1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright IBM Corporation, 2018 4 * Authors Suraj Jitindar Singh <sjitindarsingh@gmail.com> 5 * Paul Mackerras <paulus@ozlabs.org> 6 * 7 * Description: KVM functions specific to running nested KVM-HV guests 8 * on Book3S processors (specifically POWER9 and later). 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/kvm_host.h> 13 #include <linux/llist.h> 14 #include <linux/pgtable.h> 15 16 #include <asm/kvm_ppc.h> 17 #include <asm/kvm_book3s.h> 18 #include <asm/mmu.h> 19 #include <asm/pgalloc.h> 20 #include <asm/pte-walk.h> 21 #include <asm/reg.h> 22 #include <asm/plpar_wrappers.h> 23 24 static struct patb_entry *pseries_partition_tb; 25 26 static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp); 27 static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free); 28 29 void kvmhv_save_hv_regs(struct kvm_vcpu *vcpu, struct hv_guest_state *hr) 30 { 31 struct kvmppc_vcore *vc = vcpu->arch.vcore; 32 33 hr->pcr = vc->pcr | PCR_MASK; 34 hr->dpdes = vc->dpdes; 35 hr->hfscr = vcpu->arch.hfscr; 36 hr->tb_offset = vc->tb_offset; 37 hr->dawr0 = vcpu->arch.dawr0; 38 hr->dawrx0 = vcpu->arch.dawrx0; 39 hr->ciabr = vcpu->arch.ciabr; 40 hr->purr = vcpu->arch.purr; 41 hr->spurr = vcpu->arch.spurr; 42 hr->ic = vcpu->arch.ic; 43 hr->vtb = vc->vtb; 44 hr->srr0 = vcpu->arch.shregs.srr0; 45 hr->srr1 = vcpu->arch.shregs.srr1; 46 hr->sprg[0] = vcpu->arch.shregs.sprg0; 47 hr->sprg[1] = vcpu->arch.shregs.sprg1; 48 hr->sprg[2] = vcpu->arch.shregs.sprg2; 49 hr->sprg[3] = vcpu->arch.shregs.sprg3; 50 hr->pidr = vcpu->arch.pid; 51 hr->cfar = vcpu->arch.cfar; 52 hr->ppr = vcpu->arch.ppr; 53 hr->dawr1 = vcpu->arch.dawr1; 54 hr->dawrx1 = vcpu->arch.dawrx1; 55 } 56 57 /* Use noinline_for_stack due to https://bugs.llvm.org/show_bug.cgi?id=49610 */ 58 static noinline_for_stack void byteswap_pt_regs(struct pt_regs *regs) 59 { 60 unsigned long *addr = (unsigned long *) regs; 61 62 for (; addr < ((unsigned long *) (regs + 1)); addr++) 63 *addr = swab64(*addr); 64 } 65 66 static void byteswap_hv_regs(struct hv_guest_state *hr) 67 { 68 hr->version = swab64(hr->version); 69 hr->lpid = swab32(hr->lpid); 70 hr->vcpu_token = swab32(hr->vcpu_token); 71 hr->lpcr = swab64(hr->lpcr); 72 hr->pcr = swab64(hr->pcr) | PCR_MASK; 73 hr->amor = swab64(hr->amor); 74 hr->dpdes = swab64(hr->dpdes); 75 hr->hfscr = swab64(hr->hfscr); 76 hr->tb_offset = swab64(hr->tb_offset); 77 hr->dawr0 = swab64(hr->dawr0); 78 hr->dawrx0 = swab64(hr->dawrx0); 79 hr->ciabr = swab64(hr->ciabr); 80 hr->hdec_expiry = swab64(hr->hdec_expiry); 81 hr->purr = swab64(hr->purr); 82 hr->spurr = swab64(hr->spurr); 83 hr->ic = swab64(hr->ic); 84 hr->vtb = swab64(hr->vtb); 85 hr->hdar = swab64(hr->hdar); 86 hr->hdsisr = swab64(hr->hdsisr); 87 hr->heir = swab64(hr->heir); 88 hr->asdr = swab64(hr->asdr); 89 hr->srr0 = swab64(hr->srr0); 90 hr->srr1 = swab64(hr->srr1); 91 hr->sprg[0] = swab64(hr->sprg[0]); 92 hr->sprg[1] = swab64(hr->sprg[1]); 93 hr->sprg[2] = swab64(hr->sprg[2]); 94 hr->sprg[3] = swab64(hr->sprg[3]); 95 hr->pidr = swab64(hr->pidr); 96 hr->cfar = swab64(hr->cfar); 97 hr->ppr = swab64(hr->ppr); 98 hr->dawr1 = swab64(hr->dawr1); 99 hr->dawrx1 = swab64(hr->dawrx1); 100 } 101 102 static void save_hv_return_state(struct kvm_vcpu *vcpu, 103 struct hv_guest_state *hr) 104 { 105 struct kvmppc_vcore *vc = vcpu->arch.vcore; 106 107 hr->dpdes = vc->dpdes; 108 hr->purr = vcpu->arch.purr; 109 hr->spurr = vcpu->arch.spurr; 110 hr->ic = vcpu->arch.ic; 111 hr->vtb = vc->vtb; 112 hr->srr0 = vcpu->arch.shregs.srr0; 113 hr->srr1 = vcpu->arch.shregs.srr1; 114 hr->sprg[0] = vcpu->arch.shregs.sprg0; 115 hr->sprg[1] = vcpu->arch.shregs.sprg1; 116 hr->sprg[2] = vcpu->arch.shregs.sprg2; 117 hr->sprg[3] = vcpu->arch.shregs.sprg3; 118 hr->pidr = vcpu->arch.pid; 119 hr->cfar = vcpu->arch.cfar; 120 hr->ppr = vcpu->arch.ppr; 121 switch (vcpu->arch.trap) { 122 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 123 hr->hdar = vcpu->arch.fault_dar; 124 hr->hdsisr = vcpu->arch.fault_dsisr; 125 hr->asdr = vcpu->arch.fault_gpa; 126 break; 127 case BOOK3S_INTERRUPT_H_INST_STORAGE: 128 hr->asdr = vcpu->arch.fault_gpa; 129 break; 130 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: 131 hr->hfscr = ((~HFSCR_INTR_CAUSE & hr->hfscr) | 132 (HFSCR_INTR_CAUSE & vcpu->arch.hfscr)); 133 break; 134 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 135 hr->heir = vcpu->arch.emul_inst; 136 break; 137 } 138 } 139 140 static void restore_hv_regs(struct kvm_vcpu *vcpu, const struct hv_guest_state *hr) 141 { 142 struct kvmppc_vcore *vc = vcpu->arch.vcore; 143 144 vc->pcr = hr->pcr | PCR_MASK; 145 vc->dpdes = hr->dpdes; 146 vcpu->arch.hfscr = hr->hfscr; 147 vcpu->arch.dawr0 = hr->dawr0; 148 vcpu->arch.dawrx0 = hr->dawrx0; 149 vcpu->arch.ciabr = hr->ciabr; 150 vcpu->arch.purr = hr->purr; 151 vcpu->arch.spurr = hr->spurr; 152 vcpu->arch.ic = hr->ic; 153 vc->vtb = hr->vtb; 154 vcpu->arch.shregs.srr0 = hr->srr0; 155 vcpu->arch.shregs.srr1 = hr->srr1; 156 vcpu->arch.shregs.sprg0 = hr->sprg[0]; 157 vcpu->arch.shregs.sprg1 = hr->sprg[1]; 158 vcpu->arch.shregs.sprg2 = hr->sprg[2]; 159 vcpu->arch.shregs.sprg3 = hr->sprg[3]; 160 vcpu->arch.pid = hr->pidr; 161 vcpu->arch.cfar = hr->cfar; 162 vcpu->arch.ppr = hr->ppr; 163 vcpu->arch.dawr1 = hr->dawr1; 164 vcpu->arch.dawrx1 = hr->dawrx1; 165 } 166 167 void kvmhv_restore_hv_return_state(struct kvm_vcpu *vcpu, 168 struct hv_guest_state *hr) 169 { 170 struct kvmppc_vcore *vc = vcpu->arch.vcore; 171 172 vc->dpdes = hr->dpdes; 173 vcpu->arch.hfscr = hr->hfscr; 174 vcpu->arch.purr = hr->purr; 175 vcpu->arch.spurr = hr->spurr; 176 vcpu->arch.ic = hr->ic; 177 vc->vtb = hr->vtb; 178 vcpu->arch.fault_dar = hr->hdar; 179 vcpu->arch.fault_dsisr = hr->hdsisr; 180 vcpu->arch.fault_gpa = hr->asdr; 181 vcpu->arch.emul_inst = hr->heir; 182 vcpu->arch.shregs.srr0 = hr->srr0; 183 vcpu->arch.shregs.srr1 = hr->srr1; 184 vcpu->arch.shregs.sprg0 = hr->sprg[0]; 185 vcpu->arch.shregs.sprg1 = hr->sprg[1]; 186 vcpu->arch.shregs.sprg2 = hr->sprg[2]; 187 vcpu->arch.shregs.sprg3 = hr->sprg[3]; 188 vcpu->arch.pid = hr->pidr; 189 vcpu->arch.cfar = hr->cfar; 190 vcpu->arch.ppr = hr->ppr; 191 } 192 193 static void