1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright IBM Corporation, 2018
4  * Authors Suraj Jitindar Singh <sjitindarsingh@gmail.com>
5  *	   Paul Mackerras <paulus@ozlabs.org>
6  *
7  * Description: KVM functions specific to running nested KVM-HV guests
8  * on Book3S processors (specifically POWER9 and later).
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/kvm_host.h>
13 #include <linux/llist.h>
14 #include <linux/pgtable.h>
15 
16 #include <asm/kvm_ppc.h>
17 #include <asm/kvm_book3s.h>
18 #include <asm/mmu.h>
19 #include <asm/pgalloc.h>
20 #include <asm/pte-walk.h>
21 #include <asm/reg.h>
22 
23 static struct patb_entry *pseries_partition_tb;
24 
25 static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp);
26 static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free);
27 
28 void kvmhv_save_hv_regs(struct kvm_vcpu *vcpu, struct hv_guest_state *hr)
29 {
30 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
31 
32 	hr->pcr = vc->pcr | PCR_MASK;
33 	hr->dpdes = vc->dpdes;
34 	hr->hfscr = vcpu->arch.hfscr;
35 	hr->tb_offset = vc->tb_offset;
36 	hr->dawr0 = vcpu->arch.dawr0;
37 	hr->dawrx0 = vcpu->arch.dawrx0;
38 	hr->ciabr = vcpu->arch.ciabr;
39 	hr->purr = vcpu->arch.purr;
40 	hr->spurr = vcpu->arch.spurr;
41 	hr->ic = vcpu->arch.ic;
42 	hr->vtb = vc->vtb;
43 	hr->srr0 = vcpu->arch.shregs.srr0;
44 	hr->srr1 = vcpu->arch.shregs.srr1;
45 	hr->sprg[0] = vcpu->arch.shregs.sprg0;
46 	hr->sprg[1] = vcpu->arch.shregs.sprg1;
47 	hr->sprg[2] = vcpu->arch.shregs.sprg2;
48 	hr->sprg[3] = vcpu->arch.shregs.sprg3;
49 	hr->pidr = vcpu->arch.pid;
50 	hr->cfar = vcpu->arch.cfar;
51 	hr->ppr = vcpu->arch.ppr;
52 	hr->dawr1 = vcpu->arch.dawr1;
53 	hr->dawrx1 = vcpu->arch.dawrx1;
54 }
55 
56 static void byteswap_pt_regs(struct pt_regs *regs)
57 {
58 	unsigned long *addr = (unsigned long *) regs;
59 
60 	for (; addr < ((unsigned long *) (regs + 1)); addr++)
61 		*addr = swab64(*addr);
62 }
63 
64 static void byteswap_hv_regs(struct hv_guest_state *hr)
65 {
66 	hr->version = swab64(hr->version);
67 	hr->lpid = swab32(hr->lpid);
68 	hr->vcpu_token = swab32(hr->vcpu_token);
69 	hr->lpcr = swab64(hr->lpcr);
70 	hr->pcr = swab64(hr->pcr) | PCR_MASK;
71 	hr->amor = swab64(hr->amor);
72 	hr->dpdes = swab64(hr->dpdes);
73 	hr->hfscr = swab64(hr->hfscr);
74 	hr->tb_offset = swab64(hr->tb_offset);
75 	hr->dawr0 = swab64(hr->dawr0);
76 	hr->dawrx0 = swab64(hr->dawrx0);
77 	hr->ciabr = swab64(hr->ciabr);
78 	hr->hdec_expiry = swab64(hr->hdec_expiry);
79 	hr->purr = swab64(hr->purr);
80 	hr->spurr = swab64(hr->spurr);
81 	hr->ic = swab64(hr->ic);
82 	hr->vtb = swab64(hr->vtb);
83 	hr->hdar = swab64(hr->hdar);
84 	hr->hdsisr = swab64(hr->hdsisr);
85 	hr->heir = swab64(hr->heir);
86 	hr->asdr = swab64(hr->asdr);
87 	hr->srr0 = swab64(hr->srr0);
88 	hr->srr1 = swab64(hr->srr1);
89 	hr->sprg[0] = swab64(hr->sprg[0]);
90 	hr->sprg[1] = swab64(hr->sprg[1]);
91 	hr->sprg[2] = swab64(hr->sprg[2]);
92 	hr->sprg[3] = swab64(hr->sprg[3]);
93 	hr->pidr = swab64(hr->pidr);
94 	hr->cfar = swab64(hr->cfar);
95 	hr->ppr = swab64(hr->ppr);
96 	hr->dawr1 = swab64(hr->dawr1);
97 	hr->dawrx1 = swab64(hr->dawrx1);
98 }
99 
100 static void save_hv_return_state(struct kvm_vcpu *vcpu, int trap,
101 				 struct hv_guest_state *hr)
102 {
103 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
104 
105 	hr->dpdes = vc->dpdes;
106 	hr->hfscr = vcpu->arch.hfscr;
107 	hr->purr = vcpu->arch.purr;
108 	hr->spurr = vcpu->arch.spurr;
109 	hr->ic = vcpu->arch.ic;
110 	hr->vtb = vc->vtb;
111 	hr->srr0 = vcpu->arch.shregs.srr0;
112 	hr->srr1 = vcpu->arch.shregs.srr1;
113 	hr->sprg[0] = vcpu->arch.shregs.sprg0;
114 	hr->sprg[1] = vcpu->arch.shregs.sprg1;
115 	hr->sprg[2] = vcpu->arch.shregs.sprg2;
116 	hr->sprg[3] = vcpu->arch.shregs.sprg3;
117 	hr->pidr = vcpu->arch.pid;
118 	hr->cfar = vcpu->arch.cfar;
119 	hr->ppr = vcpu->arch.ppr;
120 	switch (trap) {
121 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
122 		hr->hdar = vcpu->arch.fault_dar;
123 		hr->hdsisr = vcpu->arch.fault_dsisr;
124 		hr->asdr = vcpu->arch.fault_gpa;
125 		break;
126 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
127 		hr->asdr = vcpu->arch.fault_gpa;
128 		break;
129 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
130 		hr->heir = vcpu->arch.emul_inst;
131 		break;
132 	}
133 }
134 
135 static void sanitise_hv_regs(struct kvm_vcpu *vcpu, struct hv_guest_state *hr)
136 {
137 	/*
138 	 * Don't let L1 enable features for L2 which we've disabled for L1,
139 	 * but preserve the interrupt cause field.
