1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright IBM Corporation, 2018 4 * Authors Suraj Jitindar Singh <sjitindarsingh@gmail.com> 5 * Paul Mackerras <paulus@ozlabs.org> 6 * 7 * Description: KVM functions specific to running nested KVM-HV guests 8 * on Book3S processors (specifically POWER9 and later). 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/kvm_host.h> 13 #include <linux/llist.h> 14 #include <linux/pgtable.h> 15 16 #include <asm/kvm_ppc.h> 17 #include <asm/kvm_book3s.h> 18 #include <asm/mmu.h> 19 #include <asm/pgalloc.h> 20 #include <asm/pte-walk.h> 21 #include <asm/reg.h> 22 #include <asm/plpar_wrappers.h> 23 #include <asm/firmware.h> 24 25 static struct patb_entry *pseries_partition_tb; 26 27 static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp); 28 static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free); 29 30 void kvmhv_save_hv_regs(struct kvm_vcpu *vcpu, struct hv_guest_state *hr) 31 { 32 struct kvmppc_vcore *vc = vcpu->arch.vcore; 33 34 hr->pcr = vc->pcr | PCR_MASK; 35 hr->dpdes = vc->dpdes; 36 hr->hfscr = vcpu->arch.hfscr; 37 hr->tb_offset = vc->tb_offset; 38 hr->dawr0 = vcpu->arch.dawr0; 39 hr->dawrx0 = vcpu->arch.dawrx0; 40 hr->ciabr = vcpu->arch.ciabr; 41 hr->purr = vcpu->arch.purr; 42 hr->spurr = vcpu->arch.spurr; 43 hr->ic = vcpu->arch.ic; 44 hr->vtb = vc->vtb; 45 hr->srr0 = vcpu->arch.shregs.srr0; 46 hr->srr1 = vcpu->arch.shregs.srr1; 47 hr->sprg[0] = vcpu->arch.shregs.sprg0; 48 hr->sprg[1] = vcpu->arch.shregs.sprg1; 49 hr->sprg[2] = vcpu->arch.shregs.sprg2; 50 hr->sprg[3] = vcpu->arch.shregs.sprg3; 51 hr->pidr = vcpu->arch.pid; 52 hr->cfar = vcpu->arch.cfar; 53 hr->ppr = vcpu->arch.ppr; 54 hr->dawr1 = vcpu->arch.dawr1; 55 hr->dawrx1 = vcpu->arch.dawrx1; 56 } 57 58 /* Use noinline_for_stack due to https://bugs.llvm.org/show_bug.cgi?id=49610 */ 59 static noinline_for_stack void byteswap_pt_regs(struct pt_regs *regs) 60 { 61 unsigned long *addr = (unsigned long *) regs; 62 63 for (; addr < ((unsigned long *) (regs + 1)); addr++) 64 *addr = swab64(*addr); 65 } 66 67 static void byteswap_hv_regs(struct hv_guest_state *hr) 68 { 69 hr->version = swab64(hr->version); 70 hr->lpid = swab32(hr->lpid); 71 hr->vcpu_token = swab32(hr->vcpu_token); 72 hr->lpcr = swab64(hr->lpcr); 73 hr->pcr = swab64(hr->pcr) | PCR_MASK; 74 hr->amor = swab64(hr->amor); 75 hr->dpdes = swab64(hr->dpdes); 76 hr->hfscr = swab64(hr->hfscr); 77 hr->tb_offset = swab64(hr->tb_offset); 78 hr->dawr0 = swab64(hr->dawr0); 79 hr->dawrx0 = swab64(hr->dawrx0); 80 hr->ciabr = swab64(hr->ciabr); 81 hr->hdec_expiry = swab64(hr->hdec_expiry); 82 hr->purr = swab64(hr->purr); 83 hr->spurr = swab64(hr->spurr); 84 hr->ic = swab64(hr->ic); 85 hr->vtb = swab64(hr->vtb); 86 hr->hdar = swab64(hr->hdar); 87 hr->hdsisr = swab64(hr->hdsisr); 88 hr->heir = swab64(hr->heir); 89 hr->asdr = swab64(hr->asdr); 90 hr->srr0 = swab64(hr->srr0); 91 hr->srr1 = swab64(hr->srr1); 92 hr->sprg[0] = swab64(hr->sprg[0]); 93 hr->sprg[1] = swab64(hr->sprg[1]); 94 hr->sprg[2] = swab64(hr->sprg[2]); 95 hr->sprg[3] = swab64(hr->sprg[3]); 96 hr->pidr = swab64(hr->pidr); 97 hr->cfar = swab64(hr->cfar); 98 hr->ppr = swab64(hr->ppr); 99 hr->dawr1 = swab64(hr->dawr1); 100 hr->dawrx1 = swab64(hr->dawrx1); 101 } 102 103 static void save_hv_return_state(struct kvm_vcpu *vcpu, 104 struct hv_guest_state *hr) 105 { 106 struct kvmppc_vcore *vc = vcpu->arch.vcore; 107 108 hr->dpdes = vc->dpdes; 109 hr->purr = vcpu->arch.purr; 110 hr->spurr = vcpu->arch.spurr; 111 hr->ic = vcpu->arch.ic; 112 hr->vtb = vc->vtb; 113 hr->srr0 = vcpu->arch.shregs.srr0; 114 hr->srr1 = vcpu->arch.shregs.srr1; 115 hr->sprg[0] = vcpu->arch.shregs.sprg0; 116 hr->sprg[1] = vcpu->arch.shregs.sprg1; 117 hr->sprg[2] = vcpu->arch.shregs.sprg2; 118 hr->sprg[3] = vcpu->arch.shregs.sprg3; 119 hr->pidr = vcpu->arch.pid; 120 hr->cfar = vcpu->arch.cfar; 121 hr->ppr = vcpu->arch.ppr; 122 switch (vcpu->arch.trap) { 123 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 124 hr->hdar = vcpu->arch.fault_dar; 125 hr->hdsisr = vcpu->arch.fault_dsisr; 126 hr->asdr = vcpu->arch.fault_gpa; 127 break; 128 case BOOK3S_INTERRUPT_H_INST_STORAGE: 129 hr->asdr = vcpu->arch.fault_gpa; 130 break; 131 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: 132 hr->hfscr = ((~HFSCR_INTR_CAUSE & hr->hfscr) | 133 (HFSCR_INTR_CAUSE & vcpu->arch.hfscr)); 134 break; 135 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 136 hr->heir = vcpu->arch.emul_inst; 137 break; 138 } 139 } 140 141 static void restore_hv_regs(struct kvm_vcpu *vcpu, const struct hv_guest_state *hr) 142 { 143 struct kvmppc_vcore *vc = vcpu->arch.vcore; 144 145 vc->pcr = hr->pcr | PCR_MASK; 146 vc->dpdes = hr->dpdes; 147 vcpu->arch.hfscr = hr->hfscr; 148 vcpu->arch.dawr0 = hr->dawr0; 149 vcpu->arch.dawrx0 = hr->dawrx0; 150 vcpu->arch.ciabr = hr->ciabr; 151 vcpu->arch.purr = hr->purr; 152 vcpu->arch.spurr = hr->spurr; 153 vcpu->arch.ic = hr->ic; 154 vc->vtb = hr->vtb; 155 vcpu->arch.shregs.srr0 = hr->srr0; 156 vcpu->arch.shregs.srr1 = hr->srr1; 157 vcpu->arch.shregs.sprg0 = hr->sprg[0]; 158 vcpu->arch.shregs.sprg1 = hr->sprg[1]; 159 vcpu->arch.shregs.sprg2 = hr->sprg[2]; 160 vcpu->arch.shregs.sprg3 = hr->sprg[3]; 161 vcpu->arch.pid = hr->pidr; 162 vcpu->arch.cfar = hr->cfar; 163 vcpu->arch.ppr = hr->ppr; 164 vcpu->arch.dawr1 = hr->dawr1; 165 vcpu->arch.dawrx1 = hr->dawrx1; 166 } 167 168 void kvmhv_restore_hv_return_state(struct kvm_vcpu *vcpu, 169 struct hv_guest_state *hr) 170 { 171 struct kvmppc_vcore *vc = vcpu->arch.vcore; 172 173 vc->dpdes = hr->dpdes; 174 vcpu->arch.hfscr = hr->hfscr; 175 vcpu->arch.purr = hr->purr; 176 vcpu->arch.spurr = hr->spurr; 177 vcpu->arch.ic = hr->ic; 178 vc->vtb = hr->vtb; 179 vcpu->arch.fault_dar = hr->hdar; 180 vcpu->arch.fault_dsisr = hr->hdsisr; 181 vcpu->arch.fault_gpa = hr->asdr; 182 vcpu->arch.emul_inst = hr->heir; 183 vcpu->arch.shregs.srr0 = hr->srr0; 184 vcpu->arch.shregs.srr1 = hr->srr1; 185 vcpu->arch.shregs.sprg0 = hr->sprg[0]; 186 vcpu->arch.shregs.sprg1 = hr->sprg[1]; 187 vcpu->arch.shregs.sprg2 = hr->sprg[2]; 188 vcpu->arch.shregs.sprg3 = hr->sprg[3]; 189 vcpu->arch.pid = hr->pidr; 190 vcpu->arch.cfar = hr->cfar; 191 vcpu->arch.ppr = hr->ppr; 192 } 193 194 static void kvmhv_nested_mmio_needed(struct kvm_vcpu *vcpu, u64 regs_ptr) 195 { 196 /* No need to reflect the page fault to L1, we've handled it */ 197 vcpu->arch.trap = 0; 198 199 /* 200 * Since the L2 gprs have already been written back into L1 memory when 201 * we complete the mmio, store the L1 memory location of the L2 gpr 202 * being loaded into by the mmio so that the loaded value can be 203 * written there in kvmppc_complete_mmio_load() 204 */ 205 if (((vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) == KVM_MMIO_REG_GPR) 206 && (vcpu->mmio_is_write == 0)) { 207 vcpu->arch.nested_io_gpr = (gpa_t) regs_ptr + 208 offsetof(struct pt_regs, 209 gpr[vcpu->arch.io_gpr]); 210 vcpu->arch.io_gpr = KVM_MMIO_REG_NESTED_GPR; 211 } 212 } 213 214 static int kvmhv_read_guest_state_and_regs(struct kvm_vcpu *vcpu, 215 struct hv_guest_state *l2_hv, 216 struct pt_regs *l2_regs, 217 u64 hv_ptr, u64 regs_ptr) 218 { 219 int size; 220 221 if (kvm_vcpu_read_guest(vcpu, hv_ptr, &l2_hv->version, 222 sizeof(l2_hv->version))) 223 return -1; 224 225 if (kvmppc_need_byteswap(vcpu)) 226 l2_hv->version = swab64(l2_hv->version); 227 228 size = hv_guest_state_size(l2_hv->version); 229 if (size < 0) 230 return -1; 231 232 return kvm_vcpu_read_guest(vcpu, hv_ptr, l2_hv, size) || 233 kvm_vcpu_read_guest(vcpu, regs_ptr, l2_regs, 234 sizeof(struct pt_regs)); 235 } 236 237 static int kvmhv_write_guest_state_and_regs(struct kvm_vcpu *vcpu, 238 struct hv_guest_state *l2_hv, 239 struct pt_regs *l2_regs, 240 u64 hv_ptr, u64 regs_ptr) 241 { 242 int size; 243 244 size = hv_guest_state_size(l2_hv->version); 245 if (size < 0) 246 return -1; 247 248 return kvm_vcpu_write_guest(vcpu, hv_ptr, l2_hv, size) || 249 kvm_vcpu_write_guest(vcpu, regs_ptr, l2_regs, 250 sizeof(struct pt_regs)); 251 } 252 253 static void load_l2_hv_regs(struct kvm_vcpu *vcpu, 254 const struct hv_guest_state *l2_hv, 255 const struct hv_guest_state *l1_hv, u64 *lpcr) 256 { 257 struct kvmppc_vcore *vc = vcpu->arch.vcore; 258 u64 mask; 259 260 restore_hv_regs(vcpu, l2_hv); 261 262 /* 263 * Don't let L1 change LPCR bits for the L2 except these: 264 */ 265 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD | LPCR_MER; 266 267 /* 268 * Additional filtering is required depending on hardware 269 * and configuration. 270 */ 271 *lpcr = kvmppc_filter_lpcr_hv(vcpu->kvm, 272 (vc->lpcr & ~mask) | (*lpcr & mask)); 273 274 /* 275 * Don't let L1 enable features for L2 which we don't allow for L1, 276 * but preserve the interrupt cause field. 277 */ 278 vcpu->arch.hfscr = l2_hv->hfscr & (HFSCR_INTR_CAUSE | vcpu->arch.hfscr_permitted); 279 280 /* Don't let data address watchpoint match in hypervisor state */ 281 vcpu->arch.dawrx0 = l2_hv->dawrx0 & ~DAWRX_HYP; 282 vcpu->arch.dawrx1 = l2_hv->dawrx1 & ~DAWRX_HYP; 283 284 /* Don't let completed instruction address breakpt match in HV state */ 285 if ((l2_hv->ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) 286 vcpu->arch.ciabr = l2_hv->ciabr & ~CIABR_PRIV; 287 } 288 289 long kvmhv_enter_nested_guest(struct kvm_vcpu *vcpu) 290 { 291 long int err, r; 292 struct kvm_nested_guest *l2; 293 struct pt_regs l2_regs, saved_l1_regs; 294 struct hv_guest_state l2_hv = {0}, saved_l1_hv; 295 struct kvmppc_vcore *vc = vcpu->arch.vcore; 296 u64 hv_ptr, regs_ptr; 297 u64 hdec_exp, lpcr; 298 s64 delta_purr, delta_spurr, delta_ic, delta_vtb; 299 300 if (vcpu->kvm->arch.l1_ptcr == 0) 301 return H_NOT_AVAILABLE; 302 303 if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr)) 304 return H_BAD_MODE; 305 306 /* copy parameters in */ 307 hv_ptr = kvmppc_get_gpr(vcpu, 4); 308 regs_ptr = kvmppc_get_gpr(vcpu, 5); 309 kvm_vcpu_srcu_read_lock(vcpu); 310 err = kvmhv_read_guest_state_and_regs(vcpu, &l2_hv, &l2_regs, 311 hv_ptr, regs_ptr); 312 kvm_vcpu_srcu_read_unlock(vcpu); 313 if (err) 314 return H_PARAMETER; 315 316 if (kvmppc_need_byteswap(vcpu)) 317 byteswap_hv_regs(&l2_hv); 318 if (l2_hv.version > HV_GUEST_STATE_VERSION) 319 return H_P2; 320 321 if (kvmppc_need_byteswap(vcpu)) 322 byteswap_pt_regs(&l2_regs); 323 if (l2_hv.vcpu_token >= NR_CPUS) 324 return H_PARAMETER; 325 326 /* 327 * L1 must have set up a suspended state to enter the L2 in a 328 * transactional state, and only in that case. These have to be 329 * filtered out here to prevent causing a TM Bad Thing in the 330 * host HRFID. We could synthesize a TM Bad Thing back to the L1 331 * here but there doesn't seem like much point. 332 */ 333 if (MSR_TM_SUSPENDED(vcpu->arch.shregs.msr)) { 334 if (!MSR_TM_ACTIVE(l2_regs.msr)) 335 return H_BAD_MODE; 336 } else { 337 if (l2_regs.msr & MSR_TS_MASK) 338 return H_BAD_MODE; 339 if (WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_TS_MASK)) 340 return H_BAD_MODE; 341 } 342 343 /* translate lpid */ 344 l2 = kvmhv_get_nested(vcpu->kvm, l2_hv.lpid, true); 345 if (!l2) 346 return H_PARAMETER; 347 if (!l2->l1_gr_to_hr) { 348 mutex_lock(&l2->tlb_lock); 349 kvmhv_update_ptbl_cache(l2); 350 mutex_unlock(&l2->tlb_lock); 351 } 352 353 /* save l1 values of things */ 354 vcpu->arch.regs.msr = vcpu->arch.shregs.msr; 355 saved_l1_regs = vcpu->arch.regs; 356 kvmhv_save_hv_regs(vcpu, &saved_l1_hv); 357 358 /* convert TB values/offsets to host (L0) values */ 359 hdec_exp = l2_hv.hdec_expiry - vc->tb_offset; 360 vc->tb_offset += l2_hv.tb_offset; 361 vcpu->arch.dec_expires += l2_hv.tb_offset; 362 363 /* set L1 state to L2 state */ 364 vcpu->arch.nested = l2; 365 vcpu->arch.nested_vcpu_id = l2_hv.vcpu_token; 366 vcpu->arch.nested_hfscr = l2_hv.hfscr; 367 vcpu->arch.regs = l2_regs; 368 369 /* Guest must always run with ME enabled, HV disabled. */ 370 vcpu->arch.shregs.msr = (vcpu->arch.regs.msr | MSR_ME) & ~MSR_HV; 371 372 lpcr = l2_hv.lpcr; 373 load_l2_hv_regs(vcpu, &l2_hv, &saved_l1_hv, &lpcr); 374 375 vcpu->arch.ret = RESUME_GUEST; 376 vcpu->arch.trap = 0; 377 do { 378 r = kvmhv_run_single_vcpu(vcpu, hdec_exp, lpcr); 379 } while (is_kvmppc_resume_guest(r)); 380 381 /* save L2 state for return */ 382 l2_regs = vcpu->arch.regs; 383 l2_regs.msr = vcpu->arch.shregs.msr; 384 delta_purr = vcpu->arch.purr - l2_hv.purr; 385 delta_spurr = vcpu->arch.spurr - l2_hv.spurr; 386 delta_ic = vcpu->arch.ic - l2_hv.ic; 387 delta_vtb = vc->vtb - l2_hv.vtb; 388 save_hv_return_state(vcpu, &l2_hv); 389 390 /* restore L1 state */ 391 vcpu->arch.nested = NULL; 392 vcpu->arch.regs = saved_l1_regs; 393 vcpu->arch.shregs.msr = saved_l1_regs.msr & ~MSR_TS_MASK; 394 /* set L1 MSR TS field according to L2 transaction state */ 395 if (l2_regs.msr & MSR_TS_MASK) 396 vcpu->arch.shregs.msr |= MSR_TS_S; 397 vc->tb_offset = saved_l1_hv.tb_offset; 398 /* XXX: is this always the same delta as saved_l1_hv.tb_offset? */ 399 vcpu->arch.dec_expires -= l2_hv.tb_offset; 400 restore_hv_regs(vcpu, &saved_l1_hv); 401 vcpu->arch.purr += delta_purr; 402 vcpu->arch.spurr += delta_spurr; 403 vcpu->arch.ic += delta_ic; 404 vc->vtb += delta_vtb; 405 406 kvmhv_put_nested(l2); 407 408 /* copy l2_hv_state and regs back to guest */ 409 if (kvmppc_need_byteswap(vcpu)) { 410 byteswap_hv_regs(&l2_hv); 411 byteswap_pt_regs(&l2_regs); 412 } 413 kvm_vcpu_srcu_read_lock(vcpu); 414 err = kvmhv_write_guest_state_and_regs(vcpu, &l2_hv, &l2_regs, 415 hv_ptr, regs_ptr); 416 kvm_vcpu_srcu_read_unlock(vcpu); 417 if (err) 418 return H_AUTHORITY; 419 420 if (r == -EINTR) 421 return H_INTERRUPT; 422 423 if (vcpu->mmio_needed) { 424 kvmhv_nested_mmio_needed(vcpu, regs_ptr); 425 return H_TOO_HARD; 426 } 427 428 return vcpu->arch.trap; 429 } 430 431 long kvmhv_nested_init(void) 432 { 433 long int ptb_order; 434 unsigned long ptcr; 435 long rc; 436 437 if (!kvmhv_on_pseries()) 438 return 0; 439 if (!radix_enabled()) 440 return -ENODEV; 441 442 /* Partition table entry is 1<<4 bytes in size, hence the 4. */ 443 ptb_order = KVM_MAX_NESTED_GUESTS_SHIFT + 4; 444 /* Minimum partition table size is 1<<12 bytes */ 445 if (ptb_order < 12) 446 ptb_order = 12; 447 pseries_partition_tb = kmalloc(sizeof(struct patb_entry) << ptb_order, 448 GFP_KERNEL); 449 if (!pseries_partition_tb) { 450 pr_err("kvm-hv: failed to allocated nested partition table\n"); 451 return -ENOMEM; 452 } 453 454 ptcr = __pa(pseries_partition_tb) | (ptb_order - 12); 455 rc = plpar_hcall_norets(H_SET_PARTITION_TABLE, ptcr); 456 if (rc != H_SUCCESS) { 457 pr_err("kvm-hv: Parent hypervisor does not support nesting (rc=%ld)\n", 458 rc); 459 kfree(pseries_partition_tb); 460 pseries_partition_tb = NULL; 461 return -ENODEV; 462 } 463 464 return 0; 465 } 466 467 void kvmhv_nested_exit(void) 468 { 469 /* 470 * N.B. the kvmhv_on_pseries() test is there because it enables 471 * the compiler to remove the call to plpar_hcall_norets() 472 * when CONFIG_PPC_PSERIES=n. 473 */ 474 if (kvmhv_on_pseries() && pseries_partition_tb) { 475 plpar_hcall_norets(H_SET_PARTITION_TABLE, 0); 476 kfree(pseries_partition_tb); 477 pseries_partition_tb = NULL; 478 } 479 } 480 481 static void kvmhv_flush_lpid(unsigned int lpid) 482 { 483 long rc; 484 485 if (!kvmhv_on_pseries()) { 486 radix__flush_all_lpid(lpid); 487 return; 488 } 489 490 if (!firmware_has_feature(FW_FEATURE_RPT_INVALIDATE)) 491 rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(2, 0, 1), 492 lpid, TLBIEL_INVAL_SET_LPID); 493 else 494 rc = pseries_rpt_invalidate(lpid, H_RPTI_TARGET_CMMU, 495 H_RPTI_TYPE_NESTED | 496 H_RPTI_TYPE_TLB | H_RPTI_TYPE_PWC | 497 H_RPTI_TYPE_PAT, 498 H_RPTI_PAGE_ALL, 0, -1UL); 499 if (rc) 500 pr_err("KVM: TLB LPID invalidation hcall failed, rc=%ld\n", rc); 501 } 502 503 void kvmhv_set_ptbl_entry(unsigned int lpid, u64 dw0, u64 dw1) 504 { 505 if (!kvmhv_on_pseries()) { 506 mmu_partition_table_set_entry(lpid, dw0, dw1, true); 507 return; 508 } 509 510 pseries_partition_tb[lpid].patb0 = cpu_to_be64(dw0); 511 pseries_partition_tb[lpid].patb1 = cpu_to_be64(dw1); 512 /* L0 will do the necessary barriers */ 513 kvmhv_flush_lpid(lpid); 514 } 515 516 static void kvmhv_set_nested_ptbl(struct kvm_nested_guest *gp) 517 { 518 unsigned long dw0; 519 520 dw0 = PATB_HR | radix__get_tree_size() | 521 __pa(gp->shadow_pgtable) | RADIX_PGD_INDEX_SIZE; 522 kvmhv_set_ptbl_entry(gp->shadow_lpid, dw0, gp->process_table); 523 } 524 525 /* 526 * Handle the H_SET_PARTITION_TABLE hcall. 527 * r4 = guest real address of partition table + log_2(size) - 12 528 * (formatted as for the PTCR). 529 */ 530 long kvmhv_set_partition_table(struct kvm_vcpu *vcpu) 531 { 532 struct kvm *kvm = vcpu->kvm; 533 unsigned long ptcr = kvmppc_get_gpr(vcpu, 4); 534 int srcu_idx; 535 long ret = H_SUCCESS; 536 537 srcu_idx = srcu_read_lock(&kvm->srcu); 538 /* Check partition size and base address. */ 539 if ((ptcr & PRTS_MASK) + 12 - 4 > KVM_MAX_NESTED_GUESTS_SHIFT || 540 !kvm_is_visible_gfn(vcpu->kvm, (ptcr & PRTB_MASK) >> PAGE_SHIFT)) 541 ret = H_PARAMETER; 542 srcu_read_unlock(&kvm->srcu, srcu_idx); 543 if (ret == H_SUCCESS) 544 kvm->arch.l1_ptcr = ptcr; 545 546 return ret; 547 } 548 549 /* 550 * Handle the H_COPY_TOFROM_GUEST hcall. 551 * r4 = L1 lpid of nested guest 552 * r5 = pid 553 * r6 = eaddr to access 554 * r7 = to buffer (L1 gpa) 555 * r8 = from buffer (L1 gpa) 556 * r9 = n bytes to copy 557 */ 558 long kvmhv_copy_tofrom_guest_nested(struct kvm_vcpu *vcpu) 559 { 560 struct kvm_nested_guest *gp; 561 int l1_lpid = kvmppc_get_gpr(vcpu, 4); 562 int pid = kvmppc_get_gpr(vcpu, 5); 563 gva_t eaddr = kvmppc_get_gpr(vcpu, 6); 564 gpa_t gp_to = (gpa_t) kvmppc_get_gpr(vcpu, 7); 565 gpa_t gp_from = (gpa_t) kvmppc_get_gpr(vcpu, 8); 566 void *buf; 567 unsigned long n = kvmppc_get_gpr(vcpu, 9); 568 bool is_load = !!gp_to; 569 long rc; 570 571 if (gp_to && gp_from) /* One must be NULL to determine the direction */ 572 return H_PARAMETER; 573 574 if (eaddr & (0xFFFUL << 52)) 575 return H_PARAMETER; 576 577 buf = kzalloc(n, GFP_KERNEL | __GFP_NOWARN); 578 if (!buf) 579 return H_NO_MEM; 580 581 gp = kvmhv_get_nested(vcpu->kvm, l1_lpid, false); 582 if (!gp) { 583 rc = H_PARAMETER; 584 goto out_free; 585 } 586 587 mutex_lock(&gp->tlb_lock); 588 589 if (is_load) { 590 /* Load from the nested guest into our buffer */ 591 rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid, 592 eaddr, buf, NULL, n); 593 if (rc) 594 goto not_found; 595 596 /* Write what was loaded into our buffer back to the L1 guest */ 597 kvm_vcpu_srcu_read_lock(vcpu); 598 rc = kvm_vcpu_write_guest(vcpu, gp_to, buf, n); 599 kvm_vcpu_srcu_read_unlock(vcpu); 600 if (rc) 601 goto not_found; 602 } else { 603 /* Load the data to be stored from the L1 guest into our buf */ 604 kvm_vcpu_srcu_read_lock(vcpu); 605 rc = kvm_vcpu_read_guest(vcpu, gp_from, buf, n); 606 kvm_vcpu_srcu_read_unlock(vcpu); 607 if (rc) 608 goto not_found; 609 610 /* Store from our buffer into the nested guest */ 611 rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid, 612 eaddr, NULL, buf, n); 613 if (rc) 614 goto not_found; 615 } 616 617 out_unlock: 618 mutex_unlock(&gp->tlb_lock); 619 kvmhv_put_nested(gp); 620 out_free: 621 kfree(buf); 622 return rc; 623 not_found: 624 rc = H_NOT_FOUND; 625 goto out_unlock; 626 } 627 628 /* 629 * Reload the partition table entry for a guest. 