kvmhv_nested_mmio_needed(struct kvm_vcpu *vcpu, u64 regs_ptr) 194 { 195 /* No need to reflect the page fault to L1, we've handled it */ 196 vcpu->arch.trap = 0; 197 198 /* 199 * Since the L2 gprs have already been written back into L1 memory when 200 * we complete the mmio, store the L1 memory location of the L2 gpr 201 * being loaded into by the mmio so that the loaded value can be 202 * written there in kvmppc_complete_mmio_load() 203 */ 204 if (((vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) == KVM_MMIO_REG_GPR) 205 && (vcpu->mmio_is_write == 0)) { 206 vcpu->arch.nested_io_gpr = (gpa_t) regs_ptr + 207 offsetof(struct pt_regs, 208 gpr[vcpu->arch.io_gpr]); 209 vcpu->arch.io_gpr = KVM_MMIO_REG_NESTED_GPR; 210 } 211 } 212 213 static int kvmhv_read_guest_state_and_regs(struct kvm_vcpu *vcpu, 214 struct hv_guest_state *l2_hv, 215 struct pt_regs *l2_regs, 216 u64 hv_ptr, u64 regs_ptr) 217 { 218 int size; 219 220 if (kvm_vcpu_read_guest(vcpu, hv_ptr, &l2_hv->version, 221 sizeof(l2_hv->version))) 222 return -1; 223 224 if (kvmppc_need_byteswap(vcpu)) 225 l2_hv->version = swab64(l2_hv->version); 226 227 size = hv_guest_state_size(l2_hv->version); 228 if (size < 0) 229 return -1; 230 231 return kvm_vcpu_read_guest(vcpu, hv_ptr, l2_hv, size) || 232 kvm_vcpu_read_guest(vcpu, regs_ptr, l2_regs, 233 sizeof(struct pt_regs)); 234 } 235 236 static int kvmhv_write_guest_state_and_regs(struct kvm_vcpu *vcpu, 237 struct hv_guest_state *l2_hv, 238 struct pt_regs *l2_regs, 239 u64 hv_ptr, u64 regs_ptr) 240 { 241 int size; 242 243 size = hv_guest_state_size(l2_hv->version); 244 if (size < 0) 245 return -1; 246 247 return kvm_vcpu_write_guest(vcpu, hv_ptr, l2_hv, size) || 248 kvm_vcpu_write_guest(vcpu, regs_ptr, l2_regs, 249 sizeof(struct pt_regs)); 250 } 251 252 static void load_l2_hv_regs(struct kvm_vcpu *vcpu, 253 const struct hv_guest_state *l2_hv, 254 const struct hv_guest_state *l1_hv, u64 *lpcr) 255 { 256 struct kvmppc_vcore *vc = vcpu->arch.vcore; 257 u64 mask; 258 259 restore_hv_regs(vcpu, l2_hv); 260 261 /* 262 * Don't let L1 change LPCR bits for the L2 except these: 263 */ 264 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD | 265 LPCR_LPES | LPCR_MER; 266 267 /* 268 * Additional filtering is required depending on hardware 269 * and configuration. 270 */ 271 *lpcr = kvmppc_filter_lpcr_hv(vcpu->kvm, 272 (vc->lpcr & ~mask) | (*lpcr & mask)); 273 274 /* 275 * Don't let L1 enable features for L2 which we don't allow for L1, 276 * but preserve the interrupt cause field. 277 */ 278 vcpu->arch.hfscr = l2_hv->hfscr & (HFSCR_INTR_CAUSE | vcpu->arch.hfscr_permitted); 279 280 /* Don't let data address watchpoint match in hypervisor state */ 281 vcpu->arch.dawrx0 = l2_hv->dawrx0 & ~DAWRX_HYP; 282 vcpu->arch.dawrx1 = l2_hv->dawrx1 & ~DAWRX_HYP; 283 284 /* Don't let completed instruction address breakpt match in HV state */ 285 if ((l2_hv->ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) 286 vcpu->arch.ciabr = l2_hv->ciabr & ~CIABR_PRIV; 287 } 288 289 long kvmhv_enter_nested_guest(struct kvm_vcpu *vcpu) 290 { 291 long int err, r; 292 struct kvm_nested_guest *l2; 293 struct pt_regs l2_regs, saved_l1_regs; 294 struct hv_guest_state l2_hv = {0}, saved_l1_hv; 295 struct kvmppc_vcore *vc = vcpu->arch.vcore; 296 u64 hv_ptr, regs_ptr; 297 u64 hdec_exp, lpcr; 298 s64 delta_purr, delta_spurr, delta_ic, delta_vtb; 299 300 if (vcpu->kvm->arch.l1_ptcr == 0) 301 return H_NOT_AVAILABLE; 302 303 if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr)) 304 return H_BAD_MODE; 305 306 /* copy parameters in */ 307 hv_ptr = kvmppc_get_gpr(vcpu, 4); 308 regs_ptr = kvmppc_get_gpr(vcpu, 5); 309 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 310 err = kvmhv_read_guest_state_and_regs(vcpu, &l2_hv, &l2_regs, 311 hv_ptr, regs_ptr); 312 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 313 if (err) 314 return H_PARAMETER; 315 316 if (kvmppc_need_byteswap(vcpu)) 317 byteswap_hv_regs(&l2_hv); 318 if (l2_hv.version > HV_GUEST_STATE_VERSION) 319 return H_P2; 320 321 if (kvmppc_need_byteswap(vcpu)) 322 byteswap_pt_regs(&l2_regs); 323 if (l2_hv.vcpu_token >= NR_CPUS) 324 return H_PARAMETER; 325 326 /* 327 * L1 must have set up a suspended state to enter the L2 in a 328 * transactional state, and only in that case. These have to be 329 * filtered out here to prevent causing a TM Bad Thing in the 330 * host HRFID. We could synthesize a TM Bad Thing back to the L1 331 * here but there doesn't seem like much point. 332 */ 333 if (MSR_TM_SUSPENDED(vcpu->arch.shregs.msr)) { 334 if (!MSR_TM_ACTIVE(l2_regs.msr)) 335 return H_BAD_MODE; 336 } else { 337 if (l2_regs.msr & MSR_TS_MASK) 338 return H_BAD_MODE; 339 if (WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_TS_MASK)) 340 return H_BAD_MODE; 341 } 342 343 /* translate lpid */ 344 l2 = kvmhv_get_nested(vcpu->kvm, l2_hv.lpid, true); 345 if (!l2) 346 return H_PARAMETER; 347 if (!l2->l1_gr_to_hr) { 348 mutex_lock(&l2->tlb_lock); 349 kvmhv_update_ptbl_cache(l2); 350 mutex_unlock(&l2->tlb_lock); 351 } 352 353 /* save l1 values of things */ 354 vcpu->arch.regs.msr = vcpu->arch.shregs.msr; 355 saved_l1_regs = vcpu->arch.regs; 356 kvmhv_save_hv_regs(vcpu, &saved_l1_hv); 357 358 /* convert TB values/offsets to host (L0) values */ 359 hdec_exp = l2_hv.hdec_expiry - vc->tb_offset; 360 vc->tb_offset += l2_hv.tb_offset; 361 vcpu->arch.dec_expires += l2_hv.tb_offset; 362 363 /* set L1 state to L2 state */ 364 vcpu->arch.nested = l2; 365 vcpu->arch.nested_vcpu_id = l2_hv.vcpu_token; 366 vcpu->arch.nested_hfscr = l2_hv.hfscr; 367 vcpu->arch.regs = l2_regs; 368 369 /* Guest must always run with ME enabled, HV disabled. */ 370 vcpu->arch.shregs.msr = (vcpu->arch.regs.msr | MSR_ME) & ~MSR_HV; 371 372 lpcr = l2_hv.lpcr; 373 load_l2_hv_regs(vcpu, &l2_hv, &saved_l1_hv, &lpcr); 374 375 vcpu->arch.ret = RESUME_GUEST; 376 vcpu->arch.trap = 0; 377 do { 378 r = kvmhv_run_single_vcpu(vcpu, hdec_exp, lpcr); 379 } while (is_kvmppc_resume_guest(r)); 380 381 /* save L2 state for return */ 382 l2_regs = vcpu->arch.regs; 383 l2_regs.msr = vcpu->arch.shregs.msr; 384 delta_purr = vcpu->arch.purr - l2_hv.purr; 385 delta_spurr = vcpu->arch.spurr - l2_hv.spurr; 386 