140 	 */
141 	hr->hfscr &= (HFSCR_INTR_CAUSE | vcpu->arch.hfscr);
142 
143 	/* Don't let data address watchpoint match in hypervisor state */
144 	hr->dawrx0 &= ~DAWRX_HYP;
145 	hr->dawrx1 &= ~DAWRX_HYP;
146 
147 	/* Don't let completed instruction address breakpt match in HV state */
148 	if ((hr->ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
149 		hr->ciabr &= ~CIABR_PRIV;
150 }
151 
152 static void restore_hv_regs(struct kvm_vcpu *vcpu, struct hv_guest_state *hr)
153 {
154 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
155 
156 	vc->pcr = hr->pcr | PCR_MASK;
157 	vc->dpdes = hr->dpdes;
158 	vcpu->arch.hfscr = hr->hfscr;
159 	vcpu->arch.dawr0 = hr->dawr0;
160 	vcpu->arch.dawrx0 = hr->dawrx0;
161 	vcpu->arch.ciabr = hr->ciabr;
162 	vcpu->arch.purr = hr->purr;
163 	vcpu->arch.spurr = hr->spurr;
164 	vcpu->arch.ic = hr->ic;
165 	vc->vtb = hr->vtb;
166 	vcpu->arch.shregs.srr0 = hr->srr0;
167 	vcpu->arch.shregs.srr1 = hr->srr1;
168 	vcpu->arch.shregs.sprg0 = hr->sprg[0];
169 	vcpu->arch.shregs.sprg1 = hr->sprg[1];
170 	vcpu->arch.shregs.sprg2 = hr->sprg[2];
171 	vcpu->arch.shregs.sprg3 = hr->sprg[3];
172 	vcpu->arch.pid = hr->pidr;
173 	vcpu->arch.cfar = hr->cfar;
174 	vcpu->arch.ppr = hr->ppr;
175 	vcpu->arch.dawr1 = hr->dawr1;
176 	vcpu->arch.dawrx1 = hr->dawrx1;
177 }
178 
179 void kvmhv_restore_hv_return_state(struct kvm_vcpu *vcpu,
180 				   struct hv_guest_state *hr)
181 {
182 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
183 
184 	vc->dpdes = hr->dpdes;
185 	vcpu->arch.hfscr = hr->hfscr;
186 	vcpu->arch.purr = hr->purr;
187 	vcpu->arch.spurr = hr->spurr;
188 	vcpu->arch.ic = hr->ic;
189 	vc->vtb = hr->vtb;
190 	vcpu->arch.fault_dar = hr->hdar;
191 	vcpu->arch.fault_dsisr = hr->hdsisr;
192 	vcpu->arch.fault_gpa = hr->asdr;
193 	vcpu->arch.emul_inst = hr->heir;
194 	vcpu->arch.shregs.srr0 = hr->srr0;
195 	vcpu->arch.shregs.srr1 = hr->srr1;
196 	vcpu->arch.shregs.sprg0 = hr->sprg[0];
197 	vcpu->arch.shregs.sprg1 = hr->sprg[1];
198 	vcpu->arch.shregs.sprg2 = hr->sprg[2];
199 	vcpu->arch.shregs.sprg3 = hr->sprg[3];
200 	vcpu->arch.pid = hr->pidr;
201 	vcpu->arch.cfar = hr->cfar;
202 	vcpu->arch.ppr = hr->ppr;
203 }
204 
205 static void kvmhv_nested_mmio_needed(struct kvm_vcpu *vcpu, u64 regs_ptr)
206 {
207 	/* No need to reflect the page fault to L1, we've handled it */
208 	vcpu->arch.trap = 0;
209 
210 	/*
211 	 * Since the L2 gprs have already been written back into L1 memory when
212 	 * we complete the mmio, store the L1 memory location of the L2 gpr
213 	 * being loaded into by the mmio so that the loaded value can be
214 	 * written there in kvmppc_complete_mmio_load()
215 	 */
216 	if (((vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) == KVM_MMIO_REG_GPR)
217 	    && (vcpu->mmio_is_write == 0)) {
218 		vcpu->arch.nested_io_gpr = (gpa_t) regs_ptr +
219 					   offsetof(struct pt_regs,
220 						    gpr[vcpu->arch.io_gpr]);
221 		vcpu->arch.io_gpr = KVM_MMIO_REG_NESTED_GPR;
222 	}
223 }
224 
225 static int kvmhv_read_guest_state_and_regs(struct kvm_vcpu *vcpu,
226 					   struct hv_guest_state *l2_hv,
227 					   struct pt_regs *l2_regs,
228 					   u64 hv_ptr, u64 regs_ptr)
229 {
230 	int size;
231 
232 	if (kvm_vcpu_read_guest(vcpu, hv_ptr, &l2_hv->version,
233 				sizeof(l2_hv->version)))
234 		return -1;
235 
236 	if (kvmppc_need_byteswap(vcpu))
237 		l2_hv->version = swab64(l2_hv->version);
238 
239 	size = hv_guest_state_size(l2_hv->version);
240 	if (size < 0)
241 		return -1;
242 
243 	return kvm_vcpu_read_guest(vcpu, hv_ptr, l2_hv, size) ||
244 		kvm_vcpu_read_guest(vcpu, regs_ptr, l2_regs,
245 				    sizeof(struct pt_regs));
246 }
247 
248 static int kvmhv_write_guest_state_and_regs(struct kvm_vcpu *vcpu,
249 					    struct hv_guest_state *l2_hv,
250 					    struct pt_regs *l2_regs,
251 					    u64 hv_ptr, u64 regs_ptr)
252 {
253 	int size;
254 
255 	size = hv_guest_state_size(l2_hv->version);
256 	if (size < 0)
257 		return -1;
258 
259 	return kvm_vcpu_write_guest(vcpu, hv_ptr, l2_hv, size) ||
260 		kvm_vcpu_write_guest(vcpu, regs_ptr, l2_regs,
261 				     sizeof(struct pt_regs));
262 }
263 
264 long kvmhv_enter_nested_guest(struct kvm_vcpu *vcpu)
265 {
266 	long int err, r;
267 	struct kvm_nested_guest *l2;
268 	struct pt_regs l2_regs, saved_l1_regs;
269 	struct hv_guest_state l2_hv = {0}, saved_l1_hv;
270 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
271 	u64 hv_ptr, regs_ptr;
272 	u64 hdec_exp;
273 	s64 delta_purr, delta_spurr, delta_ic, delta_vtb;
274 	u64 mask;
275 	unsigned long lpcr;
276 
277 	if (vcpu->kvm->arch.l1_ptcr == 0)
278 		return H_NOT_AVAILABLE;
279 
280 	/* copy parameters in */
281 	hv_ptr = kvmppc_get_gpr(vcpu, 4);
282 	regs_ptr = kvmppc_get_gpr(vcpu, 5);
283 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
284 	err = kvmhv_read_guest_state_and_regs(vcpu, &l2_hv, &l2_regs,
285 					      hv_ptr, regs_ptr);
286 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
287 	if (err)
288 		return H_PARAMETER;
289 
290 	if (kvmppc_need_byteswap(vcpu))
291 		byteswap_hv_regs(&l2_hv);
292 	if (l2_hv.version > HV_GUEST_STATE_VERSION)
293 		return H_P2;
294 
295 	if (kvmppc_need_byteswap(vcpu))
296 		byteswap_pt_regs(&l2_regs);
297 	if (l2_hv.vcpu_token >= NR_CPUS)
298 		return H_PARAMETER;
299 
300 	/* translate lpid */
301 	l2 = kvmhv_get_nested(vcpu->kvm, l2_hv.lpid, true);
302 	if (!l2)
303 		return H_PARAMETER;
304 	if (!l2->l1_gr_to_hr) {
305 		mutex_lock(&l2->tlb_lock);
306 		kvmhv_update_ptbl_cache(l2);
307 		mutex_unlock(&l2->tlb_lock);
308 	}
309 
310 	/* save l1 values of things */
311 	vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
312 	saved_l1_regs = vcpu->arch.regs;
313 	kvmhv_save_hv_regs(vcpu, &saved_l1_hv);
314 
315 	/* convert TB values/offsets to host (L0) values */
