HMI is due to TB error, then TB would
197  * have been in stopped state. The opal hmi handler Will fix it and
198  * restore the TB value with host timebase value. For HMI caused due
199  * to non-TB errors, opal hmi handler will not touch/restore TB register
200  * and hence there won't be any change in TB value.
201  *
202  * Since we are not sure about the cause of this HMI, we can't be sure
203  * about the content of TB register whether it holds guest or host timebase
204  * value. Hence the idea is to resync the TB on every HMI, so that we
205  * know about the exact state of the TB value. Resync TB call will
206  * restore TB to host timebase.
207  *
208  * Things to consider:
209  * - On TB error, HMI interrupt is reported on all the threads of the core
210  *   that has encountered TB error irrespective of split-core mode.
211  * - The very first thread on the core that get chance to fix TB error
212  *   would rsync the TB with local chipTOD value.
213  * - The resync TB is a core level action i.e. it will sync all the TBs
214  *   in that core independent of split-core mode. This means if we trigger
215  *   TB sync from a thread from one subcore, it would affect TB values of
216  *   sibling subcores of the same core.
217  *
218  * All threads need to co-ordinate before making opal hmi handler.
219  * All threads will use sibling_subcore_state->in_guest[] (shared by all
220  * threads in the core) in paca which holds information about whether
221  * sibling subcores are in Guest mode or host mode. The in_guest[] array
222  * is of size MAX_SUBCORE_PER_CORE=4, indexed using subcore id to set/unset
223  * subcore status. Only primary threads from each subcore is responsible
224  * to set/unset its designated array element while entering/exiting the
225  * guset.
226  *
227  * After invoking opal hmi handler call, one of the thread (of entire core)
228  * will need to resync the TB. Bit 63 from subcore state bitmap flags
229  * (sibling_subcore_state->flags) will be used to co-ordinate between
230  * primary threads to decide who takes up the responsibility.
231  *
232  * This is what we do:
233  * - Primary thread from each subcore tries to set resync required bit[63]
234  *   of paca->sibling_subcore_state->flags.
235  * - The first primary thread that is able to set the flag takes the
236  *   responsibility of TB resync. (Let us call it as thread leader)
237  * - All other threads which are in host will call
238  *   wait_for_subcore_guest_exit() and wait for in_guest[0-3] from
239  *   paca->sibling_subcore_state to get cleared.
240  * - All the primary thread will clear its subcore status from subcore
241  *   state in_guest[] array respectively.
242  * - Once all primary threads clear in_guest[0-3], all of them will invoke
243  *   opal hmi handler.
244  * - Now all threads will wait for TB resync to complete by invoking
245  *   wait_for_tb_resync() except the thread leader.
246  * - Thread leader will do a TB resync by invoking opal_resync_timebase()
247  *   call and the it will clear the resync required bit.
248  * - All other threads will now come out of resync wait loop and proceed
249  *   with individual execution.
250  * - On return of this function, primary thread will signal all
251  *   secondary threads to proceed.
252  * - All secondary threads will eventually call opal hmi handler on
253  *   their exit path.
254  */
255 
256 long kvmppc_realmode_hmi_handler(void)
257 {
258 	int ptid = local_paca->kvm_hstate.ptid;
259 	bool resync_req;
260 
261 	/* This is only called on primary thread. */
262 	BUG_ON(ptid != 0);
263 	__this_cpu_inc(irq_stat.hmi_exceptions);
264 
265 	/*
266 	 * By now primary thread has already completed guest->host
267 	 * partition switch but haven't signaled secondaries yet.
268 	 * All the secondary threads on this subcore is waiting
269 	 * for primary thread to signal them to go ahead.
270 	 *
271 	 * For threads from subcore which isn't in guest, they all will
272 	 * wait until all other subcores on this core exit the guest.
273 	 *
274 	 * Now set the resync required bit. If you are the first to
275 	 * set this bit then kvmppc_tb_resync_required() function will
276 	 * return true. For rest all other subcores
277 	 * kvmppc_tb_resync_required() will return false.
278 	 *
279 	 * If resync_req == true, then this thread is responsible to
280 	 * initiate TB resync after hmi handler has completed.
281 	 * All other threads on this core will wait until this thread
282 	 * clears the resync required bit flag.
283 	 */
284 	resync_req = kvmppc_tb_resync_required();
285 
286 	/* Reset the subcore status to indicate it has exited guest */
287 	kvmppc_subcore_exit_guest();
288 
289 	/*
290 	 * Wait for other subcores on this core to exit the guest.
291 	 * All the primary threads and threads from subcore that are
292 	 * not in guest will wait here until all subcores are out
293 	 * of guest context.
294 	 */
295 	wait_for_subcore_guest_exit();
296 
297 	/*
298 	 * At this point we are sure that primary threads from each
299 	 * subcore on this core have completed guest->host partition
300 	 * switch. Now it is safe to call HMI handler.
301 	 */
302 	if (ppc_md.hmi_exception_early)
303 		ppc_md.hmi_exception_early(NULL);
304 
305 	/*
306 	 * Check if this thread is responsible to resync TB.
307 	 * All other threads will wait until this thread completes the
308 	 * TB resync.
309 	 */
310 	if (resync_req) {
311 		opal_resync_timebase();
312 		/* Reset TB resync req bit */
313 		kvmppc_tb_resync_done();
314 	} else {
315 		wait_for_tb_resync();
316 	}
317 	return 0;
318 }
319