delta_ic = vcpu->arch.ic - l2_hv.ic; 387 delta_vtb = vc->vtb - l2_hv.vtb; 388 save_hv_return_state(vcpu, &l2_hv); 389 390 /* restore L1 state */ 391 vcpu->arch.nested = NULL; 392 vcpu->arch.regs = saved_l1_regs; 393 vcpu->arch.shregs.msr = saved_l1_regs.msr & ~MSR_TS_MASK; 394 /* set L1 MSR TS field according to L2 transaction state */ 395 if (l2_regs.msr & MSR_TS_MASK) 396 vcpu->arch.shregs.msr |= MSR_TS_S; 397 vc->tb_offset = saved_l1_hv.tb_offset; 398 /* XXX: is this always the same delta as saved_l1_hv.tb_offset? */ 399 vcpu->arch.dec_expires -= l2_hv.tb_offset; 400 restore_hv_regs(vcpu, &saved_l1_hv); 401 vcpu->arch.purr += delta_purr; 402 vcpu->arch.spurr += delta_spurr; 403 vcpu->arch.ic += delta_ic; 404 vc->vtb += delta_vtb; 405 406 kvmhv_put_nested(l2); 407 408 /* copy l2_hv_state and regs back to guest */ 409 if (kvmppc_need_byteswap(vcpu)) { 410 byteswap_hv_regs(&l2_hv); 411 byteswap_pt_regs(&l2_regs); 412 } 413 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 414 err = kvmhv_write_guest_state_and_regs(vcpu, &l2_hv, &l2_regs, 415 hv_ptr, regs_ptr); 416 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 417 if (err) 418 return H_AUTHORITY; 419 420 if (r == -EINTR) 421 return H_INTERRUPT; 422 423 if (vcpu->mmio_needed) { 424 kvmhv_nested_mmio_needed(vcpu, regs_ptr); 425 return H_TOO_HARD; 426 } 427 428 return vcpu->arch.trap; 429 } 430 431 long kvmhv_nested_init(void) 432 { 433 long int ptb_order; 434 unsigned long ptcr; 435 long rc; 436 437 if (!kvmhv_on_pseries()) 438 return 0; 439 if (!radix_enabled()) 440 return -ENODEV; 441 442 /* find log base 2 of KVMPPC_NR_LPIDS, rounding up */ 443 ptb_order = __ilog2(KVMPPC_NR_LPIDS - 1) + 1; 444 if (ptb_order < 8) 445 ptb_order = 8; 446 pseries_partition_tb = kmalloc(sizeof(struct patb_entry) << ptb_order, 447 GFP_KERNEL); 448 if (!pseries_partition_tb) { 449 pr_err("kvm-hv: failed to allocated nested partition table\n"); 450 return -ENOMEM; 451 } 452 453 ptcr = __pa(pseries_partition_tb) | (ptb_order - 8); 454 rc = plpar_hcall_norets(H_SET_PARTITION_TABLE, ptcr); 455 if (rc != H_SUCCESS) { 456 pr_err("kvm-hv: Parent hypervisor does not support nesting (rc=%ld)\n", 457 rc); 458 kfree(pseries_partition_tb); 459 pseries_partition_tb = NULL; 460 return -ENODEV; 461 } 462 463 return 0; 464 } 465 466 void kvmhv_nested_exit(void) 467 { 468 /* 469 * N.B. the kvmhv_on_pseries() test is there because it enables 470 * the compiler to remove the call to plpar_hcall_norets() 471 * when CONFIG_PPC_PSERIES=n. 472 */ 473 if (kvmhv_on_pseries() && pseries_partition_tb) { 474 plpar_hcall_norets(H_SET_PARTITION_TABLE, 0); 475 kfree(pseries_partition_tb); 476 pseries_partition_tb = NULL; 477 } 478 } 479 480 static void kvmhv_flush_lpid(unsigned int lpid) 481 { 482 long rc; 483 484 if (!kvmhv_on_pseries()) { 485 radix__flush_all_lpid(lpid); 486 return; 487 } 488 489 if (!firmware_has_feature(FW_FEATURE_RPT_INVALIDATE)) 490 rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(2, 0, 1), 491 lpid, TLBIEL_INVAL_SET_LPID); 492 else 493 rc = pseries_rpt_invalidate(lpid, H_RPTI_TARGET_CMMU, 494 H_RPTI_TYPE_NESTED | 495 H_RPTI_TYPE_TLB | H_RPTI_TYPE_PWC | 496 H_RPTI_TYPE_PAT, 497 H_RPTI_PAGE_ALL, 0, -1UL); 498 if (rc) 499 pr_err("KVM: TLB LPID invalidation hcall failed, rc=%ld\n", rc); 500 } 501 502 void kvmhv_set_ptbl_entry(unsigned int lpid, u64 dw0, u64 dw1) 503 { 504 if (!kvmhv_on_pseries()) { 505 mmu_partition_table_set_entry(lpid, dw0, dw1, true); 506 return; 507 } 508 509 pseries_partition_tb[lpid].patb0 = cpu_to_be64(dw0); 510 pseries_partition_tb[lpid].patb1 = cpu_to_be64(dw1); 511 /* L0 will do the necessary barriers */ 512 kvmhv_flush_lpid(lpid); 513 } 514 515 static void kvmhv_set_nested_ptbl(struct kvm_nested_guest *gp) 516 { 517 unsigned long dw0; 518 519 dw0 = PATB_HR | radix__get_tree_size() | 520 __pa(gp->shadow_pgtable) | RADIX_PGD_INDEX_SIZE; 521 kvmhv_set_ptbl_entry(gp->shadow_lpid, dw0, gp->process_table); 522 } 523 524 void kvmhv_vm_nested_init(struct kvm *kvm) 525 { 526 kvm->arch.max_nested_lpid = -1; 527 } 528 529 /* 530 * Handle the H_SET_PARTITION_TABLE hcall. 531 * r4 = guest real address of partition table + log_2(size) - 12 532 * (formatted as for the PTCR). 533 */ 534 long kvmhv_set_partition_table(struct kvm_vcpu *vcpu) 535 { 536 struct kvm *kvm = vcpu->kvm; 537 unsigned long ptcr = kvmppc_get_gpr(vcpu, 4); 538 int srcu_idx; 539 long ret = H_SUCCESS; 540 541 srcu_idx = srcu_read_lock(&kvm->srcu); 542 /* 543 * Limit the partition table to 4096 entries (because that's what 544 * hardware supports), and check the base address. 545 */ 546 if ((ptcr & PRTS_MASK) > 12 - 8 || 547 !kvm_is_visible_gfn(vcpu->kvm, (ptcr & PRTB_MASK) >> PAGE_SHIFT)) 548 ret = H_PARAMETER; 549 srcu_read_unlock(&kvm->srcu, srcu_idx); 550 if (ret == H_SUCCESS) 551 kvm->arch.l1_ptcr = ptcr; 552 return ret; 553 } 554 555 /* 556 * Handle the H_COPY_TOFROM_GUEST hcall. 557 * r4 = L1 lpid of nested guest 558 * r5 = pid 559 * r6 = eaddr to access 560 * r7 = to buffer (L1 gpa) 561 * r8 = from buffer (L1 gpa) 562 * r9 = n bytes to copy 563 */ 564 long kvmhv_copy_tofrom_guest_nested(struct kvm_vcpu *vcpu) 565 { 566 struct kvm_nested_guest *gp; 567 int l1_lpid = kvmppc_get_gpr(vcpu, 4); 568 int pid = kvmppc_get_gpr(vcpu, 5); 569 gva_t eaddr = kvmppc_get_gpr(vcpu, 6); 570 gpa_t gp_to = (gpa_t) kvmppc_get_gpr(vcpu, 7); 571 gpa_t gp_from = (gpa_t) kvmppc_get_gpr(vcpu, 8); 572 void *buf; 573 unsigned long n = kvmppc_get_gpr(vcpu, 9); 574 bool is_load = !!gp_to; 575 long rc; 576 577 if (gp_to && gp_from) /* One must be NULL to determine the direction */ 578 return H_PARAMETER; 579 580 if (eaddr & (0xFFFUL << 52)) 581 return H_PARAMETER; 582 583 buf = kzalloc(n, GFP_KERNEL | __GFP_NOWARN); 584 if (!buf) 585 return H_NO_MEM; 586 587 gp = kvmhv_get_nested(vcpu->kvm, l1_lpid, false); 588 if (!gp) { 589 rc = H_PARAMETER; 590 goto out_free; 591 } 592 593 mutex_lock(&gp->tlb_lock); 594 595 if (is_load) { 596 /* Load from the nested guest into our buffer */ 597 rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid, 598 eaddr, buf, NULL, n); 599 if (rc) 600 goto not_found; 601 602 /* Write what was loaded into our buffer back to the L1 guest */ 603 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 604 rc = kvm_vcpu_write_guest(vcpu, gp_to, buf, n); 605 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 606 if (rc) 607 goto not_found; 608 } else { 609 /* Load the data to be stored from the L1 guest into our buf */ 610 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 611 rc = kvm_vcpu_read_guest(vcpu, gp_from, buf, n); 612 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 613 if (rc) 614 goto not_found; 615 616 /* Store from our buffer into the nested guest */ 617 rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid, 618 eaddr, NULL, buf, n); 619 if (rc) 620 goto not_found; 621 } 622 623 out_unlock: 624 mutex_unlock(&gp->tlb_lock); 625 kvmhv_put_nested(gp); 626 out_free: 627 kfree(buf); 628 return rc; 629 not_found: 630 rc = H_NOT_FOUND; 631 goto out_unlock; 632 } 633 634 /* 635 * Reload the partition table entry for a guest. 