316 	hdec_exp = l2_hv.hdec_expiry - vc->tb_offset;
317 	vc->tb_offset += l2_hv.tb_offset;
318 
319 	/* set L1 state to L2 state */
320 	vcpu->arch.nested = l2;
321 	vcpu->arch.nested_vcpu_id = l2_hv.vcpu_token;
322 	vcpu->arch.regs = l2_regs;
323 	vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
324 	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD |
325 		LPCR_LPES | LPCR_MER;
326 	lpcr = (vc->lpcr & ~mask) | (l2_hv.lpcr & mask);
327 	sanitise_hv_regs(vcpu, &l2_hv);
328 	restore_hv_regs(vcpu, &l2_hv);
329 
330 	vcpu->arch.ret = RESUME_GUEST;
331 	vcpu->arch.trap = 0;
332 	do {
333 		if (mftb() >= hdec_exp) {
334 			vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
335 			r = RESUME_HOST;
336 			break;
337 		}
338 		r = kvmhv_run_single_vcpu(vcpu, hdec_exp, lpcr);
339 	} while (is_kvmppc_resume_guest(r));
340 
341 	/* save L2 state for return */
342 	l2_regs = vcpu->arch.regs;
343 	l2_regs.msr = vcpu->arch.shregs.msr;
344 	delta_purr = vcpu->arch.purr - l2_hv.purr;
345 	delta_spurr = vcpu->arch.spurr - l2_hv.spurr;
346 	delta_ic = vcpu->arch.ic - l2_hv.ic;
347 	delta_vtb = vc->vtb - l2_hv.vtb;
348 	save_hv_return_state(vcpu, vcpu->arch.trap, &l2_hv);
349 
350 	/* restore L1 state */
351 	vcpu->arch.nested = NULL;
352 	vcpu->arch.regs = saved_l1_regs;
353 	vcpu->arch.shregs.msr = saved_l1_regs.msr & ~MSR_TS_MASK;
354 	/* set L1 MSR TS field according to L2 transaction state */
355 	if (l2_regs.msr & MSR_TS_MASK)
356 		vcpu->arch.shregs.msr |= MSR_TS_S;
357 	vc->tb_offset = saved_l1_hv.tb_offset;
358 	restore_hv_regs(vcpu, &saved_l1_hv);
359 	vcpu->arch.purr += delta_purr;
360 	vcpu->arch.spurr += delta_spurr;
361 	vcpu->arch.ic += delta_ic;
362 	vc->vtb += delta_vtb;
363 
364 	kvmhv_put_nested(l2);
365 
366 	/* copy l2_hv_state and regs back to guest */
367 	if (kvmppc_need_byteswap(vcpu)) {
368 		byteswap_hv_regs(&l2_hv);
369 		byteswap_pt_regs(&l2_regs);
370 	}
371 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
372 	err = kvmhv_write_guest_state_and_regs(vcpu, &l2_hv, &l2_regs,
373 					       hv_ptr, regs_ptr);
374 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
375 	if (err)
376 		return H_AUTHORITY;
377 
378 	if (r == -EINTR)
379 		return H_INTERRUPT;
380 
381 	if (vcpu->mmio_needed) {
382 		kvmhv_nested_mmio_needed(vcpu, regs_ptr);
383 		return H_TOO_HARD;
384 	}
385 
386 	return vcpu->arch.trap;
387 }
388 
389 long kvmhv_nested_init(void)
390 {
391 	long int ptb_order;
392 	unsigned long ptcr;
393 	long rc;
394 
395 	if (!kvmhv_on_pseries())
396 		return 0;
397 	if (!radix_enabled())
398 		return -ENODEV;
399 
400 	/* find log base 2 of KVMPPC_NR_LPIDS, rounding up */
401 	ptb_order = __ilog2(KVMPPC_NR_LPIDS - 1) + 1;
402 	if (ptb_order < 8)
403 		ptb_order = 8;
404 	pseries_partition_tb = kmalloc(sizeof(struct patb_entry) << ptb_order,
405 				       GFP_KERNEL);
406 	if (!pseries_partition_tb) {
407 		pr_err("kvm-hv: failed to allocated nested partition table\n");
408 		return -ENOMEM;
409 	}
410 
411 	ptcr = __pa(pseries_partition_tb) | (ptb_order - 8);
412 	rc = plpar_hcall_norets(H_SET_PARTITION_TABLE, ptcr);
413 	if (rc != H_SUCCESS) {
414 		pr_err("kvm-hv: Parent hypervisor does not support nesting (rc=%ld)\n",
415 		       rc);
416 		kfree(pseries_partition_tb);
417 		pseries_partition_tb = NULL;
418 		return -ENODEV;
419 	}
420 
421 	return 0;
422 }
423 
424 void kvmhv_nested_exit(void)
425 {
426 	/*
427 	 * N.B. the kvmhv_on_pseries() test is there because it enables
428 	 * the compiler to remove the call to plpar_hcall_norets()
429 	 * when CONFIG_PPC_PSERIES=n.
430 	 */
431 	if (kvmhv_on_pseries() && pseries_partition_tb) {
432 		plpar_hcall_norets(H_SET_PARTITION_TABLE, 0);
433 		kfree(pseries_partition_tb);
434 		pseries_partition_tb = NULL;
435 	}
436 }
437 
438 static void kvmhv_flush_lpid(unsigned int lpid)
439 {
440 	long rc;
441 
442 	if (!kvmhv_on_pseries()) {
443 		radix__flush_all_lpid(lpid);
444 		return;
445 	}
446 
447 	rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(2, 0, 1),
448 				lpid, TLBIEL_INVAL_SET_LPID);
449 	if (rc)
450 		pr_err("KVM: TLB LPID invalidation hcall failed, rc=%ld\n", rc);
451 }
452 
453 void kvmhv_set_ptbl_entry(unsigned int lpid, u64 dw0, u64 dw1)
454 {
455 	if (!kvmhv_on_pseries()) {
456 		mmu_partition_table_set_entry(lpid, dw0, dw1, true);
457 		return;
458 	}
459 
460 	pseries_partition_tb[lpid].patb0 = cpu_to_be64(dw0);
461 	pseries_partition_tb[lpid].patb1 = cpu_to_be64(dw1);
462 	/* L0 will do the necessary barriers */
463 	kvmhv_flush_lpid(lpid);
464 }
465 
466 static void kvmhv_set_nested_ptbl(struct kvm_nested_guest *gp)
467 {
468 	unsigned long dw0;
469 
470 	dw0 = PATB_HR | radix__get_tree_size() |
471 		__pa(gp->shadow_pgtable) | RADIX_PGD_INDEX_SIZE;
472 	kvmhv_set_ptbl_entry(gp->shadow_lpid, dw0, gp->process_table);
473 }
474 
475 void kvmhv_vm_nested_init(struct kvm *kvm)
476 {
477 	kvm->arch.max_nested_lpid = -1;
478 }
479 
480 /*
481  * Handle the H_SET_PARTITION_TABLE hcall.
482  * r4 = guest real address of partition table + log_2(size) - 12
483  * (formatted as for the PTCR).
484  */
485 long kvmhv_set_partition_table(struct kvm_vcpu *vcpu)
486 {
487 	struct kvm *kvm = vcpu->kvm;
488 	unsigned long ptcr = kvmppc_get_gpr(vcpu, 4);
489 	int srcu_idx;
490 	long ret = H_SUCCESS;
491 
492 	srcu_idx = srcu_read_lock(&kvm->srcu);
493 	/*
494 	 * Limit the partition table to 4096 entries (because that's what
495 	 * hardware supports), and check the base address.
496 	 */
497 	if ((ptcr & PRTS_MASK) > 12 - 8 ||
498 	    !kvm_is_visible_gfn(vcpu->kvm, (ptcr & PRTB_MASK) >> PAGE_SHIFT))
499 		ret = H_PARAMETER;
500 	srcu_read_unlock(&kvm->srcu, srcu_idx);
501 	if (ret == H_SUCCESS)
502 		kvm->arch.l1_ptcr = ptcr;
503 	return ret;
504 }
505 
506 /*
507  * Handle the H_COPY_TOFROM_GUEST hcall.