630 * Caller must hold gp->tlb_lock. 631 */ 632 static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp) 633 { 634 int ret; 635 struct patb_entry ptbl_entry; 636 unsigned long ptbl_addr; 637 struct kvm *kvm = gp->l1_host; 638 639 ret = -EFAULT; 640 ptbl_addr = (kvm->arch.l1_ptcr & PRTB_MASK) + (gp->l1_lpid << 4); 641 if (gp->l1_lpid < (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 12 - 4))) { 642 int srcu_idx = srcu_read_lock(&kvm->srcu); 643 ret = kvm_read_guest(kvm, ptbl_addr, 644 &ptbl_entry, sizeof(ptbl_entry)); 645 srcu_read_unlock(&kvm->srcu, srcu_idx); 646 } 647 if (ret) { 648 gp->l1_gr_to_hr = 0; 649 gp->process_table = 0; 650 } else { 651 gp->l1_gr_to_hr = be64_to_cpu(ptbl_entry.patb0); 652 gp->process_table = be64_to_cpu(ptbl_entry.patb1); 653 } 654 kvmhv_set_nested_ptbl(gp); 655 } 656 657 void kvmhv_vm_nested_init(struct kvm *kvm) 658 { 659 idr_init(&kvm->arch.kvm_nested_guest_idr); 660 } 661 662 static struct kvm_nested_guest *__find_nested(struct kvm *kvm, int lpid) 663 { 664 return idr_find(&kvm->arch.kvm_nested_guest_idr, lpid); 665 } 666 667 static bool __prealloc_nested(struct kvm *kvm, int lpid) 668 { 669 if (idr_alloc(&kvm->arch.kvm_nested_guest_idr, 670 NULL, lpid, lpid + 1, GFP_KERNEL) != lpid) 671 return false; 672 return true; 673 } 674 675 static void __add_nested(struct kvm *kvm, int lpid, struct kvm_nested_guest *gp) 676 { 677 if (idr_replace(&kvm->arch.kvm_nested_guest_idr, gp, lpid)) 678 WARN_ON(1); 679 } 680 681 static void __remove_nested(struct kvm *kvm, int lpid) 682 { 683 idr_remove(&kvm->arch.kvm_nested_guest_idr, lpid); 684 } 685 686 static struct kvm_nested_guest *kvmhv_alloc_nested(struct kvm *kvm, unsigned int lpid) 687 { 688 struct kvm_nested_guest *gp; 689 long shadow_lpid; 690 691 gp = kzalloc(sizeof(*gp), GFP_KERNEL); 692 if (!gp) 693 return NULL; 694 gp->l1_host = kvm; 695 gp->l1_lpid = lpid; 696 mutex_init(&gp->tlb_lock); 697 gp->shadow_pgtable = pgd_alloc(kvm->mm); 698 if (!gp->shadow_pgtable) 699 goto out_free; 700 shadow_lpid = kvmppc_alloc_lpid(); 701 if (shadow_lpid < 0) 702 goto out_free2; 703 gp->shadow_lpid = shadow_lpid; 704 gp->radix = 1; 705 706 memset(gp->prev_cpu, -1, sizeof(gp->prev_cpu)); 707 708 return gp; 709 710 out_free2: 711 pgd_free(kvm->mm, gp->shadow_pgtable); 712 out_free: 713 kfree(gp); 714 return NULL; 715 } 716 717 /* 718 * Free up any resources allocated for a nested guest. 719 */ 720 static void kvmhv_release_nested(struct kvm_nested_guest *gp) 721 { 722 struct kvm *kvm = gp->l1_host; 723 724 if (gp->shadow_pgtable) { 725 /* 726 * No vcpu is using this struct and no call to 727 * kvmhv_get_nested can find this struct, 728 * so we don't need to hold kvm->mmu_lock. 729 */ 730 kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable, 731 gp->shadow_lpid); 732 pgd_free(kvm->mm, gp->shadow_pgtable); 733 } 734 kvmhv_set_ptbl_entry(gp->shadow_lpid, 0, 0); 735 kvmppc_free_lpid(gp->shadow_lpid); 736 kfree(gp); 737 } 738 739 static void kvmhv_remove_nested(struct kvm_nested_guest *gp) 740 { 741 struct kvm *kvm = gp->l1_host; 742 int lpid = gp->l1_lpid; 743 long ref; 744 745 spin_lock(&kvm->mmu_lock); 746 if (gp == __find_nested(kvm, lpid)) { 747 __remove_nested(kvm, lpid); 748 --gp->refcnt; 749 } 750 ref = gp->refcnt; 751 spin_unlock(&kvm->mmu_lock); 752 if (ref == 0) 753 kvmhv_release_nested(gp); 754 } 755 756 /* 757 * Free up all nested resources allocated for this guest. 758 * This is called with no vcpus of the guest running, when 759 * switching the guest to HPT mode or when destroying the 760 * guest. 761 */ 762 void kvmhv_release_all_nested(struct kvm *kvm) 763 { 764 int lpid; 765 struct kvm_nested_guest *gp; 766 struct kvm_nested_guest *freelist = NULL; 767 struct kvm_memory_slot *memslot; 768 int srcu_idx, bkt; 769 770 spin_lock(&kvm->mmu_lock); 771 idr_for_each_entry(&kvm->arch.kvm_nested_guest_idr, gp, lpid) { 772 __remove_nested(kvm, lpid); 773 if (--gp->refcnt == 0) { 774 gp->next = freelist; 775 freelist = gp; 776 } 777 } 778 idr_destroy(&kvm->arch.kvm_nested_guest_idr); 779 /* idr is empty and may be reused at this point */ 780 spin_unlock(&kvm->mmu_lock); 781 while ((gp = freelist) != NULL) { 782 freelist = gp->next; 783 kvmhv_release_nested(gp); 784 } 785 786 srcu_idx = srcu_read_lock(&kvm->srcu); 787 kvm_for_each_memslot(memslot, bkt, kvm_memslots(kvm)) 788 kvmhv_free_memslot_nest_rmap(memslot); 789 srcu_read_unlock(&kvm->srcu, srcu_idx); 790 } 791 792 /* caller must hold gp->tlb_lock */ 793 static void kvmhv_flush_nested(struct kvm_nested_guest *gp) 794 { 795 struct kvm *kvm = gp->l1_host; 796 797 spin_lock(&kvm->mmu_lock); 798 kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable, gp->shadow_lpid); 799 spin_unlock(&kvm->mmu_lock); 800 kvmhv_flush_lpid(gp->shadow_lpid); 801 kvmhv_update_ptbl_cache(gp); 802 if (gp->l1_gr_to_hr == 0) 803 kvmhv_remove_nested(gp); 804 } 805 806 struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid, 807 bool create) 808 { 809 struct kvm_nested_guest *gp, *newgp; 810 811 if (l1_lpid >= (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 12 - 4))) 812 return NULL; 813 814 spin_lock(&kvm->mmu_lock); 815 gp = __find_nested(kvm, l1_lpid); 816 if (gp) 817 ++gp->refcnt; 818 spin_unlock(&kvm->mmu_lock); 819 820 if (gp || !create) 821 return gp; 822 823 newgp = kvmhv_alloc_nested(kvm, l1_lpid); 824 if (!newgp) 825 return NULL; 826 827 if (!