636 * Caller must hold gp->tlb_lock. 637 */ 638 static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp) 639 { 640 int ret; 641 struct patb_entry ptbl_entry; 642 unsigned long ptbl_addr; 643 struct kvm *kvm = gp->l1_host; 644 645 ret = -EFAULT; 646 ptbl_addr = (kvm->arch.l1_ptcr & PRTB_MASK) + (gp->l1_lpid << 4); 647 if (gp->l1_lpid < (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 8))) { 648 int srcu_idx = srcu_read_lock(&kvm->srcu); 649 ret = kvm_read_guest(kvm, ptbl_addr, 650 &ptbl_entry, sizeof(ptbl_entry)); 651 srcu_read_unlock(&kvm->srcu, srcu_idx); 652 } 653 if (ret) { 654 gp->l1_gr_to_hr = 0; 655 gp->process_table = 0; 656 } else { 657 gp->l1_gr_to_hr = be64_to_cpu(ptbl_entry.patb0); 658 gp->process_table = be64_to_cpu(ptbl_entry.patb1); 659 } 660 kvmhv_set_nested_ptbl(gp); 661 } 662 663 static struct kvm_nested_guest *kvmhv_alloc_nested(struct kvm *kvm, unsigned int lpid) 664 { 665 struct kvm_nested_guest *gp; 666 long shadow_lpid; 667 668 gp = kzalloc(sizeof(*gp), GFP_KERNEL); 669 if (!gp) 670 return NULL; 671 gp->l1_host = kvm; 672 gp->l1_lpid = lpid; 673 mutex_init(&gp->tlb_lock); 674 gp->shadow_pgtable = pgd_alloc(kvm->mm); 675 if (!gp->shadow_pgtable) 676 goto out_free; 677 shadow_lpid = kvmppc_alloc_lpid(); 678 if (shadow_lpid < 0) 679 goto out_free2; 680 gp->shadow_lpid = shadow_lpid; 681 gp->radix = 1; 682 683 memset(gp->prev_cpu, -1, sizeof(gp->prev_cpu)); 684 685 return gp; 686 687 out_free2: 688 pgd_free(kvm->mm, gp->shadow_pgtable); 689 out_free: 690 kfree(gp); 691 return NULL; 692 } 693 694 /* 695 * Free up any resources allocated for a nested guest. 696 */ 697 static void kvmhv_release_nested(struct kvm_nested_guest *gp) 698 { 699 struct kvm *kvm = gp->l1_host; 700 701 if (gp->shadow_pgtable) { 702 /* 703 * No vcpu is using this struct and no call to 704 * kvmhv_get_nested can find this struct, 705 * so we don't need to hold kvm->mmu_lock. 706 */ 707 kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable, 708 gp->shadow_lpid); 709 pgd_free(kvm->mm, gp->shadow_pgtable); 710 } 711 kvmhv_set_ptbl_entry(gp->shadow_lpid, 0, 0); 712 kvmppc_free_lpid(gp->shadow_lpid); 713 kfree(gp); 714 } 715 716 static void kvmhv_remove_nested(struct kvm_nested_guest *gp) 717 { 718 struct kvm *kvm = gp->l1_host; 719 int lpid = gp->l1_lpid; 720 long ref; 721 722 spin_lock(&kvm->mmu_lock); 723 if (gp == kvm->arch.nested_guests[lpid]) { 724 kvm->arch.nested_guests[lpid] = NULL; 725 if (lpid == kvm->arch.max_nested_lpid) { 726 while (--lpid >= 0 && !kvm->arch.nested_guests[lpid]) 727 ; 728 kvm->arch.max_nested_lpid = lpid; 729 } 730 --gp->refcnt; 731 } 732 ref = gp->refcnt; 733 spin_unlock(&kvm->mmu_lock); 734 if (ref == 0) 735 kvmhv_release_nested(gp); 736 } 737 738 /* 739 * Free up all nested resources allocated for this guest. 740 * This is called with no vcpus of the guest running, when 741 * switching the guest to HPT mode or when destroying the 742 * guest. 743 */ 744 void kvmhv_release_all_nested(struct kvm *kvm) 745 { 746 int i; 747 struct kvm_nested_guest *gp; 748 struct kvm_nested_guest *freelist = NULL; 749 struct kvm_memory_slot *memslot; 750 int srcu_idx, bkt; 751 752 spin_lock(&kvm->mmu_lock); 753 for (i = 0; i <= kvm->arch.max_nested_lpid; i++) { 754 gp = kvm->arch.nested_guests[i]; 755 if (!gp) 756 continue; 757 kvm->arch.nested_guests[i] = NULL; 758 if (--gp->refcnt == 0) { 759 gp->next = freelist; 760 freelist = gp; 761 } 762 } 763 kvm->arch.max_nested_lpid = -1; 764 spin_unlock(&kvm->mmu_lock); 765 while ((gp = freelist) != NULL) { 766 freelist = gp->next; 767 kvmhv_release_nested(gp); 768 } 769 770 srcu_idx = srcu_read_lock(&kvm->srcu); 771 kvm_for_each_memslot(memslot, bkt, kvm_memslots(kvm)) 772 kvmhv_free_memslot_nest_rmap(memslot); 773 srcu_read_unlock(&kvm->srcu, srcu_idx); 774 } 775 776 /* caller must hold gp->tlb_lock */ 777 static void kvmhv_flush_nested(struct kvm_nested_guest *gp) 778 { 779 struct kvm *kvm = gp->l1_host; 780 781 spin_lock(&kvm->mmu_lock); 782 kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable, gp->shadow_lpid); 783 spin_unlock(&kvm->mmu_lock); 784 kvmhv_flush_lpid(gp->shadow_lpid); 785 kvmhv_update_ptbl_cache(gp); 786 if (gp->l1_gr_to_hr == 0) 787 kvmhv_remove_nested(gp); 788 } 789 790 struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid, 791 bool create) 792 { 793 struct kvm_nested_guest *gp, *newgp; 794 795 if (l1_lpid >= KVM_MAX_NESTED_GUESTS || 796 l1_lpid >= (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 12 - 4))) 797 return NULL; 798 799 spin_lock(&kvm->mmu_lock); 800 gp = kvm->arch.nested_guests[l1_lpid]; 801 if (gp) 802 ++gp->refcnt; 803 spin_unlock(&kvm->mmu_lock); 804 805 if (gp || !create) 806 return gp; 807 808 newgp = kvmhv_alloc_nested(kvm, l1_lpid); 809 if (!newgp) 810 return NULL; 811 spin_lock(&kvm->mmu_lock); 812 if (kvm->arch.nested_guests[l1_lpid]) { 813 /* someone else beat us to it */ 814 gp = kvm->arch.nested_guests[l1_lpid]; 815 } else { 816 kvm->arch.nested_guests[l1_lpid] = newgp; 817 ++newgp->refcnt; 818 gp = newgp; 819 newgp = NULL; 820 if (l1_lpid > kvm->arch.max_nested_lpid) 821 kvm->arch.max_nested_lpid = l1_lpid; 822 } 823 ++gp->refcnt; 824 spin_unlock(&kvm->mmu_lock); 825 826 if (newgp) 827 kvmhv_release_nested(newgp); 828 829 return gp; 830 } 