508  * r4 = L1 lpid of nested guest
509  * r5 = pid
510  * r6 = eaddr to access
511  * r7 = to buffer (L1 gpa)
512  * r8 = from buffer (L1 gpa)
513  * r9 = n bytes to copy
514  */
515 long kvmhv_copy_tofrom_guest_nested(struct kvm_vcpu *vcpu)
516 {
517 	struct kvm_nested_guest *gp;
518 	int l1_lpid = kvmppc_get_gpr(vcpu, 4);
519 	int pid = kvmppc_get_gpr(vcpu, 5);
520 	gva_t eaddr = kvmppc_get_gpr(vcpu, 6);
521 	gpa_t gp_to = (gpa_t) kvmppc_get_gpr(vcpu, 7);
522 	gpa_t gp_from = (gpa_t) kvmppc_get_gpr(vcpu, 8);
523 	void *buf;
524 	unsigned long n = kvmppc_get_gpr(vcpu, 9);
525 	bool is_load = !!gp_to;
526 	long rc;
527 
528 	if (gp_to && gp_from) /* One must be NULL to determine the direction */
529 		return H_PARAMETER;
530 
531 	if (eaddr & (0xFFFUL << 52))
532 		return H_PARAMETER;
533 
534 	buf = kzalloc(n, GFP_KERNEL);
535 	if (!buf)
536 		return H_NO_MEM;
537 
538 	gp = kvmhv_get_nested(vcpu->kvm, l1_lpid, false);
539 	if (!gp) {
540 		rc = H_PARAMETER;
541 		goto out_free;
542 	}
543 
544 	mutex_lock(&gp->tlb_lock);
545 
546 	if (is_load) {
547 		/* Load from the nested guest into our buffer */
548 		rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid,
549 						     eaddr, buf, NULL, n);
550 		if (rc)
551 			goto not_found;
552 
553 		/* Write what was loaded into our buffer back to the L1 guest */
554 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
555 		rc = kvm_vcpu_write_guest(vcpu, gp_to, buf, n);
556 		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
557 		if (rc)
558 			goto not_found;
559 	} else {
560 		/* Load the data to be stored from the L1 guest into our buf */
561 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
562 		rc = kvm_vcpu_read_guest(vcpu, gp_from, buf, n);
563 		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
564 		if (rc)
565 			goto not_found;
566 
567 		/* Store from our buffer into the nested guest */
568 		rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid,
569 						     eaddr, NULL, buf, n);
570 		if (rc)
571 			goto not_found;
572 	}
573 
574 out_unlock:
575 	mutex_unlock(&gp->tlb_lock);
576 	kvmhv_put_nested(gp);
577 out_free:
578 	kfree(buf);
579 	return rc;
580 not_found:
581 	rc = H_NOT_FOUND;
582 	goto out_unlock;
583 }
584 
585 /*
586  * Reload the partition table entry for a guest.
587  * Caller must hold gp->tlb_lock.
588  */
589 static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp)
590 {
591 	int ret;
592 	struct patb_entry ptbl_entry;
593 	unsigned long ptbl_addr;
594 	struct kvm *kvm = gp->l1_host;
595 
596 	ret = -EFAULT;
597 	ptbl_addr = (kvm->arch.l1_ptcr & PRTB_MASK) + (gp->l1_lpid << 4);
598 	if (gp->l1_lpid < (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 8))) {
599 		int srcu_idx = srcu_read_lock(&kvm->srcu);
600 		ret = kvm_read_guest(kvm, ptbl_addr,
601 				     &ptbl_entry, sizeof(ptbl_entry));
602 		srcu_read_unlock(&kvm->srcu, srcu_idx);
603 	}
604 	if (ret) {
605 		gp->l1_gr_to_hr = 0;
606 		gp->process_table = 0;
607 	} else {
608 		gp->l1_gr_to_hr = be64_to_cpu(ptbl_entry.patb0);
609 		gp->process_table = be64_to_cpu(ptbl_entry.patb1);
610 	}
611 	kvmhv_set_nested_ptbl(gp);
612 }
613 
614 static struct kvm_nested_guest *kvmhv_alloc_nested(struct kvm *kvm, unsigned int lpid)
615 {
616 	struct kvm_nested_guest *gp;
617 	long shadow_lpid;
618 
619 	gp = kzalloc(sizeof(*gp), GFP_KERNEL);
620 	if (!gp)
621 		return NULL;
622 	gp->l1_host = kvm;
623 	gp->l1_lpid = lpid;
624 	mutex_init(&gp->tlb_lock);
625 	gp->shadow_pgtable = pgd_alloc(kvm->mm);
626 	if (!gp->shadow_pgtable)
627 		goto out_free;
628 	shadow_lpid = kvmppc_alloc_lpid();
629 	if (shadow_lpid < 0)
630 		goto out_free2;
631 	gp->shadow_lpid = shadow_lpid;
632 	gp->radix = 1;
633 
634 	memset(gp->prev_cpu, -1, sizeof(gp->prev_cpu));
635 
636 	return gp;
637 
638  out_free2:
639 	pgd_free(kvm->mm, gp->shadow_pgtable);
640  out_free:
641 	kfree(gp);
642 	return NULL;
643 }
644 
645 /*
646  * Free up any resources allocated for a nested guest.
647  */
648 static void kvmhv_release_nested(struct kvm_nested_guest *gp)
649 {
650 	struct kvm *kvm = gp->l1_host;
651 
652 	if (gp->shadow_pgtable) {
653 		/*
654 		 * No vcpu is using this struct and no call to
655 		 * kvmhv_get_nested can find this struct,
656 		 * so we don't need to hold kvm->mmu_lock.
657 		 */
658 		kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable,
659 					  gp->shadow_lpid);
660 		pgd_free(kvm->mm, gp->shadow_pgtable);
661 	}
662 	kvmhv_set_ptbl_entry(gp->shadow_lpid, 0, 0);
663 	kvmppc_free_lpid(gp->shadow_lpid);
664 	kfree(gp);
665 }
666 
667 static void kvmhv_remove_nested(struct kvm_nested_guest *gp)
668 {
669 	struct kvm *kvm = gp->l1_host;
670 	int lpid = gp->l1_lpid;
671 	long ref;
672 
673 	spin_lock(&kvm->mmu_lock);
674 	if (gp == kvm->arch.nested_guests[lpid]) {
675 		kvm->arch.nested_guests[lpid] = NULL;
676 		if (lpid == kvm->arch.max_nested_lpid) {
677 			while (--lpid >= 0 && !kvm->arch.nested_guests[lpid])
678 				;
679 			kvm->arch.max_nested_lpid = lpid;
680 		}
681 		--gp->refcnt;
682 	}
683 	ref = gp->refcnt;
684 	spin_unlock(&kvm->mmu_lock);
685 	if (ref == 0)
686 		kvmhv_release_nested(gp);
687 }
688 
689 /*
690  * Free up all nested resources allocated for this guest.
691  * This is called with no vcpus of the guest running, when
692  * switching the guest to HPT mode or when destroying the
693  * guest.