__prealloc_nested(kvm, l1_lpid)) { 828 kvmhv_release_nested(newgp); 829 return NULL; 830 } 831 832 spin_lock(&kvm->mmu_lock); 833 gp = __find_nested(kvm, l1_lpid); 834 if (!gp) { 835 __add_nested(kvm, l1_lpid, newgp); 836 ++newgp->refcnt; 837 gp = newgp; 838 newgp = NULL; 839 } 840 ++gp->refcnt; 841 spin_unlock(&kvm->mmu_lock); 842 843 if (newgp) 844 kvmhv_release_nested(newgp); 845 846 return gp; 847 } 848 849 void kvmhv_put_nested(struct kvm_nested_guest *gp) 850 { 851 struct kvm *kvm = gp->l1_host; 852 long ref; 853 854 spin_lock(&kvm->mmu_lock); 855 ref = --gp->refcnt; 856 spin_unlock(&kvm->mmu_lock); 857 if (ref == 0) 858 kvmhv_release_nested(gp); 859 } 860 861 pte_t *find_kvm_nested_guest_pte(struct kvm *kvm, unsigned long lpid, 862 unsigned long ea, unsigned *hshift) 863 { 864 struct kvm_nested_guest *gp; 865 pte_t *pte; 866 867 gp = __find_nested(kvm, lpid); 868 if (!gp) 869 return NULL; 870 871 VM_WARN(!spin_is_locked(&kvm->mmu_lock), 872 "%s called with kvm mmu_lock not held \n", __func__); 873 pte = __find_linux_pte(gp->shadow_pgtable, ea, NULL, hshift); 874 875 return pte; 876 } 877 878 static inline bool kvmhv_n_rmap_is_equal(u64 rmap_1, u64 rmap_2) 879 { 880 return !((rmap_1 ^ rmap_2) & (RMAP_NESTED_LPID_MASK | 881 RMAP_NESTED_GPA_MASK)); 882 } 883 884 void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp, 885 struct rmap_nested **n_rmap) 886 { 887 struct llist_node *entry = ((struct llist_head *) rmapp)->first; 888 struct rmap_nested *cursor; 889 u64 rmap, new_rmap = (*n_rmap)->rmap; 890 891 /* Are there any existing entries? */ 892 if (!(*rmapp)) { 893 /* No -> use the rmap as a single entry */ 894 *rmapp = new_rmap | RMAP_NESTED_IS_SINGLE_ENTRY; 895 return; 896 } 897 898 /* Do any entries match what we're trying to insert? */ 899 for_each_nest_rmap_safe(cursor, entry, &rmap) { 900 if (kvmhv_n_rmap_is_equal(rmap, new_rmap)) 901 return; 902 } 903 904 /* Do we need to create a list or just add the new entry? */ 905 rmap = *rmapp; 906 if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */ 907 *rmapp = 0UL; 908 llist_add(&((*n_rmap)->list), (struct llist_head *) rmapp); 909 if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */ 910 (*n_rmap)->list.next = (struct llist_node *) rmap; 911 912 /* Set NULL so not freed by caller */ 913 *n_rmap = NULL; 914 } 915 916 static void kvmhv_update_nest_rmap_rc(struct kvm *kvm, u64 n_rmap, 917 unsigned long clr, unsigned long set, 918 unsigned long hpa, unsigned long mask) 919 { 920 unsigned long gpa; 921 unsigned int shift, lpid; 922 pte_t *ptep; 923 924 gpa = n_rmap & RMAP_NESTED_GPA_MASK; 925 lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT; 926 927 /* Find the pte */ 928 ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift); 929 /* 930 * If the pte is present and the pfn is still the same, update the pte. 931 * If the pfn has changed then this is a stale rmap entry, the nested 932 * gpa actually points somewhere else now, and there is nothing to do. 933 * XXX A future optimisation would be to remove the rmap entry here. 934 */ 935 if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa)) { 936 __radix_pte_update(ptep, clr, set); 937 kvmppc_radix_tlbie_page(kvm, gpa, shift, lpid); 938 } 939 } 940 941 /* 942 * For a given list of rmap entries, update the rc bits in all ptes in shadow 943 * page tables for nested guests which are referenced by the rmap list. 944 */ 945 void kvmhv_update_nest_rmap_rc_list(struct kvm *kvm, unsigned long *rmapp, 946 unsigned long clr, unsigned long set, 947 unsigned long hpa, unsigned long nbytes) 948 { 949 struct llist_node *entry = ((struct llist_head *) rmapp)->first; 950 struct rmap_nested *cursor; 951 unsigned long rmap, mask; 952 953 if ((clr | set) & ~(_PAGE_DIRTY | _PAGE_ACCESSED)) 954 return; 955 956 mask = PTE_RPN_MASK & ~(nbytes - 1); 957 hpa &= mask; 958 959 for_each_nest_rmap_safe(cursor, entry, &rmap) 960 kvmhv_update_nest_rmap_rc(kvm, rmap, clr, set, hpa, mask); 961 } 962 963 static void kvmhv_remove_nest_rmap(struct kvm *kvm, u64 n_rmap, 964 unsigned long hpa, unsigned long mask) 965 { 966 struct kvm_nested_guest *gp; 967 unsigned long gpa; 968 unsigned int shift, lpid; 969 pte_t *ptep; 970 971 gpa = n_rmap & RMAP_NESTED_GPA_MASK; 972 lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT; 973 gp = __find_nested(kvm, lpid); 974 if (!gp) 975 return; 976 977 /* Find and invalidate the pte */ 978 ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift); 979 /* Don't spuriously invalidate ptes if the pfn has changed */ 980 if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa)) 981 kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid); 982 } 983 984 static void kvmhv_remove_nest_rmap_list(struct kvm *kvm, unsigned long *rmapp, 985 unsigned long hpa, unsigned long mask) 986 { 987 struct llist_node *entry = llist_del_all((struct llist_head *) rmapp); 988 struct rmap_nested *cursor; 989 unsigned long rmap; 990 991 for_each_nest_rmap_safe(cursor, entry, &rmap) { 992 kvmhv_remove_nest_rmap(kvm, rmap, hpa, mask); 993 kfree(cursor); 994 } 995 } 996 997 /* called with kvm->mmu_lock held */ 998 void kvmhv_remove_nest_rmap_range(struct kvm *kvm, 999 const struct kvm_memory_slot *memslot, 1000 unsigned long gpa, unsigned long hpa, 1001 unsigned long nbytes) 1002 { 1003 unsigned long gfn, end_gfn; 1004 unsigned long addr_mask; 1005 1006 if (!memslot) 1007 return; 1008 gfn = (gpa >> PAGE_SHIFT) - memslot->base_gfn; 1009 end_gfn = gfn + (nbytes >> PAGE_SHIFT); 1010 1011 addr_mask = PTE_RPN_MASK & ~(nbytes - 1); 1012 hpa &= addr_mask; 1013 1014 for (; gfn < end_gfn; gfn++) { 1015 unsigned long *rmap = &memslot->arch.rmap[gfn]; 1016 kvmhv_remove_nest_rmap_list(kvm, rmap, hpa, addr_mask); 1017 } 1018 } 1019 1020 static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free) 1021 { 1022 unsigned long page; 1023 1024 for (page = 0; page < free->npages; page++) { 1025 unsigned long rmap, *rmapp = &free->arch.rmap[page]; 1026 struct rmap_nested *cursor; 1027 struct llist_node *entry; 1028 1029 entry = llist_del_all((struct llist_head *) rmapp); 1030 for_each_nest_rmap_safe(cursor, entry, &rmap) 1031 kfree(cursor); 1032 } 1033 } 1034 1035 static bool kvmhv_invalidate_shadow_pte(struct kvm_vcpu *vcpu, 1036 struct kvm_nested_guest *gp, 1037 long gpa, int *shift_ret) 1038 { 1039 