831 832 void kvmhv_put_nested(struct kvm_nested_guest *gp) 833 { 834 struct kvm *kvm = gp->l1_host; 835 long ref; 836 837 spin_lock(&kvm->mmu_lock); 838 ref = --gp->refcnt; 839 spin_unlock(&kvm->mmu_lock); 840 if (ref == 0) 841 kvmhv_release_nested(gp); 842 } 843 844 static struct kvm_nested_guest *kvmhv_find_nested(struct kvm *kvm, int lpid) 845 { 846 if (lpid > kvm->arch.max_nested_lpid) 847 return NULL; 848 return kvm->arch.nested_guests[lpid]; 849 } 850 851 pte_t *find_kvm_nested_guest_pte(struct kvm *kvm, unsigned long lpid, 852 unsigned long ea, unsigned *hshift) 853 { 854 struct kvm_nested_guest *gp; 855 pte_t *pte; 856 857 gp = kvmhv_find_nested(kvm, lpid); 858 if (!gp) 859 return NULL; 860 861 VM_WARN(!spin_is_locked(&kvm->mmu_lock), 862 "%s called with kvm mmu_lock not held \n", __func__); 863 pte = __find_linux_pte(gp->shadow_pgtable, ea, NULL, hshift); 864 865 return pte; 866 } 867 868 static inline bool kvmhv_n_rmap_is_equal(u64 rmap_1, u64 rmap_2) 869 { 870 return !((rmap_1 ^ rmap_2) & (RMAP_NESTED_LPID_MASK | 871 RMAP_NESTED_GPA_MASK)); 872 } 873 874 void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp, 875 struct rmap_nested **n_rmap) 876 { 877 struct llist_node *entry = ((struct llist_head *) rmapp)->first; 878 struct rmap_nested *cursor; 879 u64 rmap, new_rmap = (*n_rmap)->rmap; 880 881 /* Are there any existing entries? */ 882 if (!(*rmapp)) { 883 /* No -> use the rmap as a single entry */ 884 *rmapp = new_rmap | RMAP_NESTED_IS_SINGLE_ENTRY; 885 return; 886 } 887 888 /* Do any entries match what we're trying to insert? */ 889 for_each_nest_rmap_safe(cursor, entry, &rmap) { 890 if (kvmhv_n_rmap_is_equal(rmap, new_rmap)) 891 return; 892 } 893 894 /* Do we need to create a list or just add the new entry? */ 895 rmap = *rmapp; 896 if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */ 897 *rmapp = 0UL; 898 llist_add(&((*n_rmap)->list), (struct llist_head *) rmapp); 899 if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */ 900 (*n_rmap)->list.next = (struct llist_node *) rmap; 901 902 /* Set NULL so not freed by caller */ 903 *n_rmap = NULL; 904 } 905 906 static void kvmhv_update_nest_rmap_rc(struct kvm *kvm, u64 n_rmap, 907 unsigned long clr, unsigned long set, 908 unsigned long hpa, unsigned long mask) 909 { 910 unsigned long gpa; 911 unsigned int shift, lpid; 912 pte_t *ptep; 913 914 gpa = n_rmap & RMAP_NESTED_GPA_MASK; 915 lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT; 916 917 /* Find the pte */ 918 ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift); 919 /* 920 * If the pte is present and the pfn is still the same, update the pte. 921 * If the pfn has changed then this is a stale rmap entry, the nested 922 * gpa actually points somewhere else now, and there is nothing to do. 923 * XXX A future optimisation would be to remove the rmap entry here. 924 */ 925 if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa)) { 926 __radix_pte_update(ptep, clr, set); 927 kvmppc_radix_tlbie_page(kvm, gpa, shift, lpid); 928 } 929 } 930 931 /* 932 * For a given list of rmap entries, update the rc bits in all ptes in shadow 933 * page tables for nested guests which are referenced by the rmap list. 934 */ 935 void kvmhv_update_nest_rmap_rc_list(struct kvm *kvm, unsigned long *rmapp, 936 unsigned long clr, unsigned long set, 937 unsigned long hpa, unsigned long nbytes) 938 { 939 struct llist_node *entry = ((struct llist_head *) rmapp)->first; 940 struct rmap_nested *cursor; 941 unsigned long rmap, mask; 942 943 if ((clr | set) & ~(_PAGE_DIRTY | _PAGE_ACCESSED)) 944 return; 945 946 mask = PTE_RPN_MASK & ~(nbytes - 1); 947 hpa &= mask; 948 949 for_each_nest_rmap_safe(cursor, entry, &rmap) 950 kvmhv_update_nest_rmap_rc(kvm, rmap, clr, set, hpa, mask); 951 } 952 953 static void kvmhv_remove_nest_rmap(struct kvm *kvm, u64 n_rmap, 954 unsigned long hpa, unsigned long mask) 955 { 956 struct kvm_nested_guest *gp; 957 unsigned long gpa; 958 unsigned int shift, lpid; 959 pte_t *ptep; 960 961 gpa = n_rmap & RMAP_NESTED_GPA_MASK; 962 lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT; 963 gp = kvmhv_find_nested(kvm, lpid); 964 if (!gp) 965 return; 966 967 /* Find and invalidate the pte */ 968 ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift); 969 /* Don't spuriously invalidate ptes if the pfn has changed */ 970 if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa)) 971 kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid); 972 } 973 974 static void kvmhv_remove_nest_rmap_list(struct kvm *kvm, unsigned long *rmapp, 975 unsigned long hpa, unsigned long mask) 976 { 977 struct llist_node *entry = llist_del_all((struct llist_head *) rmapp); 978 struct rmap_nested *cursor; 979 unsigned long rmap; 980 981 for_each_nest_rmap_safe(cursor, entry, &rmap) { 982 kvmhv_remove_nest_rmap(kvm, rmap, hpa, mask); 983 kfree(cursor); 984 } 985 } 986 987 /* called with kvm->mmu_lock held */ 988 void kvmhv_remove_nest_rmap_range(struct kvm *kvm, 989 const struct kvm_memory_slot *memslot, 990 unsigned long gpa, unsigned long hpa, 991 unsigned long nbytes) 992 { 993 unsigned long gfn, end_gfn; 994 unsigned long addr_mask; 995 996 if (!memslot) 997 return; 998 gfn = (gpa >> PAGE_SHIFT) - memslot->base_gfn; 999 end_gfn = gfn + (nbytes >> PAGE_SHIFT); 1000 1001 addr_mask = PTE_RPN_MASK & ~(nbytes - 1); 1002 hpa &= addr_mask; 1003 1004 for (; gfn < end_gfn; gfn++) { 1005 unsigned long *rmap = &memslot->arch.rmap[gfn]; 1006 kvmhv_remove_nest_rmap_list(kvm, rmap, hpa, addr_mask); 1007 } 1008 } 1009 1010 static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free) 1011 { 1012 unsigned long page; 1013 1014 for (page = 0; page < free->npages; page++) { 1015 unsigned long rmap, *rmapp = &free->arch.rmap[page]; 1016 struct rmap_nested *cursor; 1017 struct llist_node *entry; 1018 1019 entry = llist_del_all((struct llist_head *) rmapp); 1020 for_each_nest_rmap_safe(cursor, entry, &rmap) 1021 kfree(cursor); 1022 } 1023 } 1024 1025 static bool kvmhv_invalidate_shadow_pte(struct kvm_vcpu *vcpu, 1026 struct kvm_nested_guest *gp, 1027 long gpa, int *shift_ret) 1028 { 1029 struct kvm *kvm = vcpu->kvm; 1030 bool ret = false; 1031 pte_t *ptep; 1032 int shift; 