694  */
695 void kvmhv_release_all_nested(struct kvm *kvm)
696 {
697 	int i;
698 	struct kvm_nested_guest *gp;
699 	struct kvm_nested_guest *freelist = NULL;
700 	struct kvm_memory_slot *memslot;
701 	int srcu_idx;
702 
703 	spin_lock(&kvm->mmu_lock);
704 	for (i = 0; i <= kvm->arch.max_nested_lpid; i++) {
705 		gp = kvm->arch.nested_guests[i];
706 		if (!gp)
707 			continue;
708 		kvm->arch.nested_guests[i] = NULL;
709 		if (--gp->refcnt == 0) {
710 			gp->next = freelist;
711 			freelist = gp;
712 		}
713 	}
714 	kvm->arch.max_nested_lpid = -1;
715 	spin_unlock(&kvm->mmu_lock);
716 	while ((gp = freelist) != NULL) {
717 		freelist = gp->next;
718 		kvmhv_release_nested(gp);
719 	}
720 
721 	srcu_idx = srcu_read_lock(&kvm->srcu);
722 	kvm_for_each_memslot(memslot, kvm_memslots(kvm))
723 		kvmhv_free_memslot_nest_rmap(memslot);
724 	srcu_read_unlock(&kvm->srcu, srcu_idx);
725 }
726 
727 /* caller must hold gp->tlb_lock */
728 static void kvmhv_flush_nested(struct kvm_nested_guest *gp)
729 {
730 	struct kvm *kvm = gp->l1_host;
731 
732 	spin_lock(&kvm->mmu_lock);
733 	kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable, gp->shadow_lpid);
734 	spin_unlock(&kvm->mmu_lock);
735 	kvmhv_flush_lpid(gp->shadow_lpid);
736 	kvmhv_update_ptbl_cache(gp);
737 	if (gp->l1_gr_to_hr == 0)
738 		kvmhv_remove_nested(gp);
739 }
740 
741 struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid,
742 					  bool create)
743 {
744 	struct kvm_nested_guest *gp, *newgp;
745 
746 	if (l1_lpid >= KVM_MAX_NESTED_GUESTS ||
747 	    l1_lpid >= (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 12 - 4)))
748 		return NULL;
749 
750 	spin_lock(&kvm->mmu_lock);
751 	gp = kvm->arch.nested_guests[l1_lpid];
752 	if (gp)
753 		++gp->refcnt;
754 	spin_unlock(&kvm->mmu_lock);
755 
756 	if (gp || !create)
757 		return gp;
758 
759 	newgp = kvmhv_alloc_nested(kvm, l1_lpid);
760 	if (!newgp)
761 		return NULL;
762 	spin_lock(&kvm->mmu_lock);
763 	if (kvm->arch.nested_guests[l1_lpid]) {
764 		/* someone else beat us to it */
765 		gp = kvm->arch.nested_guests[l1_lpid];
766 	} else {
767 		kvm->arch.nested_guests[l1_lpid] = newgp;
768 		++newgp->refcnt;
769 		gp = newgp;
770 		newgp = NULL;
771 		if (l1_lpid > kvm->arch.max_nested_lpid)
772 			kvm->arch.max_nested_lpid = l1_lpid;
773 	}
774 	++gp->refcnt;
775 	spin_unlock(&kvm->mmu_lock);
776 
777 	if (newgp)
778 		kvmhv_release_nested(newgp);
779 
780 	return gp;
781 }
782 
783 void kvmhv_put_nested(struct kvm_nested_guest *gp)
784 {
785 	struct kvm *kvm = gp->l1_host;
786 	long ref;
787 
788 	spin_lock(&kvm->mmu_lock);
789 	ref = --gp->refcnt;
790 	spin_unlock(&kvm->mmu_lock);
791 	if (ref == 0)
792 		kvmhv_release_nested(gp);
793 }
794 
795 static struct kvm_nested_guest *kvmhv_find_nested(struct kvm *kvm, int lpid)
796 {
797 	if (lpid > kvm->arch.max_nested_lpid)
798 		return NULL;
799 	return kvm->arch.nested_guests[lpid];
800 }
801 
802 pte_t *find_kvm_nested_guest_pte(struct kvm *kvm, unsigned long lpid,
803 				 unsigned long ea, unsigned *hshift)
804 {
805 	struct kvm_nested_guest *gp;
806 	pte_t *pte;
807 
808 	gp = kvmhv_find_nested(kvm, lpid);
809 	if (!gp)
810 		return NULL;
811 
812 	VM_WARN(!spin_is_locked(&kvm->mmu_lock),
813 		"%s called with kvm mmu_lock not held \n", __func__);
814 	pte = __find_linux_pte(gp->shadow_pgtable, ea, NULL, hshift);
815 
816 	return pte;
817 }
818 
819 static inline bool kvmhv_n_rmap_is_equal(u64 rmap_1, u64 rmap_2)
820 {
821 	return !((rmap_1 ^ rmap_2) & (RMAP_NESTED_LPID_MASK |
822 				       RMAP_NESTED_GPA_MASK));
823 }
824 
825 void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp,
826 			    struct rmap_nested **n_rmap)
827 {
828 	struct llist_node *entry = ((struct llist_head *) rmapp)->first;
829 	struct rmap_nested *cursor;
830 	u64 rmap, new_rmap = (*n_rmap)->rmap;
831 
832 	/* Are there any existing entries? */
833 	if (!(*rmapp)) {
834 		/* No -> use the rmap as a single entry */
835 		*rmapp = new_rmap | RMAP_NESTED_IS_SINGLE_ENTRY;
836 		return;
837 	}
838 
839 	/* Do any entries match what we're trying to insert? */
840 	for_each_nest_rmap_safe(cursor, entry, &rmap) {
841 		if (kvmhv_n_rmap_is_equal(rmap, new_rmap))
842 			return;
843 	}
844 
845 	/* Do we need to create a list or just add the new entry? */
846 	rmap = *rmapp;
847 	if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */
848 		*rmapp = 0UL;
849 	llist_add(&((*n_rmap)->list), (struct llist_head *) rmapp);
850 	if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */
851 		(*n_rmap)->list.next = (struct llist_node *) rmap;
852 
853 	/* Set NULL so not freed by caller */
854 	*n_rmap = NULL;
855 }
856 
857 static void kvmhv_update_nest_rmap_rc(struct kvm *kvm, u64 n_rmap,
858 				      unsigned long clr, unsigned long set,
859 				      unsigned long hpa, unsigned long mask)
860 {
861 	unsigned long gpa;
862 	unsigned int shift, lpid;
863 	pte_t *ptep;
864 
865 	gpa = n_rmap & RMAP_NESTED_GPA_MASK;
866 	lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT;
867 
868 	/* Find the pte */
869 	ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift);
870 	/*
871 	 * If the pte is present and the pfn is still the same, update the pte.
872 	 * If the pfn has changed then this is a stale rmap entry, the nested
873 	 * gpa actually points somewhere else now, and there is nothing to do.
874 	 * XXX A future optimisation would be to remove the rmap entry here.
875 	 */
876 	if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa)) {
877 		__radix_pte_update(ptep, clr, set);
878 		kvmppc_radix_tlbie_page(kvm, gpa, shift, lpid);
879 	}
880 }
881 
882 /*
883  * For a given list of rmap entries, update the rc bits in all ptes in shadow
884  * page tables for nested guests which are referenced by the rmap list.