struct kvm *kvm = vcpu->kvm; 1040 bool ret = false; 1041 pte_t *ptep; 1042 int shift; 1043 1044 spin_lock(&kvm->mmu_lock); 1045 ptep = find_kvm_nested_guest_pte(kvm, gp->l1_lpid, gpa, &shift); 1046 if (!shift) 1047 shift = PAGE_SHIFT; 1048 if (ptep && pte_present(*ptep)) { 1049 kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid); 1050 ret = true; 1051 } 1052 spin_unlock(&kvm->mmu_lock); 1053 1054 if (shift_ret) 1055 *shift_ret = shift; 1056 return ret; 1057 } 1058 1059 static inline int get_ric(unsigned int instr) 1060 { 1061 return (instr >> 18) & 0x3; 1062 } 1063 1064 static inline int get_prs(unsigned int instr) 1065 { 1066 return (instr >> 17) & 0x1; 1067 } 1068 1069 static inline int get_r(unsigned int instr) 1070 { 1071 return (instr >> 16) & 0x1; 1072 } 1073 1074 static inline int get_lpid(unsigned long r_val) 1075 { 1076 return r_val & 0xffffffff; 1077 } 1078 1079 static inline int get_is(unsigned long r_val) 1080 { 1081 return (r_val >> 10) & 0x3; 1082 } 1083 1084 static inline int get_ap(unsigned long r_val) 1085 { 1086 return (r_val >> 5) & 0x7; 1087 } 1088 1089 static inline long get_epn(unsigned long r_val) 1090 { 1091 return r_val >> 12; 1092 } 1093 1094 static int kvmhv_emulate_tlbie_tlb_addr(struct kvm_vcpu *vcpu, int lpid, 1095 int ap, long epn) 1096 { 1097 struct kvm *kvm = vcpu->kvm; 1098 struct kvm_nested_guest *gp; 1099 long npages; 1100 int shift, shadow_shift; 1101 unsigned long addr; 1102 1103 shift = ap_to_shift(ap); 1104 addr = epn << 12; 1105 if (shift < 0) 1106 /* Invalid ap encoding */ 1107 return -EINVAL; 1108 1109 addr &= ~((1UL << shift) - 1); 1110 npages = 1UL << (shift - PAGE_SHIFT); 1111 1112 gp = kvmhv_get_nested(kvm, lpid, false); 1113 if (!gp) /* No such guest -> nothing to do */ 1114 return 0; 1115 mutex_lock(&gp->tlb_lock); 1116 1117 /* There may be more than one host page backing this single guest pte */ 1118 do { 1119 kvmhv_invalidate_shadow_pte(vcpu, gp, addr, &shadow_shift); 1120 1121 npages -= 1UL << (shadow_shift - PAGE_SHIFT); 1122 addr += 1UL << shadow_shift; 1123 } while (npages > 0); 1124 1125 mutex_unlock(&gp->tlb_lock); 1126 kvmhv_put_nested(gp); 1127 return 0; 1128 } 1129 1130 static void kvmhv_emulate_tlbie_lpid(struct kvm_vcpu *vcpu, 1131 struct kvm_nested_guest *gp, int ric) 1132 { 1133 struct kvm *kvm = vcpu->kvm; 1134 1135 mutex_lock(&gp->tlb_lock); 1136 switch (ric) { 1137 case 0: 1138 /* Invalidate TLB */ 1139 spin_lock(&kvm->mmu_lock); 1140 kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable, 1141 gp->shadow_lpid); 1142 kvmhv_flush_lpid(gp->shadow_lpid); 1143 spin_unlock(&kvm->mmu_lock); 1144 break; 1145 case 1: 1146 /* 1147 * Invalidate PWC 1148 * We don't cache this -> nothing to do 1149 */ 1150 break; 1151 case 2: 1152 /* Invalidate TLB, PWC and caching of partition table entries */ 1153 kvmhv_flush_nested(gp); 1154 break; 1155 default: 1156 break; 1157 } 1158 mutex_unlock(&gp->tlb_lock); 1159 } 1160 1161 static void kvmhv_emulate_tlbie_all_lpid(struct kvm_vcpu *vcpu, int ric) 1162 { 1163 struct kvm *kvm = vcpu->kvm; 1164 struct kvm_nested_guest *gp; 1165 int lpid; 1166 1167 spin_lock(&kvm->mmu_lock); 1168 idr_for_each_entry(&kvm->arch.kvm_nested_guest_idr, gp, lpid) { 1169 spin_unlock(&kvm->mmu_lock); 1170 kvmhv_emulate_tlbie_lpid(vcpu, gp, ric); 1171 spin_lock(&kvm->mmu_lock); 1172 } 1173 spin_unlock(&kvm->mmu_lock); 1174 } 1175 1176 static int kvmhv_emulate_priv_tlbie(struct kvm_vcpu *vcpu, unsigned int instr, 1177 unsigned long rsval, unsigned long rbval) 1178 { 1179 struct kvm *kvm = vcpu->kvm; 1180 struct kvm_nested_guest *gp; 1181 int r, ric, prs, is, ap; 1182 int lpid; 1183 long epn; 1184 int ret = 0; 1185 1186 ric = get_ric(instr); 1187 prs = get_prs(instr); 1188 r = get_r(instr); 1189 lpid = get_lpid(rsval); 1190 is = get_is(rbval); 1191 1192 /* 1193 * These cases are invalid and are not handled: 1194 * r != 1 -> Only radix supported 1195 * prs == 1 -> Not HV privileged 1196 * ric == 3 -> No cluster bombs for radix 1197 * is == 1 -> Partition scoped translations not associated with pid 1198 * (!is) && (ric == 1 || ric == 2) -> Not supported by ISA 1199 */ 1200 if ((!r) || (prs) || (ric == 3) || (is == 1) || 1201 ((!is) && (ric == 1 || ric == 2))) 1202 return -EINVAL; 1203 1204 switch (is) { 1205 case 0: 1206 /* 1207 * We know ric == 0 1208 * Invalidate TLB for a given target address 1209 */ 1210 epn = get_epn(rbval); 1211 ap = get_ap(rbval); 1212 ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap, epn); 1213 break; 1214 case 2: 1215 /* Invalidate matching LPID */ 1216 gp = kvmhv_get_nested(kvm, lpid, false); 1217 if (gp) { 1218 kvmhv_emulate_tlbie_lpid(vcpu, gp, ric); 1219 kvmhv_put_nested(gp); 1220 } 1221 break; 1222 case 3: 1223 /* Invalidate ALL LPIDs */ 1224 kvmhv_emulate_tlbie_all_lpid(vcpu, ric); 1225 break; 1226 default: 1227 ret = -EINVAL; 1228 break; 1229 } 1230 1231 return ret; 1232 } 1233 1234 /* 1235 * This handles the H_TLB_INVALIDATE hcall. 1236 * Parameters are (r4) tlbie instruction code, (r5) rS contents, 1237 * (r6) rB contents. 1238 */ 1239 long kvmhv_do_nested_tlbie(struct kvm_vcpu *vcpu) 1240 { 1241 int ret; 1242 1243 ret = kvmhv_emulate_priv_tlbie(vcpu, kvmppc_get_gpr(vcpu, 4), 1244 kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6)); 1245 if (ret) 1246 return H_PARAMETER; 1247 return H_SUCCESS; 1248 } 1249 1250 static long do_tlb_invalidate_nested_all(struct kvm_vcpu *vcpu, 1251 unsigned long lpid, unsigned long ric) 1252 { 1253 struct kvm *kvm = vcpu->kvm; 1254 struct kvm_nested_guest *gp; 1255 1256 gp = kvmhv_get_nested(kvm, lpid, false); 1257 if (gp) { 1258 kvmhv_emulate_tlbie_lpid(vcpu, gp, ric); 1259 kvmhv_put_nested(gp); 1260 } 1261 return H_SUCCESS; 1262 } 1263 1264 /* 1265 * Number of pages above which we invalidate the entire LPID rather than 1266 * flush individual pages. 1267 */ 1268 static unsigned long tlb_range_flush_page_ceiling __read_mostly = 33; 1269 1270 static long do_tlb_invalidate_nested_tlb(struct kvm_vcpu *vcpu, 1271 unsigned long lpid, 1272 unsigned long pg_sizes, 1273 unsigned long start, 1274 unsigned long end) 1275 { 1276 int ret = H_P4; 1277 unsigned long addr, nr_pages; 1278 struct mmu_psize_def *def; 1279 unsigned long psize, ap, page_size; 1280 bool flush_lpid; 1281 1282 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) { 1283 def = &mmu_psize_defs[psize]; 1284 if (!