1033 1034 spin_lock(&kvm->mmu_lock); 1035 ptep = find_kvm_nested_guest_pte(kvm, gp->l1_lpid, gpa, &shift); 1036 if (!shift) 1037 shift = PAGE_SHIFT; 1038 if (ptep && pte_present(*ptep)) { 1039 kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid); 1040 ret = true; 1041 } 1042 spin_unlock(&kvm->mmu_lock); 1043 1044 if (shift_ret) 1045 *shift_ret = shift; 1046 return ret; 1047 } 1048 1049 static inline int get_ric(unsigned int instr) 1050 { 1051 return (instr >> 18) & 0x3; 1052 } 1053 1054 static inline int get_prs(unsigned int instr) 1055 { 1056 return (instr >> 17) & 0x1; 1057 } 1058 1059 static inline int get_r(unsigned int instr) 1060 { 1061 return (instr >> 16) & 0x1; 1062 } 1063 1064 static inline int get_lpid(unsigned long r_val) 1065 { 1066 return r_val & 0xffffffff; 1067 } 1068 1069 static inline int get_is(unsigned long r_val) 1070 { 1071 return (r_val >> 10) & 0x3; 1072 } 1073 1074 static inline int get_ap(unsigned long r_val) 1075 { 1076 return (r_val >> 5) & 0x7; 1077 } 1078 1079 static inline long get_epn(unsigned long r_val) 1080 { 1081 return r_val >> 12; 1082 } 1083 1084 static int kvmhv_emulate_tlbie_tlb_addr(struct kvm_vcpu *vcpu, int lpid, 1085 int ap, long epn) 1086 { 1087 struct kvm *kvm = vcpu->kvm; 1088 struct kvm_nested_guest *gp; 1089 long npages; 1090 int shift, shadow_shift; 1091 unsigned long addr; 1092 1093 shift = ap_to_shift(ap); 1094 addr = epn << 12; 1095 if (shift < 0) 1096 /* Invalid ap encoding */ 1097 return -EINVAL; 1098 1099 addr &= ~((1UL << shift) - 1); 1100 npages = 1UL << (shift - PAGE_SHIFT); 1101 1102 gp = kvmhv_get_nested(kvm, lpid, false); 1103 if (!gp) /* No such guest -> nothing to do */ 1104 return 0; 1105 mutex_lock(&gp->tlb_lock); 1106 1107 /* There may be more than one host page backing this single guest pte */ 1108 do { 1109 kvmhv_invalidate_shadow_pte(vcpu, gp, addr, &shadow_shift); 1110 1111 npages -= 1UL << (shadow_shift - PAGE_SHIFT); 1112 addr += 1UL << shadow_shift; 1113 } while (npages > 0); 1114 1115 mutex_unlock(&gp->tlb_lock); 1116 kvmhv_put_nested(gp); 1117 return 0; 1118 } 1119 1120 static void kvmhv_emulate_tlbie_lpid(struct kvm_vcpu *vcpu, 1121 struct kvm_nested_guest *gp, int ric) 1122 { 1123 struct kvm *kvm = vcpu->kvm; 1124 1125 mutex_lock(&gp->tlb_lock); 1126 switch (ric) { 1127 case 0: 1128 /* Invalidate TLB */ 1129 spin_lock(&kvm->mmu_lock); 1130 kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable, 1131 gp->shadow_lpid); 1132 kvmhv_flush_lpid(gp->shadow_lpid); 1133 spin_unlock(&kvm->mmu_lock); 1134 break; 1135 case 1: 1136 /* 1137 * Invalidate PWC 1138 * We don't cache this -> nothing to do 1139 */ 1140 break; 1141 case 2: 1142 /* Invalidate TLB, PWC and caching of partition table entries */ 1143 kvmhv_flush_nested(gp); 1144 break; 1145 default: 1146 break; 1147 } 1148 mutex_unlock(&gp->tlb_lock); 1149 } 1150 1151 static void kvmhv_emulate_tlbie_all_lpid(struct kvm_vcpu *vcpu, int ric) 1152 { 1153 struct kvm *kvm = vcpu->kvm; 1154 struct kvm_nested_guest *gp; 1155 int i; 1156 1157 spin_lock(&kvm->mmu_lock); 1158 for (i = 0; i <= kvm->arch.max_nested_lpid; i++) { 1159 gp = kvm->arch.nested_guests[i]; 1160 if (gp) { 1161 spin_unlock(&kvm->mmu_lock); 1162 kvmhv_emulate_tlbie_lpid(vcpu, gp, ric); 1163 spin_lock(&kvm->mmu_lock); 1164 } 1165 } 1166 spin_unlock(&kvm->mmu_lock); 1167 } 1168 1169 static int kvmhv_emulate_priv_tlbie(struct kvm_vcpu *vcpu, unsigned int instr, 1170 unsigned long rsval, unsigned long rbval) 1171 { 1172 struct kvm *kvm = vcpu->kvm; 1173 struct kvm_nested_guest *gp; 1174 int r, ric, prs, is, ap; 1175 int lpid; 1176 long epn; 1177 int ret = 0; 1178 1179 ric = get_ric(instr); 1180 prs = get_prs(instr); 1181 r = get_r(instr); 1182 lpid = get_lpid(rsval); 1183 is = get_is(rbval); 1184 1185 /* 1186 * These cases are invalid and are not handled: 1187 * r != 1 -> Only radix supported 1188 * prs == 1 -> Not HV privileged 1189 * ric == 3 -> No cluster bombs for radix 1190 * is == 1 -> Partition scoped translations not associated with pid 1191 * (!is) && (ric == 1 || ric == 2) -> Not supported by ISA 1192 */ 1193 if ((!r) || (prs) || (ric == 3) || (is == 1) || 1194 ((!is) && (ric == 1 || ric == 2))) 1195 return -EINVAL; 1196 1197 switch (is) { 1198 case 0: 1199 /* 1200 * We know ric == 0 1201 * Invalidate TLB for a given target address 1202 */ 1203 epn = get_epn(rbval); 1204 ap = get_ap(rbval); 1205 ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap, epn); 1206 break; 1207 case 2: 1208 /* Invalidate matching LPID */ 1209 gp = kvmhv_get_nested(kvm, lpid, false); 1210 if (gp) { 1211 kvmhv_emulate_tlbie_lpid(vcpu, gp, ric); 1212 kvmhv_put_nested(gp); 1213 } 1214 break; 1215 case 3: 1216 /* Invalidate ALL LPIDs */ 1217 kvmhv_emulate_tlbie_all_lpid(vcpu, ric); 1218 break; 1219 default: 1220 ret = -EINVAL; 1221 break; 1222 } 1223 1224 return ret; 1225 } 1226 1227 /* 1228 * This handles the H_TLB_INVALIDATE hcall. 1229 * Parameters are (r4) tlbie instruction code, (r5) rS contents, 1230 * (r6) rB contents. 1231 */ 1232 long kvmhv_do_nested_tlbie(struct kvm_vcpu *vcpu) 1233 { 1234 int ret; 1235 1236 ret = kvmhv_emulate_priv_tlbie(vcpu, kvmppc_get_gpr(vcpu, 4), 1237 kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6)); 1238 if (ret) 1239 return H_PARAMETER; 1240 return H_SUCCESS; 1241 } 1242 1243 static long do_tlb_invalidate_nested_all(struct kvm_vcpu *vcpu, 1244 unsigned long lpid, unsigned long ric) 1245 { 1246 struct kvm *kvm = vcpu->kvm; 1247 struct kvm_nested_guest *gp; 1248 1249 gp = kvmhv_get_nested(kvm, lpid, false); 1250 if (gp) { 1251 kvmhv_emulate_tlbie_lpid(vcpu, gp, ric); 1252 kvmhv_put_nested(gp); 1253 } 1254 return H_SUCCESS; 1255 } 1256 1257 /* 1258 * Number of pages above which we invalidate the entire LPID rather than 1259 * flush individual pages. 1260 */ 1261 static unsigned long tlb_range_flush_page_ceiling __read_mostly = 33; 1262 1263 static long do_tlb_invalidate_nested_tlb(struct kvm_vcpu *vcpu, 1264 unsigned long lpid, 1265 unsigned long pg_sizes, 1266 unsigned long start, 1267 unsigned long end) 1268 { 1269 int ret = H_P4; 1270 unsigned long addr, nr_pages; 1271 struct mmu_psize_def *def; 1272 unsigned long psize, ap, page_size; 1273 bool flush_lpid; 1274 1275 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) { 1276 def = &mmu_psize_defs[psize]; 1277 if (!