885  */
886 void kvmhv_update_nest_rmap_rc_list(struct kvm *kvm, unsigned long *rmapp,
887 				    unsigned long clr, unsigned long set,
888 				    unsigned long hpa, unsigned long nbytes)
889 {
890 	struct llist_node *entry = ((struct llist_head *) rmapp)->first;
891 	struct rmap_nested *cursor;
892 	unsigned long rmap, mask;
893 
894 	if ((clr | set) & ~(_PAGE_DIRTY | _PAGE_ACCESSED))
895 		return;
896 
897 	mask = PTE_RPN_MASK & ~(nbytes - 1);
898 	hpa &= mask;
899 
900 	for_each_nest_rmap_safe(cursor, entry, &rmap)
901 		kvmhv_update_nest_rmap_rc(kvm, rmap, clr, set, hpa, mask);
902 }
903 
904 static void kvmhv_remove_nest_rmap(struct kvm *kvm, u64 n_rmap,
905 				   unsigned long hpa, unsigned long mask)
906 {
907 	struct kvm_nested_guest *gp;
908 	unsigned long gpa;
909 	unsigned int shift, lpid;
910 	pte_t *ptep;
911 
912 	gpa = n_rmap & RMAP_NESTED_GPA_MASK;
913 	lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT;
914 	gp = kvmhv_find_nested(kvm, lpid);
915 	if (!gp)
916 		return;
917 
918 	/* Find and invalidate the pte */
919 	ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift);
920 	/* Don't spuriously invalidate ptes if the pfn has changed */
921 	if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa))
922 		kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid);
923 }
924 
925 static void kvmhv_remove_nest_rmap_list(struct kvm *kvm, unsigned long *rmapp,
926 					unsigned long hpa, unsigned long mask)
927 {
928 	struct llist_node *entry = llist_del_all((struct llist_head *) rmapp);
929 	struct rmap_nested *cursor;
930 	unsigned long rmap;
931 
932 	for_each_nest_rmap_safe(cursor, entry, &rmap) {
933 		kvmhv_remove_nest_rmap(kvm, rmap, hpa, mask);
934 		kfree(cursor);
935 	}
936 }
937 
938 /* called with kvm->mmu_lock held */
939 void kvmhv_remove_nest_rmap_range(struct kvm *kvm,
940 				  const struct kvm_memory_slot *memslot,
941 				  unsigned long gpa, unsigned long hpa,
942 				  unsigned long nbytes)
943 {
944 	unsigned long gfn, end_gfn;
945 	unsigned long addr_mask;
946 
947 	if (!memslot)
948 		return;
949 	gfn = (gpa >> PAGE_SHIFT) - memslot->base_gfn;
950 	end_gfn = gfn + (nbytes >> PAGE_SHIFT);
951 
952 	addr_mask = PTE_RPN_MASK & ~(nbytes - 1);
953 	hpa &= addr_mask;
954 
955 	for (; gfn < end_gfn; gfn++) {
956 		unsigned long *rmap = &memslot->arch.rmap[gfn];
957 		kvmhv_remove_nest_rmap_list(kvm, rmap, hpa, addr_mask);
958 	}
959 }
960 
961 static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free)
962 {
963 	unsigned long page;
964 
965 	for (page = 0; page < free->npages; page++) {
966 		unsigned long rmap, *rmapp = &free->arch.rmap[page];
967 		struct rmap_nested *cursor;
968 		struct llist_node *entry;
969 
970 		entry = llist_del_all((struct llist_head *) rmapp);
971 		for_each_nest_rmap_safe(cursor, entry, &rmap)
972 			kfree(cursor);
973 	}
974 }
975 
976 static bool kvmhv_invalidate_shadow_pte(struct kvm_vcpu *vcpu,
977 					struct kvm_nested_guest *gp,
978 					long gpa, int *shift_ret)
979 {
980 	struct kvm *kvm = vcpu->kvm;
981 	bool ret = false;
982 	pte_t *ptep;
983 	int shift;
984 
985 	spin_lock(&kvm->mmu_lock);
986 	ptep = find_kvm_nested_guest_pte(kvm, gp->l1_lpid, gpa, &shift);
987 	if (!shift)
988 		shift = PAGE_SHIFT;
989 	if (ptep && pte_present(*ptep)) {
990 		kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid);
991 		ret = true;
992 	}
993 	spin_unlock(&kvm->mmu_lock);
994 
995 	if (shift_ret)
996 		*shift_ret = shift;
997 	return ret;
998 }
999 
1000 static inline int get_ric(unsigned int instr)
1001 {
1002 	return (instr >> 18) & 0x3;
1003 }
1004 
1005 static inline int get_prs(unsigned int instr)
1006 {
1007 	return (instr >> 17) & 0x1;
1008 }
1009 
1010 static inline int get_r(unsigned int instr)
1011 {
1012 	return (instr >> 16) & 0x1;
1013 }
1014 
1015 static inline int get_lpid(unsigned long r_val)
1016 {
1017 	return r_val & 0xffffffff;
1018 }
1019 
1020 static inline int get_is(unsigned long r_val)
1021 {
1022 	return (r_val >> 10) & 0x3;
1023 }
1024 
1025 static inline int get_ap(unsigned long r_val)
1026 {
1027 	return (r_val >> 5) & 0x7;
1028 }
1029 
1030 static inline long get_epn(unsigned long r_val)
1031 {
1032 	return r_val >> 12;
1033 }
1034 
1035 static int kvmhv_emulate_tlbie_tlb_addr(struct kvm_vcpu *vcpu, int lpid,
1036 					int ap, long epn)
1037 {
1038 	struct kvm *kvm = vcpu->kvm;
1039 	struct kvm_nested_guest *gp;
1040 	long npages;
1041 	int shift, shadow_shift;
1042 	unsigned long addr;
1043 
1044 	shift = ap_to_shift(ap);
1045 	addr = epn << 12;
1046 	if (shift < 0)
1047 		/* Invalid ap encoding */
1048 		return -EINVAL;
1049 
1050 	addr &= ~((1UL << shift) - 1);
1051 	npages = 1UL << (shift - PAGE_SHIFT);
1052 
1053 	gp = kvmhv_get_nested(kvm, lpid, false);
1054 	if (!gp) /* No such guest -> nothing to do */
1055 		return 0;
1056 	mutex_lock(&gp->tlb_lock);
1057 
1058 	/* There may be more than one host page backing this single guest pte */
1059 	do {
1060 		kvmhv_invalidate_shadow_pte(vcpu, gp, addr, &shadow_shift);
1061 
1062 		npages -= 1UL << (shadow_shift - PAGE_SHIFT);
1063 		addr += 1UL << shadow_shift;
1064 	} while (npages > 0);
1065 
1066 	mutex_unlock(&gp->tlb_lock);
1067 	kvmhv_put_nested(gp);
1068 	return 0;
1069 }
1070 
1071 static void kvmhv_emulate_tlbie_lpid(struct kvm_vcpu *vcpu,
1072 				     struct kvm_nested_guest *gp, int ric)
1073 {
1074 	struct kvm *kvm = vcpu->kvm;
1075 
1076 	mutex_lock(&gp->tlb_lock);
1077 	switch (ric) {
1078 	case 0:
1079 		/* Invalidate TLB */
1080 		spin_lock(&kvm->mmu_lock);
1081 		kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable,
1082 					  gp->shadow_lpid);
1083 		kvmhv_flush_lpid(gp->shadow_lpid);
1084 		spin_unlock(&kvm->mmu_lock);
1085 		break;
1086 	case 1:
1087 		/*
1088 		 * Invalidate PWC
1089 		 * We don't cache this -> nothing to do
1090 		 */
1091 		break;
1092 	case 2:
1093 		/* Invalidate TLB, PWC and caching of partition table entries */
1094 		kvmhv_flush_nested(gp);
1095 		break;
1096 	default:
1097 		break;
1098 	}
1099 	mutex_unlock(&gp->tlb_lock);
1100 }
1101 
1102 static void kvmhv_emulate_tlbie_all_lpid(struct kvm_vcpu *vcpu, int ric)
1103 {
1104 	struct kvm *kvm = vcpu->kvm;
1105 	struct kvm_nested_guest *gp;
1106 	int i;
1107 
1108 	spin_lock(&kvm->mmu_lock);
1109 	for (i = 0; i <= kvm->arch.max_nested_lpid; i++) {
1110 		gp = kvm->arch.nested_guests[i];
1111 		if (gp) {
1112 			spin_unlock(&kvm->mmu_lock);
1113 			kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
1114 			spin_lock(&kvm->mmu_lock);
1115 		}
1116 	}
1117 	spin_unlock(&kvm->mmu_lock);
1118 }
1119 
1120 static int kvmhv_emulate_priv_tlbie(struct kvm_vcpu *vcpu, unsigned int instr,
1121 				    unsigned long rsval, unsigned long rbval)
1122 {
1123 	struct kvm *kvm = vcpu->kvm;
1124 	struct kvm_nested_guest *gp;
1125 	int r, ric, prs, is, ap;
1126 	int lpid;
1127 	long epn;
1128 	int ret = 0;
1129 
1130 	ric = get_ric(instr);
1131 	prs = get_prs(instr);
1132 	r = get_r(instr);
1133 	lpid = get_lpid(rsval);
1134 	is = get_is(rbval);
1135 
1136 	/*
1137 	 * These cases are invalid and are not handled:
1138 	 * r   != 1 -> Only radix supported
1139 	 * prs == 1 -> Not HV privileged
1140 	 * ric == 3 -> No cluster bombs for radix
1141 	 * is  == 1 -> Partition scoped translations not associated with pid
1142 	 * (!is) && (ric == 1 || ric == 2) -> Not supported by ISA
1143 	 */
1144 	if ((!r) || (prs) || (ric == 3) || (is == 1) ||
1145 	    ((!is) && (ric == 1 || ric == 2)))
1146 		return -EINVAL;
1147 
1148 	switch (is) {
1149 	case 0:
1150 		/*
1151 		 * We know ric == 0
1152 		 * Invalidate TLB for a given target address
1153 		 */
1154 		epn = get_epn(rbval);
1155 		ap = get_ap(rbval);
1156 		ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap, epn);
1157 		break;
1158 	case 2:
1159 		/* Invalidate matching LPID */
1160 		gp = kvmhv_get_nested(kvm, lpid, false);
1161 		if (gp) {
1162 			kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
1163 			kvmhv_put_nested(gp);
1164 		}
1165 		break;
1166 	case 3:
1167 		/* Invalidate ALL LPIDs */
1168 		kvmhv_emulate_tlbie_all_lpid(vcpu, ric);
1169 		break;
1170 	default:
1171 		ret = -EINVAL;
1172 		break;
1173 	}
1174 
1175 	return ret;
1176 }
1177 
1178 /*
1179  * This handles the H_TLB_INVALIDATE hcall.