(pg_sizes & def->h_rpt_pgsize)) 1285 continue; 1286 1287 nr_pages = (end - start) >> def->shift; 1288 flush_lpid = nr_pages > tlb_range_flush_page_ceiling; 1289 if (flush_lpid) 1290 return do_tlb_invalidate_nested_all(vcpu, lpid, 1291 RIC_FLUSH_TLB); 1292 addr = start; 1293 ap = mmu_get_ap(psize); 1294 page_size = 1UL << def->shift; 1295 do { 1296 ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap, 1297 get_epn(addr)); 1298 if (ret) 1299 return H_P4; 1300 addr += page_size; 1301 } while (addr < end); 1302 } 1303 return ret; 1304 } 1305 1306 /* 1307 * Performs partition-scoped invalidations for nested guests 1308 * as part of H_RPT_INVALIDATE hcall. 1309 */ 1310 long do_h_rpt_invalidate_pat(struct kvm_vcpu *vcpu, unsigned long lpid, 1311 unsigned long type, unsigned long pg_sizes, 1312 unsigned long start, unsigned long end) 1313 { 1314 /* 1315 * If L2 lpid isn't valid, we need to return H_PARAMETER. 1316 * 1317 * However, nested KVM issues a L2 lpid flush call when creating 1318 * partition table entries for L2. This happens even before the 1319 * corresponding shadow lpid is created in HV which happens in 1320 * H_ENTER_NESTED call. Since we can't differentiate this case from 1321 * the invalid case, we ignore such flush requests and return success. 1322 */ 1323 if (!__find_nested(vcpu->kvm, lpid)) 1324 return H_SUCCESS; 1325 1326 /* 1327 * A flush all request can be handled by a full lpid flush only. 1328 */ 1329 if ((type & H_RPTI_TYPE_NESTED_ALL) == H_RPTI_TYPE_NESTED_ALL) 1330 return do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_ALL); 1331 1332 /* 1333 * We don't need to handle a PWC flush like process table here, 1334 * because intermediate partition scoped table in nested guest doesn't 1335 * really have PWC. Only level we have PWC is in L0 and for nested 1336 * invalidate at L0 we always do kvm_flush_lpid() which does 1337 * radix__flush_all_lpid(). For range invalidate at any level, we 1338 * are not removing the higher level page tables and hence there is 1339 * no PWC invalidate needed. 1340 * 1341 * if (type & H_RPTI_TYPE_PWC) { 1342 * ret = do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_PWC); 1343 * if (ret) 1344 * return H_P4; 1345 * } 1346 */ 1347 1348 if (start == 0 && end == -1) 1349 return do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_TLB); 1350 1351 if (type & H_RPTI_TYPE_TLB) 1352 return do_tlb_invalidate_nested_tlb(vcpu, lpid, pg_sizes, 1353 start, end); 1354 return H_SUCCESS; 1355 } 1356 1357 /* Used to convert a nested guest real address to a L1 guest real address */ 1358 static int kvmhv_translate_addr_nested(struct kvm_vcpu *vcpu, 1359 struct kvm_nested_guest *gp, 1360 unsigned long n_gpa, unsigned long dsisr, 1361 struct kvmppc_pte *gpte_p) 1362 { 1363 u64 fault_addr, flags = dsisr & DSISR_ISSTORE; 1364 int ret; 1365 1366 ret = kvmppc_mmu_walk_radix_tree(vcpu, n_gpa, gpte_p, gp->l1_gr_to_hr, 1367 &fault_addr); 1368 1369 if (ret) { 1370 /* We didn't find a pte */ 1371 if (ret == -EINVAL) { 1372 /* Unsupported mmu config */ 1373 flags |= DSISR_UNSUPP_MMU; 1374 } else if (ret == -ENOENT) { 1375 /* No translation found */ 1376 flags |= DSISR_NOHPTE; 1377 } else if (ret == -EFAULT) { 1378 /* Couldn't access L1 real address */ 1379 flags |= DSISR_PRTABLE_FAULT; 1380 vcpu->arch.fault_gpa = fault_addr; 1381 } else { 1382 /* Unknown error */ 1383 return ret; 1384 } 1385 goto forward_to_l1; 1386 } else { 1387 /* We found a pte -> check permissions */ 1388 if (dsisr & DSISR_ISSTORE) { 1389 /* Can we write? */ 1390 if (!gpte_p->may_write) { 1391 flags |= DSISR_PROTFAULT; 1392 goto forward_to_l1; 1393 } 1394 } else if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) { 1395 /* Can we execute? */ 1396 if (!gpte_p->may_execute) { 1397 flags |= SRR1_ISI_N_G_OR_CIP; 1398 goto forward_to_l1; 1399 } 1400 } else { 1401 /* Can we read? */ 1402 if (!gpte_p->may_read && !gpte_p->may_write) { 1403 flags |= DSISR_PROTFAULT; 1404 goto forward_to_l1; 1405 } 1406 } 1407 } 1408 1409 return 0; 1410 1411 forward_to_l1: 1412 vcpu->arch.fault_dsisr = flags; 1413 if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) { 1414 vcpu->arch.shregs.msr &= SRR1_MSR_BITS; 1415 vcpu->arch.shregs.msr |= flags; 1416 } 1417 return RESUME_HOST; 1418 } 1419 1420 static long kvmhv_handle_nested_set_rc(struct kvm_vcpu *vcpu, 1421 struct kvm_nested_guest *gp, 1422 unsigned long n_gpa, 1423 struct kvmppc_pte gpte, 1424 unsigned long dsisr) 1425 { 1426 struct kvm *kvm = vcpu->kvm; 1427 bool writing = !!(dsisr & DSISR_ISSTORE); 1428 u64 pgflags; 1429 long ret; 1430 1431 /* Are the rc bits set in the L1 partition scoped pte? */ 1432 pgflags = _PAGE_ACCESSED; 1433 if (writing) 1434 pgflags |= _PAGE_DIRTY; 1435 if (pgflags & ~gpte.rc) 1436 return RESUME_HOST; 1437 1438 spin_lock(&kvm->mmu_lock); 1439 /* Set the rc bit in the pte of our (L0) pgtable for the L1 guest */ 1440 ret = kvmppc_hv_handle_set_rc(kvm, false, writing, 1441 gpte.raddr, kvm->arch.lpid); 1442 if (!ret) { 1443 ret = -EINVAL; 1444 goto out_unlock; 1445 } 1446 1447 /* Set the rc bit in the pte of the shadow_pgtable for the nest guest */ 1448 ret = kvmppc_hv_handle_set_rc(kvm, true, writing, 1449 n_gpa, gp->l1_lpid); 1450 if (!ret) 1451 ret = -EINVAL; 1452 else 1453 ret = 0; 1454 1455 out_unlock: 1456 spin_unlock(&kvm->mmu_lock); 1457 return ret; 1458 } 1459 1460 static inline int kvmppc_radix_level_to_shift(int level) 1461 { 1462 switch (level) { 1463 case 2: 1464 return PUD_SHIFT; 1465 case 1: 1466 return PMD_SHIFT; 1467 default: 1468 return PAGE_SHIFT; 1469 } 1470 } 1471 1472 static inline int kvmppc_radix_shift_to_level(int shift) 1473 { 1474 if (shift == PUD_SHIFT) 1475 return 2; 1476 if (shift == PMD_SHIFT) 1477 return 1; 1478 if (shift == PAGE_SHIFT) 1479 return 0; 1480 WARN_ON_ONCE(1); 1481 return 0; 1482 } 1483 1484 /* called with gp->tlb_lock held */ 1485 static long int __kvmhv_nested_page_fault(struct kvm_vcpu *vcpu, 1486 struct kvm_nested_guest *gp) 1487 { 1488 struct kvm *kvm = vcpu->kvm; 1489 struct kvm_memory_slot *memslot; 1490 struct rmap_nested *n_rmap; 1491 struct kvmppc_pte gpte; 1492 pte_t pte, *pte_p; 1493 unsigned long mmu_seq; 1494 unsigned long dsisr = vcpu->arch.fault_dsisr; 1495 unsigned long ea = vcpu->arch.fault_dar; 1496 unsigned long *rmapp; 1497 unsigned long n_gpa, gpa, gfn, perm = 0UL; 1498 unsigned int shift, l1_shift, level; 1499 bool writing = !!