(pg_sizes & def->h_rpt_pgsize)) 1278 continue; 1279 1280 nr_pages = (end - start) >> def->shift; 1281 flush_lpid = nr_pages > tlb_range_flush_page_ceiling; 1282 if (flush_lpid) 1283 return do_tlb_invalidate_nested_all(vcpu, lpid, 1284 RIC_FLUSH_TLB); 1285 addr = start; 1286 ap = mmu_get_ap(psize); 1287 page_size = 1UL << def->shift; 1288 do { 1289 ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap, 1290 get_epn(addr)); 1291 if (ret) 1292 return H_P4; 1293 addr += page_size; 1294 } while (addr < end); 1295 } 1296 return ret; 1297 } 1298 1299 /* 1300 * Performs partition-scoped invalidations for nested guests 1301 * as part of H_RPT_INVALIDATE hcall. 1302 */ 1303 long do_h_rpt_invalidate_pat(struct kvm_vcpu *vcpu, unsigned long lpid, 1304 unsigned long type, unsigned long pg_sizes, 1305 unsigned long start, unsigned long end) 1306 { 1307 /* 1308 * If L2 lpid isn't valid, we need to return H_PARAMETER. 1309 * 1310 * However, nested KVM issues a L2 lpid flush call when creating 1311 * partition table entries for L2. This happens even before the 1312 * corresponding shadow lpid is created in HV which happens in 1313 * H_ENTER_NESTED call. Since we can't differentiate this case from 1314 * the invalid case, we ignore such flush requests and return success. 1315 */ 1316 if (!kvmhv_find_nested(vcpu->kvm, lpid)) 1317 return H_SUCCESS; 1318 1319 /* 1320 * A flush all request can be handled by a full lpid flush only. 1321 */ 1322 if ((type & H_RPTI_TYPE_NESTED_ALL) == H_RPTI_TYPE_NESTED_ALL) 1323 return do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_ALL); 1324 1325 /* 1326 * We don't need to handle a PWC flush like process table here, 1327 * because intermediate partition scoped table in nested guest doesn't 1328 * really have PWC. Only level we have PWC is in L0 and for nested 1329 * invalidate at L0 we always do kvm_flush_lpid() which does 1330 * radix__flush_all_lpid(). For range invalidate at any level, we 1331 * are not removing the higher level page tables and hence there is 1332 * no PWC invalidate needed. 1333 * 1334 * if (type & H_RPTI_TYPE_PWC) { 1335 * ret = do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_PWC); 1336 * if (ret) 1337 * return H_P4; 1338 * } 1339 */ 1340 1341 if (start == 0 && end == -1) 1342 return do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_TLB); 1343 1344 if (type & H_RPTI_TYPE_TLB) 1345 return do_tlb_invalidate_nested_tlb(vcpu, lpid, pg_sizes, 1346 start, end); 1347 return H_SUCCESS; 1348 } 1349 1350 /* Used to convert a nested guest real address to a L1 guest real address */ 1351 static int kvmhv_translate_addr_nested(struct kvm_vcpu *vcpu, 1352 struct kvm_nested_guest *gp, 1353 unsigned long n_gpa, unsigned long dsisr, 1354 struct kvmppc_pte *gpte_p) 1355 { 1356 u64 fault_addr, flags = dsisr & DSISR_ISSTORE; 1357 int ret; 1358 1359 ret = kvmppc_mmu_walk_radix_tree(vcpu, n_gpa, gpte_p, gp->l1_gr_to_hr, 1360 &fault_addr); 1361 1362 if (ret) { 1363 /* We didn't find a pte */ 1364 if (ret == -EINVAL) { 1365 /* Unsupported mmu config */ 1366 flags |= DSISR_UNSUPP_MMU; 1367 } else if (ret == -ENOENT) { 1368 /* No translation found */ 1369 flags |= DSISR_NOHPTE; 1370 } else if (ret == -EFAULT) { 1371 /* Couldn't access L1 real address */ 1372 flags |= DSISR_PRTABLE_FAULT; 1373 vcpu->arch.fault_gpa = fault_addr; 1374 } else { 1375 /* Unknown error */ 1376 return ret; 1377 } 1378 goto forward_to_l1; 1379 } else { 1380 /* We found a pte -> check permissions */ 1381 if (dsisr & DSISR_ISSTORE) { 1382 /* Can we write? */ 1383 if (!gpte_p->may_write) { 1384 flags |= DSISR_PROTFAULT; 1385 goto forward_to_l1; 1386 } 1387 } else if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) { 1388 /* Can we execute? */ 1389 if (!gpte_p->may_execute) { 1390 flags |= SRR1_ISI_N_G_OR_CIP; 1391 goto forward_to_l1; 1392 } 1393 } else { 1394 /* Can we read? */ 1395 if (!gpte_p->may_read && !gpte_p->may_write) { 1396 flags |= DSISR_PROTFAULT; 1397 goto forward_to_l1; 1398 } 1399 } 1400 } 1401 1402 return 0; 1403 1404 forward_to_l1: 1405 vcpu->arch.fault_dsisr = flags; 1406 if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) { 1407 vcpu->arch.shregs.msr &= SRR1_MSR_BITS; 1408 vcpu->arch.shregs.msr |= flags; 1409 } 1410 return RESUME_HOST; 1411 } 1412 1413 static long kvmhv_handle_nested_set_rc(struct kvm_vcpu *vcpu, 1414 struct kvm_nested_guest *gp, 1415 unsigned long n_gpa, 1416 struct kvmppc_pte gpte, 1417 unsigned long dsisr) 1418 { 1419 struct kvm *kvm = vcpu->kvm; 1420 bool writing = !!(dsisr & DSISR_ISSTORE); 1421 u64 pgflags; 1422 long ret; 1423 1424 /* Are the rc bits set in the L1 partition scoped pte? */ 1425 pgflags = _PAGE_ACCESSED; 1426 if (writing) 1427 pgflags |= _PAGE_DIRTY; 1428 if (pgflags & ~gpte.rc) 1429 return RESUME_HOST; 1430 1431 spin_lock(&kvm->mmu_lock); 1432 /* Set the rc bit in the pte of our (L0) pgtable for the L1 guest */ 1433 ret = kvmppc_hv_handle_set_rc(kvm, false, writing, 1434 gpte.raddr, kvm->arch.lpid); 1435 if (!ret) { 1436 ret = -EINVAL; 1437 goto out_unlock; 1438 } 1439 1440 /* Set the rc bit in the pte of the shadow_pgtable for the nest guest */ 1441 ret = kvmppc_hv_handle_set_rc(kvm, true, writing, 1442 n_gpa, gp->l1_lpid); 1443 if (!ret) 1444 ret = -EINVAL; 1445 else 1446 ret = 0; 1447 1448 out_unlock: 1449 spin_unlock(&kvm->mmu_lock); 1450 return ret; 1451 } 1452 1453 static inline int kvmppc_radix_level_to_shift(int level) 1454 { 1455 switch (level) { 1456 case 2: 1457 return PUD_SHIFT; 1458 case 1: 1459 return PMD_SHIFT; 1460 default: 1461 return PAGE_SHIFT; 1462 } 1463 } 1464 1465 static inline int kvmppc_radix_shift_to_level(int shift) 1466 { 1467 if (shift == PUD_SHIFT) 1468 return 2; 1469 if (shift == PMD_SHIFT) 1470 return 1; 1471 if (shift == PAGE_SHIFT) 1472 return 0; 1473 WARN_ON_ONCE(1); 1474 return 0; 1475 } 1476 1477 /* called with gp->tlb_lock held */ 1478 static long int __kvmhv_nested_page_fault(struct kvm_vcpu *vcpu, 1479 struct kvm_nested_guest *gp) 1480 { 1481 struct kvm *kvm = vcpu->kvm; 1482 struct kvm_memory_slot *memslot; 1483 struct rmap_nested *n_rmap; 1484 struct kvmppc_pte gpte; 1485 pte_t pte, *pte_p; 1486 unsigned long mmu_seq; 1487 unsigned long dsisr = vcpu->arch.fault_dsisr; 1488 unsigned long ea = vcpu->arch.fault_dar; 1489 unsigned long *rmapp; 1490 unsigned long n_gpa, gpa, gfn, perm = 0UL; 1491 unsigned int shift, l1_shift, level; 1492 bool writing = !!