1180  * Parameters are (r4) tlbie instruction code, (r5) rS contents,
1181  * (r6) rB contents.
1182  */
1183 long kvmhv_do_nested_tlbie(struct kvm_vcpu *vcpu)
1184 {
1185 	int ret;
1186 
1187 	ret = kvmhv_emulate_priv_tlbie(vcpu, kvmppc_get_gpr(vcpu, 4),
1188 			kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6));
1189 	if (ret)
1190 		return H_PARAMETER;
1191 	return H_SUCCESS;
1192 }
1193 
1194 /* Used to convert a nested guest real address to a L1 guest real address */
1195 static int kvmhv_translate_addr_nested(struct kvm_vcpu *vcpu,
1196 				       struct kvm_nested_guest *gp,
1197 				       unsigned long n_gpa, unsigned long dsisr,
1198 				       struct kvmppc_pte *gpte_p)
1199 {
1200 	u64 fault_addr, flags = dsisr & DSISR_ISSTORE;
1201 	int ret;
1202 
1203 	ret = kvmppc_mmu_walk_radix_tree(vcpu, n_gpa, gpte_p, gp->l1_gr_to_hr,
1204 					 &fault_addr);
1205 
1206 	if (ret) {
1207 		/* We didn't find a pte */
1208 		if (ret == -EINVAL) {
1209 			/* Unsupported mmu config */
1210 			flags |= DSISR_UNSUPP_MMU;
1211 		} else if (ret == -ENOENT) {
1212 			/* No translation found */
1213 			flags |= DSISR_NOHPTE;
1214 		} else if (ret == -EFAULT) {
1215 			/* Couldn't access L1 real address */
1216 			flags |= DSISR_PRTABLE_FAULT;
1217 			vcpu->arch.fault_gpa = fault_addr;
1218 		} else {
1219 			/* Unknown error */
1220 			return ret;
1221 		}
1222 		goto forward_to_l1;
1223 	} else {
1224 		/* We found a pte -> check permissions */
1225 		if (dsisr & DSISR_ISSTORE) {
1226 			/* Can we write? */
1227 			if (!gpte_p->may_write) {
1228 				flags |= DSISR_PROTFAULT;
1229 				goto forward_to_l1;
1230 			}
1231 		} else if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) {
1232 			/* Can we execute? */
1233 			if (!gpte_p->may_execute) {
1234 				flags |= SRR1_ISI_N_G_OR_CIP;
1235 				goto forward_to_l1;
1236 			}
1237 		} else {
1238 			/* Can we read? */
1239 			if (!gpte_p->may_read && !gpte_p->may_write) {
1240 				flags |= DSISR_PROTFAULT;
1241 				goto forward_to_l1;
1242 			}
1243 		}
1244 	}
1245 
1246 	return 0;
1247 
1248 forward_to_l1:
1249 	vcpu->arch.fault_dsisr = flags;
1250 	if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) {
1251 		vcpu->arch.shregs.msr &= SRR1_MSR_BITS;
1252 		vcpu->arch.shregs.msr |= flags;
1253 	}
1254 	return RESUME_HOST;
1255 }
1256 
1257 static long kvmhv_handle_nested_set_rc(struct kvm_vcpu *vcpu,
1258 				       struct kvm_nested_guest *gp,
1259 				       unsigned long n_gpa,
1260 				       struct kvmppc_pte gpte,
1261 				       unsigned long dsisr)
1262 {
1263 	struct kvm *kvm = vcpu->kvm;
1264 	bool writing = !!(dsisr & DSISR_ISSTORE);
1265 	u64 pgflags;
1266 	long ret;
1267 
1268 	/* Are the rc bits set in the L1 partition scoped pte? */
1269 	pgflags = _PAGE_ACCESSED;
1270 	if (writing)
1271 		pgflags |= _PAGE_DIRTY;
1272 	if (pgflags & ~gpte.rc)
1273 		return RESUME_HOST;
1274 
1275 	spin_lock(&kvm->mmu_lock);
1276 	/* Set the rc bit in the pte of our (L0) pgtable for the L1 guest */
1277 	ret = kvmppc_hv_handle_set_rc(kvm, false, writing,
1278 				      gpte.raddr, kvm->arch.lpid);
1279 	if (!ret) {
1280 		ret = -EINVAL;
1281 		goto out_unlock;
1282 	}
1283 
1284 	/* Set the rc bit in the pte of the shadow_pgtable for the nest guest */
1285 	ret = kvmppc_hv_handle_set_rc(kvm, true, writing,
1286 				      n_gpa, gp->l1_lpid);
1287 	if (!ret)
1288 		ret = -EINVAL;
1289 	else
1290 		ret = 0;
1291 
1292 out_unlock:
1293 	spin_unlock(&kvm->mmu_lock);
1294 	return ret;
1295 }
1296 
1297 static inline int kvmppc_radix_level_to_shift(int level)
1298 {
1299 	switch (level) {
1300 	case 2:
1301 		return PUD_SHIFT;
1302 	case 1:
1303 		return PMD_SHIFT;
1304 	default:
1305 		return PAGE_SHIFT;
1306 	}
1307 }
1308 
1309 static inline int kvmppc_radix_shift_to_level(int shift)
1310 {
1311 	if (shift == PUD_SHIFT)
1312 		return 2;
1313 	if (shift == PMD_SHIFT)
1314 		return 1;
1315 	if (shift == PAGE_SHIFT)
1316 		return 0;
1317 	WARN_ON_ONCE(1);
1318 	return 0;
1319 }
1320 
1321 /* called with gp->tlb_lock held */
1322 static long int __kvmhv_nested_page_fault(struct kvm_vcpu *vcpu,
1323 					  struct kvm_nested_guest *gp)
1324 {
1325 	struct kvm *kvm = vcpu->kvm;
1326 	struct kvm_memory_slot *memslot;
1327 	struct rmap_nested *n_rmap;
1328 	struct kvmppc_pte gpte;
1329 	pte_t pte, *pte_p;
1330 	unsigned long mmu_seq;
1331 	unsigned long dsisr = vcpu->arch.fault_dsisr;
1332 	unsigned long ea = vcpu->arch.fault_dar;
1333 	unsigned long *rmapp;
1334 	unsigned long n_gpa, gpa, gfn, perm = 0UL;
1335 	unsigned int shift, l1_shift, level;
1336 	bool writing = !!(dsisr & DSISR_ISSTORE);
1337 	bool kvm_ro = false;
1338 	long int ret;
1339 
1340 	if (!gp->l1_gr_to_hr) {
1341 		kvmhv_update_ptbl_cache(gp);
1342 		if (!gp->l1_gr_to_hr)
1343 			return RESUME_HOST;
1344 	}
1345 
1346 	/* Convert the nested guest real address into a L1 guest real address */
1347 
1348 	n_gpa = vcpu->arch.fault_gpa & ~0xF000000000000FFFULL;
1349 	if (!(dsisr & DSISR_PRTABLE_FAULT))
1350 		n_gpa |= ea & 0xFFF;
1351 	ret = kvmhv_translate_addr_nested(vcpu, gp, n_gpa, dsisr, &gpte);
1352 
1353 	/*
1354 	 * If the hardware found a translation but we don't now have a usable
1355 	 * translation in the l1 partition-scoped tree, remove the shadow pte
1356 	 * and let the guest retry.