(dsisr & DSISR_ISSTORE); 1500 bool kvm_ro = false; 1501 long int ret; 1502 1503 if (!gp->l1_gr_to_hr) { 1504 kvmhv_update_ptbl_cache(gp); 1505 if (!gp->l1_gr_to_hr) 1506 return RESUME_HOST; 1507 } 1508 1509 /* Convert the nested guest real address into a L1 guest real address */ 1510 1511 n_gpa = vcpu->arch.fault_gpa & ~0xF000000000000FFFULL; 1512 if (!(dsisr & DSISR_PRTABLE_FAULT)) 1513 n_gpa |= ea & 0xFFF; 1514 ret = kvmhv_translate_addr_nested(vcpu, gp, n_gpa, dsisr, &gpte); 1515 1516 /* 1517 * If the hardware found a translation but we don't now have a usable 1518 * translation in the l1 partition-scoped tree, remove the shadow pte 1519 * and let the guest retry. 1520 */ 1521 if (ret == RESUME_HOST && 1522 (dsisr & (DSISR_PROTFAULT | DSISR_BADACCESS | DSISR_NOEXEC_OR_G | 1523 DSISR_BAD_COPYPASTE))) 1524 goto inval; 1525 if (ret) 1526 return ret; 1527 1528 /* Failed to set the reference/change bits */ 1529 if (dsisr & DSISR_SET_RC) { 1530 ret = kvmhv_handle_nested_set_rc(vcpu, gp, n_gpa, gpte, dsisr); 1531 if (ret == RESUME_HOST) 1532 return ret; 1533 if (ret) 1534 goto inval; 1535 dsisr &= ~DSISR_SET_RC; 1536 if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE | 1537 DSISR_PROTFAULT))) 1538 return RESUME_GUEST; 1539 } 1540 1541 /* 1542 * We took an HISI or HDSI while we were running a nested guest which 1543 * means we have no partition scoped translation for that. This means 1544 * we need to insert a pte for the mapping into our shadow_pgtable. 1545 */ 1546 1547 l1_shift = gpte.page_shift; 1548 if (l1_shift < PAGE_SHIFT) { 1549 /* We don't support l1 using a page size smaller than our own */ 1550 pr_err("KVM: L1 guest page shift (%d) less than our own (%d)\n", 1551 l1_shift, PAGE_SHIFT); 1552 return -EINVAL; 1553 } 1554 gpa = gpte.raddr; 1555 gfn = gpa >> PAGE_SHIFT; 1556 1557 /* 1. Get the corresponding host memslot */ 1558 1559 memslot = gfn_to_memslot(kvm, gfn); 1560 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) { 1561 if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS)) { 1562 /* unusual error -> reflect to the guest as a DSI */ 1563 kvmppc_core_queue_data_storage(vcpu, ea, dsisr); 1564 return RESUME_GUEST; 1565 } 1566 1567 /* passthrough of emulated MMIO case */ 1568 return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, writing); 1569 } 1570 if (memslot->flags & KVM_MEM_READONLY) { 1571 if (writing) { 1572 /* Give the guest a DSI */ 1573 kvmppc_core_queue_data_storage(vcpu, ea, 1574 DSISR_ISSTORE | DSISR_PROTFAULT); 1575 return RESUME_GUEST; 1576 } 1577 kvm_ro = true; 1578 } 1579 1580 /* 2. Find the host pte for this L1 guest real address */ 1581 1582 /* Used to check for invalidations in progress */ 1583 mmu_seq = kvm->mmu_invalidate_seq; 1584 smp_rmb(); 1585 1586 /* See if can find translation in our partition scoped tables for L1 */ 1587 pte = __pte(0); 1588 spin_lock(&kvm->mmu_lock); 1589 pte_p = find_kvm_secondary_pte(kvm, gpa, &shift); 1590 if (!shift) 1591 shift = PAGE_SHIFT; 1592 if (pte_p) 1593 pte = *pte_p; 1594 spin_unlock(&kvm->mmu_lock); 1595 1596 if (!pte_present(pte) || (writing && !(pte_val(pte) & _PAGE_WRITE))) { 1597 /* No suitable pte found -> try to insert a mapping */ 1598 ret = kvmppc_book3s_instantiate_page(vcpu, gpa, memslot, 1599 writing, kvm_ro, &pte, &level); 1600 if (ret == -EAGAIN) 1601 return RESUME_GUEST; 1602 else if (ret) 1603 return ret; 1604 shift = kvmppc_radix_level_to_shift(level); 1605 } 1606 /* Align gfn to the start of the page */ 1607 gfn = (gpa & ~((1UL << shift) - 1)) >> PAGE_SHIFT; 1608 1609 /* 3. Compute the pte we need to insert for nest_gpa -> host r_addr */ 1610 1611 /* The permissions is the combination of the host and l1 guest ptes */ 1612 perm |= gpte.may_read ? 0UL : _PAGE_READ; 1613 perm |= gpte.may_write ? 0UL : _PAGE_WRITE; 1614 perm |= gpte.may_execute ? 0UL : _PAGE_EXEC; 1615 /* Only set accessed/dirty (rc) bits if set in host and l1 guest ptes */ 1616 perm |= (gpte.rc & _PAGE_ACCESSED) ? 0UL : _PAGE_ACCESSED; 1617 perm |= ((gpte.rc & _PAGE_DIRTY) && writing) ? 0UL : _PAGE_DIRTY; 1618 pte = __pte(pte_val(pte) & ~perm); 1619 1620 /* What size pte can we insert? */ 1621 if (shift > l1_shift) { 1622 u64 mask; 1623 unsigned int actual_shift = PAGE_SHIFT; 1624 if (PMD_SHIFT < l1_shift) 1625 actual_shift = PMD_SHIFT; 1626 mask = (1UL << shift) - (1UL << actual_shift); 1627 pte = __pte(pte_val(pte) | (gpa & mask)); 1628 shift = actual_shift; 1629 } 1630 level = kvmppc_radix_shift_to_level(shift); 1631 n_gpa &= ~((1UL << shift) - 1); 1632 1633 /* 4. Insert the pte into our shadow_pgtable */ 1634 1635 n_rmap = kzalloc(sizeof(*n_rmap), GFP_KERNEL); 1636 if (!n_rmap) 1637 return RESUME_GUEST; /* Let the guest try again */ 1638 n_rmap->rmap = (n_gpa & RMAP_NESTED_GPA_MASK) | 1639 (((unsigned long) gp->l1_lpid) << RMAP_NESTED_LPID_SHIFT); 1640 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 1641 ret = kvmppc_create_pte(kvm, gp->shadow_pgtable, pte, n_gpa, level, 1642 mmu_seq, gp->shadow_lpid, rmapp, &n_rmap); 1643 kfree(n_rmap); 1644 if (ret == -EAGAIN) 1645 ret = RESUME_GUEST; /* Let the guest try again */ 1646 1647 return ret; 1648 1649 inval: 1650 kvmhv_invalidate_shadow_pte(vcpu, gp, n_gpa, NULL); 1651 return RESUME_GUEST; 1652 } 1653 1654 long int kvmhv_nested_page_fault(struct kvm_vcpu *vcpu) 1655 { 1656 struct kvm_nested_guest *gp = vcpu->arch.nested; 1657 long int ret; 1658 1659 mutex_lock(&gp->tlb_lock); 1660 ret = __kvmhv_nested_page_fault(vcpu, gp); 1661 mutex_unlock(&gp->tlb_lock); 1662 return ret; 1663 } 1664 1665 int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid) 1666 { 1667 int ret = lpid + 1; 1668 1669 spin_lock(&kvm->mmu_lock); 1670 if (!idr_get_next(&kvm->arch.kvm_nested_guest_idr, &ret)) 1671 ret = -1; 1672 spin_unlock(&kvm->mmu_lock); 1673 1674 return ret; 1675 } 1676