(dsisr & DSISR_ISSTORE); 1493 bool kvm_ro = false; 1494 long int ret; 1495 1496 if (!gp->l1_gr_to_hr) { 1497 kvmhv_update_ptbl_cache(gp); 1498 if (!gp->l1_gr_to_hr) 1499 return RESUME_HOST; 1500 } 1501 1502 /* Convert the nested guest real address into a L1 guest real address */ 1503 1504 n_gpa = vcpu->arch.fault_gpa & ~0xF000000000000FFFULL; 1505 if (!(dsisr & DSISR_PRTABLE_FAULT)) 1506 n_gpa |= ea & 0xFFF; 1507 ret = kvmhv_translate_addr_nested(vcpu, gp, n_gpa, dsisr, &gpte); 1508 1509 /* 1510 * If the hardware found a translation but we don't now have a usable 1511 * translation in the l1 partition-scoped tree, remove the shadow pte 1512 * and let the guest retry. 1513 */ 1514 if (ret == RESUME_HOST && 1515 (dsisr & (DSISR_PROTFAULT | DSISR_BADACCESS | DSISR_NOEXEC_OR_G | 1516 DSISR_BAD_COPYPASTE))) 1517 goto inval; 1518 if (ret) 1519 return ret; 1520 1521 /* Failed to set the reference/change bits */ 1522 if (dsisr & DSISR_SET_RC) { 1523 ret = kvmhv_handle_nested_set_rc(vcpu, gp, n_gpa, gpte, dsisr); 1524 if (ret == RESUME_HOST) 1525 return ret; 1526 if (ret) 1527 goto inval; 1528 dsisr &= ~DSISR_SET_RC; 1529 if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE | 1530 DSISR_PROTFAULT))) 1531 return RESUME_GUEST; 1532 } 1533 1534 /* 1535 * We took an HISI or HDSI while we were running a nested guest which 1536 * means we have no partition scoped translation for that. This means 1537 * we need to insert a pte for the mapping into our shadow_pgtable. 1538 */ 1539 1540 l1_shift = gpte.page_shift; 1541 if (l1_shift < PAGE_SHIFT) { 1542 /* We don't support l1 using a page size smaller than our own */ 1543 pr_err("KVM: L1 guest page shift (%d) less than our own (%d)\n", 1544 l1_shift, PAGE_SHIFT); 1545 return -EINVAL; 1546 } 1547 gpa = gpte.raddr; 1548 gfn = gpa >> PAGE_SHIFT; 1549 1550 /* 1. Get the corresponding host memslot */ 1551 1552 memslot = gfn_to_memslot(kvm, gfn); 1553 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) { 1554 if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS)) { 1555 /* unusual error -> reflect to the guest as a DSI */ 1556 kvmppc_core_queue_data_storage(vcpu, ea, dsisr); 1557 return RESUME_GUEST; 1558 } 1559 1560 /* passthrough of emulated MMIO case */ 1561 return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, writing); 1562 } 1563 if (memslot->flags & KVM_MEM_READONLY) { 1564 if (writing) { 1565 /* Give the guest a DSI */ 1566 kvmppc_core_queue_data_storage(vcpu, ea, 1567 DSISR_ISSTORE | DSISR_PROTFAULT); 1568 return RESUME_GUEST; 1569 } 1570 kvm_ro = true; 1571 } 1572 1573 /* 2. Find the host pte for this L1 guest real address */ 1574 1575 /* Used to check for invalidations in progress */ 1576 mmu_seq = kvm->mmu_notifier_seq; 1577 smp_rmb(); 1578 1579 /* See if can find translation in our partition scoped tables for L1 */ 1580 pte = __pte(0); 1581 spin_lock(&kvm->mmu_lock); 1582 pte_p = find_kvm_secondary_pte(kvm, gpa, &shift); 1583 if (!shift) 1584 shift = PAGE_SHIFT; 1585 if (pte_p) 1586 pte = *pte_p; 1587 spin_unlock(&kvm->mmu_lock); 1588 1589 if (!pte_present(pte) || (writing && !(pte_val(pte) & _PAGE_WRITE))) { 1590 /* No suitable pte found -> try to insert a mapping */ 1591 ret = kvmppc_book3s_instantiate_page(vcpu, gpa, memslot, 1592 writing, kvm_ro, &pte, &level); 1593 if (ret == -EAGAIN) 1594 return RESUME_GUEST; 1595 else if (ret) 1596 return ret; 1597 shift = kvmppc_radix_level_to_shift(level); 1598 } 1599 /* Align gfn to the start of the page */ 1600 gfn = (gpa & ~((1UL << shift) - 1)) >> PAGE_SHIFT; 1601 1602 /* 3. Compute the pte we need to insert for nest_gpa -> host r_addr */ 1603 1604 /* The permissions is the combination of the host and l1 guest ptes */ 1605 perm |= gpte.may_read ? 0UL : _PAGE_READ; 1606 perm |= gpte.may_write ? 0UL : _PAGE_WRITE; 1607 perm |= gpte.may_execute ? 0UL : _PAGE_EXEC; 1608 /* Only set accessed/dirty (rc) bits if set in host and l1 guest ptes */ 1609 perm |= (gpte.rc & _PAGE_ACCESSED) ? 0UL : _PAGE_ACCESSED; 1610 perm |= ((gpte.rc & _PAGE_DIRTY) && writing) ? 0UL : _PAGE_DIRTY; 1611 pte = __pte(pte_val(pte) & ~perm); 1612 1613 /* What size pte can we insert? */ 1614 if (shift > l1_shift) { 1615 u64 mask; 1616 unsigned int actual_shift = PAGE_SHIFT; 1617 if (PMD_SHIFT < l1_shift) 1618 actual_shift = PMD_SHIFT; 1619 mask = (1UL << shift) - (1UL << actual_shift); 1620 pte = __pte(pte_val(pte) | (gpa & mask)); 1621 shift = actual_shift; 1622 } 1623 level = kvmppc_radix_shift_to_level(shift); 1624 n_gpa &= ~((1UL << shift) - 1); 1625 1626 /* 4. Insert the pte into our shadow_pgtable */ 1627 1628 n_rmap = kzalloc(sizeof(*n_rmap), GFP_KERNEL); 1629 if (!n_rmap) 1630 return RESUME_GUEST; /* Let the guest try again */ 1631 n_rmap->rmap = (n_gpa & RMAP_NESTED_GPA_MASK) | 1632 (((unsigned long) gp->l1_lpid) << RMAP_NESTED_LPID_SHIFT); 1633 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 1634 ret = kvmppc_create_pte(kvm, gp->shadow_pgtable, pte, n_gpa, level, 1635 mmu_seq, gp->shadow_lpid, rmapp, &n_rmap); 1636 kfree(n_rmap); 1637 if (ret == -EAGAIN) 1638 ret = RESUME_GUEST; /* Let the guest try again */ 1639 1640 return ret; 1641 1642 inval: 1643 kvmhv_invalidate_shadow_pte(vcpu, gp, n_gpa, NULL); 1644 return RESUME_GUEST; 1645 } 1646 1647 long int kvmhv_nested_page_fault(struct kvm_vcpu *vcpu) 1648 { 1649 struct kvm_nested_guest *gp = vcpu->arch.nested; 1650 long int ret; 1651 1652 mutex_lock(&gp->tlb_lock); 1653 ret = __kvmhv_nested_page_fault(vcpu, gp); 1654 mutex_unlock(&gp->tlb_lock); 1655 return ret; 1656 } 1657 1658 int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid) 1659 { 1660 int ret = -1; 1661 1662 spin_lock(&kvm->mmu_lock); 1663 while (++lpid <= kvm->arch.max_nested_lpid) { 1664 if (kvm->arch.nested_guests[lpid]) { 1665 ret = lpid; 1666 break; 1667 } 1668 } 1669 spin_unlock(&kvm->mmu_lock); 1670 return ret; 1671 } 1672