1357 	 */
1358 	if (ret == RESUME_HOST &&
1359 	    (dsisr & (DSISR_PROTFAULT | DSISR_BADACCESS | DSISR_NOEXEC_OR_G |
1360 		      DSISR_BAD_COPYPASTE)))
1361 		goto inval;
1362 	if (ret)
1363 		return ret;
1364 
1365 	/* Failed to set the reference/change bits */
1366 	if (dsisr & DSISR_SET_RC) {
1367 		ret = kvmhv_handle_nested_set_rc(vcpu, gp, n_gpa, gpte, dsisr);
1368 		if (ret == RESUME_HOST)
1369 			return ret;
1370 		if (ret)
1371 			goto inval;
1372 		dsisr &= ~DSISR_SET_RC;
1373 		if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE |
1374 			       DSISR_PROTFAULT)))
1375 			return RESUME_GUEST;
1376 	}
1377 
1378 	/*
1379 	 * We took an HISI or HDSI while we were running a nested guest which
1380 	 * means we have no partition scoped translation for that. This means
1381 	 * we need to insert a pte for the mapping into our shadow_pgtable.
1382 	 */
1383 
1384 	l1_shift = gpte.page_shift;
1385 	if (l1_shift < PAGE_SHIFT) {
1386 		/* We don't support l1 using a page size smaller than our own */
1387 		pr_err("KVM: L1 guest page shift (%d) less than our own (%d)\n",
1388 			l1_shift, PAGE_SHIFT);
1389 		return -EINVAL;
1390 	}
1391 	gpa = gpte.raddr;
1392 	gfn = gpa >> PAGE_SHIFT;
1393 
1394 	/* 1. Get the corresponding host memslot */
1395 
1396 	memslot = gfn_to_memslot(kvm, gfn);
1397 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
1398 		if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS)) {
1399 			/* unusual error -> reflect to the guest as a DSI */
1400 			kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
1401 			return RESUME_GUEST;
1402 		}
1403 
1404 		/* passthrough of emulated MMIO case */
1405 		return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, writing);
1406 	}
1407 	if (memslot->flags & KVM_MEM_READONLY) {
1408 		if (writing) {
1409 			/* Give the guest a DSI */
1410 			kvmppc_core_queue_data_storage(vcpu, ea,
1411 					DSISR_ISSTORE | DSISR_PROTFAULT);
1412 			return RESUME_GUEST;
1413 		}
1414 		kvm_ro = true;
1415 	}
1416 
1417 	/* 2. Find the host pte for this L1 guest real address */
1418 
1419 	/* Used to check for invalidations in progress */
1420 	mmu_seq = kvm->mmu_notifier_seq;
1421 	smp_rmb();
1422 
1423 	/* See if can find translation in our partition scoped tables for L1 */
1424 	pte = __pte(0);
1425 	spin_lock(&kvm->mmu_lock);
1426 	pte_p = find_kvm_secondary_pte(kvm, gpa, &shift);
1427 	if (!shift)
1428 		shift = PAGE_SHIFT;
1429 	if (pte_p)
1430 		pte = *pte_p;
1431 	spin_unlock(&kvm->mmu_lock);
1432 
1433 	if (!pte_present(pte) || (writing && !(pte_val(pte) & _PAGE_WRITE))) {
1434 		/* No suitable pte found -> try to insert a mapping */
1435 		ret = kvmppc_book3s_instantiate_page(vcpu, gpa, memslot,
1436 					writing, kvm_ro, &pte, &level);
1437 		if (ret == -EAGAIN)
1438 			return RESUME_GUEST;
1439 		else if (ret)
1440 			return ret;
1441 		shift = kvmppc_radix_level_to_shift(level);
1442 	}
1443 	/* Align gfn to the start of the page */
1444 	gfn = (gpa & ~((1UL << shift) - 1)) >> PAGE_SHIFT;
1445 
1446 	/* 3. Compute the pte we need to insert for nest_gpa -> host r_addr */
1447 
1448 	/* The permissions is the combination of the host and l1 guest ptes */
1449 	perm |= gpte.may_read ? 0UL : _PAGE_READ;
1450 	perm |= gpte.may_write ? 0UL : _PAGE_WRITE;
1451 	perm |= gpte.may_execute ? 0UL : _PAGE_EXEC;
1452 	/* Only set accessed/dirty (rc) bits if set in host and l1 guest ptes */
1453 	perm |= (gpte.rc & _PAGE_ACCESSED) ? 0UL : _PAGE_ACCESSED;
1454 	perm |= ((gpte.rc & _PAGE_DIRTY) && writing) ? 0UL : _PAGE_DIRTY;
1455 	pte = __pte(pte_val(pte) & ~perm);
1456 
1457 	/* What size pte can we insert? */
1458 	if (shift > l1_shift) {
1459 		u64 mask;
1460 		unsigned int actual_shift = PAGE_SHIFT;
1461 		if (PMD_SHIFT < l1_shift)
1462 			actual_shift = PMD_SHIFT;
1463 		mask = (1UL << shift) - (1UL << actual_shift);
1464 		pte = __pte(pte_val(pte) | (gpa & mask));
1465 		shift = actual_shift;
1466 	}
1467 	level = kvmppc_radix_shift_to_level(shift);
1468 	n_gpa &= ~((1UL << shift) - 1);
1469 
1470 	/* 4. Insert the pte into our shadow_pgtable */
1471 
1472 	n_rmap = kzalloc(sizeof(*n_rmap), GFP_KERNEL);
1473 	if (!n_rmap)
1474 		return RESUME_GUEST; /* Let the guest try again */
1475 	n_rmap->rmap = (n_gpa & RMAP_NESTED_GPA_MASK) |
1476 		(((unsigned long) gp->l1_lpid) << RMAP_NESTED_LPID_SHIFT);
1477 	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1478 	ret = kvmppc_create_pte(kvm, gp->shadow_pgtable, pte, n_gpa, level,
1479 				mmu_seq, gp->shadow_lpid, rmapp, &n_rmap);
1480 	kfree(n_rmap);
1481 	if (ret == -EAGAIN)
1482 		ret = RESUME_GUEST;	/* Let the guest try again */
1483 
1484 	return ret;
1485 
1486  inval:
1487 	kvmhv_invalidate_shadow_pte(vcpu, gp, n_gpa, NULL);
1488 	return RESUME_GUEST;
1489 }
1490 
1491 long int kvmhv_nested_page_fault(struct kvm_vcpu *vcpu)
1492 {
1493 	struct kvm_nested_guest *gp = vcpu->arch.nested;
1494 	long int ret;
1495 
1496 	mutex_lock(&gp->tlb_lock);
1497 	ret = __kvmhv_nested_page_fault(vcpu, gp);
1498 	mutex_unlock(&gp->tlb_lock);
1499 	return ret;
1500 }
1501 
1502 int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid)
1503 {
1504 	int ret = -1;
1505 
1506 	spin_lock(&kvm->mmu_lock);
1507 	while (++lpid <= kvm->arch.max_nested_lpid) {
1508 		if (kvm->arch.nested_guests[lpid]) {
1509 			ret = lpid;
1510 			break;
1511 		}
1512 	}
1513 	spin_unlock(&kvm->mmu_lock);
1514 	return ret;
1515 }
1516